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6.1 Introduction For now—we shall come back to this example several times—let us

focus on just a "before" measure.
In the last chapter, we saw how one can find (deductive) probabilistic

answers to some possible questions about future outcomes of a

Bernoulli process with a known parameter p. In this chapter, we shall

study Bayesian methods for making (inductive) inferences about an

uncertain Bernoulli p on the basis of prior knowledge about p and

observed data from the Bernoulli process. Classical methods of

inference about p will be discussed in Chapters 11 and 12.

The measure to be used is the proportion of your time spent in

productive work, call it p, as opposed to time spent doing something that

would not have needed doing if things had been done right the first time.

Examples of the latter might include searching for a misplaced

document, recreating a deleted computer file, following up on a

customer's complaint, or waiting past a scheduled time for a meeting to

start.
Let me first informally introduce and illustrate a Bayesian analysis of

an uncertain Bernoulli p with a slightly modified version of a novel and

useful application of work sampling discussed by Fuller (1985).

Since p is not precisely known, I shall emphasize this by topping it with

a tilde: p~. In problems such as this, it is often said that "p is unknown".

It is better to say that "p is uncertain"; from your job experience, you

would really know quite a lot about p~. For example, you might be almost

certain that it is greater than 0.50, less than 0.90, and you might assess

your odds that p is between, say, 0.60 and 0.80 to be about 9 to 1. A

precise statement of these beliefs will be your prior distribution for p~.

Example WORK SAMPLING—I

Suppose you, as a good up-to-date manager practicing continuous

quality and productivity improvement, have some ideas on improving

your own productivity. To see if these ideas have any merit, you would

like to compare some "before" measure of productivity with a

comparable "after" measure of productivity.
You would probably feel uncomfortable—most people do—about

assessing this prior distribution, especially since there are an infinite

number of states; viz., all of the values between zero and one. But,

page 1



From Chapter 6 'Bernoulli and Bayes' of Elementary Bayesian Statistics
Gordon Antelman, Edward Elgar Publishing Limited, Cheltenham UK, 1997.

without any real loss, you can bypass the infinite-number problem by

rounding the values of p to the nearest 5% or 10%, making the problem

discrete. Then you have a contemplatable Bayes' box, like those

discussed in Chapter 4, with the finitely many p-values as the possible

"states". (When we reconsider this example later in this chapter, you will

see that, with a little theory, the infinite number of p-values can almost

always be handled very neatly and more easily.)

Now that we have the rows of a Bayes' box (the five p-values) and a

prior probability mass function (pmf) for p~ (the row marginal), let us

consider the columns which, in general, represent "data values". Suppose

you are fitted with a beeper set to beep at random times; when the beeper

beeps, you classify the task being worked on as

• W —for productive Work, or

• F —for "Fixing".

For illustration, let us suppose you choose just five possible values

for p: 0.50, 0.60, 0.70, 0.80, and 0.90, and assess your prior distribution

of  p~ to be

Assume that this process can be modeled by a Bernoulli process with

parameter p; i.e., each beep is one Bernoulli trial and p = P(W). Recall

from Chapter 5 that the Bernoulli process postulates specify that p is

unchanging and that, if p were known, the trials are independent; the

experiment should be designed so that these requirements are plausible.

For example, the beeps should be unpredictable so you do not arrange,

possibly subconsciously, to be doing productive work at the beep; they

probably also should not be too close together to make the independence

assumption more reasonable.

Table 6.1: Prior Distribution for  p~

p 0.50 0.60 0.70 0.80 0.90

Prob( p~ = p) 0.05 0.25 0.35 0.30 0.05

This prior distribution would reflect, for example, that your judgment

is that there is only about one chance in 20 that p rounds to 0.50, about

one chance in 20 that p rounds to 0.90, about one chance in four that it

rounds to 0.60, a little more than one chance in three that it rounds to

0.70, and a little less than one chance in three that it rounds to 0.80.

Suppose the first four trials give the data F1, F2, W3, and F4. From

the assumption that p remains the same for each trial,

P(W3) = p, P(F1) = P(F2) = P(F4) = (1 - p) = q for short
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and, from the independence, four trials have 24 = 16 outcomes. Thus, a full Bayes' box for four trials

would have 16 columns; but if you are only interested in the posterior

for the data observed, you need only fill out the one column

corresponding to that data.

P(F1 F2 W3 F4)

= P(F1) ×  P(F2) ×  P(F2) ×  P(W4)

= (1 - p) ×  (1 - p) ×  (1 - p) ×  (1 - p)

= (1 - p)3 p

= q3 p Figure 6.2 is a picture showing the effects of the data FFWF on the

prior distribution. The open squares give the prior probabilities and the

solid circles the posterior probabilities. Three F's in four trials increase

your probabilities for the two smaller possible p-values and decrease

your probabilities for the three larger p-values.

Partial Bayes' boxes for your assessed prior and the data F1F2W3F4

from four trials (a sample of size four), are given in Figure 6.1. The top

box there has just the input information for Bayes' theorem: the

upper-right corners are the conditional probabilities P(FFWF | p) = q3p

of the data given the state and the row marginal is the prior pmf. The sample alone most strongly supports a value for p of 0.25 (one

W in four trials); had the prior included a value of p of 0.25, the

(relative) increase in going from prior to posterior would have been

greatest for that value.

The lower box of Figure 6.1 completes Bayes' theorem for these data,

resulting in the posterior probabilities in the lower-left corners. The

column sum 0.021305 is the marginal probability of observing the data

FFWF—it is a weighted average of the upper-right-corner numbers with

weights given by the prior probabilities; this marginal probability is the

predictive probability of FFWF.

For the assumed prior, in which only p's of 0.50, 0.60, 0.70, 0.80, or

0.90 are considered, the sample evidence FFWF in favor of a p near

0.25 can only push up the posterior probabilities for the nearest possible

p-values—0.50 and 0.60. This can be seen from either Figure 6.1 or

Figure 6.2. (The seemingly harder consideration of all possible p's

between zero and one will handle this kind of situation more logically.)

Because each trial has two possible outcomes, two trials would have 2

× 2 = 4 outcomes, three trials would have 2 × 2 × 2 = 8 outcomes, and
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Right: Figure 6.1: Partial Bayes' Box for Three F's and One W ...
Data Value

FFWF
Likelihood

...
Prior
Probcolumn meaning / derived from...

p: p: proportion of time being productive
prior prob: Prior Probability for each value of p
Likelihood : Prob(data | proportion p)
product: Prior Prob × Likelihood
Post. prob Posterior probability

(product divided by sum of products)

0.50
(0.5)3 (0.5)

0 .05

0.60
(0.4)3 (0.6)

0 .25

p 0.70
(0.3)3 (0.7)

0 .35

0.80
(0.2)3 (0.8)

0 .30

0.90
(0.1)3 (0.9)

0 .05

1
Below: Figure 6.2 (Prior (Green Squares) and Posterior (Red Circles)

probability mass functions for Three F's and One W ...
Data Value

FFWF ...

product
Post.
Prob

0.50 0.800.70 0.900.60
p

0.20

0.40 0.50
(0.5)3 (0.5)

0.003125
0.147

0.05

0.60
(0.4)3 (0.6)

0.009600
0.451

0.25

p 0.70
(0.3)3 (0.7)

0.006615
0.310

0.35

0.80
(0.2)3 (0.8)

0.001920
0.090

0.30

0.90
(0.1)3 (0.9)

0.000045
0.002

0.05

0.021305
1.000

1
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