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Individually matched case-control
studies

Analyses which preserve the matching of individual cases to their controls
follow similar principles to those of Chapter 18. The strata are now the
sets made up of each case and its matched controls. Studies designed to
have a fixed number of controls, m say, drawn for each case, will be referred
to as 1:m matched studies.

19.1 Mantel-Haenszel analysis of the 1:1 matched study

For reasons discussed in Chapter 18, the use of profile likelihood gives mis-
leading estimates of odds ratios when there are a large number of strata
with little data in each stratum. However, the Mantel-Haenszel method
works perfectly well in these circumstances. The calculations are particu-
larly easy in the 1:1 case, and illustrate ideas which are important for our
later discussion of the likelihood approach.

The results of 1:1 matched studies are usually presented in 2 x 2 tables
such as Table 19.1.* These data were drawn from the same study as re-
ported in Chapter 17, and concern the relationship between tonsillectomy
history and the incidence of Hodgkin’s disease. The total study included
174 cases and 472 controls, but the controls were siblings of the cases, and
the authors felt that the matching of cases and sibling controls should be
preserved. They also wished to control for age and sex and therefore re-
stricted their analysis to 85 matched case-control pairs in which the case
and sibling control were of the same sex and matched for age within a
specified margin. Note that, in the construction of matched sets, the orig-
inal 174 cases and 472 controls have been reduced to only 85 cases and 85
controls.

Tables such as Table 19.1 can be confusing because we are used to see-
ing tables that count subjects, while this table counts case-control sets.
The four cells of the table correspond to the four possible exposure con-
figurations of a case-control set. These are illustrated in terms of a tree
in Fig. 19.1. The first branching point is according to whether or not the
control was exposed (denoted E+- and E- respectively), while the second

*From Cole, P. et al. (1973) New England Journal of Medicine, 288, 634.
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Table 19.1. Tonsillectomy history in 85 matched pairs

History History of control

of case Positive Negative
Positive 26 15
Negative 7 37
Control Case H Hp D, Do
E+ 1 0 1 0
E+
BE— 1 0 0 1
E+ 0 1 1 0
E—
E— 0 1 0 1

Fig. 19.1. Exposure configurations for 1:1 sets.

branching is according to exposure of the case. The frequencies in Ta-
ble 19.1 refer to counts of these four configurations.

Exercise 19.1. How often did each of the exposure configurations of Fig. 19.1
occur?

In the analysis of individually matched studies the strata are case-
control sets so that, in the notation of Chapter 18, ¢ indexes sets. The
number of subjects in each stratum is N* = 2, and since each stratum.
contains one case and one control, D* and H? are always 1. The values of
Dy, D§, HY, and H{ for each exposure configuration are shown in Fig. 19.1.
In this figure and henceforth we will omit the superscript ¢ for clarity, and
remember that the symbols refer to values in a single case-control set.

Exercise 19.2. What are the contributions of each configuration to @ and
R in the Mantel-Haenszel estimate of the odds ratio? Similarly what are the
contributions to the score and score variance, U and V? Which configurations

_contribute to estimation and testing?

It can be seen that only two exposure configurations make any contribution
to estimation and testing of the odds ratio. These are the sets in which the
exposure status of case and controls differ and are called discordant sets.
The remaining sets are called concordant sets. In our current example, 63
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of the case-control sets are concordant and are ignored.

Exercise 19.3. For the tonsillectomy data, what are the values for Q, R, U, V?
Using the methods of Chapter 18, estimate the odds ratio, its 90% confidence
interval, and a p-value for § = 1.

The odds ratio estimate is very close to that obtained in the analysis of
Chapter 17, but so much data has been lost in this analysis that the result
is no longer statistically significant. It is easy to criticize an analysis which
discards so much data, but when it is necessary to preserve the matching
of controls to cases it is not easy to see how one can adjust for the effects of
additional variables by stratification, since the case and its control may fall
within different strata. At the time this study was reported there would
have been no alternative but to discard such sets. Nowadays, this problem
is easily overcome by use of the regression methods to be described in
Part II.

Before leaving this example, it is interesting to note that the above anal-
ysis is not the one originally reported. In their first report, the researchers
subscribed to the misconception discussed in Chapter 18 — that the match-
ing for age, sex, and family was sufficient to control for these variables and
that subsequently the matching could be ignored in the analysis.

Exercise 19.4. Show that the odds ratio estimate obtained by ignoring the
matching is less than that obtained by the correct analysis.

19.2 The hypergeometric likelihood for 1:1 matched studies

The hypergeometric likelihood is obtained by arguing conditionally upon
both margins of the 2 x 2 table, and depends only upon the odds ratio
parameter. It is usually difficult to compute, but its use is only necessary
when the data within strata are few. This is the case for individually
matched studies and the hypergeometric likelihood must be used. Luckily
in this case the computations are quite easy — particularly in the 1:1 case.

Fig. 19.2 derives the probability of each exposure configuration by mul-
tiplying along branches of the tree in the usual way and also lists the total
number of subjects in the set who were exposed, N;. The odds that the
control in the set was exposed is denoted by Qg and the odds that the case
was exposed by i, and we have written K for the expression

1
1+Q)1+)

which occurs in all four probabilities. To obtain the hypergeometric like-
lihood we argue conditionally on the number of subjects exposed, N;. It
is clear from the figure that, when N; = 2, thére is only one possible ex-
posure configuration; the conditional probability of the observation is 1
and there is no contribution to the log likelihood. Similarly, there is no
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Control Case Ny Probability
Q1/(1 + Q) E+ 2 Qo K
E
Q0/(1 + o) +
1/(1+ Q1) > E—- 1 QK
Ql/(l + E+ 1 LK
1/ +90)\ g
1/(1+€1) > E~ 0 K

Fig. 19.2. Probabilities for a case-control set.

contribution to the log likelihood from sets in which N7 = 0. These con-
figurations correspond to the concordant sets which were also ignored in
our previous analysis. However, when N; = 1 the exposure configuration
could be either the second or third. These are the possible configurations of
discordant sets. The observed split of discordant sets between the second
and third configurations determines the log likelihood.

The conditional probabilities that a discordant set is of the third type
(case exposed, control unexposed) and the second type (case unexposed,
control exposed) are

QlK d QOK
QoK+ K QoK+ K

respectively, and the conditional odds that the case was exposed is the
ratio of these, /. This is the odds ratio parameter 0, assumed in our
model to be constant for all the case control sets. The conditional argument
therefore leads to a Bernoulli log likelihood based on splits of discordant;
sets into those in which the case is exposed and those in which the case is
unexposed, the odds for such splits being 8. In our data, such sets split
15:7 and the log likelihood is

151og(9) — 221og(1 + 6).

" Exercise 19.5. Calculate the most likely value of 8, a 90% confidence interval

and the score test for the null hypothesis § = 1. These results of this exercise
should agree precisely with those obtained using the Mantel-Haenszel method.
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Table 19.2.  Screening history in breast cancer deaths and matched
controls

Status Number of

of the controls screened

case 0 1 2 3

Screened 1 4 3 1

Unscreened 11 10 12 4

19.3 Several controls per case

The arguments outlined above may be extended to the situation in which
there are several controls for each case. As before, we start with the Mantel—
Haenszel approach.

Table 19.2 shows the results of a case-control study of breast cancer
screening. Cases are deaths from breast cancer and each case is matched
with three control women.! The exposure of interest is attendance for
breast cancer screening. If screening is effective in prolonging life, screened
women should have lower mortality rates and the odds ratio estimate from
the case-control study should be less than 1. Note that as in Table 19.1,
the table counts case-control sets and not women.

This study illustrates one of the reasons for matching discussed in Chap-
ter 18. Women who die from breast cancer usually do so some years after
initial diagnosis and during the period between diagnosis and death they
would not be screened. Thus, controls would have a greater opportunity to
be screened than cases. This difficulty was overcome by determining the
relevant ezposure window, the screening history of the controls was assessed
over the period up to the time of diagnosis of the case, so that the screen-
ing histories of cases and controls are comparable. It was only possible to
deal with this problem in this way because the study matched controls to
individual cases.

Table 19.2 demonstrates the usual way such data are presented. How-
ever, it is very difficult to perceive any pattern — even as to whether or
not screening appears to be a protective. To understand the analysis, we
shall start by reordering the data as a tree. Fig. 19.3 illustrates the possible
exposure configurations. The first three branches represent the exposure
status of the three controls, the upper branch representing exposed (E+)
and the lower unexposed (E—). Because we do not wish to differentiate
between individual controls, this section of the tree may be abbreviated.
For the first two controls, we do not need to differentiate between the con-
figurations (E+, E—) and (E—, E+). These are simply grouped together as
having 1 control exposed and we write the figure 2 at this point to remind
us that branches emanating from this point are double branches. Similarly,
after consideration of the third control we group together the 3 configu-

TFrom Collette, H.J.A. et al. (1984) The Lancet, June 2, 1984, 1224-1226.

Controls Case H, Hy D, Dy
(1) 2) 3)
E+ 3 0 1 0 (a)
< |
E— 3 0 0 1 (b
+
E+ 2 1 1 0 (o)
o <
E- 2 1 0 1 (d)
T2
+
E+ 1 2 1 0 (e)
E_ —
+ 3<
E— 1 2 0 i ()
<E+ 0 3 1 0 (2
E— 0 3 0 1 (h)

Fig. 19.3. Exposure configurations for 1:3 sets.

rations with 2 exposed controls and the 3 configurations with 1 exposed
control. The final branching represents the exposure status of the case.

Exercise 19.6. In the screening data, how frequently do each of the eight types
of exposure configuration occur?

We shall first analyse these data by the Mantel-Haenszel method. In
the next section, we shall discuss the likelihood approach and show how it
suggests a more useful arrangement of the table.

Exercise 19.7. Tabulate the values of @, R, U, and V for these eight tables
and hence calculate the Mantel-Haenszel significance test, odds ratio estimate
and an approximate 90% confidence interval.

This analysis shows that the study finds a substantial and statistically
significant reduction in mortality as a result of breast cancer screening.

"19.4 The likelihood

The analysis of these data by use of the hypergeometric likelihood method
is also quite straightforward. As before we argue conditionally upon the
margins. Fig. 19.4 shows the total number of subjects exposed, Ny, and the
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Controls _ Case N1
1 (2) 3)
E+ 4 (90)391[{ (a.)
E- 3 (Q)°K (b)
+
E+ 3 3(90)291[{ (C)
. <
E- 2 3(Q)*K (d)
T2
+
E+ 2 3QoQ1K (e)
E- >3
E— 1 30K (£)
E— 0 K (h)

Fig. 19.4. Probabilities for 1:3 sets.

probability of each configuration, again writing K for the common factor,
in this case

1

K= 1+ Q)30 +0)

Note that the probabilities for configurations (c) to (f) are multiplied by 3
because each of these represents three paths in the complete tree. Now there
are 5 possible values for the total number of subjects exposed. Again there
are two concordant configurations in which the number of subjects exposed
uniquely determines the configuration. Ny = 4 ensures configuration (a)
.and N; = 0 ensures configuration (h). These make no contribution to the
log likelihood. Each of the other three values of N; allows for two possible
configurations, one in which the case is exposed and the other in which the
case is unexposed. It is the splits of the observed data between these that
yield the likelihood. .

If the total number-of exposed subjects in the set, Ny, is fixed at 3, then
the exposure configuration must be either (b) or (c¢) and the conditional
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Table 19.3. Splits of case-control sets
N; Split Odds Observed

3 (c):(b) 36 3:4
2 (e):(d) 0 4:12
1 (ge(f) 6/3 1:10

odds for the split (c):(b) is

3(Q)2nK 3 30

(Q9)3K Qe )
Similarly, N; = 2 implies (d) or (e) and N; = 0 implies (f) or (g). The odds
predicted by the model for these splits are set out in Table 19.3, together
with the observed frequencies. By eye we can see that a value of 6 of about
0.3 predicts the observed splits very well indeed. More formally, the log

likelihood is
0 0
1 b Z
1 og(3> 11log (1+3>

+ 4log(6) —16log(1+6)
+ 3log(30) — Tlog (1 + 36).

There is no simple expression for the maximum likelihood estimate and
it is necessary to use a computer program to search for the maximum.
This occurs at § = 0.31 (log(6) = —1.18). The plot of the log likelihood
ratio against log(#) is shown in Fig. 19.5. A Gaussian approximation with
S = 0.404 fits quite closely.

The generalization of this argument to any number of controls per case
may be carried out algebraically or by extending our tree. For sets of
N7 exposed subjects and Ny unexposed subjects, the constant odds ratio
model predicts that sets will split between those with an exposed case and
those with an unexposed case with odds

N16/No.

A similar generalization is possible for several cases in each set. We will
not give the details here, but computer software is readily available. Such
analyses do not arise frequently in practice. An exception is family studies
in which more than one sibling may be affected by a disease and unaffected

~.siblings are used as controls.

In the examples discussed in this chapter, the Mantel-Haenszel and like-
lihood methods agree closely. The calculations for the former are rather
easier, but the advantage of the likelihood approach lies in its greater gen-
erality and possibilities for extension. For example, when there are more
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Fig. 19.5. Log likelihood ratio for log(6).

than two exposure categories, there is no simple method analogous to the
Mantel-Haenszel approach. We shall defer discussion of such extensions to
Part II of the book.

Solutions to the exercises

19.1 In ‘the order in which the exposure configurations are listed in the
figure, their frequencies are 26, 7, 15, and 37.

19.2 In the same order as listed,

Q R U V
0 0 0 0
0 1/2 -1/2 1/4
/2 0 12 1/4
0 0 0 0

Only the second and third configurations contribute to @, R, U, and V.

19.3

15 x (1/2)
7 x (1/2)
15x(1/2) —7x(1/2) =4

Q@O
[

I
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V o= 15x(1/4)+7x(1/4) =55

The odds ratio estimate is 15/7 = 2.14. This estimates the underlying
rate ratio, so that the suggestion is that tonsillectomy doubles the rate of
Hodgkin’s disease. Using the expression

|V
S = OR 0.4577,

the 90% error factor for the odds ratio is exp(1.645 x 0.4577) = 2.12. The
90% confidence limits are, therefore, 2.14/2.12 = 1.01 (lower limit) and
2.14 x 2.12 = 4.54 (upper limit). Referring the value (U)?/V = 2.91 to the
chi-squared distribution gives p =~ 0.09.

19.4 If the matching is ignored, the following 2 x 2 table is obtained:

History: Positive Negative

Cases 41 44

Controls 33 52
The odds ratio in this table is (41 x 52)/(33 x 44) = 1.47, as compared to
the value of 2.14 obtained by the correct analysis.

19.5 The most likely value is 15/7 = 2.14. To calculate the approximate
90% interval using Gaussian approximation of the log likelihood for log(6)

we use
f1 1
=4/— 4= =0.4577
S 15+7 04577,

the same as we obtained with the Mantel-Haenszel method. Under the null
hypothesis, the probability for the split is 0.5 so that the expected number
of sets with an exposed case is 22 x 0.5 = 11. The score and score variance
are

U = 15-11=4,
V = 22x0.5x0.5=55.

Again these are the values we obtained using the Mantel-Haenszel method.

\

""19.6 In the order listed in the figure, the 8 exposure configurations have

frequencies 1, 4, 3, 12, 4, 10, 1, 11.

19.7 The contributions to @, R, U and V are shown below:
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Number

of sets Q R U v
(a) 1 0 0 0 0
(b) 4 0 3/4 -3/4 9/48
(c) 3 1/4 0 1/4 9/48
(d) 12 0 2/4 —2/4 12/48
(e) 4 2/4 0 2/4 12/48
() 10 0 1/4 -1/4 9/48
() 1 3/4 0 3/4 9/48
(h) 11 0 0 0 0
Total 14/4 46/4 -32/4 354/48

Note that each contribution has to be multiplied by the number of times
it occurred so that, for example, the total value of Q is

(3 x 1/4) + (4 x 2/4) + (1 x 3/4) = 14/4.

The Mantel-Haenszel estimate of 6 is 14/46 = 0.30 and the chi-squared
test is (U)?/V = 8.68 (p < 0.01). An approximate error factor can be

calculated from
exp (1.645 X HQ—‘;) =2.02

so that the 90% confidence interval lies from 6 = 0.15 to @ = 0.60.

20
Tests for trend

Up to this point we have dealt exclusively with comparisons of exposed and
unexposed groups. Although it is possible that the action of an exposure is
‘all or nothing’, coming into play only when a threshold dose is exceeded,
it is more common to find a dose-response relationship, with increasing
dose leading to increasing disease rates throughout the range of exposure.
This chapter introduces analyses which take account of the level or dose of
exposure.

20.1 Dose-response models for cohort studies

The simplest model for dose-response relationship assumes that the effect
of a one-unit increase in dose is to multiply the rate (or odds) by 6, where
0 is constant across the entire range of exposure. Thus the effect of each
increment of dose on the log rate or odds is to add an amount 8 = log(8).
This model is called the log-linear model and is illustrated in Fig. 20.1. The
dose level is denoted by 2. The rate at dose z = 0 is given by log(Xo) = a,
at z = 1. by log(\1) = a+ 8, at z = 2 by log(Az) = o + 24, and so on.

In principle, log-linear models present no new problems. The model
describes the rate at different doses z in terms of two parameters o and
8. The first of these describes the log rate in unexposed persons and will
normally be a nuisance parameter; the second is the parameter 3, which
describes the effect of increasing exposure. The contribution to the log
likelihood from D, events in Y, person-years of observation at dose z is

D,log(A;) — YA,

and the total log likelihood is the sum of such terms over all levels of
exposure observed. This is a function of both @ and § but; as before, we
can obtain a profile likelihood for the parameter of interest, 3, by replacing
« by its most likely value for each value of 8. This profile likelihood is
given by the expression:

Y, exp(Bz)
2 D:log (zyz eXP(ﬂz)> !

where both summations are over dose levels z. Exactly the same log likeli-
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0 Preamble to Ch 18 & 19: The non-central
hypergeometric distribution:

The null (central) hypergeometric distribution arises when

i. making inference about N; and Ny from a sample of size n < N from a
finite population of (say) N1+ Ny = N elements, with Ny of them having
the values Y = 1 and Ny having Y = 0. The resulting random variable,
31 ¥i, is the number, out of the n sampled, in which the sampled Y takes
the value 1. Its minimum value is the larger of 0 and N; — (N —n), and
its maximum value is the smaller of n and Nj.

Examples include sampling from populations such as elected politicians,
or university presidents, or G20 leaders, and the urn sampling used in
lotteries (e.g. 6/49) and casinos (e.g., Keno).

ii. testing for equality of 2 binomial parameters 7 and my using independent
samples of sizes n; and ng, but conditioning on the overall numbers of
‘positives’ (m1) and ‘negatives’ (mg) in the combined samples, i.e., on all
4 margins of the 2 x 2 table that cross-classifies the sampled elements by
their Y value and whether they arose in the reference or index categories
(0 and 1) of the contrast of interest.

With this conditioning, introduced by Fisher, the parameter space is
reduced from 2 to 1 dimension, the sample space from (ny +1) x (ng+1)
points in the 2-D grid, to min{ni,ng, mi, m;} + 1 points along a single
diagonal, and the test statistic from 2-dimensional to 1-dimensional.

Moreover, it is the same test, no matter whether the parameter of interest
is the simple difference, m — mg; their ratio, m; + mg; or the ratio of the
corresponding odds, 1’:—;1 = 1f3m. The same holds true for unconditional
tests, provided one is consistent about dis-continuity corrections, etc.

The 5 tables from Fisher’s famous tea-tasting experiment! with the
2 x 2 tables with all marginal totals = 4 are another example of this
hypergeometric distribution.

The unity in (ii) is lost when we move to interval estimation, with separate
approaches for the different comparative parameters. Since case-base series
(‘case-control’” studies) lead to a Rate Ratio estimator that is a numerical
cross-product (i.e., the statistic looks like an empirical odds ratio) that can
be seen as arising from 2 independent binomials with different parameter

1See the slides ‘What the P-Value IS and IS NOT’ in JH’s material for the Bionano
Workshop.

values, we will focus for now on the odds-ratio parameter. If we use the
same conditioning as in (ii) above, and keep our focus on the single parameter
T - T we arive at the non-central hypergeometric distribution.

1-m ° 1—mg?’

We will use our own notation, but Fisher’s example 1, next, to introduce it.
It is also described in section 4.2 ‘Exact statistical inference for a single 2 x 2
table’ in Chapter 4 of Volume I of Breslow and Day.

SETUP: Let Y; ~ Binomial(n;,m;), ¢ = 0,1, be 2 independent binomial
random variables. We wish to make inference regarding the parameter

Y ={m/(1 —m}/{mo/(1 —mo}.

We can do so by considering only those data configurations which have the
same total number of ‘positives’, y1 + yo = vy, say, as were observed in the
actual study, and then considering the distribution of Y7 | y.

Prob[Y1 =y1; Yo =yo] = " Cy, " (1 — )™ 7% x "0Cy, m (1 — mo)"0 7M.

If we condition on Y; + Yy = y, then

ProblY1y =y1 | Y1+ Yo =y] = Prob[Y1 = y1; Yo =y — y1]/Prob[Y1 + Y1 = y].

If we rewrite the quantity
(1 — )™M 7Y X wf? (1 —mg)omve

as
7 (1 —m) g YO (1— o)t x (1 — )™ (1 —mo)" Y

we see that it simplifies to
P x (1—m)" 7§ (1 —mo)" Y

and that the last three terms do not involve ¢ and do not involve the random
variable y;. Since they appear in both the numerator and the denominator of
the conditional probability, they cancel out.

Thus we can write the conditional probability Prob[Yy =y | Y1 + Yo = 3] as

PTOb[yl |y} = ’rb1cy1 nocy*:tn wyl /E " Cy{ nocnfyi ’Q[in,

where the summation is over those yj values that are compatible with the 4
marginal frequencies.
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Aside: note that if we set ¢ = 1, the probabilities are the same as those in 1935]
the central hypergeometric distribution, used for Fisher’s exact test of two
binomial proportions, Indeed, Fisher, in page 48-49, first computes the null
probabilities for the 2 x 2 table. The combinatorials are only computed once.
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the table can be filled in, subject to these marginal frequencies.
These ways form a linear sequence completely specified by giving to

Ezample 1.

The use of ancillary statistics may be illustrated in the well-worn
topic of the 2z X 2 table. Let us consider such a classification as
Lange supplies in his study on criminal twins. Out of 13 cases
judged to be monozygotic, the twin brother of a known criminal is in
10 cases also a eriminal ; and in the remaining 3 cases he has not been
convicted. Among the dizygotic twins there are only 2 convicts
out of 17. Supposing the data to be accurate, homogeneous, and
unselected, we need to know with what frequency so large a dis-
proportion would have arisen if the causes leading to conviction had
been the same in the two classes of twins. We have to judge this
from the 2 X 2 table of frequencies.

Conwictions of Like-sex Twins of Criminals.

, Convicted. ‘ Not Convicted. ‘ Total

Monozygotic ‘ 10 j 3 ] 13
Dizygotic . 2 | 15 [ 17
Total ‘ 12 ‘ 18 | 30

To the many methods of treatment hitherto suggested for the
2 X 2 table the concept of ancillary information suggests this new
one. Let us blot out the contents of the table, leaving only the
marginal frequencies. If it be admitted that these marginal fre-
quencies by themselves supply no information on the point at issue,
namely, as to the proportionality of the frequencies in the body of the
table, we may recognize the information they supply as wholly
ancillary ; and therefore recognize that we are concerned only with
the relative probabilities of occurrence of the different ways in which

the number of dizygotic convicts the 13 possible values from o to 12.
The important point about this approach is that the relative fre-
quencies of these 13 possibilities are the same whatever may be the
probabilities of the twin brother of a convict falling into the four
compartments prepared for him, provided that these probabilities
are n proportion.

For, suppose that, knowing him to be of monozygotic origin, the
probability that he shall have been convicted is p, it follows that
the probability that of 13 monozygotic (12 — ) shall have been
convicted, while (1 -+ x) have escaped conviction, is

13! 12-z (] 1+
@—arara? =

But, if we know that the probabilities are in proportion, the
probability of a criminal’s brother known to be dizygotic being
convicted will also be p, and the probability that of 17 of these x
shall have been convicted and (17 — ) shall have escaped conviction
will be

171 i .
ST — o PU— P

The probability of the simultaneous occurrence of these two events,
being the product of their respective probabilities, will therefore be

131 17!
oA ralzar =P =P

in which it will be noticed that the powers of p and 1 — p are
independent of x, and therefore represent a factor which is the same
for all 13 of the possibilities considered. In fact the probability of
any value of & occurring is proportional to

1
@+ a)lz! (1T—2)"

and on summing the series obtained by varying x, the absolute

18
>

- probabilities are found to be

13117112118 1
30! A2—a)! QA+l (AT —2)
Putting x = o, 1, 2, . . . the probabilities are therefore
13!18![l 12.17 12.11.17 .16 }
T30\ 2 T st T
1

= 6.6533%5 {1,102, 2992, . . . }
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The significance of the observed departure from proportionality is
therefore exactly tested by observing that a discrepancy from pro-
portionality as great or greater than that observed, will arise, subject
to the conditions specified by the ancillary information, in exactly
3,095 trials out of 6,653,325, or approximately once in 2,150 trials.
The test of significance is therefore direct, and exact for small samples.
No process of estimation is involved

The use of the margins as ancillary information suggests a more
general treatment. Had the hypothesis we wish to examine made
the chances of criminality different for monozygotic and dizygotic
twins, e.g. p in one case and p’ in the other, the probability of
observing any particular value of # would have included an additional

factor
(22
py
If
vy _
124 b

the frequency distribution is determined by the parameter 4, and
for each value of  we can make a test of significance by calculating
the probability,

(1 + 1024 + 299242)/(1 4 1024 + . . . + 476412),

the ratio of the partial sum of the hypergeometric series to the
hypergeometric function formed by the entire series. This prob-
ability rises uniformly as ¢ is diminished, and reaches 1 per cent.
when  is just less than 0-48. We may thus infer that the observations
differ significantly, at the 1 per cent. level of significance, from any
hypothesis which makes ¢ greater than o-4798. That is to say, that
any hypothesis, which is not contradicted by the data at this level
of significance, must make the ratio of criminals to non-criminals at
least 2:084 times as high among the monozygotic as among the
dizygotic cases.

Similarly, the probability rises to 5 per cent. when ¢ = -28496, so
that any hypothesis which is not contradicted by the data at the
5 per cent. level of significance must make the ratio of criminals to
non-criminals at least three and a half times as high among the
monozygotic as among the dizygotic.

This is not a probability statement about 4. It is a formally
precise statement of the results of applying tests of significance. If,
however, the data had been continuous in distribution, on the hypo-
thesis considered, it would have been equivalent to the statement
that the fiducial probability that 4 exceeds 0-4798 is just one chance
in a hundred. With discontinuous data, however, the fiducial

1935] FisuEr—The Logic of Inductive Inference. 51

argument only leads to the result that this probability does not
exceed o-or1. We have a statement of inequality, and not one of
equality. It is not obvious, in such cases, that, of the two forms
of statement possible, the one explicitly framed in terms of prob-
ability has any practical advantage. The reason why the fiducial
statement loses its precision with discontinuous data is that the
frequencies in our table make no distinction between a case in which
the 2 dizygotic convicts were only just convicted, perhaps on venial
charges, or as first offenders, while the remaining 15 had characters
above suspicion, and an equally possible case in which the 2 convicts
were hardened offenders, and some at least of the remaining 15 had
barely escaped conviction. If we knew where we stood in the range
of possibilities represented by these two examples, and had similar
information with respect to the monozygotic twins, the fiducial
statements derivable from the data would regain their exactitude.
One possible device for circumventing this difficulty is set out in
Example 2. It is to be noticed that in this example of the fourfold
table the notion of ancillary information has been illustrated solely
in relation to tests of significance and fiducial probability. No
problem of estimation arises. If we want an estimate of ¢ we have
no choice but to take the actual ratio of the products of the fre-
quencies observed in opposite corners of the table.

Fisher calculated that the probability that 1, 2, 3, ... monozygotic twins would
escape conviction? was (1/6 652 325)x{1,102,2992,...}. Thus, “a discrepancy
from proportionality as great or greater than that observed, will arise, subject
to the conditions specified by the ancillary information, in exactly 3,095 trials
out of 6,652,325 or approximately once in 2,150 trials.”

He then went on to work out the lower limit of the 90% 2-sided CI (or a 95%
1-sided CI), for the odds ratio: i.e. for the odds, mmono—z/(1 — Tmono—z), of
criminals to non-criminals in twins of monozygotic criminals divided by the
corresponding odds 74—, /(1 — mg;—.), in twins of dizygotic criminals.

Let Y,0no be the number of MZ twins convicted. Fisher finds the value 9,
such that
Prob[ Yiono > 10| ¢ , y = 12] = 0.05.

He reports that this value is 1/0.28496 = 3.509. In the Excel spreadsheet
for Fisher’s exact test and exact CI for OR (on website), you can verify that

2the range is 1 to 13; 0 cannot escape, since then there would be 13 convicted in the
first row, but there are only 12 convicted in all.
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indeed, with ¢;, = 3.509, Prob| Yimono > 10| =3.509 , y = 12] = 0.05.

One has to admire Fisher’s ability, in 1935, to solve a polynomial equation of
order 12, namely

1+ 102¢) + 209212

1+ 1029 + 299202 + - + 47612 0.05.

It is ironic that while Fisher introduced the idea of conditioning to simplify
significance tests of null and non-null v values, and through them, produced
‘fiducial’ limits that look like confidence limits, he did not give a conditional
MLE for 1: instead he gave the unconditional one:

It is to be noticed that in this example of the fourfold table the notion
of ancillary Information has been illustrated solely in relation to tests
of significance and fiducial probability. No problem of estimation
arises. If we want an estimate of 1) we have no choice but
to take the actual ratio of the products of the frequencies
observed in opposite corners of the table (i.e., ad/bc)

0.0.1 Point estimation of 1 under Hypergeometric Model

See also section 4.2 of Breslow and Day, Volume I. And see sections 7.3 & 7.4,
and exercise 9.9 in McCullagh and Nelder’s Generalized Linear Models, 2nd
Edition.

It will come as a surprise to many that there are 2 point estimators of :

one, the familiar — unconditional — based on the “2 independent Binomials”
model, with two random variables y; and ys, and

the other — conditional — based on the single random variable y; | y with a
Non-Central Hypergeometric distribution.

While the two estimators yield similar estimates when sample sizes are large,
the estimates can be quite different from each other in small sample situations.

Estimator, based on Unconditional Approach:

The estimator derives from the principle that if there are two parameters 6;
and 6o, with Maximum Likelihood Estimators #; and 6, then the Maximum
Likelihood Estimator of 6 /6y is 61/6o.

Thus, since 71 = 10/13, and 7y = 2/17, we have
) (10/13)/(2/13)  10x 15 axd

T bxe’

VuMLE = (2/17)/(15/17) 3 x 2

Estimator, based on Conditional Approach:

We can find the Maximum Likelihood Estimate 1&0 MLE by inspecting the plot
of the log L function, or using the Newton-Raphson approach, or the optim
software, or trial and error, to find the solution of dlog L/dy = 0.

If we use X as shorthand for the denominator of prob[y; | y], then 1[)0M LE IS
the solution of
y1 dlogy d¥ 1

= — X
v & dp =

Re-arranging, we find that zzc MLE 18 the solution of

y =E[Y1|¢]

In this case the CMLE of 1 is the same as the estimate obtained by equating
the observed and expected moment (the “Method of Moments”).

Using trial and error in a spreadsheet (Excel has the central Hypergeometric
probability) or R, or by a numerical search, we find that the value of ¥ that
satisfies this estimating equation is

Yemre = 21.3.

It can be shown that Ycarpp is always closer to null (¢p = 1) than Yyre is. The CMLE is
like a UMLE shrunk towards the null. (Cf. Hanley JA, Miettinen OS. An Unconditional-like
Structure for the Conditional Estimator of Odds Ratio from 2 x 2 Tables. Biometrical Journal

48 (2006) 1, 2334)

s ~

SPECIAL CASE: When smallest of the marginal totals is 1, i.e.,

1 0 Total
1 a
0 . .
Total N1 > 1 NO > 1

Niw
K> Mfollogy]=my(-my); 7y = mging

the Non-Central Hypergeometric Distribution of a is Bernoulli, with

_ o Nﬂ/) . on PT‘[CL = 1] o N1
Prla=1] = Now+ No’ logit = log <Pr[a —0)) = log N +log 1.
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Effectively, by calculating Prob,on—centrat (2]1) as a function of 1, as is done
inside the rectangle above, we are mapping out the likelihood function.
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19 Individually matched case control studies

Examples: comparisons involving paired data (not all case-control)

e Response of same subject in each of 2 conditions (self-paired)
e Responses of matched pair, one in 1 condition, 1 in other

e Differences in paired responses on interval scale, reduced to +/-

Result in Other Member n

+ —
+ a b
Result in One PAIR Member
- c d
Total n

‘Control’ Exposed ? n

+ —
+ a b
‘Case’ Exposed ?
- c d
Total n

Extreme situations (1 or other / forced choice e.g. exercise 8.18, or who dies
first among twin pairs discordant for handedness, or whether shorter/taller
US presidential candidate won election)

Shorter n
Won Lost
‘Won - b
Taller
Lost c -
Total n

Can also turn this table ‘inside-out’ and analyze using ‘case-control’ approach

Loser n
Won Lost
Taller: - b
Winner
Shorter: c -
Total n

Example: HIV in twins in relation to order of delivery: mother to infant
transmission of HIV-infection: n=66 sets of twins [Lancet, Dec. 14, 1991]

2nd born n
HIV4+ HIV-
HIV+ 10 18

1st born
HIV- 4 34

66

If we restrict to pairs with 1 HIV+ and 1 HIV- infant, we can display the data
in case-control format

HIV- infant born n
1st 2nd
1st 18

HIV+ infant born
2nd 4

22

To: Goedert, James (NIH/NCI) [E]
Sent: Thu Mar 24 21:41:23 2011
Subject: 1991 Lancet study on twins and hiv

Dear Dr Goedert

Just this week, in teaching a graduate biostatistics course, I dragged out what I think of as
one of the classic epi studies that changed practice.. your and your colleagues’ Lancet study
in 1991 on twins and hiv transmission.. High risk of HIV-1 infection for first-born twins

The students admired the design and analysis.. and I got to thinking that with the raw data it
would be a very valuable ’teaching dataset’ for them to work on..

So I wonder if the raw data from the study are still available an if so whether you would be
willing to share them for teaching purposes.. I would be happy to receive them in any format,
electronic, paper, fax, whatever.. it would be great if on each twin we had all the covariates
as well as the HIV status and which twin pair it was..

There are a few classic paired-data datasets in epi and statistical epi. I often use the one by
Miettinen and Trichopoulus from early 1970s. I think it was on induced abortions and

subsequent ectopic pregnancy but it has very few covariates.. and we now know that the history
data in that study are suspect -- as the controls were probably quite coy about their histories
(The study was done in Greece where induced abortions were illegal)

But yours would be a real nice one for them to ’get multivariate’ about..

I would ensure the data were just for teaching.. and I would keep them in a locked teaching
website. I have had good luck with several generous authors and I hope it will be likewise here.

Sincerely

Jim Hanley
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Dear Jim.

You bring back very fond memories - the origin of the idea (at a very small pediatric
AIDS meeting in California overlooking the Pacific ), assembling the collaborators and
contributors, monitoring the raw data as they arrived in my Fax machine (very modern
then), my amazement at the difference in risk by birth order, going back to contributors
to validate birth order (a few changed actually strengthening the difference, and
discussions with the Statistician on the analysis.

It will take some digging by a programmer or two who are still around, but the odds are
good of finding a clean data set. I will let you know.

Jim Goedert

From: Goedert, James (NIH/NCI) [E] [goedertj@mail.nih.gov]
Sent: April 7, 2011 2:18 PM

To: James Hanley, Dr.

Subject: Re: 1991 Lancet study on twins and hiv

Dear Dr Hanley.

One of our expert programmers, thinks she has found it on the NIH mainframe.
Please correspond with her regarding a format that would be useful for you.

Jim

19.1 Mantel-Haenzel analysis of the 1:1 matched study

In the first paragraph, C&H motivate this chapter by noting that in individ-
ually matched case-control studies, one cannot add a separate ‘intercept’
for each matched set or ‘stratum’. The best example of the danger of
doing this (and those overfitting) is the example of matched pairs:

Below is how Breslow and Day Vol. I, section 7.1, illustrate why in this
extreme situation, the ‘unconditional’ (and close to saturated) model yields
a B value that is twice the value of the one obtained when the individual
intercepts are conditioned out.

7.1 Bias arising from unconditional analysis of matched data

Use of the unconditional regression model (6.12) for estimation of
relative risks entails explicit estimation of the « stratum parameters
in addition to the 8 coefficients of primary interest. For matched or
finely stratified data, the number of a parameters may be of the same
order of magnitude as the number of observations and much greater
than the number of 8’s. In such situations, involving a large number
of nuisance parameters, it is well known that the usual techniques

of likelihood inference can yield seriously biased estimates (Cox &
Hinkley, 1974, p. 292). This phenomenon is perhaps best illustrated
for the case of 1-1 pair matching with a single binary exposure vari-
able x.

Returning to the general set-up of section 6.2, suppose that each of
the I strata consists of a matched case-control pair and that each
subject has been classified as exposed (z = 1) or unexposed (z =
0). The outcome for each pair may be represented in the form of a
2 x 2 table, of which there are four possible configurations, as shown
in (5.1). The model to be fitted is of the form

exp(ay + Bz)
T+ oxplar + Bz)’

pr(y=1lz) =

where 5 = log is the logarithm of the relative risk, assumed con-
stant across matched sets.

According to a well-known theory developed for logistic or log-linear
models (Fienberg, 1977), unconditional maximum likelihood esti-
mates (MLEs) for the parameters « and g are found by fitting fre-
quencies to all cells in the 2 x 2 x K dimensional con- figuration
such that (i) the fitted frequencies satisfy the model and (ii) their
totals agree with the observed totals for each of the two dimensional
marginal tables. For the noo concordant pairs in which neither case
nor control is exposed, and the nll concordant pairs in which both are
exposed, the zeros in the margin require that the fitted frequencies
be exactly as observed. Such tables provide no information about
the relative risk since, whatever the value of p , the nuisance param-
eter a i may be chosen so that fitted and observed frequencies are
identical (a; = 0 for tables of the first type and ay = —f for tables
of the latter to give probability 1/2 of being a case or control).

The remaining n19 + ng; discordant pairs have the same marginal
configuration, and for these the fitted frequencies are of the form

Exposure
+ -
Case o 1—p |1
Control 1—p 1 1
1 1
where
exp(a; + B)

p=prily=1lz=1)= m,
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and
exp(a;)
1 — = r’i = 1 xr = O = —_—,
n=prily =1 ) 1+ exp(a;)

which can be expressed as

ot = (225"

The additional constraint satisfied by the fitted frequencies is that
the total number of exposed cases, nig + n11, must equal the total

of the fitted values, namely (n19 + no1)p + n11. This implies i =
n10/(n10 + no1) and thus that the unconditional MLE of the relative

risk is ) )
=) - CGa)
— K no1

the square of the ratio of discordant pairs (Andersen, 1973, p. 69).

The estimate based on the more appropriate conditional model has
already been presented in section 5.2. There we noted that the dis-
tribution of nyy given the total myg + ng; of discordant pairs was
binomial with parameter m = /(1 + ). It followed that the condi-
tional MLE was the simple ratio of discordant pairs

n10

b= o

no1

Thus the unconditional analysis of matched pair data results
in an estimate of the odds ratio which is the square of the
correct, conditional one: a relative risk of 2 will tend to be esti-
mated as 4 by this approach, and that of 1/2, by 1/4.

While the disparity between conditional and unconditional analyses
is particularly dramatic for matched pairs, it persists even with other
types of fine stratification. Pike, Hill and Smith (1979) have inves-
tigated by numerical means the extent of the bias in unconditional
estimates obtained from a large number of strata, each having a fixed
number of cases and controls. Except for matched pairs, the bias de-
pends slightly on the proportion of the control population which is
exposed, as well as on the true odds ratio. Table 7.1 presents an
extension of their results. For sets having 2 cases and 2 controls
each, a true odds ratio of 2 tends to be estimated in the range from
2.51 to 2.53, depending upon whether the exposure probability for

controls is 0.1 or 0.3. Even with 10 cases and 10 controls per set, an
asymptotic bias of approximately 4% remains for estimating a true
odds ratio of 1) = 2, and of about 15% for estimating ¢ = 10.

These calculations demonstrate the need for considerable caution in
fitting unconditional logistic regression equations containing many
strata or other nuisance parameters to limited sets of data.

There are basically two choices: one should either use individ-
ual case-control matching in the design and the conditional
likelihood for analysis; or else the stratum sizes for an un-
conditional analysis should be kept relatively large, whether
the strata are formed at the design stage or post hoc.

C&H begin with a case-control study concern the relationship between tonsil-
lectomy history and the incidence of Hodgkin’s disease, in which ‘the controls
were siblings of the cases, and the authors felt that the matching of cases and
sibling controls should be preserved.” Since they also wished to control for age
and sex, they ‘therefore restricted their analysis to 85 matched case-control
pairs in which the case and sibling control were of the same sex and matched
for age within a specified margin, thereby reducing the original 174 cases and
472 controls to only 85 cases and 85 controls.

Just as you already found in getting your head around the tables for HIV
transmission in twins, ‘Tables such as Table 19.1 can be confusing because we
are used to seeing tables that count subjects, while this table counts case-
control sets.” ‘In the analysis of individually matched studies the strata are
case-control sets so that, in the notation of Chapter 18, t indexes sets.’

‘The four cells of the table corresponding to the four possible exposure con-
figurations of a case-control set are illustrated in terms of a tree in Fig. 19.1.
These configurations can also be laid out as pair-specific 2 x 2 tables, of the

same type as those used by B&D above. In the same order as those listed by
C&H, these are

Exposure Exposure Exposure Exposure
+ - + - + - + -
Case 1 0 1 0 1 1 1 0 1 0 0 1
Control 1 0 1 1 0 1 0 1 1 0 0 1
1 1 2 1 1 2 1 1 2 1 1 2
M-H
ad/2 0 0 1/2 0
be/2 0 1/2 0 0

Only two exposure configurations (the ‘discordant’ sets in which the
exposure status of case and controls differ) contribute to estimation
and testing of the odds (or rate) ratio.
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Supplementary Exercise 19.1

Refer to ‘Occurrence of non-fatal myocardial infarction and the prevalence
of obesity, smoking and vasectomy’. described in R file ‘MI and Vasectomy
Documentation, Data, R code’ (data are at end of material).

These non-fatal myocardial infarctions arose out of a cohort of 4830 vasec-
tomized/non vasectomized pairs of men matched from the membership files
of a large group medical plan, on the basis of year of birth and calendar time
of follow-up. For each pair, follow-up began when one of the pair members
underwent vasectomy. There were no pairs of which both the vasectomized
and non- vasectomized man suffered a myocardial infarction (MI).

For parts (i) to (vi) below, ignore the 2 variables obesity and smoking.

i. Taking a ‘prospective’ view, summarize the data in a 2 x 2 frequency
table that (a) ignores (b) respects the matching.

ii. Taking a ‘retrospective’ view, summarize the data in a 2 x 2 frequency
table that (a) ignores (b) (as C&H do in their Table 19.1) respects the
matching.

iii. Repeat C&H’s exercises 19.1, 19.2, 19.3 and 19.4, but using these
vasectomy-MI data.

iv. Consider the data in the 2 x 2 table for set number 1 (the first of the 36
rows). What is the probability of observing this set-specific 2 x 2 table if
the Rate ratio, 6 [contrasting the MI rate in vasectomized men, A,, with
the MI rate in non-vasectomized men, \,] equals 2?7 3

Consider the data in the 2 x 2 table for set number 2 (the second of the
36 rows). What is the probability of observing this set-specific 2 x 2 table
if, again, 6§ = 27

Again, still with § = 2, what is the (joint) probability of observing the
36 2 x 2 tables that were observed? You might find it more workable to
calculate the log of this product, i.e., the sum of the logs of the 36 specific
log-likelihoods.

Now, repeat the overall (i.e sum of 36 contributions) log-likelihood cal-
culation for a range of 6 values, from say § = 1/10 to 8 = 10, and plot
this log-likelihood function.

v. Instead of this visual/numerical way of maximizing the log-likelihood,
derive an analytic (closed form) ML estimator for 6 (or log#).

3Clearly, A, and ), will be increasing functions of age, but for now we will assume that
for every age, 0age = Aage,v/Aage,n is the same, so that we can drop the age from the g4
and refer to a single (proportional-hazards) hazard ratio (HR) 6.

vi. Instead of analytically maximizing the log-likelihood, fit a glm in your
favourite software package function to obtain the MLE of 6 (or log6).

vii. How big would your dataset be if you restricted your analysis to sets
where the two men in the same set were also matched on obesity and
smoking? Can you suggest how we might recover some information from
the sets where they were not fully matched on obesity and smoking?

19.2 Several controls per case

‘Table 19.2 demonstrates the usual way such data are presented. However,
it is very difficult to perceive any pattern even as to whether or not screen-
ing appears to be a protective. To understand the analysis, we shall start by
reordering the data as a tree (Fig. 19.3).”

JH has added diagonal bands, used in Breslow and Day, to distinguish con-
figurations with different marginal totals in a 2 x 2 table for a matched set
of 4 women. Tables with different marginal totals (here, column totals, num-
bers screened and not) contribute different amounts of information regarding
the log of the mortality rate ratio parameter #. The amount of expected
information concerning log 6 from the 3 table configurations is given below.

Number of controls screened

0 1 2 3
Status of the case
Screened 1 4 3 1
Unscreened pad 10 12 4
. . . a - a - a - |1 case
Informative configurations, single 1:3 set
3 controls
+ — + — + — Screened?
13 22 31 No.of women
logit[Pr(a = 1)] = log() + log (3 (3 ()

n.case.screened =c(1,4,3);n.case.not.screened =c(10,12,4) ;

o = log ( c(1/3, 2/2, 3/1) ) ; n.scr = 1:3; n=4

fit = glm( cbind(n.case.screened,n.case.not.screened) ~ 1+offset(o),family=binomial)
round(c(fit$coefficients,exp(fit$coefficients)),3) ; -1.205(SE:0.427) 0.300
mh=sum(n.case.screened*(1*(n-n.scr)/n))/sum(n.case.not.screened*(1*n.scr/n)); 0.304

Expected Info[log theta] per 1:3 set, if theta=1.0: 0.188 0.250 0.188
if theta=0.3: 0.083 0.178  0.249
sqrt( 1 / (11%0.083+16%0.178+7%0.249) ) [1] 0.427
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Supplementary Exercise 19.2

878 THE NEW ENGLAND JOURNAL OF MEDICINE

Apr. 22, 1971

Association of Maternal Stilbestrol Therapy

ADENOCARCINOMA OF THE VAGINA*

with Tumor Appearance in Young Women

ARTHUR L. HERBST, M.D., HowarD ULFELDER, M.D., AND Davip C. POSKANZER, M.D.

Abstract Adenocarcinoma of the vagina in young
women had been recorded rarely before the report
of several cases treated at the Vincent Memorial
Hospital between 1966 and 1969. The unusual oc-
currence of this tumor in eight patients born in
New England hospitals between 1946 and 1951 led
us to conduct a retrospective investigation in
search of factors that might be associated with
tumor appearance. Four matched controls were
established for each patient; data were obtained
by personal interview. Results show maternal

Vol. 284 No. 16

bleeding during the current pregnancy and pre-
vious pregnancy loss were more common in the
study group. Most significantly, seven of the
eight mothers of patients with carcinoma had
been treated with diethylstilbestrol started during
the first trimester. None in the control group
were so treated (p less than 0.00001). Maternal inges-
tion of stilbestrol during early pregnancy appears
to have enhanced the risk of vaginal adenocarci-
noma developing years later in the offspring ex-
posed.

ADENOCARCINOMA OF THE VAGINA-HERBST ET AL. 879

Table 1. Summary of Cases with Carcinoma.

CASE AGE AT IsT YR OF YrROF THERAPY STATUS
No. SympTOMS (YR) BIRTH TREATMENT 1971
1 20 1949 1969 Posterior exenteration & vaginectomy Living & well
2 15 1951 1967 Radical hysterectomy & vaginectomy, Living & well
with vaginal replacement
3 14 1950 1968 Exploratory laparotomy Died (1968)
4 15 1950 1966 Wide local excision Living & well
5 19 1949 1969 Radical hysterectomy & vaginectomy, Living & well
with vaginal replacement
6 16 1951 1967 Radical hysterectomy & vaginectomy, Living & well
with vaginal replacement
7 18 1949 1968 Anterior exenteration, with bowel Living & well
substitution of vagina
8 22 1946 1968 Anterior exenteration, with bowel Living & well
substitution of vagina
Table 2. Summary of Data Comparing Patients with Matched Controls.
Case MATERNAL MATERNAL BLEEDING IN ANY PRIOR ESTROGEN BREAST INTRA-
No. AGE (YR) SMOKING THis PREGNANCY GIVEN IN FEEDING UTERINE
PREGNANCY Loss THis X-Ray
PREGNANCY EXPOSURE
CASE MEAN CASE CONTROL CASE CONTROL CASE CONTROL CASE CONTROL CASE CONTROL CASE CONTROL
OF 4
CONTROLS
1 25 32 Yes 2/4 No 0/4 Yes 1/4 Yes 0/4 No 0/4 No 1/4
2 30 30 Yes 3/4 No 0/4 Yes 1/4 Yes 0/4 No 1/4 No 0/4
3 22 31 Yes 1/4 Yes 0/4 No 1/4 Yes 0/4 Yes 0/4 No 0/4
4 33 30 Yes 3/4 Yes 0/4 Yes 0/4 Yes 0/4 Yes 2/4 No 0/4
5 22 27 Yes 3/4 No 1/4 No 1/4 No 0/4 No 0/4 No 0/4
6 21 29 Yes 3/4 Yes 0/4 Yes 0/4 Yes 0/4 No 0/4 No 1/4
7 30 27 No 3/4 No 0/4 Yes 1/4 Yes 0/4 Yes 0/4 No 1/4
8 26 28 Yes 3/4 No 0/4 Yes 0/4 Yes 0/4 No 0/4 Yes 1/4
Total 718 21/32 3/8 1/32 6/8 5/32 718 0/32 3/8 3/32 18 4/32
Mean 26.1 293
Chi square (1 df)* 0.53 4.52 7.16 23.22 235 [1]
p value 0.50 <0.05 <0.01 <0.00001 0.20
(NSOt (N.S) (N.S) (N.S)

*Matched control chi-square test used as described by Pike & Morrow.®

tStandard error of difference 1.7 yr (paired t-test); N.S. = not statistically significant.

10

Focus on the data on maternal smoking and breast Feeding

i. Display the data in the same format as C&H’s Table 19.2

ii.

iii.

iv.

Repeat C&H’s exercises 19.6 and 19.7, but using these matched data from
Herbst et al.

In the 2nd column of p193, after setting up the 3 (binomial-based) log-
likelihoods from the 3 informative binomial configurations, C&H say that

There is no simple expression for the maximum likelihood esti-
mate and it is necessary to use a computer program to search
for the maximum.

In fact, as is shown below the diagram at the bottom of the previous
page of the Notes, these log-likelihoods arise within a generalized linear
model, and so we can use any standard GLM software that allows for
offsets. Apply this GLM approach to the data from Herbst et al., and
compare with the M-H estimates. Do you think that, as C&H found with
the cancer screening data, ‘a Gaussian approximation fits quite closely’?

Alter the wording of the title of Table 2 to reflect the modern way of
thinking about what it is that is really compared in case-control studies.

Supplementary Exercise 19.3

Many textbooks on matched case-control studies, and some statistical pack-
ages, use the data linking induced abortions to ectopic pregnancies and to
secondary Infertility (see Website). JH stopped using these data after he read
the article from the 2 Dutch authors — on abortion and breast cancer.

ii.

iii.

Read (and summarize) the article by the 2 Dutch authors.

Do you think the exquisitely matched case-control data on abortions,
ectopic pregnancies and secondary Infertility, are valid? Why/why not?

How about the results from the Danish study (also on website)?

Supplementary Exercise 19.4

Inside a 2 x 2 table, show the (central) hypergeometric r.v. representing:

(i) (a) 6/49 lottery result [numbers categorized into (rows) picked/not
by player & (cols) drawn by Lottery]; (b) Keno, 2 picks (¢) 10 picks.

(i) result:

Oscar for best actress (a) the day after (b) the day before

the results became known.
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