


CHAPTER VII

CONDITIONAL LOGISTIC REGRESSION
FOR MATCHED SETS

One of the methods for estimating the relative risk parameters B in the stratified
logistic regression model was conditioning (§ 6.3). We supposed that for a :given
stratum composed of n; cases and ng controls we knew the unordered values x4, ..., X,
of the exposures for the n = n, + ng subjects, but did not know which values were asso-
ciated with the cases and which with the controls. The conditional probability of the
observed data was calculated (6.15) to be a product of terms of the form

n . K
jg eXP(lglﬁkak)
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1 j=1 k=1
where 1 ranged over the (gl) choices of n, integers from among the set {1,2, ..., n}.

With a s1ng1e binary exposure variable x, coded x = 1 for exposed and x = 0 for un-
exposed, knowing the unordered x’s meant knowmg the total number exposed in the
stratum, and thus knowing all the marginal totals in the corresponding 2 X 2 table. The
complete data were then determined by the number of exposed cases. In these circum-
stances the conditional probability (7.1) is proportional to the hypergeometric distribu-
tion (4.2), used as a starting pornt for exact statistical inference about the odds ratio
in a 2x 2 table.

The conditional likelihood offers important conceptual advantages as a basis for
statistical analysis of the results of a case-control study. First, it depends only on the
relag_\&r_l_sk parameters of interest and thus allows for construction of exact tests and
estimates such as were described in Chapters 4 and 5 for selected problems. Second,
prec1sely the same (conditional) likelihood is obtained whether we regard the data as
arising from either (i) a prospective study of n individuals with a given set of exposures -
X1, ..., Xp, the conditioning event being the observed number n; of cases arising in the
sample; or (ii) a case-control study involving n, cases and ny controls, the conditioning
event being the n observed exposure histories. The observation that these two condi-
tional likelihoods agree, which was made in § 4.2 for the 2x 2 table, confirms the
fundamental point that identical methods of analysis are used whether the data have -
' been gathered accordlng to prospectwe%?ﬁatrospectwe samphng plans ' .
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controls, the calculations required for the conditional analysis are extremely costly if
not actually impossible even using large computers. Since the analysis based on the
unconditional likelihood (6.12) yields essentially equivalent results, it would seem to be
the method of choice in such circumstances. The conditional approach is best restricted
to matched case-control designs, or to similar situations involving very fine stratification,
wher&Tts use is in fact essential in order to avoid biased estimates of relative risk. We
begin this chapter with an illustration of the magnitude of the bias which arises from
analysing matched data with the unconditional model. Next, the conditional model is
examined for several of the special problems considered in Chapters 4 and 5; many
of the estimates and test statistics discussed earlier for these problems are shown to .

" result from application of the general model. Finally, we explore the full potential of the

conditional model for the multivariate analysis of matched data, largely by means of
example, and discuss some of the issues which arise in its implementation.

7.1 Bias arising from the unconditional analysis of matched data

Use of the unconditional regression model (6.12) for estimation of relative risks
entails explicit estimation of the a stratum parameters in addition to the § coefficients
of primary interest. For matched or finely stratified data, the number of o parameters
may be of the same order of magnitude as the number of observations and much greater
than the number of 8’s. In such situations, involving a large number of nuisance para-
meters, it is well known that the usual techniques of likelihood inference can yield
seriously biased estimates (Cox & Hinkley, 1974, p. 292). This phenomenon is perhaps
best illustrated for the case of 1-1 pair matching with a single binary exposure variable x.

‘Returning to the general set-up of § 6.2, suppose that each of the I strata consists
of a matched case-control pair and that each subject has been classified as exposed
(x = 1) or unexposed (x = 0). The outcome for each pair may be represented in the:
form of a 2 X 2 table, of which there are four possible configurations, as shown in (5.1).
The model to be fitted is of the form :

exp(a;+5x)
1+exp(ai+Bx) ’

pri(y = 1|x) =

where 8 = log y is the logarithm of the relative risk, assumed constant across matched
sets. .
According to a well-known theory developed for logistic or log-linear models (Fien-

- berg, 1977), unconditional maximum likelihood estimates (MLEs) for the parameters

a and 8 are found by fitting frequencies to all cells in the 2x2 xK‘\dimensional con-
figuration such that (i) the fitted frequencies satisfy the model and (ii) their totals
agree with the observed totals for each of the two dimensional marginal tables. For
the ng concordant pairs in which neither case nor control is exposed, and the n,,
concordant pairs in which both are exposed, the zeros in the margin require that the
fitted frequencies be exactly as observed. Such tables provide no information about the
relative risk since, whatever the value of 3, the nuisance parameter a; may be chosen
so that fitted and observed frequencies are identical (a; = O for tables of the first type
and a; = —f for tables of the latter to give probability '/, of being a case or control).
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The remaining nyo +ng, discordant pairs have the same marginal configuration, and
for these the fitted frequencies are of the form

Exposure
+ _
Case u 1w !
Control L “o !
1 1 2
where
u=puy = 1x = 1) = (2EG0
and | |
1w =pr(y=1|x=0) = %’

which can be expressed as

Y =exp(B) = (1—”_1,4—)2

The additional constraint satisfied by the fitted frequencies is that the total number of
exposed cases, njo+n;;, must equal the total of the fitted values, namely
(nyo +np1 )u +1n44. This implies 4 = n1o/(n1o+no1) and thus that the unconditional

A (1—#) (nm)

the square of the ratio of discordant pairs (Andersen, 1973, p. 69).

" MLE of the relative risk is

The estimate based on the more appropriate conditional model has already been
. presented in § 5.2. There we noted that the distribution of n,, given the total n;o+ng,

of discordant pairs was binomial with parameter # = y/(1+y). It followed that the
conditional MLE was the simple ratio of discordant pairs

n
,¢,_ 10

Thus the unconditional analysis of matched pair data results in an estimate of the odds
ratio which’is the square of the correct, conditional one: a relative risk of 2 will tend
to be estimated as 4 by this approach, and that of '/, by /,.

. While the disparity between conditional and unconditional analyses is particularly
dramatic for matched pairs, it persists even with other-types of fine stratification. Pike,
Hill and Smith (1979) have investigated by numerical means the extent of the bias
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in unconditional estimates obtained from a large number of strata, each having a fixed
number of cases and controls. Except for matched pairs, the bias depends slightly on
the proportion of the control population which is exposed, as well as on the true odds
ratio. Table 7.1 presents an extension of their results. For sets having 2 cases and 2
controls each, a true odds ratio of 2 tends to be estimated in the range from 2.51 to
2.53, depending upon whether the exposure probability for controls is 0.1 or 0.3. Even
with 10 cases and 10 controls per set, an asymptotic bias of approximately 4% remains
for estimating a true odds ratio of y = 2, and of about 15% for estimating y = 10.
These calculations demonstrate the need for considerable caution in fitting uncondi--
tional logistic regression equations containing many strata or other nuisance ' parameters
to limited sets of data. There are basically two choices: one should either use individual
case-control matc@g,ﬂ,th&desw and the conditional likélifiood for analysis; or else
the stratum Sizes for an unconditional analysis should be kept relatzvely large, whether

the strata are formed at the deszgn stage or post hoc.

7.2 Multivariate analysis for nratched 1:M designs: general methodology.

One design which occurs often in practice, and for which the conditional likelihood
(7.1) takes a particularly simple form, is where each case is individually matched to
one or several controls. The number of controls per case may either be a fixed number,
M, say, or else may be allowed to vary from set to set. We considered such designs in
§ 5.3 and § 5.4 for estimation of the. relative risk associated with a single binary ex-
posure variable.

Suppose that the i™ of I matched sets contains M; controls in addition to the case.
Denote by x;0 = (Xj01, .-+ Xiox) the K-vector of exposures for the case in this set and
by x; = (X1, ... Xik) the exposure vector for the j® control (j = 1; ..., M). In
other words, Xijk represents the value of the k™ exposure variable for the case g= O)
or j™ control in the i™ matched set. We may then write the conditional likelihood in
the form (Liddell, McDonald & Thomas, 1977; Breslow et al., 1978):

I_II exP(_kZ:ﬁ KXiok)

1 M K
%exp(glﬂk’_‘ﬁk?

1 1 :
= ,1;11 M, K : (7:2)
1 +j=Z; exp{élﬁk(xijk—xwk)}

It follows from this expression that if any of the x’s are matching variables, taking the
same value for each member of a matched set, their contribution to the likelihood is
zero and the corresponding 8 cannot be estimated. This is a reminder that _matched
designs preclude the analy31s of relative risk associated with the matching variables.
owever by defining some x’s to be interaction or cross-product terms involving both
risk factors and matching variables, we may model how relative risk changes from one
matched set to the next.

.
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If there is but a singlé matched control per case, the conditional likelihood simpli-
fies even further to

ﬁ | ! . | (7.3)
1+exp {_gl_ﬂk(xilk—xwk)} ‘

This may be recognized as the unconditional likelihood for the logistic regression model
where the sampling unit is the pair and the regression variables are the differences in
exposures for case versus control. The constant (a) term is assumed to be equal to
0 and each pair corresponds to a positive outcome (y = 1). This correspondence permits
GLIM or other widely available computer programmes for unconditional logistic regres-
sion to be used to fit the conditional model to matched pair data (Holford, White &
Kelsey, 1978).

While not yet incorporated into any of the familiar statistical packages, computer
programmes are available to perform the conditional analysis for both matched (Ap-
pendix IV) and more generally stratified designs (Appendix V), using the likelihoods
~ (7.2) and (7.1), respectively (Smith et al., 1981). These programmes calculate
the following: (i) the (conditional) MLEs of the relative risk parameters; (ii) minus
twice the maximized logarithm of the conditional likelihood, used as a measure of good-

ness of fit; (iii) the (conditional) information matrix, or negative of the matrix of
second partial derivatives of the log likelihood, evaluated at the MLE; and (iv) the

score statistic for testing the significance of each new set of variables added in a series
of hierarchical models. These quantities are used to make inferences about the relative
risk just as described in § 6.4 for the unconditional model. For example, the difference
between goodness-of-fit (G) measures for a sequence of hierarchical models, in which
‘each succeeding model represents a generalization of the preceding one, may be used
to test the significance of the additional éstimated parameters. This difference has an
asymptotic chi-square distribution, with degrees of freedom equal to the number of
additional variables incorporated in the regression equation, provided of course that
the B coefficients of these variables are truly zero. Similarly, asymptotic variances and
covariances of the parameter estimates in any particular model are obtained from the
inverse information matrix printed out by the programme.

Now that the technology exists for conditional logistic modelling, all the types of
multivariate analysis of stratified samples which were discussed in Chapter 6 can also
be carried out with matched case-control data. In the next few sections we introduce
these techniques by re-analysing the data already considered in Chapter 5. This will
serve to indicate where the model yields results identical with the “classical” tech-
niques, and where it goes beyond them. Later sections will extend the applications to
exploit fully the potential of the model.

7.3 Matched pairs with dichotomous and polytomous exposures: applications

Our first application of the general conditional model is to analyse in this framework
the matched pair data already considered at the end of-§ 5.2. There we used the 63
pairs consisting of the case and the first control in each matched set from the Los
Angeles study of endometrial cancer (Mack et al., 1976). The analysis was directed
towards obtaining an overall relative risk for oestrogens, detecting a possible inter-
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action with age for the risk associated with gall-bladder disease, and examining the
joint effects of gall-bladder disease and hypertension. Further analysis of these same
matched pairs was carried out in § 5.5 to investigate the relative risks attached to dif-
ferent dose levels of conjugated oestrogens.

In order to carry out parallel analyses in the context of the logistic model, we defined
a number of regression variables as shown in Table 7.2. The first four of these (EST,
GALL, HYP, AGEGP) are dichotomous indicators for history of oestrogen use, gall-
bladder disease, hypertension, and age, respectively. AGE is a continuous variable,
given in years. In cases where the ages of case and control differed, although this was
never by more than a year or two, AGE and AGEGP were defined as the age of the
case. Hence they represent perfect matching variables which are constant within

each matched set. The three binary variables, DOS1, DOS2 and DOS3, represent the |,

four dose levels of conjugated oestrogen and thus should always appear in any equation
as a group or not at all. The last variable, DOS, represents the coded dose levels of
this same factor, and is used to test specifically for a trend in risk with increasing dose.

Table 7.3 shows the results of a number of regression analyses of the variables defined
in Table 7.2. The statistic G for the model with no parameters, i.e., all 8’s assumed
equal to zero, evaluates the goodness of fit to the data of the null hypothesis that none
of the regression variables affects risk. Part A of the table considers the relative risk
associated with a history (yes or no) of exposure to any oestrogen, as indicated by the
binary variable EST. The estimated relative risk is = exp(8) = exp(2.269) = 9.67,
which is precisely the value found in § 5.2 as the ratio 29/3 of discordant pairs. This

Table 7.2 Definition of regression variables used in the matched pairs analysis

Variable Code

EST 0 o \ f troge o
1 Yes History of any oestrogen us

ALL 0 N .

@ 1 : Y:s History of gall-bladder disease
0 N

HYP 1 Yes History of hypertension

AGEGP 0 Age 55-69 years
1 Age 70-83 years

AGE Age in years (55-83)

DOS 1 1 0.1-0.299 mg/day conjugated oestrogens
0 otherwise :

DOS 2 1 0.3-0.625 mg/day conjugated oestrogens
0 otherwise

DOS 3 1 0.626+ mg/day conjugated cestrogens

- 0 otherwise ,

DOS 0 None
1 0.1-0.299 mg/day _
2 0.3-0.625 mg/day conjugated oestrogen
3 0.626+-mg/day -

T~
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Table 7.3 Results of fitting the conditional logistic regression model to matched pairs consisting of
the case and first matched control: Los Angeles study of endometrial cancer

No. of Goodness of fit  Score fest* Regression coefficients + standard error for each variable in equation
parameters (G) :

0 87.34

A. Any oestrogens
: EST
1 62.89 21.13 2.269 + 0.606
B. Gall-bladder disease and age _
GALL. GALL x AGEGP GALL x (AG'E-70)

1 83.65 3.56 0.956 + 0.526
2 81.87 . 1.68 1.946 +1.069 -1.540+1.249 v .
2 83.31 0.35° 1.052 + 0.566 -0.066 +0.113
C. Hypertension/Gall-bladder disease
GALL HYP : GALL x HYP
1 86.53 - 0.81 0.325 + 0.364
2 82.79 3.61 0.970+0.531 0.348 + 0.364
3 80.84 2.01 1.517 £ 0.699 0.627 +£0.435 -1.548 £1.125
D. Gall-bladder disease/Hypertension
o GALL HYP GALL x HYP
1 83.65 3.56 0.956 £ 0.526 .
2 82.79 0.86 0.970 + 0.531 0.348 +£0.377
3 80.84 2.01 1.517 + 0.699 0.627 £ 0.435 -1.548 +1.125
E. Dose levels of conjugated oestrogen
» DOSH DOS2 DOS3
3 - 62.98 16.96 1.524 £ 0.618 1.266 + 0.569 2.120+0.693
F. Coded dose of conjugated oestrogen
DOS DOS x AGE
1 65.50 14.71 0.690+ 0.202
2 65.50 0.00 0.693 +0.282 —0.001 £0.403

® Score statistic comparing each model with the preceding model in each set, unless otherwise indicated. The first model in each
setis compared with the model in which all 8’s are 0.
® After fitting one parameter model with GALL only

reflects the fact that the conditional likelihood (7.2) is identical (up to a constant of
proportionality) to that used earlier as a basis of inference (5.3), so that the two
-analyses are entirely equlvalent Likewise, the score statistic for the test of the null

hypothesis, Ho: = 1, is identical with the uncorrected (for contmulty) value of the x?
defined in (5.4), namely

B 29-3|2

2073 21.13.
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This illustrates the point that many of the elementary tests are in fact score tests based
on the model (Day & Byar, 1979). The corrected chi-square value is of course the
more accurate and preferred one, but it has not been incorporated in the computer
programme written for the general regression analysis, since it is not applicable in other

‘situations.

Two other statistics are available for testing the null hypothe51s These are the differ-
ences in goodness-of-fit measures, 87.34—62.89 = 24.45, and the square of the stan-
dardized regression coefficient, (2.269/0.606)> = 13.99, each of which also has a
nominal y% distribution under the null hypothesis. Although the three values are some-
what disparate with these data, they all indicate a highly significant effect. The test
based on the corrected score statistic is ‘preferred when- available, as this comes closest
to the corresponding exact test.

Asymptotic 95 % confidence limits for y are calculated as exp(2.269 + 1.96 X 0.606) =
(2.9, 31.7), the upper limit being noticeably smaller than that based on the exact
conditional (binomial) distribution (yy = 49.6) or the normal approx1mat10n to it
(¢ ="39.7) which were calculated in § 5.2.

Part B of Table 7.3 presents the relative risk estimate for gall-bladder disease and
its relationship _to _age. Just as for EST, the estimate of relative risk associated with
GK]_,'IT"—e'x—p?g_ggg%g 2.6 =13/5, and the (uncorrected) score statistic, 3.56 =
(13-5)%/18, must agree with the values found earlier. There is better concordance
between the three available tests of the null hypothesis in this (less extreme) case:
87.34-83.65 = 3.69 for the test based on G, and (0.956/0.526) = 3.30 for that
based on the standardized coefficient, are the other two values besides the score test.

For the second model in Part B the coefficient of GALL represents the log relative
risk for those under 70 years of age, exp(1.946) = 7.0 = 7/1, while the sum of the
coefficients for GALL and GALL X AGEGP gives the log relative risk for those 70
and over, exp(1.946-1.540) = 1.50 = 6/4. These are the same results as found before.
Similarly, the score statistic for the additional parameter GALL X AGEGP, which tests
the equality of the relative risk estimates in the two age groups, is identical to the
uncorrected chi-square test for equality of the proportions 7/8 and 6/10, namely

2 _ (7x4-6x1)2x18
T 8x10x13x5

In § 5.2 we reported the corrected value of this chi-square as 2 = 0.59.

The third line of Part B of the table introduces an interaction term with the continu-
ous matching variable AGE. Here the coefficient of GALL gives the estimated relative
risk for someone aged 70, exp(1.052) = 2.86, while the relative risk for other ages is
determined from exp{1.052—0.066(AGE-70)}. In other words, the RR is estimated
to decline by a factor exp(—0.066) = 0.936 for each year of age above 70 and increase
by a factor exp(0.066) = 1.068 for each year below. However this tendency has no
statistical significance; all three of the available tests for homogeneity give a chi-square
of about 0.35 (p = 0.56). Such continuous variable modelling is of course not avail- -
able with the elementary techniques.

Part C of Table 7.3 illustrates the increased analytical power which is avallable using
regression methods. In order to estimate and test the relative risk of gall-bladder
disease, while controlling for hypertension, we start with an equation contammg the

= 1.68.
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single variable HYP. When we add to this a second term for gall-bladder disease
(line 2, part C), the model then specifies that the relative risks associated with these
two variables are multiplicative, and moreover that their joint effect is multiplicative
with those of the matching variables. The relative risk for GALL, adjusted for the.
multiplicative effects of hypertension, is estimated as ¢ = exp(0.970) = 2.65, scarcely
different from the unadjusted value. Likewise the null hypothesis that ¢ = 1 is tested
by x* = 3.61 (uncorrected), which is also rather close to the unadjusted value. By way
of contrast, the adjusted estimate of RR for GALL obtained in § 5.2, -where we re-
stricted - attention to the eight case-control pairs which were homogeneous for HYP
and heterogeneous for GALL, gives the relatively unstable value of { = 7/1. The
difference is explained by the fact that the model uses all the case-control pairs which
are discordant for at least one of GALL and HYP (see Table 7.4) to estimate the
main effects of both variables. The five pairs which are discordant for both variables,
not used in the elementary analysis, now contribute to the estimate of the coefficient
of GALL.  _ _ :

In case the reader is left with the impression that something has been gained for
nothing by this procedure, we hasten to point out that the elementary estimate is
strictly valid under a weaker set of assumptions than that based on the model. In
Chapter 5 we effectively assumed only that the relative risk of GALL was constant with
respect to HYP and the matching variables. The modelling procedure supposes in
addition that HYP combines multiplicatively with the matching variables; it could lead
to biased estimates of the coefficient of GALL if interactions were present. Of course,
in some situations, such interactions involving the matching and other confounding
variables might also be modelled and added to the equation as a means of further
adjustment. For example, if we suspected that not only the main effects of HYP but
also the interaction between HYP and AGE were confounding the estimate of the
GALL coefficient, we would fit the equation with terms for GALL, HYP and
‘HYP X AGE. Fortunately, the higher order interactions which might necessitate such
a procedure are rarely present in epidemiological studies (Miettinen, 1974).

Further insight into the assumptions which underlie the model is given by considera-
tion of line 3 of Part C, Table 7.3. Here the addition of the interaction term
GALL X HYP allows us to estimate the relative risk of each possible combination of
exposures to these two risk factors, relative to those who are exposed to neither. Thus
P10 = exp(1.517) = 4.56 is the estimated RR for those with gall-bladder disease only,
Po1 = exp(0.627) = 1.87 for those with hypertension only, and %1 = exp(1.517+
0.627-1.548) = 1.81 for those having a positive history of both diseases. In summary,
the relative risks are given by this bizarre-looking table:

Gall-bladder disease
— +

- 1.00 4.56

Hypertension

+ 1.87 1.81
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However the interaction effect is not significant, as indicated by the score statistic
comparing lines 2 and 3 of Table 7.3, Part C.

In effect what we have now done is to create out of GALL and HYP a joint risk
variable with four exposure categories: (—, —), (-, +), (+, —), and (+, +). The |
estimation problem is as described in § 5.5 for matched-pair studies with a polytomous |
risk variable. Table 7.4 presents the distribution of the 63 matched pairs according to:
the joint response of case and control, following the format of Table 5.5. We readily
verify that the maximum likelihood equations (5.30) for data of this type, namely

14+1+0=20-%2 15 Yu_ 11 Yo
1+yo Yo1+¥10 YVort+¥n

6+4+0= 7220 45 Yo 5 Yo
1'*'1.010 Yo1+¥10 Yiot¥n

Y1 Y1 Y11
. 2Hi+l=Son T+yu +1 1/’01‘*'1/’114-1 Yiot¥Pu .-
are solved by the estimates just derived using the general computer programme.

The analysis shown in Part D of Table 7.3 is identical with that in Part C except for
the order of entry of the variables into the equation. If our interest is in the effects of
GALL after adjustment for HYP, we would follow the sequence shown in Part D. In
this example, the estimated coefficients and standard errors are not much affected by
the presence of the other variable in the equation, which means that they are not
confounded to any appreciable degree.

Another example of the analysis of matched-pair data with a polytomous exposure
variable was presented at the end of § 5.5. There we estimated the relative risks of |
endometrial cancer for each of three increasing dose levels of conjugated oestrogens,
using the no-dose category as baseline. In order to carry out an essentially identical
analysis in the present framework, we first define the three indicator variables DOS1,
DOS2 and DOS3, whose 8 coefficients represent the log odds ratios for each of the

Table 7.4 Histories of gall-bladder and hypertensive disease for cases and matched
controls: Los Angeles study of endometrial cancer

Exposures of cases Exposures of controls Total

Gall bladder Hypertension | - — -+ P D

~ - 15 6 1 3 25 )
- S+ 14 6 1 0 21

+ - 6 4 2 0 12

+ + 2 1 1 1 5

Total - 37 : 17 5 - 4 63
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dose levels shows in Table 7.2 relative to baseline. The conditional logistic regression
model (7.3) in this case is merely a restatement of the model (5.29), in which the
odds ratios corresponding to each category of exposure are assumed to be constant
over the matching variables. By definition they satlsfy the consistency relationship
discussed earlier in § 5.5.

Part E of Table 7.3 presents the results. Regression coefficients for the three dose

* variables do indeed correspond to the odds ratios already estimated: exp(1.524) =

4.59 for the 0.1-0.299 mg/day dose level; exp(1.266) = 3.55 for 0.3-0.625 mg/day;

_ and exp(2.120) = 8.33 for over 0.625 mg/day. Likewise the score statistic for testing

the null hypothesis is identical with the statistic (5.32) derived earlier, taking the
value 16.96 for these data. The only important additional quantities available from
the computer fit of the model are the standard errors of the parameter estimates, which
enable us to put approximate confidence limits on the estimated relative risks. For
example, exp(1.524+1.96%x0.618) = (1.37, 154) are the 95% limits for the
0.1-0.299 mg/day category.

In order to test for a trend in risk with increasing dose we use the single, coded dose
variable DOS. Estimated relative risks for the three dose levels are then exp(0.690) =
1.99, exp(2x0.690) = 3.98 and exp(3 X 0.690) = 7.94, respectively. Comparing the
G statistics for the two dose-response models yields 65.50-62.98 = 2.52, nominally a
chi-square with two degrees of freedom, for testing the extent to which the linear trend -
adequately explains the variation in risk between dose levels. The observed departure
from trend is not statistically significant (p = 0.28). On the other hand, the trend itself
is highly significant (p<0.0001) as demonstrated by the value 14.71 for the score
statistic. This too is identical to the trend statistic derived earlier (5.33), except that
the continuity correction is not used by the computer programme. Note that there is
not the slightest hint of interaction between dose and.age (line 2, part F, Table 7.3).

In summary, analyses of matched-pair data via the conditional logistic model yield
results identical to those of the “classical” procedures presented earlier for binary
and polytomous risk factors. This is hardly surprising, as the previously discussed
methods were themselves based on conditional likelihoods worked out in detail for
each separate problem. Nevertheless it is an important fact since it shows that the
very general methodology developed here is well integrated with the techniques used
in the past. Even more important, of course, are extensions to problems involving
multiple and/or continuous risk variables which we next consider in the more general
context of 1:M matching.

7.4 1:M matching with single and multiple exposure variables: applications

While the regression variables defined in Table 7.2 have so far in this Chapter been
used exclusively with the matched-pair data, their coefficients can in fact be better
estimated by taking account of the full complement of controls selected for each case.
Table 7.5 presents the results of several analyses, based on the conditional likelihood
(7.2), which used all the available data. Since no information was available regarding
the dose and/or duration of conjugated oestrogen use by certain of the women, their
data records were excluded from the analysis when fitting equations containing these
variables. While a missing value for the case leads to exclusion of the entire matched
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Table 7.5 Results of fitting several conditional logistic regression models to the matched sets con-

sisting of one case and four controls: Los Angeles study of endometrial cancer

No. of Goodness of fit Score test Regression coefficients = standard error for each variable in the equation
parameters G

A. Oestrogen use and age level
(based on all 63 matched sets, 315 observations)

. EST EST x AGE1 ESTx AGE2
0 202.79 ~
1 167.44 31.16 2.074 £ 0.421
166.76 0.76 1.431+£0.826 0.847 +1.034 0.780+ 1.154
B. Oestrogen use and coded age level
(based on all 63 matched sets; 315 observations)
EST EST x AGE3
1 167.44 31.16 2.074 +0.421
2 167.05 0.39 1.664 £0.750 0.385+0.616
C. Conjugated oestrogen use and age
(based on 59 matched sets, 291 observations)
CEST CEST x AGE1 CEST x AGE2
0 188.13
1 159.22 27.57 1.710+0.354 _
3 - 158.28 0.89 1.583+0.815 -0.081 £0.930 '0.764 +1.143

set, a missing value in a control record might simply mean that the number of controls
in that set was reduced by one.

In order to estimate the overall relative risk associated with a history of exposure
to any oestrogen, we employed the general purpose computer programme with the single
binary variable EST (Part A, Table 7.5). This yields ¢ = exp(2.074) = 7.95, which
is of course the same value as found in § 5.3 by solving the equation (5.17) for condi-
tional maximum likelihood estimation. The standard error 0.421 = V0.177, given by
formula (5.21), has already been used to place an approximate 95% confidence
interval of exp(2.074+1.96x0.421) = (3.5, 18.1) about the point estimate. Like-
wise the score test statistic is identical to the summary chi-square defined in (5.19),
but calculated without the continuity correction so as to give (110-13)%/302 = 31.16
in place of the corrected value 29.57 found earlier.

Continuing the lines of the analysis shown in Table 5.2, we investigated a possible
difference in the relative risk for EST in the three age groups 55-64, 65-74 and 75+
by adding to the regression equation interaction terms involving EST and age. In order
to account for the breakdown of age into three groups, two binary indicator variables
were defined: AGE1 = 1 for 65-74 years, and O otherwise; and AGE2 = 1 for 75+
years, 0 otherwise. Thus, from line 2, Part A, Table 7.5, exp(1.431) = 4.18 is the
estimated relative risk for women aged 55-64 years, exp(1.431+0.847) = 9.76 for
those 65—74 years, and exp(1.431+0.780) = 9.12 for the 75+ year olds, these results
agreeing with those shown in Table 5.2. While there is an apparent increase in the
relative risk for the women aged 65 or more years, the score test of 0.76 shows that
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the differences are not statistically significant (p = 0.68). Note that this value agrees
with that calculated earlier from the explicit formula (5.23) for the score test of inter-
action.

A single degree of freedom test for a trend in relative risk with i e is
obtained by fitting a single interaction term as shown in Part B of T];gle 7.5. gding
AGE3 to be 0, 1 or 2 according to the subject’s age group, the resulting score test for
interaction is the uncorrected version of the statistic (5.24), taking the value 0.39.
The corrected value calculated earlier was 0.09. Estimated relative risks for the three
age categories are in this case exp(1.664) = 5.28, exp(1.664 +0.385) = 7.76 and
exp(1.664 +2 x 0.385) = 11.40, respectively. However since there is no evidence
that the apparent trend is real, such estimates would not normally be reported.

The flexibility of the regression approach is particularly evident when dealing with
matched sets containing a variable number of controls. Part C of Table 7.5 presents

Table 7.6 Matched univariate analysis of Los Angeles study of endometnal cancer: all cases and
controls used except as noted

Variable Levels RR 2 DF p
Gall-bladder Yes 3.69 13.83- 1 0.0002
disease No 1.00
Hypertension Yes 1.51 1.85 1 0.18
: No " 1.00
Obesity Yes _ 1.76 5.70 2 0.06
No 1.00
Unk 0.63
Obesity Yes 2.02 516 . 1 0.02
No/Unk 1.00 _
Other drugs Yes 3.90 10.38 1 0.001
{non-oestrogen) No 1.00 -
Any oestrogens Yes 7.96 31.16 1 <0.00001
No 1.00
" Conjugated oestrogens®: None - 1.00 - 83.22 3 <0.00001
dose in mg/day 0.1-0.299 4.1
0.3-0.625 4.86
0.625+ 10.97
Trend® 5.53 27.57 1 <0.00001
Conjugated oestrogens: None 1.00 . 34.93 4 <0.00001
duration in months 1-11 2.66 :
1247 4.17
48-95 8.13
96+ ' 10.41

Trend® 1.81 34.79 ' 1 <0.00001

® Uncorrected score test

> Based on 59 sets, 291 observations.

¢ Regression on coded dose levels: 0 = none; 1 = 0.1-0.299 mg/day; 2 = 0.3-0.625 mg/day; 3 = 0.625+ mg/day
9Based on 57 sets, 277 observations

¢ Regression on coded duration: 0 = none; 1 = 1-11 months; ...; 4 = 96+ months
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the regression analysis of the data considered in § 5.4 on use of conjugated oestrogens.
Of 59 matched sets for whom the case history of conjugated oestrogen use was known,
55 had the full complement of 4 controls while for each of the 4 others, one control
was lacking information. Running the computer programme with a single binary
variable CEST representing the history of use of conjugated oestrogens, we easily
replicate the reSults already obtained: ¢ = exp(1.710) = 5.53 for the estimate of
relative risk and y* = 27.57 for the uncorrected chi-square test of the null hypothesis.
It is also easy to test for constancy of the relative risk over the three age groups by
addition of the interaction variables CEST X AGE1 and CEST X AGE2 to the equa-
tion. The score test for this addition, which is the generalization of (5.24) discussed in
§ 5.4, yields the value x3 = 0.89 (p = 0.64). We did not report this result earlier be-
cause of the labour involved in the hand calculation.

Thus far in this section we have used the general methods for matched data analysis
primarily in order to replicate the results already reported in Chapter 5 for particular
elementary problems. The emphasis has been on. demonstrating the concordance be-
tween the quantities in the computerized regression analysis, and those calculated
earlier from grouped data. In the remainder of the section we carry out a full-scale
multivariate analysis of the Los Angeles data much as one would do in actual practice.

As an initial step in this process, Table 7.6, which summarizes and extends the results
obtained so far, presents relative risk estimates and tests of their statistical significance
for each risk variable individually. Comparing the entries there with those in Table 5.1
we see that there is little to choose between the matched and unmatched analyses for
this particular example (see § 7.6, however). The rather large number of “unknown”
responses for obesity indicated lack of information on this item in the medical record.
Grouping these with the negatives led to only a slight decrease in the goodness of fit
(x? = 0.75, p = 0.39) and to a slight increase in the relative risk associated with a
positive history. We therefore decided to use the dichotomy positive versus negative/
unknown in the subsequent multivariate analyses. This meant that the final analyses
used the five binary variables GALL-bladder disease, HYPertension, OBesity, NON-
oestrogen drugs and any oESTrogen, none of which had missing values. There were
also two polytomous variables representing DOSe and DURation of conjugated
oestrogen, both of which had missing values. | _

Table 7.7 presents the results for a series of multivariate analyses involving the five
binary risk factors and several of their two-factor interactions. Model 2 contains just
the main effects of each variable. Their B coefficients have been exponentiated for
presentation so as to facilitate their interpretation in terms of relative risk. In fact the
estimates of RR for gall-bladder disease and oestrogen use do not change much from
the univariate analysis (Table 7.6), while those for the other three variables are all
somewhat smaller. The coefficient for hypertension becomes slightly negative, while those
for obesity and non-oestrogen drugs are reduced to non-significant levels. The reduction
for non-oestrogen drugs is particularly striking, and inspection of the original data
indicates this is due to a high degree of confounding with oestrogen use: for the controls,
only 16 or 21.1 % of 76 who did not take non-oestrogen drugs had a history of oestrogen
use, versus 111 or 63.1% of 176 who did take non-oestrogen drugs (Table 7.8).

Models 35 explore the consequences of dropping from the equation those variables
which do not have significant main effects. The confounding between other drugs and
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Table 7.8 Joint distribution of cases and controls according to selected risk factors: Los Angeles

study of endometrial cancer

BRESLOW & DAY

A. Gall-bladder disease and oestrogens

Gall-bladder disease

Gall-bladder disease

negative positive Totals
Oestragen— Oestrogen+ Oestrogen— Oestrogen+
Cases - 3 43 4 13 63
Controls 117 11 8 16 252
Relative risks
Unmatched 1.0 15.1 19.5 31.7
Matched® 1.0 14.9 18.1 34.5
B. Oestrogen and non-oestrogen drug use
Other drugs Other drugs
negative positive Totals
Oestrogen— Qestrogen+ Oestrogen— Qestrogen+
Cases 1 6 6 50 63
Controls 60 16 65 11 252
Relative risks ) '
Unmatched 1.0 22.5 "5.5 27.0
Matched® 1.0 54.6 8.6 73.5

2From Model 7, Table 7.7. .
®From Model 12, Table 7.7 (hence adjusted for gall-bladder disease)

oestrogen is evident from the fact that the coefficient for the latter depends most notice-
ably on whether or not the former is present. Subtracting the goodness-of-fit statistics
between Models 6 and 2 yields ¥ = 4.00 (p = 0.26) for testing the joint contribution
of hypertension, obesity and non-oestrogen drug use to the equation.

The contrast between Models 7 and 6 shows that there is a strong and statistically
significant (p = 0.03) negative interaction between the two variables that have sub-
stantial main effects on risk, namely gall-bladder disease and oestrogens. The basic data
contributing to this negative interaction are shown in Part A of Table 7.8, together with
relative risks estimated vig the model, e.g.,, RR = 14.9x18.1x0.128 = 34.5 for the
double exposure category. The interaction effect itself is perhaps best illustrated by
contrasting the RR of 14.9.for oestrogens -among those who had no history of gall-
bladder disease with the RR of 34.5/18.1 = 1.9 among those with such a history.

Similar negative interactions are evident in Models 10 and 12 for obesity with oestro-
gens, and other drugs with oestrogens, respectively. From the unmatched data, shown
in Part B of Table 7.8, we see that the instability in the regression coefficients for

Model 12 stems from the fact that only a single case falls in the joint “non-exposed”

category. While they are statistically significant only in the case of gall-bladder disease,
the data suggest that there are negative interactions of oestrogen use with the other
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more complete adjustment for oestrogen than was possible using the binary variable
EST alone. The coefficients for these variables should be contrasted with those shown
in Table 7.7. Gall-bladder disease continues to stand out as an important, independent
risk factor with an estimated relative risk of exp(1.498) = 4.5 compared with the
3.6 found earlier (Model 6, Table 7.7). The interaction of gall-bladder disease with
oestrogen use is no longer statistically significant when the dose and duration variables
are included in the equation. While the coefficient for non-oestrogen drugs is little
changed obesity is now estimated to carry a relative risk of exp(1.059) = 2.9, which
is significantly different from 1 at the p = 0.02 level. Part of these differences, of
course, may result because slightly different data sets were used.

In conclusion, we can simply reiterate a point which is well illustrated by the pre-
ceding example: all the techniques of multivariate analysis which were once restricted
to unmatched studies are now available for use with matched data as well.

7.5 Combining sets of 2 X 2 tables

Besides individual case-control matching, another situation in which the calculations
based on the exact conditional likelihood may be quite feasible is when information is
combined from a set of 2 X2 tables. We noted earlier that the conditional likelihood
in this case took the form of a product of non-central hypergeometric distributions

- (see § 4.4 for notation):
i G (oia) v -

720 ()

As usual, the summations in the denominator range over all possible values u which
are consistent with the observed marginals in the i™ table, namely max(0, n;—my;)
=u= min(my;, ny;). Calculation of exact tail probabllltles (4.6, 4.7) and confidence
intervals (4.8, 4.9) based on this distribution requires that all possible sets of tables
which are compatible with the given marginals are evaluated. Thelr number is

g{mm(mn,nu)—max(o,nli_mm)},

i.e., the product of the number of possible tables at each level, which can rapidly be-
come prohibitively large (Thomas, 1975). On the other hand, evaluation of the log-
likelihood function and its first and second derivatives requires calculations which
increase only in proportion to the sum

1
2 {min(my;,ny;)-max(0,n5;-mo;)}

of the number of possible tables at each level. Hence a conditional likelihood analysis,
similar to those already developed in this chapter for matched designs, is often possible
for problems involving sets of 2x 2 tables, even where the completely exact analysis
would be unfeasible. Only if the entries in some of the tables are very large will problems
be encountered in the evaluation of the binomial coefficients appearing in (7.4).
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Usually cases and controls. will have been grouped into strata (tables) on the basis
of covariables which are thought either to confound or to modify the effect of exposure
on disease. Suppose that a vector z; of such covariables is associated with the i table.
Then there are several hypotheses about the odds ratios y; which are of interest:

He: vy =1

Hi: ¥, =y = exp(B)

Hy: ¢; = exp(8 +Z1y1zu)
H;: No restrictions on ;.

In Chapter 4 we concentrated on the estimation of ¢ under H,, tests of the null
hypothesis Hy, and tests for constancy in the relative risk (H;) against global alter-
natives (H3). We have remarked on several occasions that these latter may be in-
sensitive to particular patterns of interaction and that a preferred strategy is to model
specific variations in the relative risk associated with the covariables using H,. In
§ 6.12 several such models were fitted to the Oxford Childhood Survey data using
unconditional logistic regression in which a separate a parameter was estimated for
“each stratum. As we saw in § 7.2, however, it is possible seriously to overestimate the
relative risk with this procedure if the data are thin. Hence it will often be preferable
to use instead the conditional likelihood, which may be written

() (s, ) explan(B + Zivi)
i= 1 Z(nn)(m1 )exp.{u(,B +3 iz}

(1.5)

A listing of a computer programme for fitting models of the form H, to sets of
2 X 2 tables using the conditional likelihood is given in Appendix VI. This programme
may be used as an alternative to that of Thomas (1975) for finding the exact MLE
of the relative risk in H;, provided of course that exact tests and confidence intervals
are not also desired. Zelen (1971) develops exact tests for the constancy of the odds
ratio against alternatives of the form H, with a single covariable, and also against the
global alternative H;. We presented in (4.31) the score statistic based on (7.5) for
testing H, agalnst H, with a single covariable.

'If the data in each table are truly extensive it may be burdensome to evaluate the
binomial coefficients in (7.5). In this case an asymptotic procedure is available. Rather
than use the exact conditional means and variances of the table entries a; under hypo-
thesized values for the odds ratios i;, which are required by the iterative likelihood
fitting procedure, one can use instead the asymptotic means and variances defined by
(4.11) and (4.13). This substitution yields likelihood equations and an information
matrix which are identical to those obtained by applying a two-stage maximization
procedure to the unconditional likelihood function whereby one first solves the equa-
tions for the a coefficients in terms of 8 and y (Richards, 1961). The estimates 3 and 9
so obtained, as well as their standard errors and covariances, are thus identical to those
obtained using unconditional logistic regression (Breslow, 1976). The advantage is
that the unconditional model is fitted without explicit estimation of all the nuisance
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parameters. This is a serious consideration if there are many tables, since the required
number of parameters may exhaust the capacity of the available computer. Nevertheless,
no matter how they are calculated, the unconditional estimates may be subject to bias
in such circumstances and the conditional analysis is preferred whenever it is compu-
tationally feasible.

To illustrate the use of the conditional likelihood with a set of 2 x 2 tables we found
new estimates of the parameters § and y,, representing the log relative risk of obstetric
radiation and its linear decrease with calendar time, which we estimated earlier from the
Oxford Childhood Cancer Survey Data using unconditional logistic regression (6.12).
We recall that several estimates for these parameters were made depending on the
degree of polynomial adjustment for the stratifying variables age and calendar year.
In fact, for the last line in Table 6.17 where the confounding effects of age and year
were completely saturated, we avoided explicit estimation of separate a parameters for
each of the 120 2 x 2 tables by using the technique just discussed.

The parameter estimates and standard errors calculated directly from the conditional
likelihood (7.5) were

' B =0.5165+0.0564

and
71 =-0.0385+0.0144 .

It is of considerable theoretical interest that these quantities are closer to those ob-
tained from the unconditional fifth degree polynomial model than to those obtained
with the saturated model (see last two lines, Table 6.17). This suggests that the con-
founding effects of age and year are suitably accounted for by the polynomial regres-
sion, and that inclusion of additional nuisance parameters in the equation serves only
to increase bias of the type considered in § 7.1. However, because of the exceptionally
large sample (over 5 000 cases and controls) the inflation of the relative risk estimates _
due to the excess of nuisance parameters was not terribly serious.

7. 6 Eﬁect of ignoring the matchmg

Prior to the advent of methods for the multivariate analysis of case-control studies,
in particular those based on the conditional likelihood (7.2), it was common practice
to ignore the matching in the analysis. In simple problems one often found that taking
_explicit account of the matched pairs or sets did not seriously alter the estimate of
relative risk. With the Los Angeles study of endometrial cancer, for example, there
were only slight differences between the unmatched (Table 7.5) and matched (Table
7.6) estimates for each risk variable considered individually. However, the agreement.
is not always as good, and there has been considerable confusion regarding the con-

ditions under which incorporation of the matching in the analysis is necessary.
r' A sufficient and widely-quoted condition for the ‘poolability’ of data across matched
sets or strata is that the stratification variables are either: (i) conditionally independent
' of disease status given the risk factors; or (ii) conditionally independent of the risk
i factors given disease status. If either of these conditions is satisfied, both pooled and
| matched analyses provide (asymptotically) unbiased estimates of the relative risk for
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a dichotomous exposure (Bishop, Fienberg & Holland, 1975). [Whittemore (1978) has
shown that, contrary to popular belief, both types of analyses may sometimes yield
equivalent results even if conditions (i) and (ii) are both violated.] In matched
studies condition (i) is more relevant since the matching variables are guaranteed to
be uncorrelated with disease in the sample as a whole. Of course this does not ensure

that they have the same distributions among cases and controls conditionally, within -
categories defined by the risk factors. Therefore an unmatched analysis may give

biased results.

One result of using an unmatched analysis with data collected in a matched design,
however, is that the direction of the bias tends towards conservatism. Relative risk
estimates from the pooled data tend on average to be closer to unity than those cal-
culated from the matched sets. This phenomenon was noted in § 3.4 when pooling data
from two 2 x 2 tables, where the ratio of cases to controls in each table was constant.
Seigel and Greenhouse (1973) show that the same thing happens if matched pairs are
formed at random from among the cases and controls within each of two strata, and
the data are then pooled for analysis. Armitage (1975) gives a slightly more general
formulation. He supposes that there are I matched sets with exposure probabilities
p1i = 1—qq; for the cases and pg; = 1—qq; for the controls, and that the odds ratio
¥ = pudei/(Poidsi) is constant across all sets. It follows that the estimate of relative
risk calculated as the cross-products ratio from the 2x 2 table formed by pooling all
the data tends towards the value

2P1:2 o
2Poi> i

2q1%2qo;

v 2qoithi2qu; (7.6)
where ¥; = pgi/qo;. For y>1 the bias term multiplying v in (7.6) is less than one,
unless the exposure probabilities po; are constant across sets (in which case there is no
bias). Similarly, for y <1, the bias term exceeds unity. Thus, failure to account for the
matching in the analysis can (and often does) result in conservatively biased estlmates
of the relative risk.

A related question is to cons1der the cost, in terms of a loss of efficienc
analysis, of using a ma a € matching was unnecessary to
avoid bias. Suppose that the exposu‘r‘e—WB“ﬁf'/—llespmm—_he above model are all
equal to the constant po, so that both matched and unmatched analyses tend to estimate
correctly the true odds ratio y. According to (4.18), the large sample variance of the

pooled estimate of log y is .

101,11 1) P1%i+Pode
Pr d1 Po Qo Ip1d1po9o

Standard calculations show that the large sample variance of the estimate of log v
based on the matched pairs in this situation is

P1qet+ q1Po -
Ip191peqo

~

.\/
"N
[
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Consequently, using the ratio of variances to measure the relative precision of the two
estimates, the efficiency of the matched pairs analysis when pairing at random is

_ P1%i+Podo.
eff = P T Pods 7.7

When ¢ = 1, i.e., p1 = po, the matched pairs estimate is thus seen to be fully efficient.
Otherwise eff < 1, reflecting the loss in information due to the random pairing. Never-
theless Figure 7.1 shows that the loss, which tends to be worse for intermediate values

Fig. 7.1 Loss in efficiency with a matched-pair design of using a matched statistical
analysis, when the matching was unnecessary to avoid bias. Different curves
correspond to different proportions exposed in the control population.
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of py, is not terribly important unless the odds ratios being estimated are rather
extreme. Pike, Hill and Smith (1979) reach similar conclusions on the basis of studies
of the power of the chi-square test of the null hypothes1s computed from the matched
versus unmatched data.

While no additional theoretical studies have yet been made, it is likely that these
same general conclusions regarding the bias and efficiency of matched versus un-
matched analyses apply also to the estimation on of | multiple relative risk functions. Two
numerical-examples will sérve to illustrate the basic pomts The first contrasts the
fitting of both conditional and unconditional logistic regression analyses to data from
an IARC sponsored study of oesophageal cancer occurring among Singapore Chinese -
(de Jong et al., 1974). The analysis was based on 80 male cases and on 320 matched -
C(ﬁfr—ol’s‘wlﬁs—e'é'g_e's—v'vere within five years of the corresponding case. Two controls for
each case were drawn from the same hospital ward as the case, while two others were
selected from an orthopaedic unit. However, as there were no important differences
in' exposure histories between the two control groups, they were not separated in the
analysis.

Table 7.10 Coefficients (+ standard errors) of variables in the multiple relative risk
function, estimated using linear logistic regression analyses appropriate for both
matched and unmatched samples. IARC study of oesophageal cancer among Singapore
Chinese?

Unmatched analysis
Coefficient + S.E.

Variables in equation® Matched analysis

Coefficient + S.E.

A. Interaction term excluded

Xo Constant -3.2062 + 0.3650
X, Dialect 1.2570+£0.3273 1.4145 £ 0.3301
‘X, Samsu 0.5064 + 0.2936 0.5352 +0.2766
x; Cigarettes 0.0122 + 0.0099 '0.0121 £0.0095°
X, Beverage temperature 0.7846 +0.1640 0.7556 +£0.1493
Goodness-of-fit statistic (G) 197.43 336.23
B. Interaction term included
xo Constant —3.2123 + 0.3661
x, Dialect 1.2559 + 0.3280 1.4200 £ 0.3312
X; Samsu 0.5072 . 0.2941 0.5303 £0.2774 -
x3 Cigarettes 0.0123 + 0.0099 0.0124 + 0.0096
X, Beverage temperature 0.7872+0.1726 0.7447 £ 0.1563
Xs = X4 X (age-60) -0.0009 £ 0.0179 0.0034 £ 0.0147
Goodness-of-fit statistic (G) 197.43 336.18

*de Jong et al. (1974)
* Coding of risk variables:

1 Hokkien/Teochew

x =
! 0 Cantonese/other

x, = 1 Drinkers {Samsu) X4 = No. of beverages (0-3) drunk “burning hot"

0 Abstainers

xs = No. of cigarettes/day average
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Information was obtained regarding diet, alcohol and tobacco usage, and on various
social factors including dialect group, which indicates the patient’s ancestral origin
within China. Only four variables are considered here: dialect group, cigarettes,
samsu (a distilled liquor made from a mixture of grains) and beverage temperature
(the number of beverages among tea, coffee and barley wine that the patient reported
drinking at “burning hot” temperatures). The coding of these variables has been
simplified from that used in the original analysis, and an interaction term between
beverage temperature and age (a matching variable) was introduced to see if the log
relative risk for beverage temperature changed linearly with age.

Table 7.10 presents the estimated regression-coeffieients and standard errors obtained
by fitting the unconditional logistic model with a single stratumi parameter a to the
pooled data. Shown for comparison are the same quantities estimated from the condi-
tional likelihood. With the exception of that for dialect group, the standard errors of
the matched analysis are slightly larger than those for the unmatched. Small changes are
evident in the regression coefficients themselves, so that this is evidently a situation
in which the matching variables either have little relationship to the exposures con-
ditional on disease status or else have little relationship to disease status conditional
on exposure. As a partial confirmation of the latter interpretation, Table 7.11 shows
that cases and controls have roughly equivalent average ages even within the levels of
each risk factor. This analysis is incomplete, since it involves only averages and ignores
possible higher order interactions of age with risk factor combinations. Nevertheless,
it is consistent with the notion that the matching variables are conditionally independent
of disease status given the exposures, and thus that the requirements for ‘poolability’of
matched data are satisfied.

Table 7.11 Average ages + standard errors for cases and controls within levels of each risk factor:
IARC study of oesophageal cancer among Singapore Chinese®

Risk factor Levet Cases Controls Totals
n Mean * S.E. n Mean * S.E. n Mean £ S.E.

Dialect group Hokkien/Teochew 66 61.3+£1.0 160 60.6+0.8 226 60.8+0.6
: Cantonese/other 14 65.4+2.6 160 63.0+0.7 174 63.2+0.6

Samsu Drinkers 40 63.6+1.2 109 624108 149 _62.7 +0.7
Abstainers 40 605+14 ~ 211 615+06 251 61.4x0.6

Cigarettes None 8 63.6 54 55 628+13 63 629+13
1--10 per day 14 65.9+1.9 81 63.7t1.0 95 64.0x09
- 11-20 per day 35 61.7+1.0 115 62.2+0.8 150 62.1+0.7

21+ perday 23 59.6+1.8 69 58.2x1.0 92 585109

Beverage 0 41 608+1.4 261 61.5+0.6 302 61.4+05
temperature 1 13 62.2+2.1 31 628+1.6 44 626+13
(no. “burning 2 18 65.3+1.9 25 63.6+1.9 43 643+13
hot”) 3 8 60.5+2.8 3 663+3.2 11 62123
Totals All 80 62009 320 61.8x0.5 400 61.9x04

®de Jong et al. (1974)
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In general one must anticipate that the degree to which the matching variables are
incorporated in the analysis will affect the estimates of relative risk. An example which
better illustrates this phenomenon is provided by the joint Iran/IARC study of oesoph-
ageal cancer on the Caspian littoral (Cook-Mozaffari et al., 1979). In that part of the
world both cancer incidence and many environmental variables show marked geo-
graphical variation. Cases and controls were therefore individually matched according
- to village of residence, as well as for age. Just as in the preceding example, the data
were analysed using both the conditional fully matched analysis based on (7.2) and
the unconditional analysis based on (6.10) in which the entire sample was considered
as a single stratum. Intermediate between these two extremes, additional analyses were

performed which incorporated various levels of stratification by age and by geographical

area, the latter grouping the villages into regions with roughly homogeneous incidence.

‘Table 7.12 presents the results for males for four risk variables which appeared to
be the best indicators of socioeconomic and dietary status. Substantial bias of the regres-
sion coefficients towards the origin, indicating a lesser effect on risk, is evident with
the coarsely stratified and unmatched analyses. This confirms the theoretical results
regarding the direction of the bias which were noted above to hold for the univariate
situation. While the standard errors of the esti i r_account is
avoiding bias. _

In summary, both theoretical and numerical studies confirm that the pooling of
matched or stratified samples for analysis will result in relative risk estimates which
are conservatively biased in comparison with those which would be obtained using the
appropﬁate"ﬁiﬁwmnuations, where the matching was not essential
to avoid bias, the pooled and matched estimates may scarcely differ at- all. Even then,
however, the additional information gained from the pooled data, as reflected in the
variances of the estimates, is not great. Consequently, now that appropriate and flexible
mﬁ@jm@t_h_’}_glgm%g so, the matching should be accounted for in the analysis
whenever it has been incorporated in the design.

While the availability of methods for multivariate analysis of matched samples cer-
tainly makes such designs more attractive, it does not follow that they should always
be used. Close pair matching may result in a number of cases being lost from the study
for want of an appropriate match. It may also impose severe administrative costs which
could be avoided with a less restrictive design. Increasing use is being made of “popula-
tion controls” obtained as an age-stratified random sample of the population from
which the cases were diagnosed. Many epidemiologists believe that this is the best way
to avoid the selection bias inherent in other choices of the control population. The
confounding effects of other factors which are causally related to disease may be
accounted for by post-hoc stratification of the sample, or by modelling them in the
analysis. Such designs and analyses accomplish many of the aims intended by the use
of matching, and constitute a practical alternative which may be preferred in many
situations.
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LIST OF SYMBOLS — CHAPTER 7 (in order of appearance)

B

ng
Ny

a;
pri(y = 1/x)

4
B
Dgo .
No1

- Ny
Ni1

log relative risk associated with unit change in k' risk variable

vector of risk variables for j™ study subject; X = (Xj15 -+ +» Xjk)
number of cases :

number of controls

total number of study subjects

denotes a partition of the integers from 1 to n 1nto two groups one of
size n, and the other of size ny = n-n,; e.g.;if n;'= 2 and ny = 3 a pos-
sible partitionisl; = 3,, =4,l; = 1,1, = 2,15 = Sorl = (3,4,1,2,5)
logit of disease probablhty for an md1v1dua1 with a standard (x = () set
of risk variables in the i* stratum -
disease probability in the i™ stratum for an individual with value x for
the risk variable

odds ratio '

log relative risk (binary exposure)

number of matched pairs with neither case nor control exposed

number of matched pairs with case unexposed and control exposed
number of matched pairs with case exposed and control unexposed
number of matched pairs with both case and control exposed

in discordant matched pairs with a binary exposure variable, denotes the

- fitted number of exposed cases under the unconditional model

conditional probability that in a discordant matched pair it is the case
which is exposed |

number of controls per case (fixed)

number of controls per case in the i™ matched set

number of matched sets _

value of k' exposure variable k=1, .., K) for case (j=0) or j*
control (j = 1, ..., M) in the i*" matched set

(Xij1s -5 Xijg) exposure vector for j*™ subject in i set

goodness-of-fit statistic based on the (conditional) log likelihood

number of exposed cases in i™ of I 2 X 2 tables

number of cases in i*" table

number of controls in i table

(expected) odds ratio associated with i of I 2 X 2 tables

value of I** covariable for i 2 X 2 table
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zZ; _ vector of covariable values for i table . -
y vector of interaction parameters in: logistic model for a series of 2 X2

tables
P1i exposure probability for cases in the i stratum
qui 1-pss i
Poi exposure probability for controls in the i stratum !
oi 1-po; :

¥ Poi/Qoi




