Used to describe the Variability of
the Proportion / Count in a random sample drawn, without replacement, from a finite population/universe of \mathbf{N} binary elements (0 's and 1 's); sampling fraction is sizable.

	Choose	Do not choose	Total
"1" elements	y	N1-y	N1*
"0" elements	n-y	NO - ($\mathrm{n}-\mathrm{y}$)	NO
	n	$\mathrm{N}-\mathrm{n}$	N (universe)

(* WMS5 use "r" where we use "N1")

What it is

- The $n+1$ probabilities $p_{0}, p_{1}, \ldots p_{y}, \ldots p_{n}$ of observing

0 "positive"
1 "positive"
2 "positives"
y "positives"
\cdot
n "positives"
in \mathbf{n} draws without replacement from the \mathbf{N} items

NB If $N 1<n$, then the range of y will be less than the full 0 to n, since some of the $n+1$ possibilities are not possible. e.g., ...

	Choose	Do not choose	Total
"1" elements	y	11-y	11*
"0" elements	29-y	$20+y$	49
	29	31	60 (universe)

- Apart from sample size (n), the probabilities p_{0} to p_{n} depend on the 2 parameters N1 and N0 (or equivalently N1 and N)

How it arises
-Sample surveys of small universes (eg MP's) or with large sampling fractions (even if \mathbf{N} large)
-Quality Control Sampling from finite lots
-Psychophysics (tea tasting, water divining, ...)

- To evaluate if discrimination in assigning/choosing people (from a pool) for tasks/positions etc..
-Statistical comparison of proportions in small samples (see example of Tamoxifen in preventing recur. of Br Ca)
-Lotteries (6/49, Keno, ...)
-To estimate size of wildlife populations
(Capture-recapture method)

(Note that the successive outcomes of draws 1-3 are dependent, so must be careful. Can still multiply and add. Can always turn problem around to make it a tree (see labour dispute example)

Calculations are simplified by fact that all sequences of $\mathrm{y}+\mathrm{s} \&(\mathrm{n}-\mathrm{y})$-'s have same probabilitysi, in lieu of adding, can multily this prob. by \#, i.e. ${ }^{\mathrm{n}} \mathrm{Cy}$, of such sequences

See "Hypergeometric P's, E and V" on web page

Calculating Hypergeometric probabilities

- Formula (or 1st principles)

```
Prob(y out of n)
    = [ N1 choose y ] x [NO choose (n-y)]
```

- Calculator / Spreadsheet (see elsewhere on web page)
- Approximations to Hypergeometric
- Binomial Distribution (n a small fraction of N)
- Gaussian Distribution (y >> 0 and $\mathrm{y} \ll \mathrm{n}$)

$E(Y)$	$\operatorname{Var}(Y)$	$S D(Y)$
$n \times \frac{N 1}{N}$	$n \times \frac{N 1}{N} \times \frac{N 0}{N} \times \frac{N-n}{N-1}$	$\sqrt{V A R}$

Worked Examples

- Tea Tasting (small examples, last page of notes on Ch2_1_2_6)
- Tamoxifen
- 6/49 (earlier in Ch 3 notes)
- Keno
- Banco [loto-québec .. several]
- Labour Dispute (wms5 e.g. 2.10, p39 + spreadsheet)
- Rhino Politics and small sample sizes (last page of excerpts from notes fron 607)
- Example of assessimg food sensitivity (3rd last page)

Good exercises from text

- 3.75 (jury selection: 6 from pool of N1=8 African Americans and $\mathrm{N} 0=12$ white)
- 3.80 (assume that Y has the value 1, i.e. that $Y=1$ of the $\mathrm{n}=3$ animals had been tagged previously). Maximize $\mathrm{P}(\mathrm{Y}=1)$ by trying various "what if" values of N .
- Exercise 3.71 and 3.77 have a "quality control" flavour. Can you think of a closer-to-quality-control example?

