29
Conditional logistic regression

In an individually matched case-control study, it is necessary to introduce a
new parameter for every case-control set, if the matching is to be preserved
in the analysis. This means that the number of parameters in the model
exceeds the number of cases and in this case the profile likelihood does
not lead to sensible estimates. Instead the nuisance parameters must be
eliminated using a conditional likelihood. In Chapter 19 we indicated how
this is done for a simple binary exposure. In this chapter we show how to
use a conditional likelihood with the logistic regression model.

29.1 The logistic model

Suppose we wish to fit a logistic regression model which contains param-
eters for the case-control sets in addition to parameters for the effects of
two explanatory variables A and B. Using a categorical variable to define
the set to which each subject belongs, the model would be written

log(Odds) = Corner + Set + A + B.
The model can also be written in the multiplicative form as
Odds = Corner x Set x A x B.

For the case where A has three levels and B has two levels, the parameters
in this model are Corner, A(1), A(2), B(1), together with

Set(1), Set(2), ---, Set(N —1)

where N is the number of case-control sets. These set parameters are those
used in standard logistic regression models, but they are no longer the most
convenient choice. It is now more convenient to choose a separate corner
for each set, namely the odds parameter for each set when A and B are
at level 0. The corner for the first case-control set is the corner parameter
referred f0 above, the corner for the second case-control set is

Corner x Set(1),
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and so on. This corresponds to splitting the terms in the model into two
groups, as follows:

Odds ={ Corner x Set |x|A x B|.

The first part of the model contains the separate corners, and these are the
nuisance parameters to be eliminated, while the second part contains the
effects of interest. When a conditional logistic program is used to fit this
model the nuisance parameters are eliminated using conditional likelihood
and estimates of the effects of A and B are reported. No estimates of either
the corner or the set parameters are obtained in this method, so none can
be reported.

To see how the nuisance parameters are eliminated using conditional
likelihood it is convenient to return to the algebraic notation for parame-
ters using Greek letters. For any particular case-control set let the corner
parameter be we. Let the odds for any subject in the set be w;, where
i=1,2,..., indexes the subjects within the case-control set, and write

w; = wobs,

so that 8; is the ratio of the odds for subject ¢ to the corner odds. The

way 6 is related to the effects of A and B is determined by the part
of the model. The corner parameter refers to subjects within the set with
both A and B at'level 0, so that the value of € for such subjects is 1. For
subjects with A at level 1 and B at level 0,

6= A(1),
for subjects with A at level 1 and B at level 1,
6= A(1) x B(1),

and so on.
To be specific about which case-control set is being referred to, the

parameters should be written with superscripts ¢, as in

t_ tot
w; = wgb;.

where t = 0,1, 2,... refers to the lLvels of the variable defining set mem-

bership. The parameters wf correspond to the

part of the moedel, and are the nuisance parameters to be eliminated. In
the rest of this chapter we shall derive the contribution to the conditional
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Subject 1 Subject 2 Probability
w2 /(1 + wz) Case K(wc)29192
Case

w1 /(1 +w1)
/(14 ws) Control Kwct
Case Kuwcbs

/(1 +w1)

Control

Control K

Fig. 29.1. Disease status for two subjects in a case-control study.

log likelihood for a single case-control set, and shall therefore omit the ¢
superscript. The total log likelihood is found by adding the contributions
from the single sets.

29.2 The conditional likelihood for 1:1 matched sets

First we derive the contribution for case-control studies with one case and
one control in each set. The possible case or control status for any two
subjects are represented as a probability tree in Fig. 29.1. Using the rela-
tionship between odds and probability, the probabilities that subject 1 is a
case or a control are wy/(14+w;) and 1/(1 +w, ) respectively. Similarly, the
probabilities for subject 2 are wy/(1+w2) and 1/(1+4ws). The probabilities
of the outcomes for the pair of subjects are obtained by multiplying along
branches of the tree in the usual way. The last column of the figure shows
such probabilities, after writing

w1 = webi, wy = wehy,
and
1 1
=X —
I+wr 14w

These probabilities refer to any two subjects from the study base. Con-
ditional on the fact that one of the subjects is a case and the other is a
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control, the probability that subject 1 is the case is

Kw001 . 01
ch;01 + Kw002 - 01 + 02.

and the probability that subject 2 is the case is
02/(61 + 62).

The contribution to the log likelihood of the case-control set is, therefore

log e(for case)
e(for case) T e(for control)

This way of writing the log likelihood makes it clear that it does not depend
on the arbitrary numbering of the subjects in the pair but only on the
expressions for § in terms of A(1), A(2) and B(1), the parameters to be
estimated. The total log likelihood thus depends only on A(1), A(2), and
B(1), and the nuisance parameters wf, have been eliminated.

Exercise 29.1. Table 29.1 shows the data for the first two case-control sets in
a 1:1 matched study. The set variable indicates which set each subject belongs
to, and case or control status is indicated using a variable taking the value 1
for cases and 0 for controls. Illustrative parameter values for the multiplicative
effects of the explanatory variables age and exposure, where age has three levels
(< 55,55 — 64,65 — 74) and exposure has two levels, are shown below.

Parameter Value
Age (1) x1.5
Age (2) x3.0

Exposure (1) x5.0

The corner is defined as unexposed and age < 55. Calculate the values of 8
predicted by the model for these four subjects. Calculate the log likelihood
contributions for the two sets.

Before leaving the 1:1 case we shall verify that the method of obtaining
the log likelihood described above gives the same answer as the method
described in Chapter 19, for a binary exposure. The model is now

Odds = l Corner x Set [ X ﬁ*]xposure‘

which has only one parameter, Exposure(1), apart from the nuisance pa-
rameters. This parameter is the multiplicative effect of exposure and we
shall refer to it as ¢. The values of 8 for the case and control are determined
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Table 29.1. Data file for a 1:1 matched case-control study

Subject Set Case/control Age Exposure

1 1 1 48 1
2 1 0 64 0
3 2 1 52 1
4 2 0 70 1

Table 29.2. Likelihood contributions for the 1:1 matched study

Exposure @ for case 4 for control Likelihood
Neither 1 1 1/1+1)y=1/2
Both ¢ ¢ ¢/(d+¢)=1/2
Case only ¢ 1 o/(6+1)

. Control only 1 o) 1/(1+¢)

by whether or not they were exposed. For example, if the case was not ex-
posed then § = 1, while if the case was exposed then 6 = ¢. Similarly
for the control. Table 29.2 sets out the four possible outcomes for each
case-control set and the corresponding contributions to the log likelihood.
The first two outcomes, in which the exposure status of case and control is
the same, lead to log likelihood contributions which do not depend upon
the parameter, and can be ignored. If N; and N, are the frequency of
occurrence of the remaining outcomes, the total log likelihood is

N:log (%) + Nylog (ﬁl-—qs)

which is the same as we obtained in Chapter 19, except that here we have
called the effect ¢ rather than § to avoid confusion.

29.3 The conditional likelihood for 1: m matched sets

We now extend the above argument to sets with one case and m controls. If
the sampling had not been carried out deliberately so as to obtain a single
case and m controls in the set, the probability that sub, ject 1is a case and
the remaining m subjects are controls would be

wl' % 1 % 1
X
14w 14wy 14ws
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and making the substitutions

w; = weh;

1 1 1
K = X X X
14w 14wy 14ws

this may be written as Kwcf;. Similarly, the probability that subject 2
is a case and all other subjects controls is Kwg#2, and so on. The sum of
probabilities for all the outcomes in which one member of the set is a case
and all other members are controls is

Kuwe(01 + 605+ 603+---)
so that the conditional probability that subject 1 ‘{s the case is:

Kwe0y _ 6,
KWC(01+92+03+"') _01+92+03+

The contribution of one set to the log likelihood is, therefore,

log <e(for case) Z 0) :

Case-control set

The total log likelihood is obtained by adding the contributions for all
case-control sets.

From the form of this log likelihood it is clear that the conditional
approach does not allow estimation of multiplicative effects of variables
used in matching. Since all subjects in the set share the same value for
such a variable its multiplicative effect will cancel out in the ratio of  for
the case to the sum of all §’s in the case-control set. However, interaction
terms involving matching variables can be fitted. For example, for a case-
control study in which sex was one of the matching variables, the sex effect
cannot be estimated but the parameters for interaction between sex and
exposure can be, because they will not occur in all of the §’s from the same
case-control set.

29.4 Sets containing more than one case

The conditional argument can be generalized quite easily to allow for case-
control sets containing more than one case, although the computation of
the log likelihood may become rather lengthy. The idea is illustrated for a
set containing two cases and one control. Fig. 29.2 shows the probability
tree for case/control status of a set of three subjects. In three of the eight
possible outcomes there are two cases and one control. The probabilities
for these branches are written to the right of the figure, again using the
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Subject 1 Subject 2 Subject 3 Probability

ws/(l + w3) - Case

w2/(1 4 wa)

1/(1 + ws) ™ Control K{(wc)?610,

Case

wl/(l * U-’Zl)‘ Case K(wc)29193

1/(1 =+ wz)
Control

<
-
<

K (wc)?0203

1

/(1 +w1) Contro
Control
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Control

Control

Fig. 29.2. Sets with two cases and one control.
abbreviation
1 1 1
X X .
14w 14w, 14w

Conditional on the observed outcome being one of the three with two cases
and one control the probability that the cases are subjects 1 and 2 is

K=

K(wc)?6,6, _ 0,62
K(wc)20192 + K(wc)20103 + K(wc)202'03 o 0192 + 0103 + 9293 )

The log of this conditional probability is the contribution of the set to the
log likelihood.

It is easy to see how this argument can be extended to deal with any
number of cases and controls in a set. For example, for sets of size 6
containing 3 cases, the conditional probability that subjects 1, 2, and 3 are
the cases is

610203
610203 + 0,0204 + 6160205 + - - -

The denominator contains a term for each of the 20 ways of selecting three
subjects from 6, and does not depend on the way the subjects have been
numbered.

SOLUTIONS 297

Solutions to the exercises

29.1 The values of 8 for the four subjects are:

Multiplicative effects

Subject Corner Age ~ Exposure 7

1 1.0 x5.0 5.0
2 1.0 x1.5 1.5
3 1.0 x5.0 5.0
4 1.0 x3.0 x5.0 15.0

Subject 1 is the case in the first set and subject 3 is the case in the second
set. The log likelihood contributions are, therefore

5.0 5.0
_o9 _ 20 ) — _0.262 — 1.386.
log (5.0 ¥ 1.5) +log (5.0 ¥ 15.o>
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Preamble: C&H motivate this chapter by noting that with individually
matched case-control studies, one cannot add a separate ‘intercept’ for each
matched set or ‘stratum’. The best example of the danger of doing this (and
thus overfitting) is the example of matched pairs: JH’s notes for Ch 19 con-
tains the relevant excerpt from Breslow and Day Vol. I section 7.1. p 251
where they use a worked example to show that the ‘unconditional’ (and close
to saturated) model yields a B value that is twice the value of the one obtained
when the individual intercepts are conditioned out.

As is seen in the Oscar Predictions article by Pardoe (see the Resources for
conditional logistic regression) conditional logistic models are also useful for
predictions: they are not limited to ‘case-control’ and other ‘outcome-based’
sampling schemes. But the likelihood can be viewed as having been con-
structed ‘after the fact’: it involves the probability of observing what we did
(already) observe. So it has a certain ‘in retrospect’ aspect to it. In the case
of the Oscar data, we can do the 5 probability calculations (one per nominee,
each a function of the 8 and the particular nominee’s covariates) ahead of
time, but we need to wait until the winner is declared before we select the one
associated with that winner as the actual likelihood contribution.

29.1 The logistic model

The ‘corner’ terminology was introduced in the (excellent) general chapter
22 (introduction to regression models). It starts at the ‘point of departure’ or
‘corner’, where x1 = 0,z5 = 0,... and places the intercept there, then works
outwards from this corner as it goes to non-zero values of the x’s.

The point made in section 29.1 is that we could have a different intercept
for each stratum or matched set, but as we know, it is dangerous to have so
many fitted parameters when the amounts of data are small. So section 29.2
conditions out these intercepts.

Incidentally, in Fig 29.1 in the theoretical development, one can replace the
words “case” and ‘control” by “winner” and “non-winner” without loss of
generality.

29.2 Conditional likelihood for 1:1 matched sets

Here again, we do not have to limit ourselves to case-control pairs. Imagine
twins born to an HIV infected mother. Prospectively, what are the chances
they will become HIV positive? and does it depend on which is born first and
thus spends more time in the birth canal?

Or think of the prospective vasectomy-MI example.

Or think about the one winner in each US presidential election, where for
each of the 2 candidates, X; might be age, X5 height, X3 millions of dollars
spent by the candidate’s party, etc.

In the diagram in the notes on Chapter 19, we have already derived and
shown the binomial likelihood (and the fitting via GLM) for the 1:k matched
sets situation, but where there was only one covariate (e.g. breast cancer
screening). For matched pairs, think of just one ‘diagonal’ , i.e. containing
the discordant pairs.

The only difference here in 29.2 is that the covariate is no longer necessarily
a scalar. To make it more general, think of 0; = e#*1 & 0y = P*2, where x;
and x5 are vectors.

The probability that subject 1 (subject 2) is the case is
0, 02
01 + 62 01 +65 ]

You will recognize these as two Bernoulli’s (only one of which can come to
pass) where

01 0
or m=
01 + 6> 01 + 62

depending on which subject you focus on: after the fact, you will know which
one represents the case.

n =1; and either 7 =

29.3 Conditional likelihood for 1:m matched sets

You can think of each 6 as the (relative) number of tickets that that person
holds in a lottery or contest, where there can only be one winner (if the
context is the Oscars) or one loser (in the 4 women per matched set in the
breast cancer screening example)

In ‘riskset’ or ‘candidate set’ ¢, with candidates j = 1,...,n; and associated
covariate vectors x;; (with subscript ¢ suppressed but implicit)

0; o exp[Bz;]

Thus the likelihood contribution from the riskset is

eXp[ﬂzcase]

7 J
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so the log-likelihood contribution is

Log Likelihood(3) = LL(B) = fXcase — log [Z eXP[BIj]} .
J

Take the easiest case, where =; and 3 are scalars. The first derivative is

>, xj exp|Ba;]

LL = Lcase — = Tcase — Tweighted>
(B) = ease = S excplBay] e ™ Tueighed

where Tyeighted is @ weighed mean of {z1, ..., z,}, with weights w1 = exp[Sz1]
to w, = exp|Bzy,].

The second derivative is

o S (R | - vt

The form makes intuitive sense: the larger the spread of {xi,...,x,}, the
larger the information about 5.

Estimation of /3

By setting LL'(3) = 0, we get the estimating equation

§ Lcase = E Eweighteda

sets sets

but since S is involved in a complex way in the right hand side, there is no
obvious way to isolate it. (Contrast this with the estimating equation in the
case of the ‘one 8’ binomial likelihood obtained by conditioning on the sum of
two (stratum-specific) Poisson random variables when the two denominators
are known— the one where the first iteration leads to the Mante-Haenszel
estimator, and where subsequent ratios, used as estimators of the rata ratio,
involve the reciprocal of [pty + RR X pt1]).

Newton-Raphson iteration

When JH last taugh this material, in 2011, his students had not yet introduced
him to the optimize and optim functions. So he relied on the Newton-
Raphson algorithm to find the B M- 1t doesn’t hurt to know this algorithm,
as one is much more in control with it than one is with the optimize and
optim functions.

In the case of a scalar 3, we have

Zsets LL/(ﬂ)

5new = ﬁpTev N W‘ﬁ—,@pv@v'

In the case of a vector § of length p, so that LL'(8) is a vector of length p

and LL"(B) is a square (and symmetric) matrix of size p x p, we have

Brvew = Bren = [Z LL”(ﬂ)] B > LL(B)

sets sets ‘/3_,8

—prev

-1 . .
At convergence, we can use —[> .., LL”(B)]  as the variance-covariance

matrix for BML.

Supplementary Exercise 29.1

The above derivation of LL” () in the case of 1:m matched sets omitted some
steps. Show the derivation step by step.

Supplementary Exercise 29.2

Refer again to the 1:3 matched sets in the study of breast cancer mortality
and screening; results are tabulated in C&H Table 19.2).

i. Using the log-likelihood set out in the middle of C&H page 295, set up
the overall log-likelihood (from all 46 matched sets in Table 19.2) in an
R function, and use optimize to find the ML of the Rate Ratio.

Hint: if the 4 observations are in the order: case, control;, controly, and
controls, you can think of the 4 #’s in a matched set where the case and
the 1st and 3rd controls were screened as

eﬂxl e,8><1 eﬂ><0 e,8><1

i ) ) )

and the 4 0’s in a set where only and the 2nd control was screened as

Bx0
) ) ) € N

ii. Using the Newton-Raphson procedure with the same log-likelihood, find
the MLE of the Rate Ratio, along with an estimate of the variance of the
log of the estimate.

iii. What contributions to the log-likelihood are made by the 11 matched
sets in the bottom left of Table 19.27 the 1 set on the top right?
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Supplementary Exercise 29.3

In section 15.3, C&H show the form of the ‘almost ML’ (M-H) estimator of a
common rate ratio when the population-time denominators are known. They
also show how one could use this to calculate new weights, and to continue to
re-weight until the process converges to €,7r. In his notes on 15.3, JH shows
another way to derive the final (fixed point) version.

Consider the setup in section 19.4, and — in the notes — the diagram with the
diagonals, where the 1:m matched data can be seen as binomials with different
offsets i.e., different probabilities modulated by the margins N; and Nj.

Starting from the single estimating equation linking the expected binomial
splits with the expected splits, derive an estimating equation for 6.

Hint: For example, for the data in the 3 rows in Table 19.3, this is equivalent
to starting with g + e + ¢ = g + € + ¢, substituting in Oar1 into each of the 3
fitted counts, and re-arranging terms until Gpr1, is alone on the left had side.
(Of course, it is also on the right hand side, but one can start with a trial
value and iteratively re-weight until one reaches equilibrium.)

More generally, avoiding Table 19.3 notation, focus on the number of sets in
each diagonal in JH’s diagram; write y for the number of sets in the upper left
of a diagonal strip, and n for the total number of sets in the the strip (e.g.,
y={1,4,3}, n={11,16,7}, while Ny = {1,2,3}, Ny = {3,2,1}.)

— N1 . i .
Set > y=>nx Wm, then isolate 0,71, to the left hand side.

Supplementary Exercise 29.4

What, if anything, in your R code for 29.2 would need to be changed if you
were to fit a conditional logistic regression to find what weights (8’s) should
be given to the variables collected by Pardoe so as to predict which woman
would win the Oscar award for best actress?

Supplementary Exercise 29.5

Refer to the Walker article, R code, and paired data (in ‘wide’ & ‘tall’ for-
mats) on the effect of vasectomy on the risk of a myocardial infarction (MI).
(Resources Condn’l Regr'n.) Cf. also Hanley J. Survival analysis; risk sets;
case control studies: a unified view of some epidemiologic data-analyses (Re-
gression Models and Lifetables).

Use the R code provided to (i) by trial and error balance the 3 estimating
equations with respect to Sasr (ii) carry out the Newton-Raphson iteration
and arrive at the same B mr. Check your answers (point estimate and vari-
ance) against those produced by the clogit and coxph functions in the R
survival package.

Supplementary Exercise 29.6

Refer to the articles and data on the role of stimulation (rocking) in the delay
of onset of crying in the newborn infant.

i. Fit a (stratified-by-day) proportional hazards model using various ways

of handling the ‘ties’.

See http://www.medicine.mcgill.ca/epidemiology/hanley/c681/cox/TiesCoxModelR.txt.

ii. Which method does clogit use? Verify this by doing the likelihood
calculation ‘from scratch’ (there are just a few days where it is an issue,
and the likelihood involves just a scalar parameter).

iii. The experiment was carried out for 18 days between 25th May and 24th
August. The article mentions the temperature for some of the days. Use
an imputed (interpolated) value for each of the others and assess the
effect of adding temperature to the model.

Supplementary Exercise 29.7

An Analysis of Contaminated Well Water and
Health Effects in Woburn, Massachusetts

S. W. LAGAKOS, B. J. WESSEN, and M. ZELEN*

In 1979, two of the eight municipal wells servicing Woburn,
Massachusetts, were discovered to be contaminated with
several chlorinated organics. Shortly afterwards, the town
was found to have an elevated rate of childhood leukemia.
Using recent information about the space-time distribution
of water from the two contaminated wells, we find positive
statistical associations between access to this water and the
incidence rates of childhood leukemia, perinatal deaths
(1970-1982), two of five categories of congenital anoma-
lies, and two of nine categories of childhood disorders. We
find no associations with spontaneous abortions, low birth
weight, or the other categories of congenital anomalies and
childhood disorders. This article discussed these results and
other features of the data relevant to their interpretation.

KEY WORDS: Environmental exposure; Health survey;
Observational study; Proportional hazards model; Time-
dependent covariate.

1. INTRODUCTION

near Horn Pond in southwest Woburn (Fig. 1), were tested
and found to meet both state and federal drinking-water
standards.

Independently, during site excavations in July 1979 for
an industrial complex located north of wells G and H (Fig.
1), large pits of buried animal hides and chemical wastes
were discovered. A nearby abandoned lagoon was found
to be heavily contaminated with lead, arsenic, and other
metals. Subsequently, the groundwater under eastern
Woburn was sampled at 61 test wells and found to contain
48 EPA priority pollutants and raised levels of 22 metals
(Ecology and Environment, Inc. 1982).

The closing of the two municipal wells and the discovery
of the abandoned waste sites occurred at about the same
time as the Love Canal incident and alerted Woburn resi-
dents to possible health hazards. One resident contacted
the Centers for Disease Control (CDC), asking if cancer
rates were elevated in Woburn. A citizens’ group formed
and, in late 1979, produced a list of children diagnosed
with leukemia.

JASA ’86; [full text in link2]. This study led to the lawsuit that formed the basis
for the movie A Civil Action ( http://www.imdb.com/title/tt0120633/).

Table 2 on next page is from the same report, as are sections 3.1 & 4.1. See also

Hanley J. Survival analysis; risk sets; case control studies: a unified view of some

epidemiologic data-analyses (Resources for Regression Models and Lifetables).
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Table 1. Annual G and H Exposure Scores by Zone
1960-1969 Zones

Year 1 2 3 4
1960-1963 0 0 0 0
1964 .23 .05 0 0
1965 .08 .08 .08 .08
1966 .95 .70 .25 12
1967 51 47 32 A7
1968 72 .34 0 0
1969 75 .40 0 0

1970-1982 Zones

Year A B c D
1970 .54 27 .03 0
1971 .46 .38 .08 0
1972 .29 29 14 0
1973 0 0 0 0
1974 37 32 .26 14
1975 .55 44 13 .01
1976 .49 .38 .09 0
1977 .94 .52 .04 .01
1978 1.00 .88 .61 .05
1979 .39 .39 .29 0
1980-1982 0 0 0 ]

NOTE: Table entries give estimated fraction of residential water supply derived from wells G
and H by year and residential zone. Refer to Figure 1 for zonal definitions. Exposure scores are
zer0 for Zones 5 and E in all years.

other data and assigned to each pregnancy the annual ex-
posure score corresponding to the mother’s residence in
the year the pregnancy ended. We also determined for each
child an exposure “history,” consisting of his or her set of
annual exposure scores, beginning from the first year of
Woburn residency. For example, an exposure of .49 would
be assigned to a pregnancy ending in 1976 for a mother
residing in Zone A. Similarly, a child born in 1967 and
residing in the intersection of Zones 1 and B for the first
4 years of life would generate cumulative exposures of .51,
1.23, 1.98, and 2.25 during this period. If a child changed
residences, we arbitrarily defined his or her exposure score
for that year to be the score corresponding to the former
residence.

3. STATISTICAL METHODS
34 Childhood Leukemia

Based on national rates (SEER 1981), the 20 childhood
leukemia cases observed between 1964 and 1983 are sig-
nificantly higher than expected (E = 9.1, P = .001). To
determine whether the space-time distribution of these
cases within Woburn is correlated with water from wells
G and H, we used the failure time regression model (Cox
1972)

it | x(1), y} = hy(D)explax ()}, (O]

where x(¢) is some expression of G and H exposure history
from birth to age ¢, y is the year of birth, a{t | x(¢), y} is
the leukemia risk (hazard function) at age ¢ for an individ-
ual born in year y and with exposure x(t), and A,(¢) is the
baseline Woburn risk at age ¢ for an unexposed person
born in year y. With this model, the relative risk at age ¢

Joumal of the Al ) i A ), er 1986

for someone with exposure x(t), relative to an unexposed
individual born in the same year, is exp{ax(¢)}. The hy-
pothesis of no association is given by a = 0.

We used two exposure metrics x(¢): (a) cumulative G
and H exposure from birth until age ¢ and (b) a binary
indicator of whether there had been any G and H exposure
by age ¢. With the first of these measures, risk increases
steadily with cumulative exposure. With the latter, an in-
dividual’s hazard function jumps from A,(¢) to h,(t)exp(a)
upon exposure. Partial-likelihood-based tests of & = 0 from
this “none versus some” exposure model are closely related
to the variation of the log-rank test proposed by Mantel
and Byar (1974) (see also Aitkin, Laird, and Francis 1983;
Crowley and Hu 1977). Misspecification of the form of x(r)
with either test results in a loss of efficiency but not in a
distortion of size.

The partial likelihood score test for @ = 0 can be ex-
pressed in the form (see Kalbfleisch and Prentice 1980)

2 (X = B v, @

where the sum is over the leukemia cases and X; is the
observed value of x(¢) for the ith case at #, the age of
diagnosis. The quantities E; and V; are the average and
variance of the x(¢;) for the “risk set” of children born in
the same year as the ith case and not diagnosed with leu-
kemia before age #; and represent the null mean and vari-
ance of X;, conditional on this risk set. When a = 0, the
distribution of (2) is approximately N(0, 1). A closed-form
approximation to the maximum likelihood estimator (MLE)
of a is given by = (X; — E;)/Z V,. This will closely ap-
proximate the MLE for « close to 0 but may be conser-
vative for large |a|.

In our situation we had the exposure histories for all of
the leukemia cases. We had only the exposures, however,
for those noncases identified in the sample survey. Ac-
cordingly, E; and V; could not be computed directly and
were estimated. One approach is to adopt a form of risk-
set sampling and estimate E; and V; from the survey data
(see Breslow, Lubin, Marek, and Langholtz 1983; Cox and
QOakes 1984; Liddell, McDonald, and Thomas 1977; Pren-
tice 1985); that is, for each case we identified all surveyed
children who were born in the same year and were residents
at the same time as the case and then computed the average
and variance of their x(¢) values for the period of residency
of the case. The results of this approach are presented in
detail in Section 4.1. Alternatively, since each individual’s
exposure history is uniquely determined by his or her res-
idence history, E; and V; can be estimated from the pop-
ulation distributions of the G and H exposure zones. De-
tails of this approach are given in the Appendix.

When x(¢) is positively associated with the risk of leu-
kemia, the number of leukemia cases that are statistically
“explained” by the association is

2y At | Xy y) = hy())/ (5| X, )
=2, [1 - exp(- X)),

where the sum is over cases (see National Research Council
1985).

Table 2. Observed and Expected Exposures to Wells G and H for 20 Childhood Leukemia Cases

Year Year Observed  Size of Expected Proportion
of of Period of cumulative risk set  cumulative of risk set
Case diagnosis birth residency exposure  sample exposure (var)  exposed
1 1966 1959 1959-1966 1.26 218 .31 (.26) .33
2 1969 1957 1968-1969 0 290 .34 (.36) .26
3 1969 1964 1969 75 265 17 (.10) .25
4 1972 1965 1965-1972 4.30 182 .90 (2.28) .36
5 1972 1968 1968-1972 2.76 183 .58 (.88) .32
6 1973 1970 1970-1973 .94 170 .20 (.20) 19
7 1974 1965 1968-1974 0 213 .56 (1.04) .29
8 1975 1964 1965-1975 0 239 .99 (2.78) .38
9 1975 1975 1975 0 115 .09 (.03) .25
10 1976 1963 1963-1976 .37 219 1.18 (3.87) 40
1 1976 1972 1972-1976 0 132 .24 (.32) 18
12 1978 1963 1963-1978 7.88 219 1.41(6.23) 40
13 1979 1969 1969-1979 241 164 .73 (2.56) .31
14 1980 1966 1966-1980 0 199 1.38 (6.00) 39
15 1981 1968 19681981 0 187 1.14 (4.20) 35
16 1982 1979 1979-1982 .39 154 .08 (.02) 23
17 1983 1974 1974-77, 1980-83 0 84 .25 (.45) 23
18 1982 1981 1981-1983 0 - 0(0) 0
19 1983 1980 19801982 0 — 0(0) 0
20 1983 1980 1981-1983 0 — 0(0) 0
Totals 21.06 10.55 (31.52) 5.12
Score test statistic: 1.87 2.08
Significance level: P =.03 P = .02

NOTE: Risk set for a case consists of children born in the same year as the case and who were residents of Woburn when the case
was. Variance of proportion, say p, of risk set exposed equals p(1 — p). Cases 18-20 do not contribute to the test statistic because birth
occurred after closure of wells G and H.

4. RESULTS 4.1 Childhood Leukemia Using either the cumulative (P = .03,& = .33) or
none versus some (P = 0.02, & = 1.11) exposure metrics, there is a positive association between G
and H exposure and the incidence rate of childhood leukemia. Table 2 gives information on the 20
cases and their contributions to the score tests of a = 0. For example, case 13 was born in 1969 and
resided in Woburn until being diagnosed in 1979, at which time his cumulative G and H exposure
was 2.41. The corresponding 164 surveyed children who were born in Woburn in 1969 and resided
there until 1979 had an average cumulative G and H exposure of 0.73, and 31% of these were
exposed. Overall, given the years of birth and periods of Woburn residence of the 20 cases, the ex-
pected number exposed to wells G and H when o = 0is ), E; = 5.1, compared with 9 observed,

and the sum of their expected cumulative exposures is 10.6, compared with an observed num-
ber of 21.1. The alternative approach (see the Appendix) based on estimating E; and V; from
the regional distribution of the population gave very similar results for both the cumulative
(3" E; =11.0, P = .04, « = .29) and none versus some(>_ E; = 4.9, P = .02, @ = 1.22) exposure
metrics. Although both G and H exposure metrics are associated with leukemia risk, there are
two few cases to be confident of which, if either, best describes this relationship. Furthermore,
it does not logically follow that Woburn’s entire leukemia excess, based on national rates, is ex-
plainable by these associations. Indeed, the cumulative and none versus some metrics of G and H
exposure statistically explain about 4 and 6 leukemia cases, respectively, whereas national rates
suggest a townwide excess of about 11 cases between 1964 and 1983 (Sec. 3.1). We return to this
point in Section 6.

i. Using a Mantel-Haenszel test and a Mantel-Haenszel summary rate ratio, and each row
as a ‘stratum’ or riskset, derive a P-value and an & corresponding to those underlined in
line 2 of section 4.1. Then Check them against the results of fitting a conditional logistic

regression.

ii. How much would point and interval estimates of o change if instead of risksets of the sizes
used, they had used risksets of (say) size 11 (10 plus case)?



