RANDOM VARIABLE: SOME DEFINITIONS

MRT2 §5.1	A variable (X) whose value is a number determined by the outcome of an experiment
	Can also be considered as a <i>function</i> that assigns a real number to each sample point i.e. $\{X(e_1), X(e_2), \}$
MM3 §4.3	A variable (X) whose value is a numerical outcome of a random phenomenon
WMS5 §2.11	A real-valued function for which the domain is a sample space. [Y: variable to be measured]

RANDOM VARIABLE: EXAMPLES

Experiment	Random Variable (and S> Y)			
Toss 2 coins	Y = Number of "Heads"			
	Sample point	Y		
	Т Т Т Н Н Т Н Н	0 1 1 2		
Turn over cards until	Y = Number of cards down to and including the first ace			
get 1st ace	Sample point	Y		
	А	1		
	A A	2		
	ААА	3		
	<u></u> ĀĀĀĀ	49		

RANDOM VARIABLE: MORE EXAMPLES

Experiment	Random Variable (and S> Y)			
Put 3 events in the order in which they occurred	Y = Number in correct Position Sample point Y			
say w.l.o.g. correct order is Event1, Event2, Event3	Event1Event2Event33Event1Event3Event21Event2Event1Event31Event2Event3Event10Event3Event1Event20Event3Event2Event11			
2 of 4 cans filled with water (W)	W (w.l.o.g.)			
Guess which 2 contain water	Y = Number of correctly identified Cans Sample point Y			
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
Chose a word and measure how long it is, i.e., # characters (c's)	Y = Number of characters in word Sample points Y * 1 ** 2 *** 3			
probability distribution of Y depends on source (dictionary, article,)	· · · ?			

RANDOM VARIABLE: YET MORE EXAMPLES

Experiment	Random Variable (and S> R.V.)			
Chose 100 single family dwellings.	T = Total amount of water consumed by 100			
For each, measure how many 1000's	Sample points	T		
water is consumed	$\{C_1, C_2, \ldots, C_{100}\}$	i=100 Ci		
in a year	C _i = consumption for i-th randomly selected dwelling			
Ditto	\overline{C} = Mean amount of water consumed by 100			
	Sample points	Ē		
	$\{C_1, C_2, \ldots, C_{100}\}$	$\frac{T}{100}$		
For a woman who	Y = Duration (days) of wo	rkup		
has breast cancer	Sample points	Y		
this year, measure	M S	0		
"workup"	$\frac{M}{-S}$	1		
	<u>M</u> S	2		
		•••		
	M: Mammogram S:Su	irgery		

RANDOM VARIABLE: EVEN MORE EXAMPLES

Experiment	Random Variable (and S> Y)		
Chose 100 single family dwellings.	R.V. = Variability (SD) in water consume	n amount of ed by 100	
For each, measure how many 1000's of cubic metres of	Sample points	Random Variable	
in a year	$\{C_1, C_2, \ldots, C_{100}\}$	$SD{C_i}$	
	SD = Standard Deviat	ion	
ditto	R.V. = Variability in amount of water consumed by 100		
	Sample points	Random Variable	
	$\{C_1, C_2, \ldots, C_{100}\}$	C _[75] / C _[25]	
	C _[75] = 75th in size	(low-high);	
	$C_{[25]}$ = 25th in size	(low-high)	
ditto	R.V. = Variability (CV*) water consumed b	in amount of by 100	
	Sample points	Random Variable	
	$\{C_1, \ldots, C_{100}\}$	SD[C's] mean[C's]	
	* Coefficient of V (usually expressed	Variation, as %)	

Those interested may wish to consult "Lectures in Course 610 -- Nov 1999" accessible from J Hanley's web page. The notes in bold below are excerpts from them.

"Population" : Universe (conceptual or actual) of interest

Why a sample (rather than "Census")

Data not otherwise available

Don't need the precision of a census (sometimes, a census can actually be <u>less</u> precise)

Reduced costs and time

Testing may be destructive (In Quality Control, determinations on biological material, ..) (blood samples, biopsies, ...)

\$\$ gained from 100% processing may be less than cost of the effort (In financial accounts, telephone billing,)

Can pay more attention to ascertainment and to quality of measurements

If use probability sampling, can measure the reliability of the sample estimates from the sample itself

Some Sampling Designs

<u>SIMPLE RANDOM SAMPLE ("unrestricted random sample")</u>

SYSTEMATIC (RANDOM) SAMPLE

STRATIFIED RANDOM SAMPLE

RATIO ESTIMATES FROM SRS'S

SINGLE-STAGE CLUSTER SAMPLE

MULTI-STAGE SAMPLE

$\underline{S} \text{IMPLE } \underline{R} \text{ANDOM } \underline{S} \text{AMPLING}$

Population contains N units

<u>FORMALLY</u>: SRS is a method of selecting n units out of N such that every one of the ${}^{N}C_{n}$ samples has an equal chance of being selected

IN PRACTICE, a SRS is drawn unit by unit:

Units are numbered 1 to N

Series of random numbers between 1 and N is drawn from, for example,

a hat, bowl, ...

(in succession, <u>WITHOUT REPLACEMENT</u>)

a table of ("pre-drawn") random numbers

(discarding any number previously drawn)

Units which bear these numbers constitute the sample

How Statistical Inference is Connected to Random Variables

e.g. N = 5, n = 2

Population of Size N; \underline{V} alues of some characteristic :V₁, V₂, ... V_N. Interest is in <u>some function of</u> V₁, V₂, ... V_N. (Parameter)

Measurement (y) on n randomly chosen individuals (SRS)

Order	Measurement			
Chosen	(RV)			
1	У1	[subscripts 1-n in sample		
2	y 2	are different from the		
		subscripts 1-N in Population]		
n	Уn			

Subscripts 1-n in sample are different from subscripts 1-N in Population [see diagram]

<u>Note</u>: Unless substantial, the Sampling Fraction (n/N) has little impact on reliability of estimate derived from sample.

				2nd		
		chosen				
		V 1	V ₂	V ₃	V ₄	V ₅
	V ₁		V ₁	V ₁	V ₁	V ₁
			V ₂	V ₃	V ₄	V_5
	V_2	V_2		V_2	V_2	V_2
		V ₁		V ₃	V ₃	V_5
1st	V_3	V ₃	V_3		V_3	V ₃
chosen		V ₁	V ₂		V ₄	V_5
	V_4	V ₄	V ₄	V ₄		V ₄
		V ₁	V ₂	V ₃		V_5
	V_5	V_5	V_5	V_5	V_5	
		V ₁	V ₂	V ₃	V ₄	

For statistical purposes, since the order in which the units were selected usually doesn't contain extra information, there are 10, rather than 20, <u>distinguishable</u> pairs of V's.

One possible sample pair would be (shown shaded)

 $y_1 = V_4$; $y_2 = V_3$

Statisticians often write upper case Y for "possible value" (the R.V.) and y for a specific *realization;* Thus, "Probability(Y = y)"