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' CHAPTER IV 

CLASSICAL METHODS OF ANALYSIS OF GROUPED DATA 

This chapter presents the traditional methods of analysis of case-control studies based 
on a grouping or cross-classification of the data. The main outlines of this approach, 
which has proved extremely useful for practising epidemiologists, are contained in the 
now classic paper by Mantel and Haenszel (1959). Most of the required calculations 
are elementary and easily performed on a pocket calculator, especially one that is 
equipped with log, exponential and square-root keys. Rothman and Boice (1979) have 
recently published a set of programmes for such a calculator which facilitates many 
of the analyses presented below. 

The statistical procedures introduced in this chapter are appropriate for study designs 
in which stratification or "group-matching" is used to balance the case and control 
samples vis-ci-vis the confounding variables. The following chapter develops these same 
methods of analysis for use with designs in which there is individual matching of cases 
to controls. While our treatment of this material attempts to give the reader some 
appreciation of its logical foundations, the emphasis is on methodological aspects rather 
than statistical theory. Some of the more technical details are labelled as such and can 
be passed over on a first reading. These are developed fully in the excellent review 
papers by Gart (1971, 1979) on statistical inferences connected with the odds ratio. 
Fleiss (1973) presents an elementary and very readable account of many of the same 
topics. Properties of the binomial, normal and other statistical distributions mentioned 
in this chapter may be found in any introductory text, for example Armitage (1971). 

4.1 The Ille-et-Vilaine study of oesophageal cancer 

Throughout this chapter we will illustrate the various statistical procedures developed 
by applying them to a set of data collected by Tuyns et al. (1977) in the French depart- 
ment of Ille-et-Vilaine (Brittany). Cases in this study were 200 males diagnosed with 
oesophageal cancer in one of the regional hospitals between January 1972 and April 
1974. Controls were a sample of 778 adult males drawn from electoral lists in each 
commune, of whom 775 provided sufficient data for analysis. Both types of subject 
were administered a detailed dietary interview which contained questions about their 
consumption of tobacco and of various alcoholic beverages in addition to those about 
foods. The analyses below refer exclusively to the role of the two factors, alcohol and 
tobacco, in defining risk categories for oesophageal cancer. 

Table 4.1 summarizes the relevant data. Since no attempt had been made to stratify 
the control sample, there is a tendency for the controls to be younger than the cases, 
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Table 4.1 Distribution of risk factors for cases and con- 
trols: Ille-et-Vilaine study of oesophageal cancera 

Cases Controls 

Age (years) 
25-34 
35-44 
45-54 
55-64 
65-74 
75 + 

Mean 
S.D 

Alcohol (glday) 
039 
40-79 
80-1 19 
120+ 

Mean 
S.D 

Tobacco (glday) 
0-9 , 

10-1 9 
20-29 
30+ 

Mean 
S.D 

"Data taken from Tuyns et al. (1977) 

Table 4.2 Correlations between risk variables in the control sample: 
Ille-et-Vilaine study of oesophageal cancera 

Age Tobacco Alcohol 

Age 
Tobacco 
Alcohol 

"Data taken from Tuyns et al. (1977) 

a feature which has to be accounted for in the analysis. Cases evidently have a history 
of heavier consumption of both alcohol and tobacco than do members of the general 
population. Correlations among these risk variables in the population controls indicate 
that there are no systematic linear trends of increased or decreased consumption with 
age; and that the two risk variables are themselves only weakly associated (Table 4.2). 

To take an initial look at the relationship between alcohol and risk using traditional 
epidemiological methods, we might dichotomize alcohol consumption, using as a cut-off 
point the value (80 g/day) closest to the median for the cases, as there are many more 
controls. This yields the basic 2 x 2 table: 
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Average daily alcohol consumption 

80+ g 0-79 g Total 

Cases 

Controls 

Total 205 770 975 

Of course such a simple dichotomization into "exposed" and "unexposed" categories 
can obscure important information about a risk variable, particularly concerning dose- 
response (§ 3.2). Summarizing the entire set of data in a single table ignores the 
possible confounding effects of age and tobacco (5 3.4); these two deficiencies are 
momentarily ignored. 

From the data in this or any similar 2 x 2 table one wants to estimate the relative 
risk and also to assess the degree of uncertainty inherent in that estimate. We need to 
know at what level of significance we can exclude the null hypothesis that the true 
relative risk I# is equal to unity, and we need to determine a range of values for which 
are consistent with the observed data. Appropriate methods for making such tests and 
estimates are presented in the next two sections. 

4.2 Exact statistical inference for a single 2 x 2 table1 

When a single. stratum of study subjects is classified by two levels of exposure to a 
particular risk factor, as in the preceding example, the data may be summarized in the 
ubiquitous 2 x 2 table: 

Exposed Unexposed 

Diseased 

A full understanding of the methods of analysis of such data, and their rationale, 
requires that the reader be acquainted with some of the fundamental principles of 
statistical inference. We thus use this simplest possible problem as an opportunity to 
review the basic concepts which underlie our formulae for statistical tests, estimates and 
confidence intervals. 

Inferential statistics and analyses, as opposed to simple data summaries, attempt not 
only to describe the results of a study in as precise a fashion as possible but also to 
assess the degree of uncertainty inherent in the conclusions. The starting point for 

' Parts of this section are somewhat technical and specialized; they may be skimmed over at first reading. 
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such analyses is a statistical model for the observed data which contains one or more 
unknown parameters. Two such models for the 2 x 2 table were introduced implicitly in 
the discussion in 5 2.8. According to the first, which can be called the cohort model, the 
marginal totals of m1 exposed and mo unexposed persons are regarded as fixed numbers 
determined by the sample size requirements of the study design. There are two unknown 
parameters, the probabilities PI and Po of developing the disease during the study 
period. Since subjects are assumed to be sampled at random from the exposed and 
unexposed subpopulations, the sampling distribution of the data is thus the product of 
two binomial distributions with parameters (Pl,ml) and (Po,mo). In the second 
model, which is more appropriate for case-control studies, the marginal totals n1 and 
no are regarded as fixed by design. The distribution of the data is again a product of 
two binomials, but this time the parameters are (pl,nl) and (po,no) where pl and po 
are the exposure probabilities for cases and controls. 

According to 5 2.8 the key parameter for case-control studies is the odds ratio v ,  
partly because it takes on the same value whether calculated from the exposure or the 
disease probabilities. The fact that the probability distributions of the full data depend 
on two parameters, either (Pl,Po) or (pl,po), complicates the drawing of conclusions 
about the one parameter in which we are interested. Hypotheses that specify particular 
values for the odds ratio, for example, the hypothesis Ho: + = 1 of no association 
between exposure and disease, do not completely determine the distribution of the 
data. Statistics which could be used to test this hypothesis depend in distribution on 
nuisance parameters, in this case the baseline disease or exposure probabilities. Infer- 
ences are  much simpler if we can find another probability distribution, using perhaps 

. . - 

only part of the WKC3-deh~~~~xciusivelyh h~i;ii;ifhhees'm~I'ee~araametei of ilii;i-;st. - . 
_.- ---.- ,-_,__._ -. . _ . . . .  - .  

A di3ribution = c . i e s  this requirement is the conditional distribution of'the 
data assuming all the marginal totals are fixed. Cox (1970) and Cox and Hinkley 
(1974) discuss several abstract principles which support the use of this distribution. Its 
most important property from our viewpoint is that the (conditional) probability of 
observing a given set of data is the same whether one regards those data as having 
arisen from a case-controI or a cohort study. In other words, the particular sampling 
scheme which was used does not affect our inferences about v. Regardless .of which of 
the two product binomial models one starts with, the probability of observing the data 
(4.1) conditional on all the marginal totals nl,no,ml,mo remaining fixed is 

L&> c % '  

Here (:) denotes the binomial coefficient 

n(n-1) (n-2) . . . (n-u+ 1) (nu)= , u(u-l)(u-2) ... (I) 

which arises in the binomial sampling distribution. The summation in the denominator 
is understood to range over all values u for the number of exposed cases (a) which 
are possible given the configuration of marginaI totals, namely 0, ml-no S US ml,nl. --- 1. .- , 
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Two aspects of the conditional probability formula (4.2) are worthy of note. First, 
we have expressed the distribution solely in terms of the number a of exposed cases. 
This is adequate since knowledge of a, together with the -marginal totals, determines 
the entire 2 x 2 table. Expressing the distribution in terms of any of the other entries 
(by c or d) leads to the same formula either for 1y or for v-l. Second, the formula 
remains the same upon interchanging the roles of n and my which confirms that it 
arises from either cohort or case-control sampling schemes. 

As an example, consider the data 
e 

The possible values for a determined by the margins are a = 1, 2 and 3, corresponding 
to the two tables 

3 3 

4 and 4 

2 7 5 2 7 

in addition to that shown in (4.3). Thus the probability (4.2) for a = 2 may be written 

12q2 41y - - - - 
3q+12q2+61y3 1+41y+2q2' 

!Y 

.- .Similarly;-- the,.probabilities of . the !values a -= 1 and a = 3 are 1/(1+.p4q+-2q2) and 
2q21(1 + 4q + 2q2), respectively. 
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Estimation of 11, 

The distribution (4.2) for 11, # 1 is known in the probability literature as the non- 
central hypergeometric distribution. When 11, = 1 the formula becomes considerably 
simpler and may be written 

which is the (central) hypergeometric distribution. So called exact inferences about the 
odds ratio + are-based directly on these conditional distributions. The conditional 
maximum likelihood estimate qcond, i.e., the value which maximizes (4.2), .is. given 
by the solution to the equation 

where E denotes the expectation of the discrete distribution. For example, with the 
data (4.3) one must solve 

a quadratic equation with roots k -, of which the positive solution is the one required. 8 
Note that this estimate, qcond = ,& = 0.707, differs slightly from the empirical odds 

ratio = 2 = 0.667. Unfortunately, if the data are at all extensive, (4.5) defines a 
bc 3 

polynomial equation of high degree which can only be solved by numerical methods. 

Tests of significance 

Tests of the hypothesis that q takes on a particular value, say H:$ = q O ,  are 
obtained in terms of tail probabilities of the distribution (4.2). Suppose, for example, 
that qo = 10. The conditional probabilities associated.with each of the three possible 
values for a are then: 
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Having observed the data (4.3), in which a = 2, the lower tail probability, pL = 0.004 + 
0.166 = 0.17, measures the degree of evidence against the hypothesis H:V = 10 in 
favour of the alternative hypothesis that 1~,<10. While the data certainly suggest that 
p<10, the fact that pL exceeds the conventional significance levels of 0.01 or 0.05 means 
that the evidence against H is weak. Much stronger evidence would be provided if 
a = 1, in which case thep-value or attained significance level is 0.004. 

More generally, the lower tail probability based on the distribution (4.2) is defined 
by 

PL = Zpr(u I nl,no,ml,mo; Po) 
u C a  

(4.6) 

and measures the degree of evidence against the hypothesis H:v  = Vo in favour of 
p<qO. Similarly, the upper tail probability 

measures the degree of evidence against H and in favour of V >Vo. In both cases the 
summation is over values of u consistent with the observed marginal totals, with u less 
than or equal to the observed a in (4.6) and greater than or equal to a in (4.7). If 
no alternative hypothesis has been specified in advance of the analysis, meaning we 
concede the possibility of a putative "risk factor" having either a protective or dele- 
terious effect, it is common practice to report twice the minimum value of pL and pu 
as the attained significance level' of a two-sided test1. 

The hypothesis most often tested is the null hypothesis H o : ~  = 1, meaning no 
association between risk factor and disease. In this case the tail probabilities may be 
computed relatively simply from the (central) hypergeometric distribution (4.4). The 
resulting test is known as Fisher's exact test. For the data in (4.3) the exact upper 
p-value is thus 

while the lower p-value is 

neither of them, of course, being significant. 

Confidence intervals 

Confidence intervals for I) are obtained by a type of testing in reverse. Included in the 
two-sided interval with a specified confidence coefficient of 100(1-a)% are all 
values yo which are consistent with the data in the sense that the two-sided p-value 

' An alternative procedure for computing two-sided p-values is to add pmin = min(pL,pu) to the prob- 
ability in the opposite tail of the distribution obtained by including as many values of the statistic as possible 
without exceeding pmin. This yields a somewhat lower two-sided p-value than simply doubling pmin, 
especially if the discrete probability distribution is concentrated on only a few values. 
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for the test of H : p  = qo exceeds a.  In other words, the confidence interval contains 
those $!o such that both pL and pu exceed al2, where pL and p l ~  depend on qo as 
in (4.6) and (4.7). In practice, the interval is determined by two endpoints, a lower 
confidence limit qL and an upper confidence limit qu. The upper limit satisfies the 
equation 

while the lower limit satisfies 

Thus the exact upper 1 OO(1-a) % = 80 % confidence limit for the data (4.3) is obtained 
from the equation 

with solution qu = 18.25, while the lower limit solves 

with solution qL = 0.0274,. Since there are so few data in this example, most reason- 
able values of q are consistent with them and the interval is consequently very wide. 

Although such exact calculations are feasible with small 2 x 2 tables like (4.3), as 
soon as the data become more extensive they are not. The equations for conditional 
maximum likelihood estimation and confidence limits all require numerical methods of 
solution which are not possible with pocket calculators. Thomas (1971) provides an 
algorithm which enables the calculations to be carried out on a high-speed computer, 
but extensive data will render even this approach impracticable. Fortunately, with 

I 
such data, the. exact methods are not necessary. We next show how approximations 
may be obtained for the estimates, tests and confidence intervals described in this 
section which are more than accurate enough for most practical situations. Occasionally 
the exact methods, and particularly Fisher's exact test, are useful for resolving any 
doubts caused by the small numbers which might arise, for example, when dealing with 
a very rare exposure. The exact procedures are also important when dealing with 
matched or finely stratified samples, as we shall see in Chapters 5 and 7. 

4.3 Approximate statistical inference for a 2 x 2 table 

The starting point for approximate methods of statistical inference is the normal 
approximation to the conditional distribution. When all four cell frequencies are large, 
the probabilities (4.2) are approximately equal to those of a continuous normal distri- 
bution whose mean A = A(q) is the value which a must take on in order to give an 
empirical or calculated odds ratio of 1C, (Hannan & Harkness, 1963). In other words, 
to find the asymptotic mean we must find a number A such that when A replaces a, 
.and the remaining table entries are filled in by subtraction 
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ml 
we have 

This is a quadratic equation, only one of whose roots yields a possible value for A in 
the sense that A, B, C and D are all positive. Under the special null hypothesis 
Ho : v = 1, the equation simplifies and we calculate 

which is also the mean of the exact distribution (4.4). The quantities A, B, C and D 
in (4.10) are known asfitted values for the data under the hypothesized v .  

Once A is found and the table is completed as in (4.10), the variance Var = Var(a;v) 
of the approximating normal distribution is defined in terms ~f the reciprocals of the 
fitted values 

When v = 1 this reduces to 

Var (a; + = 1) = nlnomlmo 
N3 7 

whereas the variance of the corresponding exact distribution is slightly larger 
. . . - -. . 

Using the 'approximating normal distribution in place of (4.2) leads to computationally 
feasible solutions to the problems outlined earlier. 

Estimation - 2 k c @ ' / "  
/ & ' f \ . V  

The a s  maximum likelihood estimate is obtained by substituting the asymp- 
totic mean A(p)  for the right-hand side of (4.5) and solving for p. This yields 

the observed or  empirical odds ratio, whose use in (4.11) leads to A(@) = a as 
required. It is reassuring that these somewhat abstract considerations have led to the 
obvious estimate in this simple case; in other more complicated situations the correct 
or "best" estimate is not at all obvious but may nevertheless be deduced from 
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analogous considerations. The empirical odds ratio is also the unconditional maximum 
likelihood estimate based on the two parameter product binomial distribution men- 
tioned earlier. 

Tests of significance 

Large sample hypothesis tests are obtained via normal approximations to the tail 
probabilities (4.6) and (4.7) of the discrete conditional distribution. Figure 4.1 illus- 
trates this process schematically. The appro'ximatin~continuous distribution is first 
chosen to have the same mean and variance as the discrete one. Probabilities for the 
continuous distribution are represented by areas under the smooth curve, and for the 
discrete distribution by the areas of the rectangles centred over each possible value. 
Thus the exact probability in the right tail associated with the observed value 8 consists 
of the sum of the areas of the rectangles over 8, 9 and 10. It is clear from the diagram 
that this is best approximated by taking the area under the continuous curve from 
71/2 to infinity. If we did not subtract from the observed value but instead took 
the area under the normal curve from 8 to infinity as an approximate p-value, we 
would underestimate the actual tail probability of the discrete distribution. More 
generally, if the values of the discrete distribution are spaced a constant distance A 
units apart, it would be appropriate to reduce the observed value by A before 
referring it to a continuous distribution for approximation of an upper tail probability. 
Similarly, in the lower tab, the observed value would be increased by A .  Such an 
adjustment of the test statistic is known as the continuity correction. 

Since the hypergeometric distribution takes on integral values, for the problem at 
hand A = 1. Thus the approximating tail probabilities may be written 

and 

where A and Var are the null mean and variance defined in (4.12) and (4.14), and 
@ is the cumulative of the standard normal distribution. For a one-tailed test we gener- 
ally report the upper tail probability, provided that the alternative hypothesis 11, > 1 
has been specified before the study or it was the only one plausible. Similarly, for a 
one-tailed test against V < 1  we report pL; however, for a two-tailed test, appropriate 
when the direction of the alternative cannot be specified in advance, we report twice 
the minimum value of pL and p,. 

A convenient way of carrying out these calculations is in terms of the corrected chi- 
square statistic1: 

( 1  a-A 1 -1/2)2 ( 1  ad-bc 1 -1/2N)2 (N-1) x2 =. - - 
Var %nlmoml 

N-1 is often replaced by N in this expression. 
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Fig. 4.1 Normal approximation to discrete probability distribution. Note that the 
discrete probabilities for the values 8, 9 and 10 are better approximated by 
the area under the normal curve to the right of 71/2 than by the area under 
the normal curve to the right of 8. 

= normal distribution from 7l/, to infinity 
= discrete probabilities for the values 8, 9, and 10. 

0 1 2 3 4 5 6 7 8 9 10 

Observed value 
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Referring this statistic to tables of percentiles of the chi-square distribution with one 
degree of freedom yields the approximate two-sided significance level, which may be 
halved to obtain the corresponding single-tail test. 

There is no doubt that the '/, continuity correction in (4.15) and (4.16) results 11 
in a closer approximation to the p-values obtained from the exact test discussed in the 
last section (Mantel & Greenhouse, 1968). Since the conditional distribution involves -- 
only the odds ratio ~ ~ . .  .. as a ---, parameter, ,-. --- .. - and-@~p~~mitsth.e.derivation . . - .. . . . of e ~ n t d ~ ~ & 7  

..+- -. . -. 
. .. .-. .. 

a m e e - E - - ' f o r  assessing-the .ev_irl_~~!!_ce_fifr-om._c_a~y.YgI\ie.~ , . s e t -~ f - .dg ,~~-~e -* -e~ -  
confidence intervak and significance tests..in unifkd_.manner,.. wcfwi~--it---K.-the-mest , 

I, fore r&i5mmenda-ihe ----- ----. '1 2 --.-- correction. ---.. This point, however, is somewhat controversial. 
S o m ~ i i f i o r s  argue that the exact test is inappropriate and show that more powerful 
tests can be constructed (for example, Liddell, 1978). These tests are not based on the 
conditional distribution, and their significance values are influenced by nuisance para- 
meters. 

It is important to recognize that when the sample is small we cannot rely on the 
asymptotic normal distribution to provide a reasonable approximation to the exact 
test. A general "rule of thumb" is that the approximations to significance levels in the 
neighbourhood of 0.05 or larger are reasonably good, providing that the expected 
frequencies for all four cells in the 2 x 2 tables are at least 5 under the null hypothesis 
(Armitage, 1971). These expectations may need to be considerably larger if p-values 
less than 0.05 are to be well approximated. For smaller samples, or when in doubt, 
recourse should be made to Fisher's exact test. 

Cornfield's limits 

Cornfield (1956) suggested that confidence intervals for the relative risk be obtained 
by approximating the discrete probabilities in (4.8) and (4.9). This leads to the equa- 
t ions 

and 

for the lower and upper limit, respectively. Here Za12 is the 100(1-a/2) percentile 
of the standard normal distribution (e.g., Z.,,, = 1.96), while A(v) and Var(a; I#) 
are defined by (4.11) and (4.13). Cornfield's limits provide the best approximation 
to the exact limits (4.8) and (4.9), and come closest to achieving the nominal spe- 
cifications (e.g., 95% confidence) of any of the confidence limits considered in this 
section (Gart & Thomas, 1972). Unfortunately the equations (4.17) are quartic equa- 
tions which must be solved using iterative numerical methods. While tedious to obtain 
by hand, their solution has been programmed for a high-speed computer (Thomas, 
1971). 

The rule of thumb used to judge the adequacy of the normal approximation to the 
exact test may be extended for use with these approximate confidence intervals 
(Mantel & Fleiss, 1980 . For 95% confidence limits, one simply establishes that the 
ranges A(qL) k 2 4- Var(a; qL) and A(vU) + 2VVar(a; vU) are both contained within 
the range of possible values for a. More accurate confidence limits are of course ob- I 
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tained if the mean and variance of the exact conditional distribution are substituted in 
(4.17) for A and Var; however, this requires solution of polynomial equations of an 
even higher order. 

Logit confidence limits 

A more easily calculated set of confidence limits may be derived from the normal 
approximation to the distribution of log $ (Woolf, 1955). This has mean log g9 and a 
large sample variance which may be estimated by the sum of the reciprocals of the 
cell entries 

1 1 1 1  Var(1og $) = - + - + - + - . 
a b c d  

Consequently, approximate lOO(1-a) % confidence limits for log V are 

which may be exponentiated to yield VL and VU. Gart and Thomas (1972) find that 
such limits are generally too narrqw, especially when calculated from small samples. 
Since log $ is t6e difference between two logit transformations (see Chapter 5), the 
limits obtained in this fashion are known as logit limits. 

Test-based confidence limits 

Miettinen (1976) has provided an even simpler and rather ingenious method for 
constructing confidence limits using only the point estimate and x2 test statistic. Instead 
of using (4. 18), he solves 

for the variance of log($), arguing that both left and right side provide roughly 
equivalent statistics for testing the null hypothesis I+LJ = 1. This technique is of even 
greater value in complex situations where significance tests may be fairly simple to 
calculate but precise estimates for the variance require more effort. 

Substituting the test-based variance estimate into (4.19) yields the approximate 
limits 

where $3 is raised to the power (1 k ZaI2 l~ ) .  Whether VL corresponds to the - sign in 
this expression and V, to the + sign, or vice versa, will depend on the relative magni- 
tude of and X. The x2 statistic (4.16), however, should be calculated without 
the continuity correction especially when $3 is close to unity, since otherwise the variance 
may be overestimated and the limits too wide. In those rare cases where $3 is exactly 
equal to unity, the uncorrected x2 is equal to zero and the test-based limits are con- 
sequently undefined. 
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Halperin (1977) pointed out that the test-based variance estimate is strictly valid 
only if II, = 1. When case and control sample sizes are equal (nl = no) the variance 
for other values of II, is systematically underestimated by this approach, the true average 
probability is less than the nominal 100(1-a)%, and the resulting confidence limits 
are too narrow (Gart, 1979). If there are large differences in the numbers of cases and 
controls, the true variance of log $ may sometimes be overestimated and the resulting 
limits will be too wide. Nevertheless the test-based limits may be advocated on the 
basis of their simplicity since they yield numerical results which are often in reasonable 
agreement with the other procedures and of sufficient accuracy for many practical 
purposes, at least when the estimated relative risk is not too extreme. They also provide 
convenient initial values from which to start the iterative solution of the equations 
for the more accurate limits, if these are desired. 

Example: We illustrate these calculations with data from the 2 x 2 table shown in fj 4.1. The (uncon- 
ditional) maximum likelihood estimate of the relative risk is: 

while the corrected x2  test statistic is 

corresponding to a two-sided significance level of p<0.0001. The uncorrected x2  is slightly larger at 
110.14. We use this latter value for determining the test-based 95 % confidence intervals. These are 

To calciilate the logit limits we need 

leading to limits for log I/J of log 5.65 +_ 1.96 x = 1.730 + 0.343, i.e., vL = 4.00 and = 7.95. 
By way of contrast, the Cornfield limits (4.17) yield vL = 3.94 and qU = 8.07. 

For these data the logit limits are wider than the test-based limits, reflecting the fact that the estimated 
odds ratio is far from unity and the test-based variance is therefore too small. Both the logit and the 
test-based limits are too narrow in comparison with Cornfield's limits, but the magnitude of the dis- 
crepancy is not terribly great from a practical viewpoint. To gauge the accuracy of the normal approxi- 
mation used to derive the Cornfield limits, following the procedure suggested by Mantel and Fleiss, we 
need to calculate the means and variances of the number of exposed cases under each of the two limits. 
The means are obtained as the solution for A = A(*) in the quadratic equations (4.11) 

for = vL and qU,  namely: 

corresponding to fitted frequencies of 
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and variance of 

and 

A(qu)  = A(8.07) = 107.48 

with fitted frequencies 

and variance of 

Var(a; yl = 8.07) = = 31.40. 

It is instructive to verify that the empirical odds ratios calculated from the fitted frequencies satisfy 

and 

respectively. The actual range of possible values for a is max(0,205-775) to min(200,205), i.e., (0,200). 
This is much broader than the intervals including two standard deviations on both sides of the fitted 
means 84.22 + 2-8 = (72.7, 95.7) and 107.48 +_ 2 m 0  = (96.3, 118.7). Hence there is little doubt 
about the accuracy of the normal approximation for these data. 

4.4 Combination of iesults from a series of 2 x 2 tables; control of confounding 

The previous two sections dealt with a special situation which rarely occurs in practice. 
We have devoted so much attention to it in order to introduce, in a simplified setting, 
the basic concepts needed to solve more realistic problems, such as those posed by the 
presence of nuisance or confounding factors. Historically one of the most important 
methods for control of confounding has been to divide the sample into a series of 
strata which were internally homogeneous with respect to the confounding factors. 
Separate relative risks calculated within each stratum are free of bias arising from 
confounding (8 3.4). 

In such situations one first needs to know whether the - association -- between exposure 
and disease is reasonably constant from itiafum to stratum~fslo~Tixtmmary measure 
of relative risk is required together with associated confidence intervals and tests of 
significance. If not, it is important to describe how the relative risk varies according 
to changes in the levels of the factors used for stratum formation. In this chapter we 
emphasize the calculation of summary measures of relative risk and tests of the 
hypothesis that it remains constant from stratum to stratum. Statistical models which 
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are particularly suited to evaluating and describing variations in relative risk are 
introduced in Chapters 6 and 7. 

Example continued: Since incidence rates of most cancers rise sharply with age, this must always be 
considered as a potential confounding factor. We have already noted that the Ille-et-Vilaine cases were 
on average about ten years older than controls (Table 4.1). If age were also related to alcohol consump- 
tion, this would indicate that confounding existed in the data and we would expect to see the age-adjusted 
relative risk change accordingly. We know from Table 4.2, however, that age and alcohol are not strongly 
correlated, so that in this case the confounding effect may be minimal. Nevertheless we introduce age- 
stratification in order to illustratethe basic process. 

Dividing the population into six 10-year age intervals yields the following series of 2 x 2 tables, whose 
sum is the single 2 x 2 table considered earlier (§ 4.1): 

Daily alcohol consumption 
80+ g 0-79 g 

Odds ratio 

25-34 Case 

Control 

Case 

Control 

Case 

Control 

Case 

Control 

Case 

Control 

Case 

Control 

Some 0 cells occur in the youngest and oldest age groups, which have either a s.vall number of cases or a 
small number of exposed. While these two tables do not by themselves provide much useful information 
about the relative risk, the data from them may nevertheless be combined with the data from other 
t,ables to obtain an overall estimate. There appears to be reasonable agreement between the estimated 
relative risks for the other four age groups, with the possible exception of that for the 65-74-year-olds. 

A full analysis of such a series of 2 x 2  tables comprises: (1)  a test of the null hypo- 
thesis that 11, = 1 in all tables; ( 2 )  point and interval estimation of I/J assumed to be 
common to all tables; and (3) a test of the homogeneity or no-interaction hypothesis 
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that ly is constant across tables. Of course if this latter hypothesis is rejected, the results 
from (1) and (2) are of little interest. In this situation it is more important to try to 
understand and describe the sources of variation in the relative risk than simply to 
provide a summary measure. 

The entries in the ith of a series of I 2 x 2 tables may be identified as follows: 

Exposed Unexposed 

Cases 

Controls 

Conditional on fixed values for the marginal totals nli, noi, moi in each table, the 
probability distribution of the data consists of a product of I non-central hypergeometric 
terms of the form (4.2). A completely general formulation places no restriction on 
the odds ratios vi in each table, but in most of the following we shall be working under 
the hypothesis that they are equal, vi = v. 

Summary chi-square: test of the null hypothesis 

Under the hypothesis of no association, the expectation and variance of the number 
of exposed cases ai in the ith table are: 

and 

respectively (see equations 4.12 and 4.14). If the odds ratio is the same in each table, 
we would expect the ai to be generally either larger (v > 1) or smaller (v < 1) than 
their mean values when v = 1. Hence an appropriate test is to compare the total Ziai 
of the exposed cases with its expected value under the null hypothesis, dividing the 
difference by its standard deviation. The test statistic, corrected for the discrete nature 
of the data, may be written 

This summary test was developed by Cochran (1954) and by Mantel and Haenszel 
(1959), with the latter suggesting use of the exact variances (4.22). Referring x2 to 
tables of the chi-square distribution with one degree of freedom provides two-sided 
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significance levels for evaluating the null hypothesis; these may be halved for a one-tail 
test. 

Mantel and Fleiss (1980) suggest an extension of the "rule of 5" for evaluating the 
adequacy of the approximation to the exact p-value obtained from the summary chi- 
square statistic. They first calculate the maximum and minimum values that the total 
number of the exposed cases Zai may take subject to fixed marginals in each of the 
contributing 2 x 2 tables. These are Zmin(mli,nli) for the maximum and Zmax(O,mli-noi) 
for the minimum, respectively. Provided that the calculated mean value under the null 
hypothesis ZAi(l) is at least five units away from both these extremes, the exact and \ 
approximate p-values should agree reasonably well for p's in the range of 0.05 and 1 
above. Similar considerations apply when evaluating the accuracy of the normal approxi- 
mation in setting confidence limits (see equation 4.27 below). Here the mean values f 
ZAi(v) calculated at the confidence limits and vU for the odds ratio should both ' 

be at least 2vZiVar(ai; v )  units away from the minimum and maximum values. 

Logit estimate of the common odak ratio1 

Woolf (1955) proposed that a combined estimate of the log relative risk be calculated 
simply as a weighted average of the logarithms of the observed odds ratios in each 
table. The best weights are inversely proportional to the estimated variances shown 
in (4.18). Thus the logit estimate Q1 is defined by 

zwi10g (2) 
log q, = 

z w i  

The variance of such an estimate is given by the reciprocal of the sum of the weights, 
namely 

While the logit estimate behaves well in large samples, where all cell frequencies in 
all strata are of reasonable size, it runs into difficulty when the data are thin. For one c-c 
thing, if any of the entries in a givsn tabKare 0, the log odas d t i o  anxweight for 
that table are not even defined. The usual remedy fortliis brobTern is to add 'I2 p ---.+ ----__-_ -__< 

each entry b e f o ~ ~ u 1 . a a ~ ~ v i d u a l  odds x o s  and weights (Gart & Zweifel, 
1967; ~ox,?670). However the estimate calculated in this fashion is subject to un- 
a c c e e b i a s  when combining information from large numbers of strata, each con- 
taining only a few cases or controls (Gart, 1970; McKinlay, 1978); thus it is not 
recommended for general use. 

: 'This and the following subsections may be omitted at a first reading as they discuss, for the.sake of 
completeness, estimates of the common odds ratio which are not used in the sequel. 
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Maximum likelihood estimate 

The maximum likelihood estimate (MLE) of the common odds ratio is found by 
equating totals of the observed and expected numbers of exposed cases: 

For the exact or conditional MLE the expectations E(ai) are calculated under the non- 
central hypergeometric distribution~ (4.2), which means solution of a high degree 
polynomial equation. While the computational burden is thus sufficient to rule out 
use of this estimate for routine problems, a computer programme is available for 
special circumstances (Thomas, 1975). Calculation of the variance of the conditional 7 ri' 
MLE requires the varGnce of the conditional distribution anaaccess to another com- \ " - 
puter programme (Zelen, 1971 ; Breslow, 1976). 

For the unconditional MLE, based on the distribution of all the data without assum- 
ing fixed margins for each 2 x 2 table, the expectations E(ai) in (4.25) are those of 
the approximating normal distributions. Thus the estimation procedure requires finding 
fitted frequencies for all the cells, as in (4.10), such that the total of the observed and 
fitted numbers of exposed cases agree (Fienberg, 1977). While iterative calculations 
are also required here, they are generally less arduous than for the exact estimate and 
do not become any more complicated when the numbers in each cell are increased. 
As discussed in 8 65, general durpose m t e r  programmes for fitting logi_stii regres- i .  1 
sion or log linear models may b e e t o  find-th-ditional MLE and estimates of 1 ' 

-/-- __-- - - -_ - -- - - -  -.- its variance. 
m e n  thGe are many strata, each containing small numbers of cases and controls, 
the unconditional MLE is biased in the sense of giving values for ly which are systemati- 
cally more extreme (further from unity) than the true odds ratio. Numerical results 
on the magnitude of this bias in some special situations are given in Chapter 7. While 
the conditional MLE is not subject to this particular problem, it may be computationally 
burdensome even when there is ready access to an electronic computer. Hence none 
of the estimates considered so far are sufficiently simple or free of bias to be recom- 
mended for general use by the non-specialist. 

The Mantel- Haenszel (M- H)  estimate 

Mantel and Haenszel (1959) proposed as a summary relative risk estimate the 
statistic 

/ 

which can be recognized as a weighted average of the individual odds ratios qi = (aidi)/ 
(bici), with weights bici/Ni which approximate the inverse variances of the individual 
estimates when is near 1. 

The Mantel-Haenszel (M-H) formula is not affected by zero cell entries and will 
give a consistent estimate of the common odds ratio even with large numbers of small 
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strata. When the data in each stratum are more extensive it yields results which are in 
good agreement with the MLEs (Gart, 1971; McKinlay, 1978). In view of its com- 
putational simplicity, it thus appears to be the ideal choice for the statistician or epidemi- 
ologist working with a pocket calculator on tabulated data. Its only major drawback 
is the lack of a robust variance estimate to accompany it. 

Approximate confidence intervals 

Exact confidence limits for this problem are discussed by Gart (1971) and have 
been programmed by Thomas (1975). Since their calculation is quite involved, however, 
we limit our discussion to the three types of approximate limits considered for the 
single 2 x 2 table. Following the same line of reasoning used to derive the Cornfield 
limits (4.17), normal approximations to the exact upper and lower 100(1-a)% con- 
fidence bounds are obtained as the solution of . 

and 

respectively. Since Ai(tp) and Var(ai; p )  are defined as in (4.11) and (4.13), the 
calculation requires iterative solution of a series of quadratic equations (Thomas, 1975). 
The approximation is improved by use of the exact means and variances in place of 
the asymptotic ones. Though this requires even more calculation, use of the exact 
(conditional) moments is especially important when the number of strata is large 
and the data thin. 

The logit limits are more easily obtained with a pocket calculator. These are defined 

I I 
by 

where $3 is the logit estimate and the wi are the associated weights (4.24). Problems 
can be anticipated with their use in those same situations where the logit estimate has 
difficulties, namely when stratification becomes so fine that individual cell frequencies 
are small. 

Miettinen's test-based limits require only a point estimae and te&ssst ic .  We 
recommend use of the M-H estimate for this purpose, and also use of the uncorrected 
version of x2. Thus , 
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For reasons discussed in the previous section, these test-based limits become less 
accurate when the estimated relative risk is far from unity. They should not, however, 
be subject to the same tendency to increasing bias with increasing stratification as is 
the case with the logit limits. 

Test for homogeneity of the odds ratio 

All the procedures discussed so far in this section have been developed under the 
hypothesis that the odds ratio is constant across strata. If this were not the case, and a 
particular stratum had an odds ratio which was much larger than average, then we 
would expect the observed number of exposed cases ai for that stratum to be larger 
than the expected number Ai(@) based on the overall fitted odds ratio. Similarly, if 
the stratum odds ratio were small, we would expect ai to be smaller than Ai(@). Thus 
a reasonable test for the adequacy of the assumption of a common odds ratio is to 
sum up the squared deviations of observed and fitted values, each standardized by its 
variance : 

If the homogeneity assumption is valid, and the size of the sample is large relative to the 
number of strata, this statistic~follows an approximate chi-square distribution on 1-1 
degrees of freedom. While this is true regardless of which estimate @ is inserted, use . . 
of the uncon-E has the advantage of making the total deviation Zi{ai-Ai(@)) 
zero. The statistic (4.30) is then -------I------- a special case of the chi-squ_are_ goodness of fit statistic 
for logistic models (§ 6.5); however, the M-H estimate also gives quite satisfactory 
res&.- - 

Unfortunately the global statistic (4.30) is not as useful as it may seem at first sight. 
If the number of strata is large and the data thin t, the distribution of the 
statistic may not approximate z o m i  nder the hypothesis of 
homogeneity. This is precisely the situation where the uncondjti~nal - &E breaks __-. 
down. More importantly, even where it is valid the statistic may lack power against 
alternatives of interest. Suppose, for example, that the I strata correspond to values xi 
of some continuous variable such as age and that the observed odds ratios systematically 
increase or decrease with advancing age. Such a pattern is completely ignored by the 
global test statistic, which is unaffected by the order of the strata. In such situations 
one should compute instead 

referring its value to tables of chi-square with one degree of fteedom for a test of trend 
in pi with xi. If the x's are equally spaced, a continuity correction should be applied 
to the numerator of this statistic before squaring. Additional tests for trends in relative 
risk with one or several variables-are easily carried out in the context of the modelling 



ANALYSIS OF GROUPED DATA 143 

approach. (In fact E4.311 is the "score" statistic for testing /3 = 0 in the model log 
pi = a +@xi. [See 5 6.4, especially equation 6.18, and also 5 6.12.1) 

In a similar context, suppose the I strata can be divided into H groups of size 
I = I, + I2 + .. . +IH, and that we suspect the odds ratios are homogeneous within 
groups but not between them. Then, in place of the statistic (4.30) for testing overall 
homogeneity, we would be better advised to use 

where the notation Z denotes summation over the strata in the hth group. This 
statistic will be chi-s{kare with only H-1 degrees of freedom under the homogeneity 
hypothesis, and has better power under the indicated alternative. 

An alternative statistic for testing homogeneity, using the logit approach, is to take 
a weighted sum of the squared deviations between the separate estimates of log relative 
risk in each table and the overall logit estimate log Q,. This may be written 

where the Qi denote the individual odds ratios and wi the weights (4.24), both calculated 
after addition of to each cell entry. While this statistic should yield similar values 
to (4.30) when all the individual frequencies are large, it is even more subject to 
instability.with thin data and is therefore not recommended for general practice. 

Some other tests of homogeneity of the odds ratio which have been proposed are 
incorrect and should not be used (Halperin et al., 1977; Mantel, Brown & Byar, 1977). 
As an example we should mention the test obtained by adding the individualx2 statistics 
(4.16) for each table and subtracting the summary x2 statistic (4.23) (Zelen, 1971). 
This does not have an approximate chi-square distribution under the hypothesis of 
homogeneity unless all the odds ratios are equal to unity. 

Example continued: Table 4.3 illustrates these calculations for the data for six age groups relating 
alcohol to oesophageal cancer introduced at the beginning of the section. The summary xZ statistic (4.23) 
for testing p = 1 is obtained from the totals in columns (2), (3) and (4) as 

which yields an equivalent normal deviate o f x  = 9.122, ptO.OOO1. This is a slightly lower value than that 
obtained without stratification for age. Following the suggestion of Mantel and Fleiss (1980) for evaluat- 
ing the adequacy of the normal approximation, we note that the minimum possible value for Zai con- 
sistent with the observed marginal totals is 0, while the maximum is 167, and that both extremes are 
sufficiently distant from the null mean of 48.890 to permit accurate approximation of p-values well 
below 0.05. 

The logit estimate of the common odds ratio is calculated from the totals in columns (5) and (6) as 
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Similarly, from columns(7) and (8) we obtain. the M-H estimate 

By way of contrast, the coq&tional and a s y a o t i c  (unconditional) maximum likelihood estimates for 
this problem are ? l C o n d  = 5.251 and = 5.312, respectively. These numerical results confirm the tendency - 
for the '1, correction used wlth the logit estimate to result in some bias towards unity, and the opposite 
tendency for the estimate based on unconditional maximum likelihood. However, since the cell frequencies 
are of reasonably good size, except for the most extreme age groups, these tendencies are not large and 
all four estimates agree fairly well. 

In practice one would report the estimated odds ratio with two or three significant digits, e.g., 5.2 or 
5.16 for I),,. We have used more decimals here simply in order to illustrate the magnitude of the dif- 
ferences between the various estimates. 

Ninety-five percent logit confidence limits, starting from the logit estimate, are I 

log pulpL = 1.614 f 1.961- 

pL = exp(1.614-0.369) = 3.47 

However, since we know the logit point estimate is too small, these are perhaps best centered around 
-. 3. ' log gmh instead, yielding . r' 

->:. -c- 

pL = 5.158 x exp(-0.369) = 3.57 
pu = 5.158 x exp(0.369) = 7.46. 

Test-based limits centred about the M-H estimate are computed from (4.29) as 

where x = 9.220 = -1 is the uncorrected test statistic, rather than the corrected value of 9.122. 
These limits are noticeably narrower than the logit limits. By way of contrast the Cornfield (4.27) limits 
pL = 3.60 and p, = 7.84, while yielding a broader interval (on the log scale) than either the logit or 
test-based limits, show the same tendency towards inflated values as does the unconditional maximum 
likelihood estimate. Thus, while all methods of calculation provide roughly the same value for the lower 
limit, namely 3.6, the upper limit varies between about 7.3 and 7.8. 

In order to carry out the test for homogeneity we need first to find fitted values (4.11) for all the cell 
frequencies under the estimated common odds ratio. Using the (unconditional) MLE $,, = 5.312, we 
solve for A in the first table via 

which gives A(5.312) = 0.328. Fitted values for the remaining cells are calculated by subtraction, so as 
to yield a table with precisely the same marginal totals as the observed one, viz: 

The variance estimate (4.13) is then 

1 +-+- Var (ai; I$ = 5.312) = - + 
(0.328 0.672 9.672 105.328 

= 0.215. 
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Table 4.3 Combination of data from a series of 2 x 2 tables 

(1) (2) 
Stratum Data 
(age in 
years) 

(3) (4) (5) (6) (7) (8) (9) (1 0) 
Test of null Log it Mantel-Haenszel Test of 
hypothesisa estimateb estimate homogeneityc 

nl 

m, m, N A(1) '41) log ~j w 
ad - bc - 
N N A($) V(Ij) 

Totals 200 48.890 26.106 45.60gd 28.261 58.439 11.330 96.000 27.819 
(except 
as 775 
noted) 

205 770 975 

"Mean A( l )  and variance V(l) of a under yD = 1 from (4.12) and (4.14) 
Log relative risk estimates and weights from (4.24); '1, added to each cell 

'Mean and variance from (4.11) and (4.13) for @ = @,,, the unconditional MLE (4.25) 
dSum of log @ weighted by w 
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These values are listed at the head of columns (9) and [ lo)  of Table 4.3; subsequent entries are cal- 
culated in precisely the same fashion for the other 2 x 2 tables. Thus the homogeneity chi-square (4.30) 
becomes 

which when referred to tables of chi-square on 1-1 =5  degrees of freedom yields p = 0.10. 
Notice that the total of the fitted values A($) in column (9) of Table 4.3 is precisely equal to the 

observed total, namely 96. In fact this relation is the defining characteristic of the unconditional MLE (see 
equation 4.25). If the fitted values are obtained instead from the M-H estimate, $,, = 5.158, they total 
95.16 and give a value 9.28 to the homogeneity chi-square, very close to that already obtained. Thud 
it is perfectly feasible to carry out the test for homogeneity without having recourse to an iteratively 
computed estimate. 

The alternative logit test statistic for homogeneity (4.33) is calculated as 0.360(3.515)' + 2.233(1.625)' + 
. . . + 0.429(3.708)'- (45.609)2/28.261 = 6.93 (p=0.23). The reason this takes a smaller value is that 
for the extreme age categories, which contribute the most to the homogeneity chi-square, the addition 
of '1, to  the cell frequencies brings the odds ratios closer to the overall estimate. 

Neither version of the formal test thus provides much evidence of heterogeneity. However, since the test 
lacks power it is important to continue the analysis by searching for patterns in the deviations between 
observed and fitted values which could indicate some sort of trend in the odds ratios. Certainly there is 
no obvious linear trend with age. This may be confirmed by assigning "dose" levels of xl = 1, x2 = 2, 
..., x6 = 6 to  the six age categories and computing the single degree of freedom chi-square for trend (4.31). 
We first need the intermediate quantities 

from which we may calculate the test statistic 

When referred to tables of chi-square on one degree of freedom, this gives p = 0.58, i.e., no evidence 
for a trend. 

4.5 Exposure at several levels: the 2 x K table 

The simple dichotomization of a risk variable in a 2  x 2 table with disease status 
will often obscure the full range of the association between exposure and risk. Qualita- 
tive exposure variables may occur naturally at several discrete levels, and more informa- 
tion can be obtained from quantitative variables if their values are grouped into four 
or five ordered levels rather than only two. Furthermore, this is the only way one can 
demonstrate the dose-response relationship which is so critical to the interpretation of 
an association as causal ( 5  3.2). Hence there is a need for methods of analysis of 
several exposure levels analogous to those already considered for two levels. 

Unstratified analysis 

Suppose that there' are K>2 levels of exposure and that the subjects have been 
classified in a single 2  x K  table relating exposure to disease: 
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Exposure level 
1 2 ... K Totals 

Controls 

Totals ml m2 ... m~ N 

The usual approach to data analysis in this situation i s  to choose one exposure level, 
say level 1, as a baseline against which to compare each of the other levels using the 
methods already given for 2 x 2 tables. In this way one obtains relative risks rl = 1, 
r2, r3, ..., r~ for each level, confidence intervals for these relative risks, and tests of 
the hypothesis that they are individually equal to unity. 

To aid the interpretation of the results of such a series of individual tests, some of 
which may 'reach significance and others not, it is helpful to have available an overall 
test of the null hypothesis that the K relative risks rk are all simultaneously equal to 
unity, i.e., that there is no effect of exposure on disease. Under this hypothesis, and 
conditional on the marginal totals nl, no, ml, . -. . -- ., . m ~ ,  the numbers of cases exposed at 
the kth level h a v m e  expectations --- 

variances 

and covariances (k # h) 

of the K-dimensional hypergeometric distribution. The test statistic itself is the usual 
one for testing the homogeneity of K proportions (Armitage, 1971), namely 

which may be referred to tables of chi-square on K-1 degrees of freedom1. 
When the levels of the exposure variable have no natural order, as for a genetic 

polymorphism, this approach can be taken no further. However, for quantitative or 
ordered qualitative variables the overall chi-square wastes important information. 
A more sensitive way of detecting alternative hypotheses is to test for a trend in 

The leading term p$)is often ignored. 
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disease risk with increasing levels of exposure. Suppose that there are "doses7' xk 
associated with the various levels of exposure, where we may simply take xk = k for 
an ordered variable. An appropriate statistic for testing trend is to consider the regres- 
sion of the deviations (ak-ek) on xk (Armitage, 1955; Mantel, 1963). When squared 
and divided by its variance this becomes 

which should be referred to tables of chi-square on one degree of freedom. If the xk 
are spaced one unit apart, as in the case of xk = k, an appropriate correction for con- 
tinuity is to reduce the absolute value of the numerator term 2xk(ak-ek) by before 
squaring. Estimation of the quantitative trend parameter is best discussed in terms of 
the modelling approach of Chapter 6. 

Adjustment by stratification 

Confounding variables may be incorporated in the analysis of 2 x K tables by stra- 
tification of the data just aspdescribed in 8 4.4 for a 2 x 2 table. The frequencies of 
cases and controls classified by exposures for the ith of I strata are simply expressed 
by the addition of subscripts to the entries in (4.34): 

Stratum i Exposure level 
1 2 . . . K Totals 

Cases 

Controls 

Totals mli m2i . . . mKi Ni 

Methods for analysis of a series of 2 x 2 tables may be used to estimate the adjusted 
relative risk for each level of exposure relative to the designated baseline level, to put 
confidence limits around this estimate, to test the significance of its departure from 
unity, and to test whether it varies from stratum to stratum. A peculiarity which results 
from this procedure when there is more than one 2 x K table is that the estimated 
relative risks may not be consistent with each other. More precisely, if rzl is the sum- 
mary estimate of the odds ratio comparing level 2 with level 1, and r3i the summary 
measure for level 3 compared with level 1, their ratio r31/r21 is not algebraically identical 
to the summary odds ratio r32 comparing level 3 with level 2. This problem does not 
arise with a single table, since it is true for this case that 
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Nor will it arise with a series of tables in which the relative risks comparing each pair 
of levels are the same from table to table. Therefore, inconsistency can be regarded as 
a particular manifestation of the problem of interaction (see 3 5.5). Recourse must , 
be made to the methods in Chapters 6 and 7 in order to have adjusted estimates of 
relative risk which display such consistency, and for general tests of interaction. Other- 
wise one is well advised to use as baseline category the one which contains the most 
information, i.e., the k such that the sum of the reciprocals of the numbers of cases and 
controls, 

is a minimum. 
The generalization to stratified data of the statistic (4.38), which tests the global 

null hypothesis, is somewhat more complicated as it involves matrix manipulations 
(Mantel & Haenszel, 1959). Let us denote by ei the K-1 dimensional vector of expecta- 
tions ei = E(ai) = E(ali, . . ., a ~ - ~ , ~ )  of numbers of cases exposed to each of the first K-1 
levels in the ith stratum, and by Vi the corresponding K-1 XK-1 dimensional 
covariance matrix. These are calculated as in formulae (4.35), (4.36), and (4.37) 
with the addition of i subscripts to all terms. Let e. = ,Yei, V. = 2Vi ,  and a. = ,Yai denote 
the sums of these quantities cumulated over the I strata. Then the global null hypo- 
thesis that there is no effect of exposure on disease, after adjustment by stratification, 
may be tested by referring the statistic 

to tables of chi-square with K-1 degrees of freedom. This reduces to (4.38) if I = 1, 
i.e., there is only a single stratum. 

Calculation of this statistic requires matrix inversion, and while perfectly feasible to 
perform by hand for small values of K (say K=3 and 4), it becomes more difficult for 
larger values. Various approximate statistics have therefore been suggested (Armitage, 
1966). One conservative approximation, which always yields values less than or equal 
to those of (4.41), is given by 

Unfortunately, the difference between (4.42) and (4.41) increases as the distributions 
of exposures among the combined case-control sample in each stratum become more 
disparate, which is one situation in which stratification may be important to reduce bias 
(Crowley & Breslow, 1975). 

The statistic for the adjusted test of trend which generalizes (4.39) is more easily 
obtained as 
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Here the numerator term represents the regression of the x's on the differences be- 
tween the total observed and expected frequencies, while the denominator is its variance 
under the null hypothesis (Mantel, 1963). This statistic also should be referred to 
tables of chi-square with one degree of freedom, and a continuity correction applied 
to the numerator if the x, values are equally spaced. 

Example continued: As an illustration of the analysis of the effects of a risk factor taking on several 
levels, Table 4.4 presents data from Ille-et-Vilaine with alcohol consumption broken down into four levels 
rather than the two shown in 5 4.1. Relative risks are calculated for each level of consumption against a 
baseline of 0-39 glday as the empirical odds ratio for the corresponding 2 x 2 table. Each of these is 
individually highly significant as judged from the x2 test statistics, all of which exceed the critical value of 
15.1 for significance at the p = 0.0001 level. Moreover, there is a clear increase in risk with increasing 
consumption. The confidence limits shown are those of Cornfield. It is perhaps worth remarking that the 
test-based limits are in better agreement with those for the lower levels (e.g., 2.29-5.57 for 40-79 glday) 
than for the higher ones (16.22-45.92 for 120+ glday), as would be expected in such a-situation with a 
trend of risk. 

While there is no doubt regarding the statistical significance of the observed differences in risk, and 
in particular the trend with increasing consumption, we nevertheless compute the chi-square test statistics 
(4.38) and (4.39) for pb?poses of illustration. The first step is  the calculation of the table of expected 
values under the null hypothesis, 

Table 4.4 Distribution of alcohol consumption for cases and controls: relative risks and confidence 
limits for each level, with and without adjustment for age 

Cases 

Controls 

~ l c o h o l  consumption (glday) 
0-39 40-79 80-1 19 120+ 

Totals 41 5 355 138 67 

Unadjusted analysis 
RR (p) 1 .O 3.57 7.80 27.23 
x2 - 31.54 72.77 156.1 4 

95% confidence limit - 2.21-5.77 4.54-13.46 13.8-54.1 8 

Global test of H,: XS = 158.8 Test for trend: X: = 151.9 

Adjusted for age 
RR (4'mh) 1 .O 4.27 8.02 28.57 . 
RR ($,I) 1 .O 4.26 8.02 37.82 
x - 36.00 57.1 5 135.49 
95% confidence limit - 2.56-7.1 3 4.37-1 4.82 16.69-87.73 
Test for 
homogeneity f.Xj) 6.59 6.69 10.33 

Totals 

200 

775 

975 

Global test of H,: ~3 = 141.4 Test for trend: X: = 134.0 
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Alcohol consumption (g/day) 
0-3 9 4 0-7 9 80-1 19 120+ Totals 

Cases 

Controls 

Totals 415.00 355.00 138.00 67.00 975.00 

where the first row consists of the expected values e, for cases and the second consists of the expected 
values mkXk for controls. Thus, for example, 

and ml-el = 415-85.13 = 329.87. Note that the row and column totals of the observed and expected 
values agree. We then have from (4.38) 

which would normally be referred to tables of chi-square with three degrees of freedom. 

Table 4.5 Distribution of alcohol consumption for cases and controls: in six age strata 

Alcohol consumption (gtday) 
0-39 40-79 80-1 19 120+ Total 

25-34 
Cases 
Controls 
Total 

35-44 
Cases 
Controls 
Total 

45-54 
Cases 
Controls 
Total 

55-64 
Cases 
Controls 
Total 

65-74 
Cases 
Controls 
Total 

75 + 
Cases 
Controls 
Total 
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In calculating the chi-square for trend (4.39) we assign "doses" of x, = 0, x, = 1, x, = 2, and x, = 3 
to the four consumption levels, this assignment being justified on the grounds that the levels are more or 
less equally spaced. This yields 

Hence most of the heterogeneity represented in the three degrees of freedom chi-square is "explained" 
by the linear increase in risk with dose. 

[n order to adjust these results for the possible confounding effects of age, we again stratify the popula- 
tion into six strata as shown in  Table 4.5. Adjusted estimates of relative risk (Table 4.4) are obtained 
from the series of six 2 x 2 tables comparing'each level with baseline, using the techniques already de- 
scribed in 5 4.3. Since there was little correlation between age and alcohol consumption in the sample, and 
hence little confounding, the adjusted and unadjusted estimates do not differ much. If we calculate directly 
the relative risks for 120+ g/day versus 40-79 g/day using the series of six corresponding 2 x 2 tables 
we find a M-H summary odds ratio of t),, = 8.71 and MLE of t),, = 9.63. Neither of these agrees with 
the ratio of estimates for those two levels relative to 0-39 g/day shown in the table, i.e., 28.57/4.27 = 
6.69 and 37.82/4.26 = 8.88, respectively. As mentioned earlier, the only way to achieve exact consistency 
among the summary measures is to build it into a modelling approach (Chapters 6 and 7). 

The tendency of the unconditional MLE towards inflated values with thin data is evident for the 
120 g/day category; in this case the conditional MLE is t),,,d = 34.90. Adjustment results in slightly 
less significant chi-squares and wider confidence limits, in accordance with the idea that "unnecessary" 
stratification leads to a slight loss of information or efficiency (5 7.6). There is some evidence that the 

Table 4.6 Expectations and covariances under the null hypothesis for the data in Table 4.5 

Age Expected number of cases by level of alcohol (glday) Covariance matrixa 
(years) 0 3 9  40-79 80-1 19 120+ 0 3 9  40-79 80-1 19 

34.17 -20.34 
Totals 81.59 69.54 33.36 15.52 32.63 

-9.41 -8.40 19.68 

'The final row and column of this matrix, corresponding to the fourth level of 120+ glday, are not shown as they are not needed 
for the subsequent calculations. They could be obtained from the fact that the sum of the matrix elements over any row or column is 
zero. 



ANALYSIS OF GROUPED DATA 153 

relative risk for the highest consumption level may vary with age, but the chi-square of 10.33 on five 
degrees of freedom does not quite attain nominal significance at p = 0.05, and considerable doubt exists 
as to the true significance level because of the small numbers in some tables. There is no evident trend 
in the relative risk with increasing age. 

Expected values and covariances for the exposure frequencies of the cases within each stratum, cal- 
culated according to formulae (4.35)-(4.37), are presented in Table 4.6. For example, in the second 
stratum we have 

and 

The cumulated vector of expected exposures e. and covariance matrix V, are shown at the bottom of the 
table. 

The adjusted global test (4.41) of the null hypothesis is calculated from the total observed values shown 
in Table 4.4 and the totals shown at the bottom of Table 4.6 as 

where the 3 x 3 matrix is the inverse of the cumulated covariance matrix. To  find the conservative 
approximation to this we compute from (4.42) 

(29-81.59)2 

In calculating the adjusted single degree of freedom test for trend (4.43), we first find the denominator 
terms 



and then use these in 
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The test statistics are little affected by the adjustment process in this particular example, and the trend 
continues to account for the major portion of the variation'. 

Table 4.7 presents a summary of the results for tobacco analogous to those for alcohol shown in Table 4.4. 
While there is a clear association between an increased dose and increased risk, the relationship is not as 
strong as with alcohol nor does the linear trend component account for as much of it. In this case 
adjustment for age appears to increase the strength of the association, especially for the highest exposure 
category. 

Table 4.7 Distribution of tobacco consumption for cases and controls: relative risks and confidence 
limits for each level, with and without adjustment for age 

Cases 

Controls 

Tobacco consumption (g/day) 
0-9 10-1 9 20-29 30' Total 

200 

Total 525 236 132 82 975 

Unadjusted analysis 
RR ($) 1 .O 1.87 1.91 3.48 
x 9.81 7.01 23.78 
95% confidence limit 1.25-2.78 1.1 73.1 1 2.03-5.96 

Global test of H,: Xt = 29.3 Test for trend: X: = 26.9 

Adjusted for age 
RR ($,,I) 1 .O 1.83 1.98 6.53 
RR ($,I) 1 .O 1.85 1.99 6.60 
Xz 8.29 6.76 37.09 
95% confidence limit 1.21-2.82 1.183.37 3.33-13.14 

Global test of H,: Xt = 39.3 Test for trend: X: = 34.2 

4.6 Joint effects of several risk factors 

By defining each exposure category as a particular combination of factor levels, 
these same basic techniques can be used to explore the joint effects of two or more 
factors on disease risk. Relative risks are obtained using as baseline the category corre- 
sponding to the combination of baseline levels of each individual factor. Summary 
estimates of relative risk for one factor, adjusted for the effects of the others, are 

' N.B. Since the intermediate results shown here are given only to two significant figures, whereas the 
exact values were used for calculation, some slight numerical discrepancies may be apparent when the 
reader works through these calculations himself. 
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obtained by including the latter among the stratification variables. Rather than attempt 
a discussion in general terms, details of this approach are best illustrated by a.continua- 
tion of our analysis of the Ille-et-Vilaine data. 

Example continued: The joint distribution of alcohol and tobacco consumption among cases and con- 
trols is shown in Table 4.8. Using the 0-9 g/day tobacco and 0-39 glday alcohol categories as baseline, 
relative risks for each of the 15 remaining categories were obtained after stratification of the population 
into six age groups (Table 4.9). One of the difficulties of this method is that, as the data become more 
thinly spread out, an increasing fraction of the 2 x 2 tables from which the relative risks are calculated have 
at least one zero for a marginal total. This means that more and more data are effectively excluded from 
analysis since such tables make absolutely no contribution to any of the summary relative risk estimates 
or  test statistics considered earlier. For example, only three out of the six tables contrasting the 30+ g/day 
tobacco, 120+ g/day alcohol exposure with the baseline level, namely those for the 45-54, 55-64 and 
65-74 year age groups, were actually used to calculate the summary risk measure of 240.63. The remain- 
der had at least one zero in a marginal total. This may explain the notable difference between the age- 
adjusted estimate and the crude relative risk estimate of (lox 252)/(3 x 9) = 93.33. It is never- 
theless apparent that people in this category of high alcohol/high tobacco consumption are at exceptional 
risk. 

Table 4.9 shows a clear trend of increased risk with increased alcohol consumption within each tobacco 
category and likewise a trend with tobacco for each alcohol. level. As neither of these variables accounts 
for the effects of the other, we say that they operate independently in producing their effects. Evidence for 
the lack of confounding in this instance comes from comparing the relative risks for alcohol which are 
simultaneously adjusted for age and tobacco (margin of Table 4.9) with those adjusted for age only 
Table 4.4). There is good agreement except perhaps for the highest level, where tobacco adjustment 
reduces the Mantel-Haenszel estimate from 28.6 to 22.8. Likewise the tobacco risks adjusted for alcohol 
and age do not depart greatly from those adjusted for age only (Table 4.7). Of course in other situations 
there may be risk factors which are partially confounded, some of their effect being due to the association 
with the other factor and some independent of it; and if there is complete confounding the effects of 
one may disappear after adjustment for the other. 

Table 4.8 Joint classification of cases and controls by consumption of alcohol and tobacco 

Alcohol Tobacco (glday) 
(&day) 0-9 10-19 20-29 30 + 

Cases Controls Cases Controls Cases Controls Cases, Controls 

0-39 9 252 10 74 5 35 5 23 
40-79 34 145 17 68 15 47 9 20 
80-1 19 19 42 19 30 6 10 7 5 
120+ 16 8 12 6 7 5 10 3 

Table 4.9 Age-adjusted relative risks for joint exposure to alcohol and tobacco 

Alcohol 
(glday) 

Tobacco (glday) Adjusted for 
0-9 10-19 20-29 30+ tobacco 

- - - 

0-39 1 .O 3.90 4.17 9.44 1 .O 
40-79 8.18 8.63 10.57 52.47 4.05 
80-1 19 12.94 13.88 17.97 155.62 7.49 
120+ 51.45 67.21 108.66 240.63 22.80 
Adjusted for alcohol 1.0 1.51 1.56 8.10 
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Computation of each of the simultaneously adjusted estimates shown in the margins of Table 4.9 in- 
volved the summarization of 24 2 x 2 tables, although many of these are omitted from the calculation 
because of zero marginals (for example, only 12 tables were used in the estimation of the relative risk 
of 8.10 for the highest tobacco level). Implicit in this calculation is the assumption that the odds ratios are 
constant over those tables being summarized, i.e., that the relative risks for tobacco do not depend on 
alcohol or age, while those for alcohol are independent of tobacco. Thus the relative risks shown in the 
margin of Table 4.9 are those obtained under the multiplicative hypothesis that the joint effect of alcohol 
and tobacco on incidence is the product of their individual effects ( 5  2.6). Smoothed estimates of the 
relative risks for the combined categories under the multiplicative model are obtained by multiplying 
together the summary relative risks for each factor adjusting for the other. Thus the smoothed estimate 
for the 40-79 g/day alcohol, 10-19 g/day tobacco category is 1.51 x 4.05 = 6.12, compared with the 
individual cell estimate of 8.63. 

Although we have shown that the method of stratification can be used to study the 
joint effects of two or more risk factors, it is not, in fact, well suited to this task. Com- 
putations become burdensome to perform by hand because so many strata must be 
created. Spreading the data out thinly may result in the loss of a large part of it from 
analysis. Hence, such multivariate analyses are best carried out using the regression 
models of Chapters 6 and 7, which permit a more economic, systematic and quantitative 
description of the effects of the several factors and their interactions. 
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LIST OF SYMBOLS - CHAPTER 4 (in order of appearance) 

V odds ratio (approximate relative risk) 
a number of exposed cases 
b number of unexposed cases 
c number of exposed controls 
d number of unexposed controls 
nl number of cases (subtotal) 
no number of controls (subtotal) 
ml number of exposed (subtotal) 
mo number of unexposed (subtotal) 
N total number of cases and controls 
PI probability of disease development for exposed 
Po probability of disease development for unexposed 
PI probability of exposure for a case 
Po probability of exposure for a control 

the null hypothesis that exposure has no effect on risk (q = 1) g) binomial coefficient (see p. 125); there a r e ( 9  ways of choosing u 
objects from nrobjects 

p r (  ) the probability of an event ( ) 
1) the probability of one event conditional on another 

@ cond conditional maximum likelihood estimate of the common odds ratio 
E d )  expectation of one random variable conditional on the values of another 
H a statistical hypothesis regarding the value of some parameter, for 

example q = qo 
PL lower tail probability or p-value 
Pu upper tail probability or p-value 
PL lower confidence limit on the odds ratio 
Pu upper confidence limit on the odds ratio 
a size of a statistical test, predetermined significance level such that if 

the p-value falls below a one rejects the hypothesis 
A = A(q) expected number (asymptotic) of exposed cases when marginal totals 

of the 2 x 2 table are fixed, when the true odds ratio is q ;  fitted value 
for number of exposed cases when the true odds ratio is q 

B, C ,  D fitted values for remaining entries in the 2 x 2 table 
Var=Var(a;~)  variance (asymptotic) of the number a of exposed cases when the 

marginal totals of the 2 x 2 table are fixed and the true odds ratio is q 
@ an estimate of the odds ratio 
A distance between adjacent observations of a discrete distribution 

(assumed constant) 
@ cumulative distribution function of the standard normal distribution,. 

e.g., @(-1.96) = 0.025, Q(1.96) = 0.975 
1x1 absolute value of a number x; the positive part of x; 13 1 = 1-3 1 

= 3 
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Cov(x7y) 
Var (x) 
ei 

the 100(1-a/2) percentile of the standard normal distribution: 
@(&/2) = 1 4 2  
the natural logarithm; log to the base e 
a statistic which has (asymptotically) a chi-square distribution under 
the null hypothesis 
the square root of ax2 statistic 
subscript added to denote the ith stratum, e.g., ai = number of exposed 
cases in the ith stratum, qi odds ratio in ith stratum, etc. 
"logit" estimate of the common odds ratio in a series of 2 x 2 tables 
weights associated with the logit estimate in the ith stratum 
(unconditional) maximum likelihood estimate (MLE) of the odds 
ratio 
Mantel-Haenszel (M-H) estimate of the common odds ratio in a 
series of 2 x 2 tables 
number of cases exposed to level k of a polytomous factor 
number of controls exposed to level k of a polytomous factor 
number of subjects (cases + controls) exposed to level k of a polyto- 
mous factor 
expected number of cases exposed to level k under the null hypothesis 
and assuming fixed marginals in a 2 x K table 
covariance between two variables x and y 
variance of a variable x 
vector of expected values of the numbers of cases exposed to the first 
K-1 levels of a polytomous factor in the ith stratum 
variance-covariance matrix of the numbers of cases exposed to the 
first K-1 levels of a polytomous risk factor in the ith stratum 
denotes summation over the subscript which it replaces; e.g., for the 
doubly subscripted array {aki), ak. = Zliaki = akl + . . . + akl 
a statistic which has (asymptotically) a chi-square distribution with v 
degrees of freedom under the null hypothesis 


