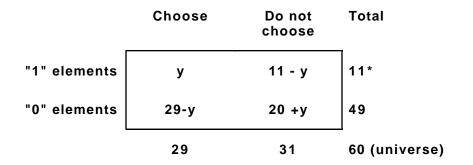
Used to describe the Variability of

the Proportion / Count in a random sample drawn, <u>without</u> <u>replacement</u>, from a <u>finite</u> population/universe of N binary elements (0's and 1's); sampling fraction is sizable.

	Choose	Do not choose	Total
"1" elements	У	N1 - y	N1*
"0" elements	n-y	N0 - (n-y)	NO
	n	N-n	N (universe)


(* WMS5 use "r" where we use "N1")

What it is

- The n+1 probabilities p₀, p₁, ... p_y, ... p_n of observing
 - 0 "positive"
 - 1 "positive" 2 "positives"
 - . ..
 - y "positives"
 - . .
 - n "positives"

in n draws without replacement from the N items

NB If N1 < n, then the range of y will be less than the full 0 to n, since some of the n+1 possibilities are not possible. e.g., ...

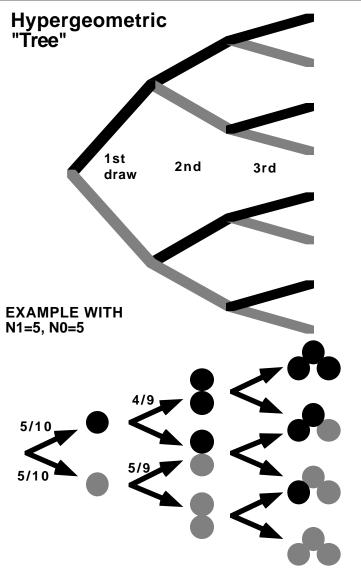
• Apart from sample size (n), the probabilities p_0 to p_n depend on the 2 parameters N1 and N0 (or equivalently N1 and N)

How it arises

-Sample surveys of small universes (eg MP's) or with large sampling fractions (even if N large)

-Quality Control Sampling from finite lots

-Psychophysics (tea tasting, water divining, ...)


- To evaluate if discrimination in assigning/choosing people (from a pool) for tasks/positions etc..

-Statistical comparison of proportions in small samples (see example of Tamoxifen in preventing recur. of Br Ca)

-Lotteries (6/49, Keno, ...)

-To estimate size of wildlife populations (Capture-recapture method)

WMS5 § 3.7 Hypergeometric Probability Distribution

(Note that the successive outcomes of draws 1-3 are dependent, so must be careful. Can still multiply and add. Can always turn problem around to make it a tree (see labour dispute example)

Calculations are simplified by fact that all sequences of y +'s & (n–y) –'s have same probabilitysi, in lieu of adding, can multily this prob. by # , i.e. nCy , of such sequences

See "Hypergeometric P's, E and V" on web page

<u>Calculating</u> Hypergeometric probabilities

• Formula (or 1st principles)

Prob(y out of n)

= [N1 choose y] x [N0 choose (n-y)] N choose n

- Calculator / Spreadsheet (see elsewhere on web page)
- Approximations to Hypergeometric
 - Binomial Distribution (n a small fraction of N)
 - Gaussian Distribution (y >> 0 and y << n)

E(Y)	Var(Y)	SD(Y)
$n \times \frac{N1}{N}$	$n \times \frac{N1}{N} \times \frac{N0}{N} \times \frac{N-n}{N-1}$	\sqrt{VAR}

WMS5 § 3.7 Hypergeometric Probability Distribution

Worked Examples

- Tea Tasting (small examples, last page of notes on Ch2_1_2_6)
- Tamoxifen
- 6/49 (earlier in Ch 3 notes)
- Keno
- Banco [loto-québec .. several]
- Labour Dispute (wms5 e.g. 2.10, p39 + spreadsheet)
- Rhino Politics and small sample sizes (last page of excerpts from notes fron 607)
- Example of assessing food sensitivity (3rd last page)

Good exercises from text

- 3.75 (jury selection: 6 from pool of N1=8 African Americans and N0=12 white)
- 3.80 (assume that Y has the value 1, i.e. that Y=1 of the n=3 animals had been tagged previously). Maximize P(Y=1) by trying various "what if" values of N.
- Exercise 3.71 and 3.77 have a "quality control" flavour. Can you think of a closer-to-quality-control example?