












BIOS602: Notes, C&H Ch 19 (finely stratified, & Individually matched) case-control studies) & related topics. 2015.02.22.

0 Preamble to Ch 18 & 19: The non-central
hypergeometric distribution:

The null (central) hypergeometric distribution arises when

i. making inference about N1 and N0 from a sample of size n < N from a
finite population of (say) N1+N0 = N elements, with N1 of them having
the values Y = 1 and N0 having Y = 0. The resulting random variable,P

n

1 yi, is the number, out of the n sampled, in which the sampled Y takes
the value 1. Its minimum value is the larger of 0 and N1 � (N � n), and
its maximum value is the smaller of n and N1.

Examples include sampling from populations such as elected politicians,
or university presidents, or G20 leaders, and the urn sampling used in
lotteries (e.g. 6/49) and casinos (e.g., Keno).

ii. testing for equality of 2 binomial parameters ⇡1 and ⇡0 using independent
samples of sizes n1 and n0, but conditioning on the overall numbers of
‘positives’ (m1) and ‘negatives’ (m0) in the combined samples, i.e., on all
4 margins of the 2⇥ 2 table that cross-classifies the sampled elements by
their Y value and whether they arose in the reference or index categories
(0 and 1) of the contrast of interest.

With this conditioning, introduced by Fisher, the parameter space is
reduced from 2 to 1 dimension, the sample space from (n1+1)⇥ (n0+1)
points in the 2-D grid, to min{n1, n0,m1,m1} + 1 points along a single
diagonal, and the test statistic from 2-dimensional to 1-dimensional.

Moreover, it is the same test, no matter whether the parameter of interest
is the simple di↵erence, ⇡1 � ⇡0; their ratio, ⇡1 ÷ ⇡0; or the ratio of the
corresponding odds, ⇡1

1�⇡1
÷ ⇡0

1�⇡0
. The same holds true for unconditional

tests, provided one is consistent about dis-continuity corrections, etc.

The 5 tables from Fisher’s famous tea-tasting experiment1 with the
2 ⇥ 2 tables with all marginal totals = 4 are another example of this
hypergeometric distribution.

The unity in (ii) is lost when we move to interval estimation, with separate
approaches for the di↵erent comparative parameters. Since case-base series
(‘case-control’ studies) lead to a Rate Ratio estimator that is a numerical
cross-product (i.e., the statistic looks like an empirical odds ratio) that can
be seen as arising from 2 independent binomials with di↵erent parameter

1See the slides ‘What the P-Value IS and IS NOT’ in JH’s material for the Bionano
Workshop.

values, we will focus for now on the odds-ratio parameter. If we use the
same conditioning as in (ii) above, and keep our focus on the single parameter
⇡1

1�⇡1
÷ ⇡0

1�⇡0
, we arive at the non-central hypergeometric distribution.

We will use our own notation, but Fisher’s example 1, next, to introduce it.
It is also described in section 4.2 ‘Exact statistical inference for a single 2⇥ 2
table’ in Chapter 4 of Volume I of Breslow and Day.

SETUP: Let Y

i

⇠ Binomial(n
i

,⇡

i

), i = 0, 1, be 2 independent binomial
random variables. We wish to make inference regarding the parameter

 = {⇡1/(1� ⇡1}/{⇡0/(1� ⇡0}.

We can do so by considering only those data configurations which have the
same total number of ‘positives’, y1 + y0 = y, say, as were observed in the
actual study, and then considering the distribution of Y1 | y.

Prob[Y1 = y1 ; Y0 = y0] =
n1C

y1 ⇡
y1
1 (1� ⇡1)

n1�y1 ⇥ n0C
y0 ⇡

y0
0 (1� ⇡0)

n0�y0
.

If we condition on Y1 + Y0 = y, then

Prob[Y1 = y1 | Y1 + Y0 = y] = Prob[Y1 = y1 ; Y0 = y � y1]/Prob[Y1 + Y1 = y].

If we rewrite the quantity

⇡

y1
1 (1� ⇡1)

n1�y1 ⇥ ⇡

y0
0 (1� ⇡0)

n0�y0

as
⇡

y1
1 (1� ⇡1)

�y1
⇡

�y0
0 (1� ⇡0)

y1 ⇥ (1� ⇡1)
n1
⇡

y

0 (1� ⇡0)
n�y

we see that it simplifies to

 

y1 ⇥ (1� ⇡1)
n1
⇡

y

0 (1� ⇡0)
n�y

and that the last three terms do not involve  and do not involve the random
variable y1. Since they appear in both the numerator and the denominator of
the conditional probability, they cancel out.

Thus we can write the conditional probability Prob[Y1 = y1 | Y1 + Y0 = y] as

Prob[ y1 | y ] = n1C
y1

n0C
y�y1  

y1
/ ⌃ n1C

y

0
1

n0C
n�y

0
1
 

y

0
1
,

where the summation is over those y

0
1 values that are compatible with the 4

marginal frequencies.
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Aside: note that if we set  = 1, the probabilities are the same as those in
the central hypergeometric distribution, used for Fisher’s exact test of two
binomial proportions, Indeed, Fisher, in page 48-49, first computes the null
probabilities for the 2⇥ 2 table. The combinatorials are only computed once.

48 FISHER-The Logic of Ilzductive Inference. [Part I ,  

information in the sample, and is equivalent for all future purposes 
to the original data, yet sometimes it fails t o  do so, but leaves a 
measurable amount of the information unutilized. How can we 
supplement our estimate so as to  utilize this too ? It is shown that  
some, or sometimes all of the lost information may be recovered by 
calculating what I call ancillary statistics, which themselves tell us 
nothing about the value of the parameter, but, instead, tell us how 
good an estimate we have made of it.  Their function is, in fact, 
analogous to the part which the size of our sample is always expected 
to  play, in telling us what reliance to place on the result. Ancillary 
statistics are only useful when different samples of the same size can 
supply different amounts of information, and serve to distinguish 
those which supply more from those which supply less. 

The use of ancillary statistics may be illustratedin the well-worn 
topic of the 2 x 2 table. Let us consider such a classification as 
Lange supplies in his study on criminal twins. Out of 13 cases 
judged to  be monozygotic, the twin brother of a known criininal is in 
10 cases also a criminal ; and in the remaining 3 cases he has not been 
convicted. Among the dizygotic twins there are only 2 convicts 
out of 17. Supposing the data to  be accurate, homogeneous, and 
unselected, \ire need to know with what frequency so large a dis- 
proportion would have arisen if the causes leading to  conviction had 
been the same in the two classes of twins. We have to judge this 
from the 2 x 2 table of frequencies. 

1 Convicicd. 
- -  

Eot  Conricted. 
-- I -

Total. 

Rlonozygotic ... . . .  10 1I 3 1 13 

Dizygotic 

Total 

... 
. . . .  

.../ 

...I 
2 

12 

15 

18 

17 

30 

To the many methods of treatment hitherto suggested for the 
2 x 2 table the concept of ancillary information suggests this new 
one. Let us blot out the contents of the table, leaving only the 
marginal frequencies. If i t  be admitted that  these marginal fre- 
quencies by themselves supply no information on the point a t  issue, 
namely, as to the proportionality of the frequencies in the body of the 
table, we may recognize the information they supply as wholly 
ancillary; and therefore recognize that  we are concerned only with 
the relative probabilities of occurrence of the different ways in which 

19351 FISHER-The Logic of Ifidt~ctiueIi?ference. 40 

the table can be filled in, subject to  these marginal frequencies. 
These ways form a linear sequence completely specified by giving to  
the number of dizygotic convicts tlie 13 powble values froni o to 12. 

The important point about this approach is that the relative fre- 
quencies of these 13 possibiIities are the same ~~vlixtcvcr rilcly he tlie 
probabilities of the twin brother of a convict falling into the four 
compartments prepared for him, provided that these probabilities 
are in propo~tion. 

For, suppose that ,  knowing him to be of monozygotic origin, the 
probability that  he shall have been convicted is 11, it  follox~s that 
the probability that of 13 non no zygotic (12 - x) shall have been 
convicted, while ( I  3x) have escaped conviction, is 

p)"".  

But, if we know that the probabilities are in proportion, the 
probability of a criniinal's brother known to be dizygotic being 
convicted will also be p, and the probability that of 1 7  of these x 
shall have been convicted and ( I ;  - x)sl~allhave escaped conviction 
will be 

The probability of the sirllultaneous occurrence of these two events, 
being the product of their respective probabilities, will therefore be 

in which it will be noticed that the powers of p and 1- p arc 
independent of x, and therefore represent a factor which is thc same 
for all 13 of the possibilities considered. In  fact the probability of 
any value of x occurring is proportional to  

and on summing the series obtained by varying r ,  the absolute 
probabilities are found to  b,e 

Putting x = o, I, z ,  . . . the probabilities are therefore 

2
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50 FISHER-The Logic of Inductive Infe~elzce.  [Part I, 

The significance of the observed departure from proportionality is 
therefore exactly tested by observing that a discrepancy from pro- 
portionality as great or greater than that observed, will arise, subject 
to  the conditions specified by the ancillary information, in exactly 
3,095 trials out of 6,653,325, or approximately once in 2,150 trials. 
The test of significance is therefore direct, and exact for small samples. 
No process of estimation is involved 

The use of the margins as ancillary information suggests a more 
general treatment. Had the hypothesis we wish to  examine made 
the chances of criminality different for monozygotic and dizygotic 
twins, e.g. p in one case and p' in the other, the probability of 
observing any particular value of x would have included an additional 
factor 

the frequency distribution is determined by the parameter 4, and 
for each value of $ we can make a test of significance by calculating 
the probability, 

the ratio of the partial sum of the hypergeometric series to the 
hypergeometric function formed by the entire series. This prob- 
ability rises uniformly as 4 is diminished, and reaches I per cent. 
when #is  just less than 0.48. We may thus infer that  the observations 
differ significantly, a t  the 1 per cent. level of significance, from any 
hypothesis which makes 4 greater than 0.4798. That is to say, that  
any hypothesis, which is not contradicted by the data at this level 
of significance, must make the ratio of criminals to non-criminals a t  
least 2.084 times as high among the monozygotic as among the 
dizygotic cases. 

Similarly, the probability rises to 5 per cent. when 4 = .28496, so 
that  any hypothesis which is not contradicted by the data at the 
5 per cent. level of significance must make the ratio of criminals to 
non-criminals a t  least three and a half times as high among the 
monozygotic as among the dizygotic. 

This is not a prob3bility statement about $. It is a formally 
precise statement of the results of applying tests of significance. If, 
however, the data had been continuous in distribution, on the hypo- 
thesis considered, i t  would have been equivalent to  the statement 
that  the fiducial probability that 4 exceeds 0.4798 is just one chance 
in a hundred. With discontinuous data, however, the fiducial 

19351 FISHER-^^^^ Logic of Inductive Ii?fere?zce. 51 

argument only leads to the result that this probabil~ty dor,i not 
exceed o or  f e have a statement of ~necjual~ty,and not one of 
eqnal~ty.  I t  is riot o b ~ ~ o u s ,  111 such cases, that ,  of thc t x ~ o  Cornis 
of statvment poss~ble, the one evplicitly iramed 111 ternls ot prob- 
abi l~ ty  has any practical ad\antagc The reason nhy  the fiducial 
statement loses its precision with diicontinnouz data ii that  the 
frequencies in our table make no distinction bet71 een a case In vhich 
the 2 dlzygotic convicts mere only just convicted, perhaps on venial 
charges, or as first offenders, whlle the remaining 15 had character5 
above suspicion, and an equally possible case in nhich thp 2 con~ic tz  
were hardened offenders, and some at least of the remalnlng I j had 
barely eicaped conviction. If we knew where we stood in the range 
of possibilities represented by these two examples, and had similar 
information n i th  respect to  the monozygotic tnins, the fiducial 
statements derivable from the data mould regain their i)xact~tadt.. 
One possible device for circumventing thls difficulty is set out in 
Example 2 It is t o  be noticed that  in this example of the fourfold 
table the notion of ancillary Information has been illuitrated solely 
in relatlon to tests of significance and fiduclal probability No 
problenl of estimation arises. If n e  want an estin~ate of + we have 
no choice but to  take the actual ratio of the products of the fre- 
quencies observed in opposite corners of the table. 

On turning a discantinuous distribution, leading to statements of 
fiducial inequality, into a continuous distribution, capable of yielding 
exact fidncial staternents, by mea,ns of a modification of experimenta,l 
procedure. 

Consider the process of estimating the density of micro-organisms 
in a fluid, by detecting their presence or absence in samples taken at 
different dilutions. A series of dilutions is made up containing 
densities of organisms decrea,sing in geometric progression, the 
ratios most commonly used being tenfold and twofold. R e  will 
suppose, to simplify the reasoning, that  the series is effectively 
infinite, in the sense that  i t  sha,ll be scarcely possible for the organism 
to fail to appear in the highest c~ncent~ration exa,mined, or for i t  to 
appear in the highest dilution. A number, s, of independent sa'mples 
are examined a,t each dilution. The dilution ratio we shall ca,ll a, 
and we shall suppose the dilutions to be numbered consecutively, 
with the number i z  increasing as dilution is increased. 

If is the density of the organisms to  be estimated, then the 
density in the 91th dilution, reckoned on the size of the sample taken, 
is 

nz = pa-'&. 

Fisher calculated that the probability that 1, 2, 3, . . .monozygotic twins would
escape conviction2 was (1/6 652 325)⇥{1, 102, 2992, ...}. Thus, “a discrepancy
from proportionality as great or greater than that observed, will arise, subject
to the conditions specified by the ancillary information, in exactly 3,095 trials
out of 6,652,325 or approximately once in 2,150 trials.”

He then went on to work out the lower limit of the 90% 2-sided CI (or a 95%
1-sided CI), for the odds ratio: i.e. for the odds, ⇡

mono�z

/(1 � ⇡

mono�z

), of
criminals to non-criminals in twins of monozygotic criminals divided by the
corresponding odds ⇡

di�z

/(1� ⇡

di�z

), in twins of dizygotic criminals.

Let Y

mono

be the number of MZ twins convicted. Fisher finds the value  
L

such that
Prob[ Y

mono

� 10 |  
L

, y = 12 ] = 0.05.

He reports that this value is 1/0.28496 ⇡ 3.509. In the Excel spreadsheet
for Fisher’s exact test and exact CI for OR (on website), you can verify that

2the range is 1 to 13; 0 cannot escape, since then there would be 13 convicted in the
first row, but there are only 12 convicted in all.

3
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indeed, with  
L

= 3.509, P rob[ Y
mono

� 10 |  = 3.509 , y = 12 ] = 0.05.

One has to admire Fisher’s ability, in 1935, to solve a polynomial equation of
order 12, namely

1 + 102 + 2992 2

1 + 102 + 2992 2 + · · ·+ 476 12
= 0.05.

It is ironic that while Fisher introduced the idea of conditioning to simplify
significance tests of null and non-null  values, and through them, produced
‘fiducial’ limits that look like confidence limits, he did not give a conditional
MLE for  : instead he gave the unconditional one:

It is to be noticed that in this example of the fourfold table the notion
of ancillary Information has been illustrated solely in relation to tests
of significance and fiducial probability. No problem of estimation
arises. If we want an estimate of  we have no choice but

to take the actual ratio of the products of the frequencies

observed in opposite corners of the table (i.e., ad/bc )

0.0.1 Point estimation of  under Hypergeometric Model

See also section 4.2 of Breslow and Day, Volume I. And see sections 7.3 & 7.4,
and exercise 9.9 in McCullagh and Nelder’s Generalized Linear Models, 2nd
Edition.

It will come as a surprise to many that there are 2 point estimators of  :

one, the familiar – unconditional – based on the “2 independent Binomials”
model, with two random variables y1 and y2, and

the other – conditional – based on the single random variable y1 | y with a
Non-Central Hypergeometric distribution.

While the two estimators yield similar estimates when sample sizes are large,
the estimates can be quite di↵erent from each other in small sample situations.

Estimator, based on Unconditional Approach:

The estimator derives from the principle that if there are two parameters ✓1
and ✓0, with Maximum Likelihood Estimators ✓̂1 and ✓̂0, then the Maximum
Likelihood Estimator of ✓1/✓0 is ✓̂1/✓̂0.

Thus, since ⇡̂1 = 10/13, and ⇡̂0 = 2/17, we have

 ̂

UMLE

=
(10/13)/(2/13)

(2/17)/(15/17)
=

10⇥ 15

3⇥ 2
= 25 =

a⇥ d

b⇥ c

.

Estimator, based on Conditional Approach:

We can find the Maximum Likelihood Estimate  ̂
CMLE

by inspecting the plot
of the log L function, or using the Newton-Raphson approach, or the optim

software, or trial and error, to find the solution of d logL/d = 0.

If we use ⌃ as shorthand for the denominator of prob[ y1 | y ], then  ̂CMLE

is
the solution of

y1

 

=
d log⌃

d 

=
d⌃

d 

⇥ 1

⌃
.

Re-arranging, we find that  ̂
CMLE

is the solution of

y1 = E[ Y1 |  ].

In this case the CMLE of  is the same as the estimate obtained by equating
the observed and expected moment (the “Method of Moments”).

Using trial and error in a spreadsheet (Excel has the central Hypergeometric
probability) or R, or by a numerical search, we find that the value of  that
satisfies this estimating equation is

 ̂

CMLE

= 21.3.

It can be shown that  ̂CMLE is always closer to null ( = 1) than  ̂MLE is. The CMLE is

like a UMLE shrunk towards the null. (Cf. Hanley JA, Miettinen OS. An Unconditional-like

Structure for the Conditional Estimator of Odds Ratio from 2 ⇥ 2 Tables. Biometrical Journal

48 (2006) 1, 2334)

SPECIAL CASE: When smallest of the marginal totals is 1, i.e.,

1 0 Total
1 a · 1
0 · · K � 1

Total N1 � 1 N0 � 1

Info[log ] = ⇡ (1�⇡ ); ⇡ =
N1 

N1 +N0

the Non-Central Hypergeometric Distribution of a is Bernoulli, with

Pr[a = 1] =
N1 

N1 +N0
; logit = log

✓
Pr[a = 1]

Pr[a = 0]

◆
= log

✓
N1

N0

◆
+log .

4
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Non-central hypergeometric: ψ =1, 5, 10, 15, 20, 25, 30, 35

x.range

P
ro
ba
bi
lit
y

x 13

17

12 18

ps
i=

 5
ps

i=
 1

0
ps

i=
 1

5
ps

i=
 2

0
ps

i=
 2

5

ps
i=

 3
5

E↵ectively, by calculating Prob

non�central

(x| ) as a function of  , as is done
inside the rectangle above, we are mapping out the likelihood function.

.
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19 Individually matched case control studies

Examples: comparisons involving paired data (not all case-control)

• Response of same subject in each of 2 conditions (self-paired)

• Responses of matched pair, one in 1 condition, 1 in other

• Di↵erences in paired responses on interval scale, reduced to +/-

Result in Other Member n

+ �
+ a b

Result in One PAIR Member
- c d

Total n

‘Control’ Exposed ? n

+ �
+ a b

‘Case’ Exposed ?
- c d

Total n

Extreme situations (1 or other / forced choice e.g. exercise 8.18, or who dies
first among twin pairs discordant for handedness, or whether shorter/taller
US presidential candidate won election)

Shorter n

Won Lost
Won - b

Taller
Lost c -
Total n

Can also turn this table ‘inside-out’ and analyze using ‘case-control’ approach

Loser n

Won Lost
Taller: - b

Winner
Shorter: c -

Total n

Example: HIV in twins in relation to order of delivery: mother to infant
transmission of HIV-infection: n=66 sets of twins [Lancet, Dec. 14, 1991]

2nd born n

HIV+ HIV-
HIV+ 10 18

1st born
HIV- 4 34

66

If we restrict to pairs with 1 HIV+ and 1 HIV- infant, we can display the data
in case-control format

HIV- infant born n

1st 2nd
1st 18

HIV+ infant born
2nd 4

22

To: Goedert, James (NIH/NCI) [E]
Sent: Thu Mar 24 21:41:23 2011
Subject: 1991 Lancet study on twins and hiv

Dear Dr Goedert

Just this week, in teaching a graduate biostatistics course, I dragged out what I think of as
one of the classic epi studies that changed practice.. your and your colleagues’ Lancet study
in 1991 on twins and hiv transmission.. High risk of HIV-1 infection for first-born twins

The students admired the design and analysis.. and I got to thinking that with the raw data it
would be a very valuable ’teaching dataset’ for them to work on..

So I wonder if the raw data from the study are still available an if so whether you would be
willing to share them for teaching purposes.. I would be happy to receive them in any format,
electronic, paper, fax, whatever.. it would be great if on each twin we had all the covariates
as well as the HIV status and which twin pair it was..

There are a few classic paired-data datasets in epi and statistical epi. I often use the one by
Miettinen and Trichopoulus from early 1970s. I think it was on induced abortions and
subsequent ectopic pregnancy but it has very few covariates.. and we now know that the history
data in that study are suspect -- as the controls were probably quite coy about their histories
(The study was done in Greece where induced abortions were illegal)

But yours would be a real nice one for them to ’get multivariate’ about..

I would ensure the data were just for teaching.. and I would keep them in a locked teaching
website. I have had good luck with several generous authors and I hope it will be likewise here.

Sincerely

Jim Hanley

6
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Dear Jim.

You bring back very fond memories - the origin of the idea (at a very small pediatric
AIDS meeting in California overlooking the Pacific ), assembling the collaborators and
contributors, monitoring the raw data as they arrived in my Fax machine (very modern
then), my amazement at the difference in risk by birth order, going back to contributors
to validate birth order (a few changed actually strengthening the difference, and
discussions with the Statistician on the analysis.

It will take some digging by a programmer or two who are still around, but the odds are
good of finding a clean data set. I will let you know.

Jim Goedert

==

From: Goedert, James (NIH/NCI) [E] [goedertj@mail.nih.gov]
Sent: April 7, 2011 2:18 PM
To: James Hanley, Dr.
Subject: Re: 1991 Lancet study on twins and hiv

Dear Dr Hanley.

One of our expert programmers, thinks she has found it on the NIH mainframe.
Please correspond with her regarding a format that would be useful for you.

Jim

========================

19.1 Mantel-Haenzel analysis of the 1:1 matched study

In the first paragraph, C&H motivate this chapter by noting that in individ-
ually matched case-control studies, one cannot add a separate ‘intercept’
for each matched set or ‘stratum’. The best example of the danger of
doing this (and those overfitting) is the example of matched pairs:

Below is how Breslow and Day Vol. I, section 7.1, illustrate why in this
extreme situation, the ‘unconditional’ (and close to saturated) model yields
a �̂ value that is twice the value of the one obtained when the individual
intercepts are conditioned out.

7.1 Bias arising from unconditional analysis of matched data

Use of the unconditional regression model (6.12) for estimation of
relative risks entails explicit estimation of the ↵ stratum parameters
in addition to the � coe�cients of primary interest. For matched or
finely stratified data, the number of a parameters may be of the same
order of magnitude as the number of observations and much greater
than the number of �’s. In such situations, involving a large number
of nuisance parameters, it is well known that the usual techniques

of likelihood inference can yield seriously biased estimates (Cox &
Hinkley, 1974, p. 292). This phenomenon is perhaps best illustrated
for the case of 1-1 pair matching with a single binary exposure vari-
able x.

Returning to the general set-up of section 6.2, suppose that each of
the I strata consists of a matched case-control pair and that each
subject has been classified as exposed (x = 1) or unexposed (x =
0). The outcome for each pair may be represented in the form of a
2⇥ 2 table, of which there are four possible configurations, as shown
in (5.1). The model to be fitted is of the form

pr(y = 1|x) = exp(↵1 + �x)

1 + exp(↵1 + �x)
,

where � = log is the logarithm of the relative risk, assumed con-
stant across matched sets.

According to a well-known theory developed for logistic or log-linear
models (Fienberg, 1977), unconditional maximum likelihood esti-
mates (MLEs) for the parameters ↵ and � are found by fitting fre-
quencies to all cells in the 2 ⇥ 2 ⇥ K dimensional con- figuration
such that (i) the fitted frequencies satisfy the model and (ii) their
totals agree with the observed totals for each of the two dimensional
marginal tables. For the noo concordant pairs in which neither case
nor control is exposed, and the nll concordant pairs in which both are
exposed, the zeros in the margin require that the fitted frequencies
be exactly as observed. Such tables provide no information about
the relative risk since, whatever the value of p , the nuisance param-
eter a i may be chosen so that fitted and observed frequencies are
identical (↵1 = 0 for tables of the first type and ↵1 = �� for tables
of the latter to give probability 1/2 of being a case or control).

The remaining n10 + n01 discordant pairs have the same marginal
configuration, and for these the fitted frequencies are of the form

Exposure
+ -

Case µ 1� µ 1
Control 1� µ µ 1

1 1 2

where

µ = pr

i

(y = 1|x = 1) =
exp(↵

i

+ �)

1 + exp(↵
i

+ �)
,

7
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and

1� µ = pr

i

(y = 1|x = 0) =
exp(↵

i

)

1 + exp(↵
i

)
,

which can be expressed as

 = exp(�) =

✓
µ

1� µ

◆2

.

The additional constraint satisfied by the fitted frequencies is that
the total number of exposed cases, n10 + n11, must equal the total
of the fitted values, namely (n10 + n01)µ + n11. This implies µ̂ =
n10/(n10+n01) and thus that the unconditional MLE of the relative
risk is

 ̂ =

✓
µ̂

1� µ̂

◆2

=

✓
n10

n01

◆2

.

the square of the ratio of discordant pairs (Andersen, 1973, p. 69).

The estimate based on the more appropriate conditional model has
already been presented in section 5.2. There we noted that the dis-
tribution of n10 given the total n10 + n01 of discordant pairs was
binomial with parameter ⇡ =  /(1 +  ). It followed that the condi-
tional MLE was the simple ratio of discordant pairs

 ̂ =
n10

n01
.

Thus the unconditional analysis of matched pair data results

in an estimate of the odds ratio which is the square of the

correct, conditional one : a relative risk of 2 will tend to be esti-
mated as 4 by this approach, and that of 1/2, by 1/4.

While the disparity between conditional and unconditional analyses
is particularly dramatic for matched pairs, it persists even with other
types of fine stratification. Pike, Hill and Smith (1979) have inves-
tigated by numerical means the extent of the bias in unconditional
estimates obtained from a large number of strata, each having a fixed
number of cases and controls. Except for matched pairs, the bias de-
pends slightly on the proportion of the control population which is
exposed, as well as on the true odds ratio. Table 7.1 presents an
extension of their results. For sets having 2 cases and 2 controls
each, a true odds ratio of 2 tends to be estimated in the range from
2.51 to 2.53, depending upon whether the exposure probability for

controls is 0.1 or 0.3. Even with 10 cases and 10 controls per set, an
asymptotic bias of approximately 4% remains for estimating a true
odds ratio of  = 2, and of about 15% for estimating  = 10.

These calculations demonstrate the need for considerable caution in
fitting unconditional logistic regression equations containing many
strata or other nuisance parameters to limited sets of data.

There are basically two choices: one should either use individ-

ual case-control matching in the design and the conditional

likelihood for analysis; or else the stratum sizes for an un-

conditional analysis should be kept relatively large, whether

the strata are formed at the design stage or post hoc.

C&H begin with a case-control study concern the relationship between tonsil-
lectomy history and the incidence of Hodgkin’s disease, in which ‘the controls
were siblings of the cases, and the authors felt that the matching of cases and
sibling controls should be preserved.’ Since they also wished to control for age
and sex, they ‘therefore restricted their analysis to 85 matched case-control
pairs in which the case and sibling control were of the same sex and matched
for age within a specified margin, thereby reducing the original 174 cases and
472 controls to only 85 cases and 85 controls.

Just as you already found in getting your head around the tables for HIV
transmission in twins, ‘Tables such as Table 19.1 can be confusing because we
are used to seeing tables that count subjects, while this table counts case-
control sets.’ ‘In the analysis of individually matched studies the strata are
case-control sets so that, in the notation of Chapter 18, t indexes sets.’

‘The four cells of the table corresponding to the four possible exposure con-
figurations of a case-control set are illustrated in terms of a tree in Fig. 19.1.’
These configurations can also be laid out as pair-specific 2 ⇥ 2 tables, of the
same type as those used by B&D above. In the same order as those listed by
C&H, these are

Exposure Exposure Exposure Exposure
+ - + - + - + -

Case 1 0 1 0 1 1 1 0 1 0 0 1

Control 1 0 1 1 0 1 0 1 1 0 0 1

———— ———— ———— ————
1 1 2 1 1 2 1 1 2 1 1 2

M-H
ad/2 0 0 1/2 0
bc/2 0 1/2 0 0

Only two exposure configurations (the ‘discordant’ sets in which the
exposure status of case and controls di↵er) contribute to estimation
and testing of the odds (or rate) ratio.
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Supplementary Exercise 19.1

Refer to ‘Occurrence of non-fatal myocardial infarction and the prevalence
of obesity, smoking and vasectomy’. described in R file ‘MI and Vasectomy
Documentation, Data, R code’ (data are at end of material).

These non-fatal myocardial infarctions arose out of a cohort of 4830 vasec-
tomized/non vasectomized pairs of men matched from the membership files
of a large group medical plan, on the basis of year of birth and calendar time
of follow-up. For each pair, follow-up began when one of the pair members
underwent vasectomy. There were no pairs of which both the vasectomized
and non- vasectomized man su↵ered a myocardial infarction (MI).

For parts (i) to (vi) below, ignore the 2 variables obesity and smoking.

i. Taking a ‘prospective’ view, summarize the data in a 2 ⇥ 2 frequency
table that (a) ignores (b) respects the matching.

ii. Taking a ‘retrospective’ view, summarize the data in a 2 ⇥ 2 frequency
table that (a) ignores (b) (as C&H do in their Table 19.1) respects the
matching.

iii. Repeat C&H’s exercises 19.1, 19.2, 19.3 and 19.4, but using these
vasectomy-MI data.

iv. Consider the data in the 2⇥ 2 table for set number 1 (the first of the 36
rows). What is the probability of observing this set-specific 2⇥ 2 table if
the Rate ratio, ✓ [contrasting the MI rate in vasectomized men, �

v

, with
the MI rate in non-vasectomized men, �

n

] equals 2? 3

Consider the data in the 2⇥ 2 table for set number 2 (the second of the
36 rows). What is the probability of observing this set-specific 2⇥2 table
if, again, ✓ = 2?

Again, still with ✓ = 2, what is the (joint) probability of observing the
36 2 ⇥ 2 tables that were observed? You might find it more workable to
calculate the log of this product, i.e., the sum of the logs of the 36 specific
log-likelihoods.

Now, repeat the overall (i.e sum of 36 contributions) log-likelihood cal-
culation for a range of ✓ values, from say ✓ = 1/10 to ✓ = 10, and plot
this log-likelihood function.

v. Instead of this visual/numerical way of maximizing the log-likelihood,
derive an analytic (closed form) ML estimator for ✓ (or log ✓).

3Clearly, �v and �n will be increasing functions of age, but for now we will assume that
for every age, ✓age = �age,v/�age,n is the same, so that we can drop the age from the ✓age
and refer to a single (proportional-hazards) hazard ratio (HR) ✓.

vi. Instead of analytically maximizing the log-likelihood, fit a glm in your
favourite software package function to obtain the MLE of ✓ (or log ✓).

vii. How big would your dataset be if you restricted your analysis to sets
where the two men in the same set were also matched on obesity and
smoking? Can you suggest how we might recover some information from
the sets where they were not fully matched on obesity and smoking?

19.2 Several controls per case

‘Table 19.2 demonstrates the usual way such data are presented. However,
it is very di�cult to perceive any pattern even as to whether or not screen-
ing appears to be a protective. To understand the analysis, we shall start by
reordering the data as a tree (Fig. 19.3).’

JH has added diagonal bands, used in Breslow and Day, to distinguish con-
figurations with di↵erent marginal totals in a 2 ⇥ 2 table for a matched set
of 4 women. Tables with di↵erent marginal totals (here, column totals, num-
bers screened and not) contribute di↵erent amounts of information regarding
the log of the mortality rate ratio parameter ✓. The amount of expected
information concerning log ✓ from the 3 table configurations is given below.

Status of the case

Screened

Unscreened

Number of controls screened

0 1 2 3

⇢⇢11 10 12 4

1 4 3 �1@
@

@
@
@
@

@
@

@
@

@
@@

@
@
@
@

@
@@

@
@
@
@@

@
@
@
@@

Informative configurations, single 1:3 set
1 case

3 controls

Screened?�+
13 No. of women

�+
22

�+
31

a · a · a ·

logit[Pr(a = 1)] = log( ) + log
�
1
3

�
;

�
2
2

�
;

�
3
1

�
.

n.case.screened =c(1,4,3);n.case.not.screened =c(10,12,4) ;
o = log ( c(1/3, 2/2, 3/1) ) ; n.scr = 1:3; n=4
fit = glm( cbind(n.case.screened,n.case.not.screened) ~ 1+offset(o),family=binomial)
round(c(fit$coefficients,exp(fit$coefficients)),3) ; -1.205(SE:0.427) 0.300
mh=sum(n.case.screened*(1*(n-n.scr)/n))/sum(n.case.not.screened*(1*n.scr/n)); 0.304

Expected Info[log theta] per 1:3 set, if theta=1.0: 0.188 0.250 0.188
if theta=0.3: 0.083 0.178 0.249

sqrt( 1 / (11*0.083+16*0.178+7*0.249) ) [1] 0.427
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Supplementary Exercise 19.2

The New England Journal of Medicine 
Downloaded from nejm.org at MCGILL UNIVERSITY LIBRARY on October 11, 2014. For personal use only. No other uses without permission. 

 From the NEJM Archive. Copyright © 2010 Massachusetts Medical Society. All rights reserved. 

The New England Journal of Medicine 
Downloaded from nejm.org at MCGILL UNIVERSITY LIBRARY on October 11, 2014. For personal use only. No other uses without permission. 

 From the NEJM Archive. Copyright © 2010 Massachusetts Medical Society. All rights reserved. 

Focus on the data on maternal smoking and breast Feeding

i. Display the data in the same format as C&H’s Table 19.2

ii. Repeat C&H’s exercises 19.6 and 19.7, but using these matched data from
Herbst et al.

iii. In the 2nd column of p193, after setting up the 3 (binomial-based) log-
likelihoods from the 3 informative binomial configurations, C&H say that

There is no simple expression for the maximum likelihood esti-
mate and it is necessary to use a computer program to search
for the maximum.

In fact, as is shown below the diagram at the bottom of the previous
page of the Notes, these log-likelihoods arise within a generalized linear
model, and so we can use any standard GLM software that allows for
o↵sets. Apply this GLM approach to the data from Herbst et al., and
compare with the M-H estimates. Do you think that, as C&H found with
the cancer screening data, ‘a Gaussian approximation fits quite closely’?

iv. Alter the wording of the title of Table 2 to reflect the modern way of
thinking about what it is that is really compared in case-control studies.

Supplementary Exercise 19.3

Many textbooks on matched case-control studies, and some statistical pack-
ages, use the data linking induced abortions to ectopic pregnancies and to
secondary Infertility (see Website). JH stopped using these data after he read
the article from the 2 Dutch authors – on abortion and breast cancer.

i. Read (and summarize) the article by the 2 Dutch authors.

ii. Do you think the exquisitely matched case-control data on abortions,
ectopic pregnancies and secondary Infertility, are valid? Why/why not?

iii. How about the results from the Danish study (also on website)?

Supplementary Exercise 19.4

Inside a 2⇥ 2 table, show the (central) hypergeometric r.v. representing:

(i) (a) 6/49 lottery result [numbers categorized into (rows) picked/not
by player & (cols) drawn by Lottery]; (b) Keno, 2 picks (c) 10 picks.

(ii) result: Oscar for best actress (a) the day after (b) the day before
the results became known.
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