
Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

Parameters: 1  and  2 ....  π's are proportions / prevalences / risks
Large-sample CI  for  COMPARATIVE MEASURE /
PARAMETER (if 2 estimates are uncorrelated)3 Comparative measures / parameters:

IN GENERAL (if calculations in  transformed scale, must back-transform )

       COMPARATIVE estimate1 - estimate2  ±  z SE[ estimate1 - estimate2 ]

estimate1 - estimate2  ±  z Sqrt[Var[estimate1] + Var[estimate2]]

IN PARTICULAR

   p1 - p2  ±  z SE[ p1 - p2 ]  Remember: SE's don't add !

= p1 - p2  ±  z SE2[p1] +SE2[p2]                      Their squares do !

         PARAMETER          estimate     New Scale

(Risk or
Prevalence)
Difference 1  – 2   p1 – p2

cf.  Rothman2002 p 135 Eqn 7-2     <<<<<<
= p1 - p2  ±  z  

p1[1-p1]

n1

 +  
p2[1-p2]

n2
  

(Risk or
Prevalence)

Ratio     1
2

 
p1
p2

       log[p1
p2
] = log[p1] –  log[p2]

   anti-log[  log[p1/p2]  ±  z SE[ log[p1] –  log[p2] ]    ]

= anti-log[  log[p1/p2]  ±  z SE2[ log[p1]  ]  +   SE2[ log[p2]  ]     ]
cf.  Rothman2002 p 135 Eqn 7-3     <<<<<<

From 8.1:  SE2[ log[p1] ]  =  Var[ log[p1] ]  = 1/#positive1 – 1/ #total1

       SE2[ log[p2] ]  =  Var[ log[p2] ]  =   1/#positive2 – 1/ #total2

cf.  Rothman2002 p 139 Eqn 7-6     <<<<<<
   anti-log [  log[oddsRatio]  ±  z SE[  logit1 –  logit2 ]  ]

= anti-log [  log[oddsRatio]  ±  z SE2[logit1]   +   SE2[logit2]    ]

From 8.1:  SE2[ logit1 ]  =  Var[ logit1 ]  =  1/#positive1 + 1/ #negative1

        SE2[ logit2 ]  =  Var[ logit2 ]  = 1/#positive2 + 1/ #negative2

Odds Ratio 1 / (1– 1)

2 / (1– 2)
 

odds1
odds2

  log[odds1
odds2

]
    = log[odds1] –   log[odds2]

   =        logit1 –   logit2
Var[log of OR est.] = 1/a + 1/b + 1/c + 1/d  ==> "Woolf's Method": CI[ODDSRATIO]
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Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

Examples:Large-sample

Test of  π1 = π1   equivalent to Test of π1– π1  = 0

            (Risk or Prevalence Difference = 0)

same as Test of   
π1
π2

  =1

0 The generic 2x2 contingency table:

 +ve -ve    both
--------------------------------------------------------------------------

sample 1 y1 (%) n1-y1 n1 (100%)

sample 2 y2 (%) n2-y2 n2 (100%)

---------------------------------------------------------------------------(Risk or Prevalence Ratio = 1)

same as Test of 
π1/ {1 – π1}
π2/ {1 – π2}  = 1

(ODDS Ratio = 1)

total y  (%) n - y n   (100%)

1 Bromocriptine for unexplained 1º infertility (BMJ 1979)

became did total no.
pregnant not couples

------------------------------------------------------------------------------------
Bromocriptine   7 (29%) 17 24 (100%)
Placebo   5 (22%) 18 23 (100%)
------------------------------------------------------------------------------------
total 12  (26%) 35 47 (100%)

 z = 
p1 - p2 - {∆=0}
SE[ p1 - p2 ]  †

2 Vitamin C and the common cold (CMAJ Sept 1972 p 503)

 =   
p1 - p2

  
p[1-p]

n1
 + 

p[1-p]
n2

† †
no colds         ≥ 1 cold total subjects

------------------------------------------------------------------------------------
Vitamin C 105 (26%) 302 407 (100%)
Placebo   76 (18%) 335 411 (100%)
------------------------------------------------------------------------------------
total 181  (22%) 637 818 (100%)

 =  
p1 - p2

p[1-p]{1
n1

 + 
1
n2

}
   =   

p1 - p2

 p[1-p]  
1
n1

 + 
1
n2

[ use estimate p = 
n1p1 +  n 2p2

n1 +  n 2
  = 

total +ve
total

  in test ]

3 Stroke Unit vs Medical Unit for Acute Stroke in elderly?
Patient status at hospital discharge (BMJ 27  Sept 1980)

 indept.       dependent total  no. pts
------------------------------------------------------------------------------------
Stroke Unit   67 (66%) 34 101 (100%)
Medical Unit   46 (51%) 45   91 (100%)
------------------------------------------------------------------------------------
total 113 (59%) 79 192 (100%)

†  Continuity correction: use |p
1
 – p

2
 | – [  1/(2n1) + 1/(2n2) ] in numerator

† † Variances add if the proportions are uncorrelated
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Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

Rx for primary infertility
Stroke Unit vs Medical Unit

95%CI on ∆π : 0.29 - 0.22  ±  z  
0.29 • 0.71

24
 +  

0.22 • 0.78
23

= 0.07  ±  1.96 x 0.13
= 0.07  ±  0.25

95%CI for ∆π : 0.66 - 0.51  ±  z  
0.66 • 0.34

101
 +  

0.51 • 0.49
91

= 0.15  ±  1.96 x 0.07
= 0.15  ±  0.14

test ∆π=0 :
test ∆π=0 :  [carrying several decimal places, for comparison with χ2 later]

  z =  
0.6634 – 0.5054

 0.5885 •  0.4115 •  { 
1

101
 +  

1
91

 }
   =  

0.1580
0.0711

  =  2.22 

     [ estimate of hypothesized common    =  
total +ve

total
  = 

113
192

  = 0.5885  ]

z =  
0.29 - 0.22

 0.26 [0.74]  {   
1

24
 +  

1
23

 }

   =  
0.07
0.13

  =  0.55

P=0.58 (2-sided)

Fall in BP with Reduction in Dietary Salt

P = Prob[ | Z | ≥ 2.22 ] = 0.026 (2-sided) Response of interest:  Y = Achieve DBP < 90 ?  [ 0 / 1 ]

H0: π(Y=1 | Normal Sodium Diet) =   π(Y=1 | Low Sodium Diet)
Halt: π(Y=1 | Normal Sodium Diet) ≠ π(Y=1 | Low Sodium Diet)

Vitamin C and the common cold

95%CI on ∆π: 0.26 - 0.18  ±  z  
0.26 • 0.74

407
 +  

0.18 • 0.81
411

= 0.08  ±  1.96 x 0.03
= 0.08  ±  0.06

α =0.05 (2-sided);

Proportion achieving DBP < 90 mm

"Normal" "Low"
Group Group

test ∆π=0 : [carrying several decimal places, for comparison with χ2 later]
11/50 17/53

 ( 22 %)  ( 32 %)  z = 
0.32 – 0.22

0.27 • 0.73 •[
1
53
 + 

1
50
]

z =  
0.258 - 0.185

 0.221 [0.779] {   
1

407
 +  

1
411

 }

   =  
0.073
0.029

   = 2.52 (2.517 = √6.337)

P=0.006 (1-sided); P=0.012 (1-sided) i.e.  |z| = 1.14 which is < Zα = 1.96 and so observed difference of 10% is
"N.S."
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Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

CI for Risk Ratio (Rel. RISK) or Prev. Ratio cf. Rothman2002 p135 CI for ODDS RATIO   cf. Rothman2002 p139

Example: Vitamin C and the common cold (CMAJ Sept 1972 p 503) . . .REVISITED
      Vitamin C       Placebo:

had cold(s) 302 335
avoided colds 105   76

# with cold(s) for every

no colds                 ≥ 1 cold total subjects
------------------------------------------------------------------------------------
Vitamin C 105 (26%) 302(74%) 407 (100%)
Placebo   76 (18%) 335(82%) 411 (100%)
------------------------------------------------------------------------------------
total 181  (22%) 637(78%) 818 (100%) 1 who avoided colds 2.88 (:1) 4.41 (:1)

  RR^   =  
Prob[ cold | Vitamin C]
Prob[ cold | Placebo ]

    =  74%
82%

    =   0.91 odds of cold(s) 2.88 4.41

odds Ratio   = 2.88 / 4.41           =  0.65     >>>  OR^   = 0.65

CI[OR] = anti-log [  log[oddsRatio]  ±  z SE[  logit1 –  logit2 ]  ]

CI[RR]: antilog{  log[0.91]  ±  z SE[ log[p1] –  log[p2] ]  }

=antilog{ log[0.91]  ±  z SE2[ log[p1]  ]  +   SE2[ log[p2]  ]   }
From 8.1: SE2[ log[p1] ]  = Var[ log[p1] ] = 1/ 302 – 1/ 407 = 0.000854

  SE2[ log[p2] ]  = Var[ log[p2] ] = 1/ 335 – 1/ 411 = 0.000552
From 8.1:  SE2[ logit1 ]  =   1/#positive1 + 1/ #negative1

   SE2[ logit2 ]  =  1/#positive2 + 1/ #negative2

SE[  logit1 –  logit2 ]  = Sqrt[ (1/ 302 + 1/ 105) + (1/ 335 + 1/ 76 ) ] = 0.17

z SE[  logit1 –  logit2 ]  = 1.96 × 0.17 = 0.33

anti-log [  log[0.65]  ±  0.33  ] = exp[ –0.43 ±  0.33 ] = 0.47 to 0.90

>>>>> OR̂  = 0.65;  CI[OR] = {0.47 to 0.90}

CI[RR]:  antilog{  log[0.91]  ±  z Sqrt[ 0.000854 + 0.000552] }
= antilog{  log[0.91]  ±  0.073 } = 0.85 to 0.98

Shortcut: calculate exp{ z×SE[log  RR̂ ] } and use it as a multiplier and
divider of RR

^
. In our e.g., exp{z×SE[log RR̂ ]} = exp{0.073} = 1.076.

Thus {RRLOWER, RRUPPER} = {0.91 / 1.076 , 0.91 × 1.076} = {0.85 , 0.98}
You can use this shortcut whenever you are working with log-based CI's
that you convert back to the original scale, there they become "multiply-
divide" symmetric rather than "plus-minus" symmetric.

From SAS From Stata
From SAS From StataPROC FORMAT;

VALUE onefirst 0="z_0" 1="a_1";
DATA CI_RR_OR;
INPUT vitC cold  n_people;
LINES;
       1    1      302
       1    0      105
       0    1      335
       0    0       76
;
PROC FREQ data=CI_RR_OR
     ORDER=FORMATTED;
TABLES vitC*cold / CMH;
WEIGHT n_people;
FORMAT vitC cold onefirst. ;RUN;

Immediate: csi 302 335 105 76

cs stands for 'cohort study'

input  vit_c  cold n_people
         1     1     302
         1     0     105
         0     1     335
         0     0      76
end
cs cold vit_c [freq = n_people]

<<<<   See statements for RR

(output gives both RR and OR)

Be CAREFUL as to rows/cols
Index exposure category must be
1st  row ; reference exposure
category must be 2nd

If necessary, use FORMAT  to
have table come out this way...
(note trick to reverse rows/cols)

SAS doesn't know if cc or cohort

Immediate: cci 302 335 105 76,woolf

cc stands for 'case control study'

input  vit_c  cold n_people
         1     1     302
         1     0     105
         0     1     335
         0     0      76
end
cc cold vit_c [freq =n_people],woolf
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Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

"Test-based" CI's ...  IN GENERAL "Test-based" CI's for...  IN PARTICULAR

Preamble • Difference of 2 proportions π1 - π2 (Risk or Prevalence Difference)
In 1959, when Mantel and Haenszel developed their summary Odds Ratio
measure over 2 or more strata, they did not supply a CI to accompany this
point estimate. From 1955 onwards, the main competitor was the weighted
average (in the log OR scale) and accompanying CI obtained by Woolf'. But
this latter method has problems with strata where one or more cell
frequencies are zero. In 1976, Miettinen developed the "test-based"
method for epidemiologic situations where the summary point estimate is
easily calculated, the standard error estimate is unknown or hard to
compute, but where a statistical test of the null value of the parameter of
interest (derived by aggregating a "sub-statistic" from each stratum) is
already available. Although the 1886 development, by Robins, Breslow
and Greenland, of a direct standard error for the log of the Mantel-Haenszel
OR estimator, the "test-based" CI is still used (see A&B KKM).

Observe : p1 & p2  and (maybe via p-value) the calculated value of x2

This implies that

Sqrt[observed x2 value] = observed x value = observed z value;

But... observed z statistic = ( p1 – p2 ) / SE [ p1 – p2 ] .

So... SE [ p1 – p2 ]  =  
p1 –  p2  

observed z statistic        use +ve  sign

95% CI for  p1 - p2 :

   ( p1 – p2 ) ± {z  value for 95%}  ×  SE[ p1 – p2 ]
i.e.,...

   ( p1 – p2 ) ± {z value for  95%}  ×  
p1 –  p2  

observed z statistic

i.e., after re-arranging terms..

   ( p1 – p2 ) {1  ±  
z value for 95%

observed z statistic  }
or, in terms of a reported chi-square statistic

Even though its main usefulness is for summaries over strata, the idea can
be explained using a simpler and familiar (single starum) example, the
comparison of two independent means using a z-test with large df (the
principle does not depend on t vs. z). Suppose all that was reported was
the difference in sample means, and the 2-sided p-value associated with a
test of the null hypothesis that the mean difference was zero. From the
sample means, and the p-value, how could we obtain a 95%CI for the
difference in the "population' means? The trick is to
1 work back (using a table of the normal distribution) from the p-value to

the corresponding value of the z-statistic  (the number of standard
errors that the difference in sample means is from zero);

2 divide this observed difference by the observed z value, to get the
standard error of the difference in sample means, and

   ( p1 – p2 ) {1   ±  
z value for 95%

Sqrt[observed chi-square statistic]  }
3 use the observed difference, and the desired multiple (1.645 for 90%

CI, 1.96 for 95% etc.) to create the CI.

The same procedure is directly applicable for the difference of two
independently estimated proportions. If one tests the (null) difference
using a z-test, one can obtain the SE of the difference by dividing the
observed difference in proportions by the z statistic; if the difference was
tested by a chi-square statistic, one can obtain the z-statistic by taking the
square root of the observed chi-square value (authors call this square root
an observed 'chi' value). Either way, the observed z-value leads directly to
the SE, and from there to the CI.

See Section 12.3 of Miettinen's "Theoretical Epidemiology"

Technically, when the variance is a function of the parameter (as is
the case with binary response data), the test-based CI is most
accurate close to the Null. However, as you can verify by comparing
test-based CIs with CI's derived in other ways, the inaccuracies are
not as extreme as textbooks and manuals (e.g. Stata) suggest.

This is worked out in the next example, where it is assumed that the null
hypothesis is tested via a chi-squared  (x2) test
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Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

"Test-based" CI's for...  IN PARTICULAR "Test-based" CI's for...  IN PARTICULAR

• Ratio of 2 proportions π1/π2

( Risk Ratio; Prevalence Ratio; Relative Risk; "RR" )

• Ratio of 2 odds  π1/[1–π1] and π2/[1–π2]

( Odds Ratio; "OR" )

Observe :(i) rr = p1/p2  and

  (ii) (maybe via p-value) the value of x2 statistic (H0: RR=1)

Observe :(i) or = p1/[1–p1]  /   p2/[1–p2 ]  ( " a×d / b×c " ) and

  (ii) (maybe via p-value) the value of x2 statistic (H0: OR=1)

     >>>  Sqrt[observed x2 value] = observed x value = observed z value

In log scale, in relation to log[RRnull] = 0,  observed z value would be:

observed z value = ( log[rr] – 0)  / SE[ log[rr] ]

     >>>  Sqrt[observed x2 value] = observed x value = observed z value

In log scale, in relation to log[ORnull] = 0,  observed z value would be:

observed z value = ( log[or] – 0)  / SE[ log[or] ]

This implies that

SE[ log[rr] ]  = log[rr] / observed z value       use +ve  sign

95% CI for  log[RR] :

   log[rr]  ± {z  value for 95%}  ×  SE[ log[rr] ]
i.e.,...

   log[rr] ± {z value for  95%}  ×  log[rr]
 observed z value

i.e., after re-arranging terms..

   log[rr] × {1  ±  
z value for 95%

observed z statistic  }

This implies that

SE[ log[or] ]  = log[or] / observed z value       use +ve  sign

95% CI for  log[OR] :

   log[or]  ± {z  value for 95%}  ×  SE[ log[or] ]
i.e.,...

   log[or] ± {z value for  95%}  ×  log[or]
 observed z value

i.e., after re-arranging terms..

   log[or] × {1  ±  
z value for 95%

observed z statistic  }
Going back to RR scale, by taking antilogs*... Going back to OR scale, by taking antilogs*...

95% CI for  RR:

   rr to power of {1  ±  
z value for 95%

observed z statistic  }
95% CI for  OR:

   or to power of {1  ±  
z value for 95%

observed z statistic  }

See Section13.3 of Miettinen's "Theoretical Epidemiology"
See Section13.3 of Miettinen's "Theoretical Epidemiology"

* antilog[ log[a] × b ] = exp[ log[a] × b ]= { exp[log[a]] } to power of b = a to power of b
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Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

Sample Size considerations...  CI(π1 – π2)

n's to produce CI for difference in π's of pre specified margin of
error m at stated confidence level

Sample Size considerations...  Test involving πT and πC

Test    H0: πT = πC    vs    Ha:   πT  πC  :

n's for power 1–  if πT = πC + ;   prob[type I error] = 

• large-sample CI:  p1–p2 ± Z SE(p1–p2 ) =  p1–p2  ± m

• SE(p1 – p2 ) = 
 p1{1–p1} 

n1
 + 

p2{1–p2}
n2

n per group 

=   
{ Zα/2 2πC{1–πC} – Zβ πC{1–πC}+πT{1–πT} }2

2

(See Colton p 168 )

≈ 2(Zα/2 – Zβ)2 { 
 π–{1– π–}

∆  }2

=  2{Zα/2 – Zβ}
2
{ 

σ0/1
 }

2

Simplify by using an average p;

if use equal n's, then

n per group = 
2p{1–p} Zα/22

[margin of error]2

M&M use the fact that if  p = 1/2 then p(1–p) = 1/4, and so

2p(1–p) = 1/2, so the above equation becomes

[max] n per group = 
Zα/22

 2 × [margin of error]2

e.g.

=0.05 (2-sided) & =0.2 ... Zα = 1.96;  Zβ = -0.84,

2(Zα/2 – Zβ)2 = 2{1.96 – (–0.84)}2 ≈ 16, i.e.

n per group ≈ 16 • π–{1– π–} / ∆2

So n  100 for T group and n  100 for C group
if T = 0.6 and C = 0.4

See Sample Size Requirements for Comparison of 2
Proportions (from text by Smith and Morrow) under
Resources for Chapter 8.
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Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

Effect of Unequal Sample Sizes (  n1   n2  ) on precision of estimated differences

If we write the SE of an estimated difference in mean responses as   σ 
1
n1

 +  
1
n2

  , where σ is the (average) per unit variability of the response, then we can establish the

following principles:

1 If costs and other factors (including unit variability) are equal,
and if both types of units are equally scarce or equally
plentiful , then for a given total  sample size of n = n1 + n2, an equal division
of n i.e. n1 = n2 is preferable since it yields a smaller SE(estimated difference in
means) than any non-symmetric division. However, the SE is relatively
unaffected until the ratio exceeds  70:30. This is seen in the following table

which gives the value of 
1
n1

 +  
1
n2

   = SE(estimated difference in means) for

various combinations of n1 and n2 adding to 100 (the 100 itself is arbitrary) and
assuming σ = 1 (also arbitrary).

2 If one type of unit is much scarcer, and thus the limiting factor ,
then it makes sense to choose all (say n1) of the available scarcer units,  and
some  n2 ≥  n1 of the other type. The greater is n2 , the smaller the SE of the
estimated difference. However, there is a 'law of diminishing returns' once n2 is
more than a few multiples of  n1. This is seen in the following table which

gives the value of   
1
n1

 +  
1
n2

  for n1 fixed (arbitrarily) at 100 and n2 ranging

from 1 x n1 to 100 x n1; again, we assume σ=1.

                                  SEK:1       SEK:1
             Ratio               as % of     as % of

n1    n2      (K)   SE(µ̂1 - µ̂2)  of SE(1:1)  SE(∞:1) *n1  n2 SE(estimated  difference in means) %Increase in SE
over SE(50:50)  *

50 50 0.200   -–---
60 40 0.204    2.1%
65 35 0.210    4.8%
70 30 0.218    9.1%
75 25 0.231   15.5%
80 20 0.250   25.0%
85 15 0.280   40.0%

50     50     1.0      0.2000        –       1.414
50     75     1.5      0.1825      91.3%     1.290
50    100     2.0      0.1732      86.6%     1.225
50    150     3.0      0.1633      81.6%     1.155
50    200     4.0      0.1581      79.1%     1.118
50    250     5.0      0.1549      77.5%     1.095
50    300     6.0      0.1527      76.4%     1.080
50    400     8.0      0.1500      75.0%     1.061
50    500    10.0      0.1483      74.2%     1.049
50   1000    20.0      0.1449      72.4%     1.025
50   5000   100.0      0.1421      71.1%     1.005
50     ∞      ∞        0.1414      70.7%     1     * if sample sizes are π:(1–π), the % increase is 50 / π(1-π) .

* calculated as 
 K + 1

K
  ;  'efficiency' = 

K
K + 1

Note: these principles apply to both measurement and count data
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Inference concerning 2 's  M&M §8.2 ; updated Dec 14, 2003

Sample size calculation when using unequal sample sizes to estimate / test difference in 2 means or proportions

For power (sensitivity)  1–β, and specificity 1–α (2-sided), the sample
sizes n1 and n2 have to be such that

Notes:

a. If K=1, so that n1=n2,  then we get the familiar "2" at the front of
the sample size formula.

Zα/2 SE( x–1 –  x–2 ) – ZβSE( x–1 –  x–2 ) = ∆.

(if β < 0.5, then Zβ will be negative). If we assume equal per unit
variability, σ, of the x's in the 2 populations, we can write the
requirement as

 Zα/2  σ 
1
n1

 + 
1
n2

   – Zβ σ 
1
n1

 + 
1
n2

    =  ∆.

b. The same factor applies for proportions:

If we use σ0/1 =  π– [1 – π– ]

as an "average" standard deviation for the

individual 0's and 1's in each population, i.e.

σ0/1 =  π [1 – π ]
If we rewrite  

1
n1

 + 
1
n2

   as  
1
n1

 {1 + 
n1
n2

}

and rearrange the inequality, we get then, as we get the approximate formula:

        
n1 ≈  { 

K+1
K }(Zα/2 – Zβ)2 { 

π
–

 [1 – π
–

 ]

∆2  }
n1 =  {1 + 

n1
n2

}(Zα/2 – Zβ)2 { 
σ
∆ }2

or, denoting   n2
n1

  by K,

n1 =  {1 + 
1
K}(Zα/2 – Zβ)2 { 

σ
∆ }2

i.e.

n1 =  { 
K+1

K }(Zα/2 – Zβ)2 { 
σ
∆ }2
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Add-ins for M&M §8 and  §9 statistics for epidemiology

Sample Size considerations...  Test involving OR

Test    H0: OR = 1    vs.    Ha:  OR  OR :

n's for power 1–  if OR =  ORal t;   prob[type I error] = 

Key points
ln [ or] most precise when all 4 cells are of equal size; so...

1 increasing the control:case ratio leads to diminishing marginal
gains in precision.

To see this... examine the function

   
1

# of cases + 
1

 multiple of this # of controls

for various values of "multiple"

[like we did back in Chapter 8, for "effect of unequal sample
sizes"]

Here I use  ln  for natural log  (elsewhere I have used log; I use them interchangeably)

Work in  ln (or) scale; SE[ ln (or) ] =  
1
a + 

1
b + 

1
c + 

1
d

Need Zα/2 SE[ ln (or) ]0 + ZβSE[ ln (or) ]alt <  "∆"

where "∆"  = ln (ORalt)

α/2

Z   SE[ ln(or) | OR alt ]

β

ln [OR] =  0

β
Z      SE[ ln(or) |  Ho ]α/2

ln[OR     ]alt

    = ln[OR     ]alt∆

2 The more unequal the distribution of the etiologic / preventive
factor, the less precise the estimate

Examine the functions

1
# of exposed cases +

1
 # of unexposed cases

and
1

# of exposed controls +
1

 # of unexposed controls
Reading graphs on next page (Note log scale for observed or)

Take as an example the study in the middle panel, with 200  cases, and an exposure
prevalence of 8%. Say that the Type I error rate is set at α=0.05 (2sided) so that
the upper critical value (the one that cuts off the top  2.5% of the null distribution)
is close to or = 2. Draw a vertical line at this critical value, and examine how
much of each non-null distribution falls to the right of this critical value. This area
to the right of the critical value is the power of the study, i.e., the probability of
obtaining a significant or, when in fact the indicated non-null value of OR is
correct. Two curves at each OR value are for studies with 1(grey)  and 4(black)
controls/case. Note that OR values 1, 1.5, 2.25 and 3.375 are also on a log scale.

Power larger if...
Substitute expected a, b, c, d values under null and alt. into
SE's and solve for numbers of cases and controls.

i non-null OR >> 1 (cf 2.5 vs 2.25 vs 3.375)

References: Schlesselman,  Breslow and Day, Volume II, ... ii exposure common (cf 2% vs 8% vs 32%) and not near universal)
iii use more cases (cf 100 vs 200 vs 400), and controls/case (1 vs 4)
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Factors affecting variability of estimates from, and statistical power of, case-control studies

OR

3.375

2.25

1.5

1

3.375

2.25

1.5

1

3.375

2.25

1.5

1
0.25 0.5 1 2 4 8

or

Cases: 100  Exposure Prevalence: 32%

0.25 0.5 1 2 4 8
or

Cases: 200  Exposure Prevalence: 32%

0.25 0.5 1 2 4 8
or

Cases: 400  Exposure Prevalence: 32%

0.25 0.5 1 2 4 8
or

Cases: 100  Exposure Prevalence: 8%

0.25 0.5 1 2 4 8
or

Cases: 200  Exposure Prevalence: 8%

0.25 0.5 1 2 4 8
or

Cases: 400  Exposure Prevalence: 8%

0.25 0.5 1 2 4 8
or

Cases: 100  Exposure Prevalence: 2%

0.25 0.5 1 2 4 8
or

Cases: 200  Exposure Prevalence: 2%

0.25 0.5 1 2 4 8
or

Cases: 400  Exposure Prevalence: 2%

jh 1995-2003
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The "Exact" Test for 2 x 2 tables [material taken from A&B §4.9]

Even with the continuity correction there will be some doubt about the adequacy of
the χ2 approximation when the frequencies are particularly small. An exact test was
suggested almost simultaneously in the mid-1930s by R. A. Fisher, J. O. Irwin and
F. Yates. It consists in calculating the exact probabilities of the possible tables
described in the previous subsection. The probability of a table with frequencies

There are six possible tables with the same marginal totals as those observed. since
neither a nor c (in the notation given above) can fall below 0 or exceed 5, the
smallest marginal total in the table. The cell frequencies in each of these tables are
shown in Table 4.7. Below them are shown the probabilities of these tables,
calculated under the null hypothesis.

Table 4.7 Cell frequencies in tables with the same marginal totals as those in Table
4.6

a b r1

c d r2

----------------------------
c1 c2 N

  0 20 20   1 19 20   2 18 20   3 17 20   4 16 20   5 15 20
  5 17 22   4 18 22   3 19 22   2 20 22   1 21 22   0 22 22
  5 37 42   S 37 42   5 37 42   5 37 42   5 37 42   5 37 42

is given by the formula

     P[ a | r1, r2 , c1, c2 ] =   
r1! r2! s1! s1!
N! a! b! c! d!

       (4.25)

a     0         1         2         3         4         5

Pa  0.0310    0.1720    0.3440    0.3096   0.1253     0.0182

The Probabilities of the various tables are calculated in the following way*: the
probability that a = 0 is, from (4.25),

This is, in fact, the probability of the observed cell frequencies condi t ional   on
the observed marginal totals, under the null hypothesis of no association between
the row and column classifications.   Given any observed table, the probabilities of
all tables with the same marginal totals can be calculated, and the P value for the
significance test calculated by summation. Example 4.14 illustrates the calculations
and some of he difficulties of interpretation which may arise.  The data in Table 4.6,
due to M. Hellman, are discussed by Yates (1934).

P0 = 
20! 22! 5! 37!

42! 0! 20! 5! 7!
 = 0.03096.

Tables of log factorials (Fisher and Yates, 1963, Table XXX) are often useful for
this calculation, and many scientific calculators have a factorial key (although it
may only function correctly for integers less than 70). Alternatively the expression
for P0 can be calculated without factorials by repeated multiplication and division
after cancelling common factors:

P0 = 
22 x 21 x 20 x 19 x 18
42 x 41 x 40 x 39 x 38

 = 0.03096.
Table 4.6 Data on malocclusion of teeth in infants (Yates, 1934)

Infants with
The probabilities for a = 1, 2, . . ., 5 can be obtained in succession. Thus,

P1 = 
5 x 20
1 x 18

  x P0

P2 = 
4 x 19
2 x 19

  x P1, etc.

Normal teeth Malocclusion Total

Breast-fed        4      16   20
Bottle-ed     1      21   22

  ------    ------  ------
Total     5      37   42

 The results are shown above.

[Notes from JH: 1. The 5 tables from the tea-tasting experiment with  to the 2x2 tables with all marginal totals = 4  are another example of this hypergeometric  distribution]

* 2. Don't worry about the formula and the factorials; Excel has this function built in. It is called the Hypergeometric probability function, It is like the Binomial, except that instead of
specifying p, one specifies the size of the POPULATION and the NUMBER OF POSITIVES IN THE POPULATION.. example, to get P1 above, one would ask for HYPGEOMDIST(a;r1;c1;N)

The spreadsheet "Fisher's Exact test" uses this function; to use the spreadsheet, simply type in the 4 cell frequencies, a, b, c, and d. The spreadsheet will calculate the probability for each
possible  table. Then you can find the tail areas yourself.
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The "Exact" Test for 2 x 2 tables   continued...

This is the complete conditional distribution  for the observed marginal totals, and
the probabilities sum to unity as would be expected. Note the importance of
carrying enough significant digits in the first probability to be calculated; the above
calculations were carried out with more decimal places than recorded by retaining
each probability in the calculator for the next stage.    The observed table has a
probability of 0.1253. To assess its significance we could measure the extent to
which it falls into the tail of the distribution by calculating the probability of that
table or of one more extreme. For a one-sided test the procedure clearly gives P =
0.1253 + 0.0182 = 0.1435. The result is not significant at even the 10% level.

and the probability level of 0.12 for X2 is a fair approximation to the exact mid-P
value of 0.16.

 Cochran (1954) recommends the use of the exact test, in preference
to the 2   test  with continuity correction,  ( i)  i f  N < 20,  or ( i i )  20
< N < 40 and the smallest expected value is less than 5. With
modern scientific calculators and statistical software the exact test
is much easier to calculate than previously and should be used for
any table with an expected value less than 5.

The exact test and therefore the χ2 test with Yates's correction for continuity have

been criticized over the last 50 years on the grounds that they are conservative in the

sense that a result significant at, say, the 5% level will be found in less than 5% of

hypothetical repeated random samples from a population in which the null

hypothesis is true. This feature was discussed in §4.7 and it was remarked  that the

problem was a consequence of the discrete nature of the data and causes  no difficulty

if the precise level of P is stated. Another source of criticism has been  that the tests

are conditional on the observed margins, which frequently would  not all be fixed.

For example, in Example 4.14 one could imagine repetitions of  sampling in which

20 breast-fed infants were compared with 22 bottle-fed infants  but in many of these

samples the number of infants with normal teeth would differ  from 5. The

conditional argument is that, whatever inference can be made about the association

between breast-feeding and tooth decay, it has to be made within  the context that

exactly five children had normal teeth. If this number had been  different then the

inference would have been made in this different context, but  that is irrelevant to

inferences that can be made when there are five children with  normal teeth.

Therefore, we do not accept the various arguments that have been  put forward for

rejecting the exact test based on consideration of possible samples  with different

totals in one of the margins. The issues were discussed by Yates  1984) and in the

ensuing discussion, and by Barnard (1989) and Upton (1992),  .and we will not

pursue this point further. Nevertheless, the exact test and the corrected χ2 test have

the undesirable feature that the average value of the significance level, when the null

hypothesis is true, exceeds 0.5. The mid-P value avoids this problem, and so is

more appropriate when combining results from several studies (see §4.7).

For a two-sided test the other tail of the distribution must be taken
into account, and here some ambiguity arises. Many authors
advocate that the one-tailed P value should be doubled. In the
present example, the one-tailed test gave P = 0.1435 and the two-
tailed test would give P = 0.2870. An alternative approach is to
calculate P as the total probability of tables, in either tail,  which
are at least as extreme as that observed in the sense of having a
probability at least as small. In the present example we should
have

P = 0.1253 + 0.0182 + 0.0310 = 0.1745.

The first procedure is probably to be preferred on the grounds that a
significant result is interpreted as strong evidence for a difference
in the observed  d i rec t ion ,  and there is some merit in controlling
the chance probability of such a result to no more than half the
two-sided significance level. The tables of Finney et  a l .  (1963)
enable one-sided tests at various significance levels to be made
without computation provided the frequencies are not too great.

To calculate the mid-P value only half the probability of the observed table is
included and we have

mid-P = 0.5(0.1253) + 0.0182 = 0.0808

as the one-sided value, and the two-sided value may be obtained by doubling this to
give 1617.

The results of applying the exact test in this example may be compared with those
obtained by the χ2 test with Yates's correction. We find X2  = 2 39 (P = 0.12)
without correction and  X2

C  = 1.14 (P = 0.29) with correction. The probability
level of 0.29 for X2

C agrees well with the two-sided value 0 29 from the exact test,
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The "Exact" Test for 2 x 2 tables   continued...

 As for a single proportion, the mid-P value corresponds to an uncorrected χ2 test,
whilst the exact P value corresponds to the corrected χ2 test. The confidence limits
for the difference, ratio or odds ratio of two proportions based on the standard errors
given by (4.14), (4.17) or (4.19) respectively are all approximate and the
approximate values will be suspect if one or more of the frequencies in the 2 x 2
table are small. Various methods have been put forward to give improved limits but
all of these involve iterations and are tedious to carry out on a calculator. The odds
ratio is the easiest case. Apart from exact limits, which involve an excessive
amount of calculation, the most satisfactory limits are those of Cornfield ( 1956);
see Example 16.1 and Breslow and Day (1980, §4.3) or Fleiss ( 1981, §5.6). For
the ratio of two proportions a method was given by Koopman (1984) and Miettinen
and Nurminen (1985) which can be programmed fairly readily. The confidence
interval produced gives a good approximation to the required confidence coefficient,
but the two tail probabilities are unequal due to skewness. Gart and Nam (1988)
gave a correction for skewness but this is tedious to calculate. For the difference of
two proportions a method was given by Mee (1984) and Miettinen and Nurminen
(1985). This involves more calculation than for the ratio limits, and again there
could be a problem due to skewness (Gart and Nam, 1990).

• Fisher's exact test  is usually used just as a test*; if one is interested in the
difference ∆  = π1 – π2  , the conditional approach does not yield a
corresponding confidence interval for ∆ . [it does provide one for the

comparative odds ratio parameter ψ  =  
1–π1

π1
  ÷  

1–π2
π2

 ]

• Thus, one can find anomalous situations where the (conditional) test
provides P>0.05  making the difference 'not statistically significant',
whereas the large-sample (unconditional) CI for ∆ , computed as p1 – p2 ±
zSE(p1 – p2),  does not overlap 0, and so would indicate that the
difference is 'statistically significant'. [* see the Breslow and Day text Vol I ,
§4.2, for CI's for ψ derived from the conditional distribution]

• See letter from Begin & Hanley  re 1/20 mortality with pentamidine  vs 5/20
with Trimethoprim-Sulfamethoxazole in patients with Pneumocystis carinii
Preumonia-Annals Int Med 106 474 1987.

• Miettinen's test-based method of forming CI's, while it can have some
drawbacks,  keeps the correspondence between test and CI and avoids
such anomalies.Notes by JH

• The word "exact" means that the p-values are
calculated using a finite discrete reference
distribution -- the hypergeometric distribution (cousin
of the binomial) rather than using large-sample
approximations. It doesn't mean that it is the correct
test.  [see comment by A&B in their section dealing
with Mid-P values].

While greater accuracy is always desirable, this
particular test uses a 'conditional' approach that not
all statisticians agree with. Moreover, compared with
some unconditional competitors, the test is
somewhat conservative, and thus less powerful,
particularly if sample sizes are very small.

• This illustrates one important point about parameters related to binary data
--  with means of interval data, we typically deal just with differences*;
however, with binary data, we often switch between differences and ratios,
either because the design of the study forces us to use odds ratios (case-
control studies), or because the most readily available regression software
uses a ratio (i.e. logistic regression for odds ratios) or because one is
easier to explain that the other, or because one has a more natural
interpretation (e.g. in assessing the cost per life saved of a more
expensive and more efficacious management modality, it is the difference
in, rather than the ratio of,  mortality rates that comes into the calculation). [*
the sampling variability of the estimated ratios of means of interval data is
also more difficult to calculate accurately].

• Two versions of an unconditional test for the H0:  π1  = π2
are available:  Liddell;   Suissa and Shuster;
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FISHER'S EXACT TEST IN A DOUBLE-BLIND STUDY OF SYMPTOM PROVOCATION TO DETERMINE FOOD SENSITIVITY (N Engl J Med 1990; 323:429-33.)

Abstract Table 1:  Responses of 18 Patients Forced to Decide Whether
Injections Contained an Active Ingredient or PlaceboBackground  Some claim that food sensitivities can best be identified by

intradermal injection of extracts of the suspected allergens to reproduce the associated
symptoms. A different dose of an offending allergen is thought to "neutralize" the
reaction.

Pt.        Active            Placebo            P
No*      Injection          Injection         Value†
        resp  no resp    resp    no resp
3 2 1 1 8 0.13Methods  To assess the validity of symptom provocation, we performed a double-

blind study that was carried out in the offices of seven physicians who were
proponents of this technique  and experienced in its use. Eighteen patients were
tested in 20  sessions (two patients were tested twice) by the same technician, using
the same extracts (at the same dilutions with the same saline diluent) as those
previously thought to provoke symptoms  during unblinded testing. At each session
three injections of extract and nine of diluent were given in random sequence. The
symptoms evaluated included nasal stuffiness, dry mouth, nausea, fatigue, headache,
and feelings of disorientation or depression.  No patient had a history of asthma or
anaphylaxis.

1 2 1 2 7 0.24
14a 2 1 2 7 0.24
12 1 2 0 9 0.25
16 2 1 3 6 0.36

18 2 1 4 5 0.50
14b 1 2 2 7 0.87
4 1 2 2 7 0.87
5 1 2 2 7 0.87
9 0 3 0 9 --

2a 0 3 1 8 0.75
Results  The responses of the patients to the active and control injections were
indistinguishable, as was the incidence of positive responses: 27 percent of the
active injections (16 of 60) were judged by the patients to be the active substance, as
were 24 percent of the control injections (44 of 180). Neutralizing doses given by
some of the physicians to treat the symptoms after a response were equally
efficacious whether the injection was of the suspected allergen or saline. The rate of
judging injections as active remained relatively constant within the experimental
sessions, with no major change in the response rate due to neutralization or
habituation.

13 0 3 1 8 0.75
15 1 2 3 6 0.76
6 0 3 2 7 0.55
8 0 3 2 7 0.55

17 1 2 5 4 0.50
2b 0 3 3 6 0.38
7 0 3 3 6 0.38
10 0 3 3 6 0.38
11 0 3 3 6 0.38

Conclusions  When the provocation of symptoms to identify food sensitivities is
evaluated under double-blind conditions, this type of testing, as well as the
treatments based on "neutralizing" such reactions, appears to lack scientific validity.
The frequency of positive responses to the injected extracts appears to be the result
of suggestion and chance

*Patients were numbered in the order they were studied.

The order in the table is related to the degree that the results  agree with the
hypothesis that patients could distinguish active  injections from placebo injections.
The results listed below  those of Patient 9 do not support this hypothesis, placebo
injections were identified as active at a higher rate than were  true active injections.
The letters a and b denote the first and  second testing sessions, respectively, in
Patients 2 and 14.  true active injections.

-------------------------------------------------------------------------------------------------
† Calculated according to Fisher's exact test, which assumes that  the hypothesized
direction of effect is the same as the direction  of effect in the data. Therefore, when
the effect is opposite to  the hypothesis, as it is for the data below those of Patient
9,  the P value computed is testing the null hypothesis that the  results obtained
were due to change as compared with the  possibility that the patients were more
likely to judge a placebo  injection as active than an active injection.

ID denotes intradermal, and SC subcutaneous.

The value is the P value associated with the test of whether the  common odds ratio
(the odds ratio for all patients) is equal to  1.0. The common odds ratio was equal to
1.13 (computed according  to the Mantel-Haenszel test).
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Notes on P-Values from Fisher's Exact Test in previous article

                    Response                                       Response
                                     +      –    Total                                       +      –    Total
Patient no. 18   Active Injection    2      1  |    3Patient no. 3      Active Injection    2      1  |    3
                 Placebo Injection   4      5  |    9                   Placebo Injection   1      8  |    9
                                    ----------                                      ----------
                                     6      6                                       3      9

All possible tables with a total of 6 +ve responsesAll possible tables with a total of 3 +ve responses

         0  3           1  2            2  1           3  0         0  3            1  2           2  1             3  0
         6  3           5  4            4  5           3  6         3  6            2  7           1  8             0  9

        6• 5• 4           3•6            2•5             1•4        9• 8• 7            3•3            2•2             1•1
prob   –––––---   0.091 • ---    0.409 • ---     0.409 • ---prob   –––––---    0.382 • ---    0.491 • ---     0.123 • ---
       12•11•10           1•4            2•5             3•6       12•11•10            1•7            2•8             3•9

         0.091          0.409           0.409          0.091         0.382           0.491          0.123           0.005

(pt #)                   (17)            (18)
(pt #) (2b,7,10,11)    (14b, 4, 5)       (3)

P-Value   1.0           0.909           0.500          0.091
(1-sided, as above)P-Value*  1.0            0.618          0.128           0.005

                                      Response

In Table 1, the P-values for patients below
patient 9 are calculated as 1-sided, but guided
by the opposite Halt from that used for the
patients in the upper half of the table, i.e. by
Halt:
     of +ve responses with Active
<   of +ve responses with Placebo.

                                      +      –    Total
Patient no. 1     Active Injection    2      1  |    3
                  Placebo Injection   2      7  |    9
                                     ----------
                                      4      8

All possible tables with a total of 4 +ve responses

         0  3            1  2           2  1            3  0
         4  5            3  6           2  7            1  8

        8• 7• 6           3•4            2•3             1•2
prob   –––––---   0.255 • ---    0.510 • ---     0.218 • ---
       12•11•10           1•6            2•7             3•8

It appears that the authors decided the "sided-
ness" of the Halt after observing the data!!! and
that they used different Halt for different
patients!!!

         0.255           0.510          0.218          0.018

(pt #)                   (15)         (1,14a)

P-Value   1.0            0.745          0.236          0.018

(*1-sided, guided by Halt: π of +ve responses with Active > π of +ve
responses with Placebo)

page   16



Fisher's Exact Test   political and ecological correctness . . .     M&M §8.2         updated Dec 14 2003

The Namibian government expelled the authors form
Namibia following the publication of this article; the
reason given was that their  "data and
conclusions were premature" .. jh  ¶•

We gathered data on more than 40 known horned and hornless
black rhinos in the presence and absence of dangerous carnivores
in a 7,000 km2 area of the northern Namib Desert and on 60
horned animals in the 22,000 km2 Etosha National Park. On the
basis of over 200 witnessed interactions between horned rhinos and
spotted hyenas (Crocura crocura) and lions (Panthera leo) we saw
no cases of predation, although mothers charged predators in about
45% of the cases. Serious interspecific aggression is not uncommon
elsewhere in Africa, and  calves missing ears and tails have been
observed from South Africa, Kenya, Tanzania, and Namibia (13).

lost calves were between 15 to 25 years old, suggesting
that they were not first time, inexperienced mothers (14).
What seems more likely is that the drought-induced
migration of more l-than 85% of the large, herbivore
biomass (kudu, springbok, zebra, gemsbok, giraffe, and
ostrich) resulted in  hyenas preying on an alternative food,
rhino neonates, when mothers with regenerating horns
could not protect them.

Since 1900 the world's population has increased from about 1.6 to
over 5 billion) the U.S. population has kept pace, growing from
nearly 75 to 260 million. While the expansion of humans and
environmental alterations go hand in hand, it remains uncertain
whether conservation programs will slow our biotic losses. Current
strategies focus on solutions to problems associated with diminishing
and less continuous habitats, but in the past, when habitat loss was
not the issue, active intervention prevented extirpation. Here we
briefly summarize intervention measures and focus on tactics for
species with economically valuable body parts, particularly on the
merits and pitfalls of biological strategies tried for Africa's most
endangered pachyderms, rhinoceroses.

 Clearly, unpredictable events, including drought, may not
be anticipated on a short-term basis. Similarly, it may not
be possible to predict when governments can no longer
fund antipoaching measures, an event that may have led to
the collapse of Zimbabwe's dehorned white rhinos.
Nevertheless, any effective conservation actions must
account for uncertainty. In the case of dehorning,
additional precautions must be taken.     [ ... ]

To evaluate the vulnerability of dehorned
rhinos to potential predators, we developed
an experimental design using three regions:

• Area A had horned animals with spotted hyenas and
occasional lions

[ ... ]
• Area B had dehorned animals lacking dangerous
predators,             A   B   C

                         ††
survived    4   3   0

Given the inadequacies of protective. legislation and enforcement,
Namibia. Zimbabwe, and Swaziland are using a controversial
preemptive measure, dehorning (Fig. D) with the hope that
complete devaluation will buy time for implementing other
protective measures (7) In Namibia and Zimbabwe, two species,
black and white rhinos (Ceratotherium simum), are dehorned, a
tactic resulting in sociological and biological uncertainty: Is
poaching deterred? Can hornless mothers defend calves from
dangerous predators?

• Area C consisted of dehorned animals that were sympatric
with hyenas only.

died        0   0   3
            4   3   3

B vs C
Populations were discrete and inhabited similar xeric
landscapes that averaged less than 125 mm of
precipitation annually. Area A occurred north of a
country-long veterinary cordon fence, whereas animals
from areas B and C occurred to the south or east, and no
individuals moved between regions.

            B C   B C   B C   B C  tot*
survived    3 0   2 1   1 2   0 3   3
died        0 3   1 2   2 1   3 3   3

On the basis of our work in Namibia during the last 3 years (8) and
comparative information from Zimbabwe, some data are available.
Horns regenerate rapidly, about 8.7 cm per animal per year, so that
1 year after dehorning the regrown mass exceeds 0.5 kg. Because
poachers apparently do not prefer animals with more massive horns
(8), frequent and costly horn removal may be required (9). In
Zimbabwe, a population of 100 white rhinos, with at least 80
dehorned, was reduced to less than 5 animals in 18 months (10).
These discouraging results suggest that intervention by itself is
unlikely to eliminate the incentive for poaching. Nevertheless, some
benefits accrue when governments, rather than poachers, practice
horn harvesting, since less horn enters the black market Whether
horn stockpiles may be used to enhance conservation remains
controversial, but mortality risks associated with anesthesia during
dehorning are low (5).

            3 3   3 3   3 3   3 3

The differences in calf survivorship were remarkable. All
three calves in area C died within 1 year of birth, whereas
all calves survived for both dehorned females living
without dangerous predators (area B; n = 3) and for
horned mothers in area A (n = 4). Despite admittedly
restricted samples, the differences are striking [Fisher's
(3 x 2) exact test, P = 0.017; area B versus C, P = 0.05;
area A versus C, P = 0.0291 ††. The data offer a first
assessment of an empirically derived relation between
horns and recruitment.

prob         
1
20    

9
20    

9
20    

1
20

A vs C
            A C   A C   A C   A C tot*
survived    4 0   3 1   2 2   1 3  4Biologically, there have also been problems. Despite media

attention and a bevy  of allegations about the soundness of
dehorning ( 11 ), serious attempts to determine whether dehorning
is harmful have been remiss. A lack of negative effects has been
suggested because (i) horned and dehorned individuals have
interacted without subsequent injury; (ii) dehorned animals have
thwarted the advance of dangerous predators; (iii) feeding is
normal; and (iv) dehorned mothers have given birth (12) However,
most claims are anecdotal and mean little without attendant data on
demographic effects. For instance, while some dehorned females
give birth, it may be that these females were pregnant when first
immobilized. Perhaps others have not conceived or have lost calves
after birth. Without knowing more about the frequency of mortality,
it seems premature to argue that dehorning is effective.

died        0 3   1 2   2 1   3 3  3
            4 3   4 3   4 3   4 3

Our results imply that hyena predation was responsible for
calf deaths, but other explanations are possible. If drought
affected one area to a larger extent than the others, then
calves might be more susceptible to early mortality. This
possibility appears unlikely because all of western
Namibia has been experiencing drought and, on average,
the desert rhinos in one area were in no poorer bodily
condition than those in another. Also, the mothers who

prob         
1
35    

12
35    

18
35    

4
35

¶     Do you  agree?
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