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Preamble: C&H motivate this chapter by noting that with individually
matched case-control studies, one cannot add a separate ‘intercept’ for each
matched set or ‘stratum’. The best example of the danger of doing this (and
thus overfitting) is the example of matched pairs: JH’s notes for Ch 19 con-
tains the relevant excerpt from Breslow and Day Vol. I section 7.1. p 251
where they use a worked example to show that the ‘unconditional’ (and close
to saturated) model yields a �̂ value that is twice the value of the one obtained
when the individual intercepts are conditioned out.

As is seen in the Oscar Predictions article by Pardoe (see the Resources for
conditional logistic regression) conditional logistic models are also useful for
predictions: they are not limited to ‘case-control’ and other ‘outcome-based’
sampling schemes. But the likelihood can be viewed as having been con-
structed ‘after the fact ’: it involves the probability of observing what we did
(already) observe. So it has a certain ‘in retrospect’ aspect to it. In the case
of the Oscar data, we can do the 5 probability calculations (one per nominee,
each a function of the � and the particular nominee’s covariates) ahead of
time, but we need to wait until the winner is declared before we select the one
associated with that winner as the actual likelihood contribution.

29.1 The logistic model

The ‘corner ’ terminology was introduced in the (excellent) general chapter
22 (introduction to regression models). It starts at the ‘point of departure’ or
‘corner’, where x1 = 0, x2 = 0, . . . and places the intercept there, then works
outwards from this corner as it goes to non-zero values of the x’s.

The point made in section 29.1 is that we could have a di↵erent intercept
for each stratum or matched set, but as we know, it is dangerous to have so
many fitted parameters when the amounts of data are small. So section 29.2
conditions out these intercepts.

Incidentally, in Fig 29.1 in the theoretical development, one can replace the
words “case” and ‘control” by “winner” and “non-winner” without loss of
generality.

29.2 Conditional likelihood for 1:1 matched sets

Here again, we do not have to limit ourselves to case-control pairs. Imagine
twins born to an HIV infected mother. Prospectively, what are the chances
they will become HIV positive? and does it depend on which is born first and
thus spends more time in the birth canal?

Or think of the prospective vasectomy-MI example.

Or think about the one winner in each US presidential election, where for
each of the 2 candidates, X1 might be age, X2 height, X3 millions of dollars
spent by the candidate’s party, etc.

In the diagram in the notes on Chapter 19, we have already derived and
shown the binomial likelihood (and the fitting via GLM) for the 1:k matched
sets situation, but where there was only one covariate (e.g. breast cancer
screening). For matched pairs, think of just one ‘diagonal’ , i.e. containing
the discordant pairs.

The only di↵erence here in 29.2 is that the covariate is no longer necessarily
a scalar. To make it more general, think of ✓1 = e

�x1 & ✓2 = e

�x2
, where x1

and x2 are vectors.

The probability that subject 1 (subject 2) is the case is

✓1

✓1 + ✓2

 
✓2

✓1 + ✓2

!
.

You will recognize these as two Bernoulli’s (only one of which can come to
pass) where

n = 1; and either ⇡ =
✓1

✓1 + ✓2
or ⇡ =

✓2

✓1 + ✓2

depending on which subject you focus on: after the fact, you will know which
one represents the case.

29.3 Conditional likelihood for 1:m matched sets

You can think of each ✓ as the (relative) number of tickets that that person
holds in a lottery or contest, where there can only be one winner (if the
context is the Oscars) or one loser (in the 4 women per matched set in the
breast cancer screening example)

In ‘riskset’ or ‘candidate set’ i, with candidates j = 1, . . . , nj and associated
covariate vectors xij (with subscript i suppressed but implicit)

✓j / exp[�xj ]

Thus the likelihood contribution from the riskset is

Likelihood(�) =
exp[�xcase]P

j exp[�xj ]
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so the log-likelihood contribution is

Log Likelihood(�) = LL(�) = �xcase � log

X

j

exp[�xj ]

�
.

Take the easiest case, where xj and � are scalars. The first derivative is

LL

0(�) = xcase �
P

j xj exp[�xj ]P
j exp[�xj ]

= xcase � xweighted,

where xweighted is a weighed mean of {x1, . . . , xn}, with weights w1 = exp[�x1]
to wn = exp[�xn].

The second derivative is

LL

00(�) = �
" P

j x
2
jwjP

j wj
�
⇢P

j xjwjP
j wj

�2
#
= �V ar[x]weighted.

The form makes intuitive sense: the larger the spread of {x1, . . . , xn}, the
larger the information about �.

Estimation of �

By setting LL

0(�) = 0, we get the estimating equation

X

sets

xcase =
X

sets

xweighted,

but since � is involved in a complex way in the right hand side, there is no
obvious way to isolate it. (Contrast this with the estimating equation in the
case of the ‘one �’ binomial likelihood obtained by conditioning on the sum of
two (stratum-specific) Poisson random variables when the two denominators
are known– the one where the first iteration leads to the Mante-Haenszel
estimator, and where subsequent ratios, used as estimators of the rata ratio,
involve the reciprocal of [pt0 +RR⇥ pt1]).

Newton-Raphson iteration

When JH last taugh this material, in 2011, his students had not yet introduced
him to the optimize and optim functions. So he relied on the Newton-
Raphson algorithm to find the �̂ML. It doesn’t hurt to know this algorithm,
as one is much more in control with it than one is with the optimize and
optim functions.

In the case of a scalar �, we have

�new = �prev �
P

sets LL
0(�)P

sets LL
00(�)

����
�=�prev

.

In the case of a vector � of length p, so that LL

0(�) is a vector of length p

and LL

00(�) is a square (and symmetric) matrix of size p⇥ p, we have

�

new
= �

prev
�
X

sets

LL

00(�)

��1X

sets

LL

0(�)

����
�=�

prev

.

At convergence, we can use �
⇥P

sets LL
00(�)

⇤�1
as the variance-covariance

matrix for �̂
ML

.

Supplementary Exercise 29.1

The above derivation of LL00(�) in the case of 1:m matched sets omitted some
steps. Show the derivation step by step.

Supplementary Exercise 29.2

Refer again to the 1:3 matched sets in the study of breast cancer mortality
and screening; results are tabulated in C&H Table 19.2).

i. Using the log-likelihood set out in the middle of C&H page 295, set up
the overall log-likelihood (from all 46 matched sets in Table 19.2) in an
R function, and use optimize to find the ML of the Rate Ratio.

Hint : if the 4 observations are in the order: case, control1, control2 and
control3, you can think of the 4 ✓’s in a matched set where the case and
the 1st and 3rd controls were screened as

e

�⇥1
, e

�⇥1
, e

�⇥0
, e

�⇥1
,

and the 4 ✓’s in a set where only and the 2nd control was screened as

e

�⇥0
, e

�⇥0
, e

�⇥1
, e

�⇥0
.

ii. Using the Newton-Raphson procedure with the same log-likelihood, find
the MLE of the Rate Ratio, along with an estimate of the variance of the
log of the estimate.

iii. What contributions to the log-likelihood are made by the 11 matched
sets in the bottom left of Table 19.2? the 1 set on the top right?
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Supplementary Exercise 29.3

In section 15.3, C&H show the form of the ‘almost ML’ (M-H) estimator of a
common rate ratio when the population-time denominators are known. They
also show how one could use this to calculate new weights, and to continue to
re-weight until the process converges to ✓̂ML. In his notes on 15.3, JH shows
another way to derive the final (fixed point) version.

Consider the setup in section 19.4, and – in the notes – the diagram with the
diagonals, where the 1:m matched data can be seen as binomials with di↵erent
o↵sets i.e., di↵erent probabilities modulated by the margins N1 and N0.

Starting from the single estimating equation linking the expected binomial
splits with the expected splits, derive an estimating equation for ✓.

Hint : For example, for the data in the 3 rows in Table 19.3, this is equivalent
to starting with g + e+ c = ĝ + ê+ ĉ, substituting in ✓̂ML into each of the 3
fitted counts, and re-arranging terms until ✓̂ML is alone on the left had side.
(Of course, it is also on the right hand side, but one can start with a trial
value and iteratively re-weight until one reaches equilibrium.)

More generally, avoiding Table 19.3 notation, focus on the number of sets in
each diagonal in JH’s diagram; write y for the number of sets in the upper left
of a diagonal strip, and n for the total number of sets in the the strip (e.g.,
y = {1, 4, 3}, n = {11, 16, 7}, while N1 = {1, 2, 3}, N0 = {3, 2, 1}.)
Set

P
y =

P
n⇥ N1✓̂ML

N1✓̂ML+N0
, then isolate ✓̂ML to the left hand side.

Supplementary Exercise 29.4

What, if anything, in your R code for 29.2 would need to be changed if you
were to fit a conditional logistic regression to find what weights (�’s) should
be given to the variables collected by Pardoe so as to predict which woman
would win the Oscar award for best actress?

Supplementary Exercise 29.5

Refer to the Walker article, R code, and paired data (in ‘wide’ & ‘tall’ for-
mats) on the e↵ect of vasectomy on the risk of a myocardial infarction (MI).
(Resources Condn’l Regr’n.) Cf. also Hanley J. Survival analysis; risk sets;
case control studies: a unified view of some epidemiologic data-analyses (Re-
gression Models and Lifetables).

Use the R code provided to (i) by trial and error balance the 3 estimating
equations with respect to �̂ML (ii) carry out the Newton-Raphson iteration
and arrive at the same �̂ML. Check your answers (point estimate and vari-
ance) against those produced by the clogit and coxph functions in the R

survival package.

Supplementary Exercise 29.6

Refer to the articles and data on the role of stimulation (rocking) in the delay
of onset of crying in the newborn infant.

i. Fit a (stratified-by-day) proportional hazards model using various ways
of handling the ‘ties’.
See http://www.medicine.mcgill.ca/epidemiology/hanley/c681/cox/TiesCoxModelR.txt.

ii. Which method does clogit use? Verify this by doing the likelihood
calculation ‘from scratch’ (there are just a few days where it is an issue,
and the likelihood involves just a scalar parameter).

iii. The experiment was carried out for 18 days between 25th May and 24th
August. The article mentions the temperature for some of the days. Use
an imputed (interpolated) value for each of the others and assess the
e↵ect of adding temperature to the model.

Supplementary Exercise 29.7

JASA ’86; [full text in link2]. This study led to the lawsuit that formed the basis
for the movie A Civil Action ( http://www.imdb.com/title/tt0120633/).

Table 2 on next page is from the same report, as are sections 3.1 & 4.1. See also

Hanley J. Survival analysis; risk sets; case control studies: a unified view of some

epidemiologic data-analyses (Resources for Regression Models and Lifetables).
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4. RESULTS 4.1 Childhood Leukemia Using either the cumulative (P = .03, ↵̂ = .33) or
none versus some (P = 0.02, ↵̂ = 1.11) exposure metrics, there is a positive association between G
and H exposure and the incidence rate of childhood leukemia. Table 2 gives information on the 20
cases and their contributions to the score tests of ↵ = 0. For example, case 13 was born in 1969 and
resided in Woburn until being diagnosed in 1979, at which time his cumulative G and H exposure
was 2.41. The corresponding 164 surveyed children who were born in Woburn in 1969 and resided
there until 1979 had an average cumulative G and H exposure of 0.73, and 31% of these were
exposed. Overall, given the years of birth and periods of Woburn residence of the 20 cases, the ex-
pected number exposed to wells G and H when ↵ = 0 is

P
i Ei = 5.1, compared with 9 observed,

and the sum of their expected cumulative exposures is 10.6, compared with an observed num-
ber of 21.1. The alternative approach (see the Appendix) based on estimating Ei and Vi from
the regional distribution of the population gave very similar results for both the cumulative
(
P

Ei = 11.0, P = .04,↵ = .29) and none versus some(
P

Ei = 4.9, P = .02,↵ = 1.22) exposure
metrics. Although both G and H exposure metrics are associated with leukemia risk, there are
two few cases to be confident of which, if either, best describes this relationship. Furthermore,
it does not logically follow that Woburn’s entire leukemia excess, based on national rates, is ex-
plainable by these associations. Indeed, the cumulative and none versus some metrics of G and H
exposure statistically explain about 4 and 6 leukemia cases, respectively, whereas national rates
suggest a townwide excess of about 11 cases between 1964 and 1983 (Sec. 3.1). We return to this
point in Section 6.

i. Using a Mantel-Haenszel test and a Mantel-Haenszel summary rate ratio, and each row
as a ‘stratum’ or riskset, derive a P-value and an ↵̂ corresponding to those underlined in
line 2 of section 4.1. Then Check them against the results of fitting a conditional logistic
regression.

ii. How much would point and interval estimates of ↵ change if instead of risksets of the sizes
used, they had used risksets of (say) size 11 (10 plus case)?
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