
Examples of Sampling Distributions Standard Error (SE) of a sample statistic

What it is
The SD of the different values of the sample statistic one would obtain in
different random samples of a given size n.

Since we observe only one of the many possible different random samples of
a given size, the SD of the sample statistic is not directly measurable.
In this course, in computer simulations, and in mathematical statistics
courses, we have the luxury of knowing the relevant information about each
element in the population and thus the probabilities of all the possible sample
statistics. e.g. we say if individual Y's are Gaussian with mean µ and
standard deviation σ, then the different possible ybars will vary from µ in a
certain known way. In real life, we don't know the value of µ and are
interested in estimating it using the one sample we are allowed to observe.
Thus the SE is usually an estimate or a projection of the variation in a
conceptual distribution i.e. the sd of all the "might-have-been" statistics.

Distribution statistic whose variability it describes

Binomial proportion in SRS
Hypergeometric proportion (finite N)
Poisson small proportion or rate
Gaussian mean, proportion, differences, etc (n large)

Student's t  
y
–
 -  µ

SE {  y
–
 -  µ }

F ratio of variances (used for ANOVA)
Chi-Square proportion(s); rate(s)   (nπ large)

Three ways of calculating sampling variability Use
If n large enough, the different possible values of the statistic would have a
Gaussian distribution with a spread of 2-3 SE's on each side of the "true"
parameter value [note the "would have"]

So, can calculate chance of various deviations from true value.
Can infer what parameter values could/ could not have given rise to the
observed statistic

1 directly  from the relevant discrete distribution by adding  probabilities of
the variations in question

e.g only 0.01 + 0.001 = 0.011 probability of ≥ 9  positives / 10 if π = 0.5
2.5% probability of getting a Poisson count of 5 or more if µ  = 1.624
2.5% probability of getting a Poisson count of 5 or less if µ = 11.668

e.g .

if statistic is  y– , we talk of SE of the mean (SEM)

SE( y–  ) describes variation of  y–  from µ

SD(y) describes variation of y from µ

2 from specially-worked out  distributions for more complex statistics
calculated from continuous or rank data  --

e.g. student 's  t, F ratio,  χ2,  Wilcoxon,

3 [very common] from the Gaussian approximation to the relevant discrete
or continuous distribution -- by using the standard deviation of the
variation in question and assuming the variation is reasonably symmetric
and bell-shaped [every sampling distribution has a standard deviation --
its just that it isn't very useful if the distribution is quite skewed or heavy-
tailed]. We give a special name (standard error) to the standard deviation
of a sampling distribution in order to distinguish it from the measure of
variability of individuals.  Interestingly, we havent given a special name to
the square of the SD of a statistic -- we use Variance to denote both SE2

and SD2

Important, to avoid confusion in terms : See note [in material giving
answer to Q5 of exercises on §5.2] on variations in usage of term
SE(y–) vs SD(y–)
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M&M §5.2  Variability of the Mean of a Sample  :
Expectation / SE / Shape of its Sampling Distribution

Example of the distribution  of a sample mean:

When summing or averaging n 0/1 values, there are only n+1 unique possibilities
for the result. However, If we were studying a variable e.g. cholesterol or income
that was measured on a continuous scale, the numbers of possible sample means
would be very large and not easy to tabulate, so instead we take a simpler variable,
that is measured on a discrete integer scale. However, the principle is the same as
for a truly continuous variable.

• Quantitative variable (characteristic) of interest : Y
• N (effectively) infinite (or  sampling with replacement)
• Mean of all Y values in population = µ
• Variance of all Y values in population =  σ2

Imagine we are interested in the average number of cars per household µ in a city
area with a large  number (N) of households.  (With an estimate of the average
number per household and the total number of households we can then estimate the
total number of cars Nµ).  It is not easy to get data on every single one of the N,
so we draw a random sample, with replacement, of size n. [The sampling with
replacement is simply for the sake of simplicity in this example -- we would use
sampling without replacement in practice].

• Sample of size n; observations y1, y2, ..., yn

• Sample mean = 
∑yi
n  = y-  ( read  "y-bar" )  or...

Statistic E SD( y
–

 ) or Standard Error (Mean)

      y
–

µy
σy
√n

How much sampling variation can there be in the estimate we can get from the
sample? What will the degree of "error" or "noise" depend on? Can we anticipate
the magnitude of possible error and the pattern of the errors in estimation caused by
use of a finite sample?

But  what about the pattern (shape) of the variability?
The sampling distribution is frequency distribution (histogram, etc...) we would get
if we could observe the mean (or other calculated statistic) of each of the (usually
infinite number of) different random samples of a given size. It quantifies
probabilistically how the statistic (used to estimate a population parameter) would
vary around the "true parameter" from one possible sample to another. This
distribution is strictly conceptual (except, for illustration purposes, in classroom
exercises).

Suppose  that 50% have no car, 30% have 1 and 20% have 2: i.e. of all the Y's,
there are 0.5N 0's, 0.30N 1's and 0.20N 2's. [you would be correct to object "but
we don't know this - this is the point of sampling"; however, as stated above, this
is purely a conceptual or "what if" exercise; the relevance will become clear later]

• the average of the Y's is  Σ Y x Prob(Y),  i.e.Relevance of knowing shape of sampling distribution:

µ = 0 x 0.5 + 1 x 0.3 + 2 x 0.2

    = 0.7 ; [  the total of the Y's is 0.7N cars ]

We will only observe the mean in the one sample we chose; however we can, with

certain assumptions, mathematically (beforehand) calculate how far the mean ( y- ) of
a randomly selected sample is likely to be from the mean (µ) οf the population. Thus

we can say with a specified probability (95% for example) that the  y-  that we are
about to observe will be no more than Q (some constant, depending on whether we
use 90%, 95%, 99%, ... ) units from the population mean µ. If we turn this
statement around, we can say that there is a 95% chance that the population mean µ
(the quantity we would like to make inferences about) will not be more than Q units

away from the sample mean ( y- ) we (are about to) observe. This information is what
we use in a confidence interval for µ. We also use the samling distribution to assess
the (probabilistic) distance of a sample mean from some "test" or "Null Hypothesis"
value in statistical tests.

• half of the Y's are 0 and 20% are 2's, so the variance of  Y, or

σ2 = Σ(Y-µ )2 x Prob(Y)   is

σ2 = (0 - 0.7)2  x  0.5   +   (1 - 0.7)2  x  0.3   +  (2 - 0.7)2  x  0.2

       = 0.49 x 0.5  +  0.09 x 0.3  + 1.69 x 0.2

      =  0.61 [  sd,  σ = 0.61 = 0.78  is large relative to µ ].
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The variance of individuals is the variance of mean of sample with n=1
Distribution of sample mean when n=3

 µ̂ = y- % Probability % "Error"

0.00    06.25  - 100
0.25    15.00  -  64

If we take a sample of size n = 2, and use the resulting  y-  = 
y1+y2

n
  as our estimate

of µ, [we write this as  µ̂  = y- ], what can happen?

0.50    23.50  -  29
0.75    23.40  +   7
1.00    17.61  +  43

Distribution of sample mean when n=2

prob. estimate of µ direction % in error 1.25    09.36  +  79
1.50    03.76  + 114
1.75    00.96  + 150
2.00    00.16  + 186

25%  y-   = 
0
2
 = 0.0 low by 0.7   100

30%  y-   = 
1
2
 = 0.5 low by 0.2    29

29%  y-   = 
2
2
 = 1.0 high by 0.3    43

12%  y-   = 
3
2
 = 1.5 high by 0.8   114

04%  y-   = 
4
2
 = 2.0 high by 1.3   186

There is still a good chance that the estimate will be a long way from the correct
value of µ = 0.7.

If we are happy with an estimate that is not more than 50% in error, then the
above table says that with a sample of n=4, there is a  23.50 +  23.40 +  17.61
or  ≈ 65% chance that our sample will result in an "acceptable"  estimate (i.e.
within ±50%  of µ). In other words, we can be 65% confident that our sample
will yield an estimate within 50%  of the population parameter µ.Consequently the possible estimates of the total number of cars i.e. 0, 0.5N, N,

1.5N and 2N will be "off" by the same percentages from 0.7N - and with the same
high probability! It's not much good saying that "on average, over all possible
samples" the sample will produce the correct estimate.

For a given n, we can trade a larger % error for a larger degree of confidence and
vice versa e.g. if n=4, we can be 89% confident that our sample will result in an
estimate within 80% of µ or be 25% confident that our sample will result in an
estimate within 10% of µ.[Check:

average of all of the possible estimates = Σ estimate x Prob(estimate)

= 0 x 0.25 + 0.5 x 0.30 + 1.0 x 0.29 + 1.5 x 0.12 + 2.0 x 0.04

= 0.7   !!  ]

If we use a bigger n, we can increase the degree of confidence, or narrow the
margin of error (or a mix of the two), since with a larger sample size, the
distribution of possible estimates is tighter around µ. With n=100, we can
associate a 20% error with a statement of 90% confidence or a 10% error with a
statement of 65% confidence.

The possible errors in these estimates of 0.7 produced by a sample of 2 are very
large. A sample of size n = 3 or n = 4 would give slightly less variable estimates.
E.g. with n = 4, the distribution of the 34 = 81 possible sample configurations, and
their corresponding estimates of µ, can be enumerated manually as:

But one could argue that there are two problems with these calculations: first,
they assumed that we knew both µ and the distribution of the individual Y's
before we start ; second, they used manual enumeration of the possible
configurations for a small n and Y's with a small number (3) of integer values.
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What about real situations with samples of 10's or 100's from
unknown distributions of  Y's  on a continuous scale? The Gaussian approximation to certain Binomial distributions is an

example of the Central Limit Theorem in action.

The individual Y's have a 2-point distribution: a proportion (1-π) have the
value Y=0 and the remaining proportion π have Y=1.

The mean ( µ ) of all (0,1) Y values in population is  π.

The variance, σ2, of all Y values in population
σ2 =  (0-π)2 × (1-π) + (1 - π)2 × π = π(1 - π).

Sample of size n; observations y1, y2, ..., yn : a sequence of n  0's and 1's.

Sample mean  y-  = 
∑yi
n

  = 
number of 1's

n
  = p,

So ...

 When Y ~ BINARY( µ = π,   σ =  π[1-π] ) ,  then

 p = y
–

  ~ GAUSSIAN( π , 
 π[1-π]

  n  
  )   if  n large enough

The answer can be seen by examining the sampling distributions as a function of n
in the 'cars per household' example, and in other examples dealing with Y's with a
more continuous distribution (see Colton p103-108, A&B p80-83 and M&M 398-
400). All the examples show the following:

(1) As expected, the variation of possible sample means about µ is less in larger
samples. If we use the variance as a measure of scatter, then the variance

(scatter) in the possible  y- 's from samples of size n is σ2/n, where  σ2 is
the variance of the individual Y's. This is true regradless of the shape of the
distribution of the individual Y's.

(2) If n is large enough, the distribution of possible  y-  's resembles more and
more a Gaussian distribution. This happens whether the individual Y's have
a Gaussian or a Non-Gaussian distribution (see the various examples).

The importance of this is that the variability (variance or SD) of the possible sample
means can be predicted just from the spread ( σ2 ) of the individual Y's in the
population and from the sample size (n); we do not need to know exactly what the
shape of the Y distribution is. The law that says that the sampling distribution of a
sample mean [or a sample proportion, or a sample slope or correlation..] is, for a
large enough n [and under certain other conditions], Gaussian in shape no matter
what the shape of the individual values, is called the Central Limit Theorem.

If we use the notation " X ~ Distribution(µx, σx) " as shorthand to say that "X has a
certain type of distribution with mean µx and standard deviation σx", then the
Central Limit Theorem says that

When Y ~ ???????(µY,  σY ) , then

 y–  ~ Gaussian( µY , 
 σY 

 n 
 )   if n is large enough.
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Returning to the example above: if n = 100, then the SD of possible   y-  's  from
samples of size n=100 is σ / √100 = 0.78 / 10 = 0.078. Thus, we can approximate

the distribution of possible   y-'s   by a Gaussian distribution with mean µ = 0.7 and
standard deviation of 0.078, to get ...

Effect of n on Sampling behaviour of Sums & Means

0.5
0.3

0.2

0 1 2

.25 .30 .29 .12 .04

0 1 2

. 125 .225 .285 .207
.114 .036 .008

3 4

0 1 2 3 4 65

. 063
.150 .255 .234

.176 .094 .038 .010

0 1 2 3 4 65 7

sum
of 1

sum
of 2

sum
of 3

sum
of 4

Interval   Prob.    % Error

µ±1.00SD( y-  )= 0.7±0.078 = 0.62 to 0.77  68%  -11% to +11%

µ±1.50SD( y-  )= 0.7±0.117 = 0.58 to 0.81  87%  -17% to +17%

µ±1.96SD( y-  )= 0.7±0.143 = 0.55 to 0.84  95%  -20% to +20%

µ±3.00SD( y-  )= 0.7±0.234 = 0.46 to 0.93 99.7% -33% to +33%

[The Gaussian-based intervals are only slightly different from the results of a
computer simulation in which we drew samples of size 100 from the above Y
distribution]

If this variability in the possible estimates is still not acceptable and we use a sample

size of 200, the standard deviation of the possible y-  's is not halved (divided by 2)
but rather divided by √2=1.4.  We would need to go to n = 400 to cut the s.d. down
to half of what it is with n = 100.

0 1 2

0.5 1.50 21

0 21
0.33

0.67
1.33

1.67

0.5 1.50 21

mean of 1

mean of 2

mean of 3

mean of 4

Var = 0.610

Var = 0.305

Var = 0.203

Var = 0.153

[Notice that in all of this (as long as we sample with replacement, so that the n
members are drawn independently of each other), the size of the population (N) didn't
enter into the calculations at all.  The errors of our estimates (i.e. how different we
are from µ on randomly selected samples) vary directly with σ and inversely with √n.
However, if we were interested in estimating Nµ rather than µ, the absolute error
would be N times larger, although the relative error would be the same in the two
scales.]

Message from diagram opposite:

Var (Sum)  > Var of Individuals by factor of n
Var (Mean) < Var of individuals by same factor

In addition, and also very important !!:  Variation of sample
means (or sums) is more Gaussian than Variation of individuals
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Another Example of Central Limit Theorem at work

average length of 9 words

F
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The variability in length of individual words...

(average) length of 1 word
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ave. length of 20 words
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The variability in the average word length in samples of 4,
9, 20 words [Monte Carlo simulation]

average length of 4 words
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Variability in mean length of n=20 words
Mean [of means]  4.56
SD[of means]     0.56 Variance[of means] 0.3148

Quantiles    %ile observed  fitted: mean+zSD  ( z   )
                  99%    5.95 5.86 ( 2.32)

The variation of means is closer to Gaussian than the variation of the
individual observations, and the bigger the sample size, the closer to Gaussian.
[i.e. with large enough n, you could not tell from the sampling distribution of
the means what the shape of the distribution of the individual 'parent'
observations. Averages of n=20 are essentially Gaussian (see observed vs fitted
at right).

                  95%    5.5 5.48 ( 1.96)
                  90%    5.3 5.28 ( 1.28)
                  75%    4.95 4.94 ( 0.67)
                  50%    4.55 4.56 ( 0.00)
                  25%    4.15 4.18 (–1.67)
                  10%    3.85 3.84 (–1.28)
                   5%    3.65 3.64 (–1.96)
                   1%    3.35 3.26 (–2.32)

M&M Ch 5.2 Variability of sample means  ... page  5


