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Data Analysis Using Stein's Estimator 
and Its Generalizations 

BRADLEY EFRON and CARL MORRIS* 

In 1961, James and Stein exhibited an estimator of the mean of a multi- 
variate normal distribution having uniformly lower mean squared error 
than the sample mean. This estimator is reviewed briefly in an 
empirical Bayes context. Stein's rule and its generalizations are then 
applied to predict baseball averages, to estimate toxomosis prevalence 
rates, and to estimate the exact size of Pearson's chi-square test with 
results from a computer simulation. In each of these examples, the 
mean square error of these rules is less than half that of the sample 
mean. 

1. INTRODUCTION 
Charles Stein [15] showed that it is possible to make a 

uniform improvement on the maximum likelihood esti- 
mator (MLE) in terms of total squared error risk when 
estimating several parameters from independent normal 
observations. Later James and Stein [13] presented a 
particularly simple estimator for which the improvement 
was quite substantial near the origin, if there are more 
than two parameters. This achievement leads immedi- 
ately to a uniform, nontrivial improvement over the 
least squares (Gauss-Markov) estimators for the param- 
eters in the usual formulation of the linear model. One 
might expect a rush of applications of this powerful new 
statistical weapon, but such has not been the case. 
Resistance has formed along several lines: 

1. Mistrust of the statistical interpretation of the mathematical 
formulation leading to Stein's result, in particular the sum 
of squared errors loss function; 

2. Difficulties in adapting the James-Stein estimator to the 
many special cases that invariably arise in practice; 

3. Long familiarity with the generally good performance of the 
MLE in applied problems; 

4. A feeling that any gains possible from a "complicated" pro- 
cedure like Stein's could not be worth the extra trouble. 
(J.W. Tukey at the 1972 American Statistical Association 
meetings in Montreal stated that savings would not be more 
than ten percent in practical situations.) 

We have written a series of articles [5, 6, 7, 8, 9, 10, 11] 
that cover Points 1 and 2. Our purpose here, and in a 
lengthier version of this report [12], is to illustrate the 
methods suggested in these articles on three applied 
problems and in that way deals with Points 3 and 4. 
Only one of the three problems, the toxoplasmosis data, 
is "real" in the sense of being generated outside the 
statistical world. The other two problems are contrived 
to illustrate in a realistic way the genuine difficulties and 

*Bradley Efron is professor, Department of Statistics, Stanford University, 
Stanford, Calif. 94305. Carl Morris is statistioian, Department of Economics, The 
RAND Corporation, Santa Monica, Calif. 90406. 

rewards of procedures like Stein's. They have the added 
advantage of having the true parameter values available 
for comparison of methods. The examples chosen are the 
first and only ones considered for this report, and the 
favorable results typify our previous experience. 

To review the James-Stein estimator in the simplest 
setting, suppose that for given Oi 

ind 
XiIO, - N(0i, 1), i = 1, *., k > 3 ' (1.1) 

meaning the { Xi} are independent and normally distrib- 
uted with mean E6iX1 Oi and variance Vare, (Xi) = 1. 
The example (1.1) typically occurs as a reduction to this 
canonical form from more complicated situations, as 
when Xi is a sample mean with known variance that is 
taken to be unity through an appropriate scale trans- 
formation. The unknown vector of means - (O1, 0,.k) 
is to be estimated with loss being the sum of squared 
component errors 

k 

L(O, 8)-, (0 - O)2 , (1.2) 

iol where k (8, , ak) is the estimate of e. The MLE, 
which is also the sample mean, 60 (X) X -(X1, i.., Xk) 
has constant risk k, 

k 

R(Ol 60) _Ee E X 2=k, (1.3) i1.. 

Eo indicating expectation over the distribution (1.1). 
James and Stein [13] introduced the estimator 81(X) 
= (6I'(X), ... akl(X)) for k > 3, 

ail (X)-H /i + (1-(k -2)/S) (Xi -pi j 
i=1,**, k (1.4) 

with Ua (t=,, *., A,Ak)' any initial guess at 0 and 
S (X, - hAj)2. This estimator has risk 

k 

R(0, &') = Eo E (6,1(X) - 0,)2 (1.5) 
i o 

(k-2)2 
< k - < k, (1.6) 

k- (0, - A,)2 

being less than k for all 0, and if 0i = Ai for all i the risk 
is two, comparing very favorably to k for the MLE. 
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The estimator (1.4) arises quite naturally in an em- 
pirical Bayes context. If the {&0} themselves are a sample 
from a prior distribution, 

Oi 
ind N(i T2), i - 1, *...k , (1.7) 

then the Bayes estimate of Oi is the a posteriori mean of 
0i given the data 

bi* (Xi) = E I Xi- = 

+ (1 - (1 + r2)-') (Xi - ,i) . (1.8) 

In the empirical Bayes situation, r2 iS unknown, but it 
can be estimated because marginally the { Xi } are 
independently normal with means AiI and 

S = E (Xi - hj)2 , (1 + r2)Xk2 , (1.9) 

where Xk2 is the chi-square distribution with k degrees 
of freedom. Since k > 3, the unbiased estimate 

E(k - 2)/S = 1/(l + T2) (1.10) 

is available, and substitution of (k - 2)/S for the un- 
known 1/(1 + r2) in the Bayes estimate bi* of (1.8) 
results in the James-Stein rule (1.4). The risk of bil 
averaged over both X and 6 is, from [6] or [8], 

E,E8(6il(X) - 0)2 = 1 - (k - 2)/k(1 + r2) (1.11) 

E, denoting expectation over the distribution (1.7). The 
risk (1.11) is to be compared to the corresponding risks 
of 1 for the MLE and 1- 1/(1 + r2) for the Bayes 
estimator. Thus, if k is moderate or large bil is nearly as 
good as the Bayes estimator, but it avoids the possible 
gross errors of the Bayes estimator if r2 is misspecified. 

It is clearly preferable to use min {I1, (k - 2)/S} as 
an estimate of 1/(1 + r2) instead of (1.10). This results 
in the simple improvement 

ail+(X) = Ai + (1 - (k - 2)/S)+(Xi - i) (1. 12) 

with a+ max (0, a). That R (6, &'+) < R (6, 5') for all 
o is proved in [2, 8, 10, 17]. The risks R(6, &1) and 
R (0, 61+) are tabled in [11]. 

2. USING STEIN'S ESTIMATOR TO PREDICT 
BATTING AVERAGES 

The batting averages of 18 major league players 
through their first 45 official at bats of the 1970 season 
appear in Table 1. The problem is to predict each player's 
batting average over the remainder of the season using 
only the data of Column (1) of Table 1. This sample was 
chosen because we wanted between 30 and 50 at bats to 
assure a satisfactory approximation of the binomial by 
the normal distribution while leaving the bulk of at bats 
to be estimated. We also wanted to include an unusually 
good hitter (Clemente) to test the method with at least 
one extreme parameter, a situation expected to be less 
favorable to Stein's estimator. Batting averages are 
published weekly in the New York Times, and by April 
26, 1970 Clemente had batted 45 times. Stein's estimator 

requires equal variances,' or in this situation, equal at 
bats, so the remaining 17 players are all whom either the 
April 26 or May 3 New York Times reported with 45 
at bats. 

Let Yi be the batting average of Player i, i = 1, , 

18 (k = 18) after n = 45 at bats. Assuming base hits 
occur according to a binomial distribution with inde- 

ind 
pendence between players, nYi - Bin (n, pi) i = 1, 
2, ***, 18 with pi the true season batting average, so 
EYi = pi. Because the variance of Yi depends on the 
mean, the arc-sin transformation for stabilizing the 
variance of a binomial distribution is used: Xi-fO(Yi)y 
i=l, *..,18with 

fn(y)- (n)i arc sin(2y - 1) . (2.1) 

Then Xi has nearly unit variance2 independent of pi. 
The mean3 Oi of Xi is given approximately by Oi = f,n (pi). 
Values of Xi, Oi appear in Table 1. From the central limit 
theorem for the binomial distribution and continuity of 
fn we have approximately 

Xi I Oi N(Oi, 1), i = 1, 2, * k (2.2) 

the situation described in Section 1. 
We use Stein's estimator (1.4), but we estimate the 

common unknown value , = E2 Aik by X = E Xilk, 
shrinking all Xi toward X, an idea suggested by Lindley 
[6, p. 285-71. The resulting estimate of the ith com- 
ponent Gi of 0 is therefore 

il (X) = X + (1 - (k - 3)/V)(Xi-X) (2.3) 

with V_ E (X, - X)2 and with k - 3 = (k - 1) - 2 
as the appropriate constant since one parameter is esti- 
mated. In the empirical Bayes case, the appropriateness 
of (2.3) follows from estimating the Bayes rule (1.8) by 
using the unbiased estimates X for , and (k - 3)/V for 
1/ (1 + r)2 from the marginal distribution of X, analogous 
to Section 1 (see also [6, Sec. 7]). We may use the 
Bayesian model for these data because (1.7) seems at 
least roughly appropriate, although (2.3) also can be 
justified by the non-Bayesian from the suspicion that 
E (0, - 0)2 iS small, since the risk of (2.3), analogous to 
(1.6), is bounded by 

- (k- 3)2 
R(,1 ,1) < k -k 0 O 

2}8 #ilk . (2.4) k- 3+ E, (Oi - &)2 

For our data, the estimate of 1/(1 + r2) iS (k - 3)/V 
= .791 or T = 0.514, representing considerable a priori 
information. The value of X is -3.275 so 

=i (X) = .791X + .209Xi = .209Xi - 2.59 . (2.5) 

1 The unequal variances case is discussed in Section 3. 
2 An exact computer computation showed that the standard deviation of Xi is 

within .036 of unity for n = 45 for all pi between 0.15 and 0.85, 
a For most of this discussion we will regard the values of ps of Column 2, Table 1 

anld Oi as the quantities to he estimated, although wYe actually have a prediction 
problem hecause these quantities are estimates of the mean of Yi. Accounting for 
this fact would cause Stein's method to compare even more favorably to the sample 
mean because the.random error in pi increases the losses for all estimators equally. 
This increases the errors of good estimators by a higher percentage than poorer ones. 
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1. 1970 Batting Averages for 18 Major League Players and Transformed Values Xi, O0 

Yi = batting pi = batting At bats 
average for average for for 

i Player first 45 remainder remainder Xi Hi 
at bats of season of season 

(1) (2) (3) (4) (5) 

1 Clemente (Pitts, NL) .400 .346 367 -1.35 -2.10 
2 F. Robinson (Balt, AL) .378 .298 426 -1.66 -2.79 
3 F. Howard (Wash, AL) .356 .276 521 -1.97 -3.11 
4 Johnstone (Cal, AL) .333 .222 275 -2.28 -3.96 
5 Berry (Chi, AL) .311 .273 418 -2.60 -3.17 
6 Spencer (Cal, AL) .311 .270 466 -2.60 -3.20 
7 Kessinger (Chi, NL) .289 .263 586 -2.92 -3.32 
8 L. Alvarado (Bos, AL) .267 .210 138 -3.26 -4.15 
9 Santo (Chi, NL) .244 .269 510 -3.60 -3.23 

10 Swoboda (NY, NL) .244 .230 200 -3.60 -3.83 
11 Unser (Wash, AL) .222 .264 277 -3.95 -3.30 
12 Williams (Chi, AL) .222 .256 270 -3.95 -3.43 
13 Scott (Bos, AL) .222 .303 435 -3.95 -2.71 
14 Petrocelli (Bos, AL) .222 .264 538 -3.95 -3.30 
15 E. Rodriguez (KC, AL) .222 .226 186 -3.95 -3.89 
16 Campaneris (Oak, AL) .200 .285 558 -4.32 -2.98 
17 Munson (NY, AL) .178 .316 408 -4.70 -2.53 
18 Alvis (Mil, NL) .156 .200 70 -5.10 -4.32 

The results are striking. The sample mean X has total 
squared prediction error E (Xi -O)2 of 17.56, but 

(X) -= (31' (X), *, 41 (X)) has total squared prediction 
error of only 5.01. The efficiency of Stein's rule relative 
to the MLE for these data is defined as E (X, - 0,)2/ 

E (i' (X) - G,)2, the ratio of squared error losses. The 
efficiency of Stein's rule is 3.50 (=17.56/5.01) in this 
example. Moreover, jI' is closer than Xi to Oi for 15 
batters, being worse only for Batters 1, 10, 15. The 
estimates (2.5) are retransformed in Table 2 to provide 
estimates 'il = f -1(OX) of pi. 

Stein's estimators achieve uniformly lower aggregate 
risk than the MLE but permit considerably increased 
risk to individual components of the vector 0. As a func- 

2. Batting Averages and Their Estimates 

Batting Retrans- 
average Maximum form of Retrans- Retrans- 

for season likelihood Stein's form of form of 
remainder estimate estimator 60.9 60.8 

i pi Yj i Pi0*9 pio.8 

1 .346 .400 .290 .334 .351 
2 .298 .378 .286 .313 .329 
3 .276 .356 .281 .292 .308 
4 .222 .333 .277 .277 .287 
5 .273 .311 .273 .273 .273 
6 .270 .311 .273 .273 .273 
7 .263 .289 .268 .268 .268 
8 .210 .267 .264 .264 .264 
9 .269 .244 .259 .259 .259 

10 .230 .244 .259 .259 .259 
11 .264 .222 .254 .254 .254 
12 .256 .222 .254 .254 .254 
13 .303 .222 .254 .254 .254 
14 .264 .222 .254 .254 .254 
15 .226 .222 .254 .254 .254 
16 .285 .200 .249 .249 .242 
17 .316 .178 .244 .233 .218 
18 .200 .156 .239 .208 .194 

tion of 0, the risk for estimating 01 by &'1, for example, 
can be as large as k/4 times as great as the risk of the 
MLE X1. This phenomenon is discussed at length in 
[5, 6], where "limited translation estimators" B8 (X) 
0 < s < 1 are introduced to reduce this effect. The MLE 
corresponds to s = 0, Stein's estimator to s = 1. The 
estimate gi8 (X) of 0i is defined to be as close as possible 
to 6,i'(X) subject to the condition that it not differ from 
Xi by more than [(k - 1) (k - 3)/kV]lDk-1 (s) standard 
deviations of Xi, Dk_l(s) being a constant taken from 
[6, Table 1]. If s = 0.8, then D17(s) = 0.786, so 5 i0 8(X) 
may differ from Xi by no more than 

0.786 (17 X 0.791/18)* = .68 

This modification reduces the maximum component 
risk of 4.60 for ,il to 1.52 for 3iO.8 while retaining 80 
percent of the savings of Stein's rule over the MLE. The 
retransformed values pi O8 of the limited translation 
estimates fj'1(3i08(X)) are given in the last column of 
Table 2, the estimates for the top three and bottom two 
batters being affected. Values for s = 0.9 are also given 
in Table 2. 

Clemente (i = 1) was known to be an exceptionally 
good hitter from his performance in other years. Limiting 
translation results in a much better estimate for him, as 
we anticipated, since 31 (X) differs from X1 by an exces- 
sive 1.56 standard deviations of X1. The limited trans- 
lation estimators are closer than the MLE for 16 of the 
18 batters, and the case s = 0.9 has better efficiency 
(3.91) for these data relative to the MLE than Stein's 
rule (3.50), but the rule with s = 0.8 has lower efficiency 
(3.01). The maximum component error occurs for 
Munson (i = 17) with all four estimators. The Bayesian 
effect is so strong that this maximum error 1 170-171 
decreased from 2.17 for s = 0, to 1.49 for s = 0.8, to 
1.25 for s = 0.9 to 1.08 for s = 1. Limiting translation 
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therefore increases the worst error in this example, just 
opposite to the maximum risks. 

3. A GENERALIZATION OF STEIN'S ESTIMATOR TO 
UNEQUAL VARIANCES FOR ESTIMATING THE 

PREVALENCE OF TOXOPLASMOSIS 

One of the authors participated in a study of toxo- 
plasmosis in El Salvador [14]. Sera obtained from a total 
sample of 5,171 individuals of varying ages from 36 El 
Salvador cities were analyzed by a Sabin-Feldman dye 
test. From the data given in [14, Table 1], toxoplasmosis 
prevalence rates Xi for City i, i = 1, * *, 36 were calcu- 
lated. The prevalence rate Xi has the form (observed 
minus expected)/expected, with "observed" being the 
number of positives for City i and "expected" the number 
of positives for the same city based on an indirect 
standardization of prevalence rates to the age distribution 
of City i. The variances Di = Var (Xi) are known from 
binomial considerations and differ because of unequal 
sample sizes. 

These data Xi together with the standard deviations 
Dit are given in Columns 2 and 3 of Table 3. The preva- 
lence rates satisfy a linear constraint E diXi = 0 with 
known coefficients di > 0. The means oi = EXi, which 

3. Estimates and Empirical Bayes Estimates of 
Toxoplasmosis Prevalence Rates 

i Xi vDi bi(X) Ai ki A, 

1 .293 .304 .035 .0120 1334.1 .882 
2 .214 .039 .192 .0108 21.9 .102 
3 .185 .047 .159 .0109 24.4 .143 
4 .152 .115 .075 .0115 80.2 .509 
5 .139 .081 .092 .0112 43.0 .336 
6 .128 .061 .100 .0110 30.4 .221 
7 .113 .061 .088 .0110 30.4 .221 
8 .098 .087 .062 .0113 48.0 .370 
9 .093 .049 .079 .0109 25.1 .154 

10 .079 .041 .070 .0109 22.5 .112 
11 .063 .071 .045 .0111 36.0 .279 
12 .052 .048 .044 .0109 24.8 .148 
13 .035 .056 .028 .0110 28.0 .192 
14 .027 .040 .024 .0108 22.2 .107 
15 .024 .049 .020 .0109 25.1 .154 
16 .024 .039 .022 .0108 21.9 .102 
17 .014 .043 .012 .0109 23.1 .122 
18 .004 .085 .003 .0112 46.2, .359 
19 -.016 .128 -.007 .0116 101.5 .564 
20 -.028 .091 -.017 .0113 51.6 .392 
21 -.034 .073 -.024 .0111 37.3 .291 
22 -.040 .049 -.034 .0109 25.1 .154 
23 -.055 .058 -.044 .0110 28.9 .204 
24 -.083 .070 -.060 .0111 35.4 .273 
25 -.098 .068 -.072 .0111 34.2 .262 
26 -.100 .049 -.085 .0109 25.1 .154 
27 -.112 .059 -.089 .0110 29.4 .210 
28 -.138 .063 -.106 .0110 31.4 .233 
29 -.156 .077 -.107 .0112 40.0 .314 
30 -.169 .073 -.120 .0111 37.3 .291 
31 -.241 .106 -.128 .0114 68.0 .468 
32 -.294 .179 -.083 .0118 242.4 .719 
33 -.296 .064 -.225 .0111 31.9 .238 
34 -.324 .152 -.1 14 .0117 154.8 .647 
35 -.397 .158 -.133 .0117 171.5 .665 
36 - .665 -.216 - .140 .0119 426.8 .789 

also satisfy E di0i = 0, are to be estimated from the 
XXi}. Since the {Xi} were constructed as sums of inde- 

pendent random variables, they are approximately 
normal; and except for the one linear constraint on the 
k = 36 values of Xi, they are independent. For simplicity, 
we will ignore the slight improvement in the independence 
approximation that would result from applying our 
methods to an appropriate 35-dimensional subspace and 
assume that the { Xi } have the distribution of the follow- 
ing paragraph. 

To obtain an appropriate empirical Bayes estimation 
rule for these data we assume that 

md 
Xi IOi'- N(Oi, Di), i = 1, *, k (3.1) 

and 
oi N(O, A), i = 1, )tk ' (3.2) 

A being an unknown constant. These assumptions are 
the same as (1.1), (1.7), which lead to the James-Stein 
estimator if Di = Dj for all i, j. Notice that the choice 
of a priori mean zero for the &,i is particularly appropriate 
here because the constant E di= 0 forces the param- 
eters to be centered near the origin. 

We require k > 3 in the following derivations. Define 

Bi_Dil/(A + Di) . (33) 

Then (3.1) and (3.2) are equivalent to 
ind 

oilXi l. N((1 - Bi)Xi, Di( -Bi)), 
i = 1,**, k .(3.4) 

For squared error loss4 the Bayes estimator is the a 
posteriori mean 

i* (Xi) = Ei IXi = (1 - Bi)Xi , (3.5) 

with Bayes risk Var (Oi I Xi) = (1 - Bi)Di being less 
than the risk Di of &i = Xi. 

Here, A is unknown, but the MLE A of A on the basis 
of the data Sj = Xi2 - (A + Dj)x2, j = 1, 2, * , k 
is the solution to 

k k 

A = E (Si - Dj)Ij(A)/E I,(A) (3.6) 
iJ1 i-i 

with 
Ij (A) 1/Var (Sj) = 1/[2(A + D,)2] (3.7) 

being the Fisher information for A in Sj. We could use 
A from (3.6) to define the empirical Bayes estimator of 
0, as (1 - Di(A + D,))Xi. However, this rule does not 
reduce to Stein's when all Dj are equal, and we instead 
use a minor variant of this estimator derived in [8] 
which does reduce to Stein's. The variant rule estimates 
a different value Ai for each city (see Table 3). The 
difference between the rules is minor in this case, but it 
might be important if k were smaller. 

Our estimates 5, (X) of the 0, are given in the fourth 
column of Table 3 and are compared with the unbiased 

4'Or for any other increaaing function of I? - I. 
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estimate Xi in Figure A. Figure A illustrates the "pull in" 
effect of 6i(X), which is most pronounced for Cities 1, 
32, 34, 35, and 36. Under the empirical Bayes model, the 
major explanation for the large I Xi, for these cities is 
large Di rather than large I&t . This figure also shows 
that the rankings of the cities on the basis of bi(X) differs 
from that based on the Xi, an interesting feature that 
does not arise when the Xi have equal variances. 

A. Estimates of Toxoplasmosis Prevalence Rates 

Original estinate X; 
32 6 

36 35 34 33 31 30 7 54 3 2 1 

Empiirical ae 
Estimate a~(X) 

i ~~~~~~~~~~~~~~~~~~~8 i(X .7 0.6 -.5 -.4 -.3 -.2 -.1 0 .1 .2 .3 

The values Ai, ki, and Bi(S) defined in [8] are given 
in the last three columns of Table 3. The value A of 
(3.6) is A = 0.0122 with standard deviation a(A) esti- 
mated as 0.0041 (if A = 0.0122) by the Cram6r-Rao 
lower bound on a(A). The preferred estimates Ai are all 
close to but slightly smaller than A, and their estimated 
standard deviations vary from 0.00358 for the cities with 
the smallest Di to 0.00404 for the city with the largest Di. 

The likelihood function of the data plotted as a func- 
tion of A (on a log scale) is given in Figures B and C as 
LIKELIHOOD. The curves are normalized to have unit 
area as a function of a = log A. The maximum value 
of this function of a is at cA = log (A) = log (.0122) 
--4.40 pa. The curves are almost perfectly normal 
with mean a- = -4.40 and standard deviation a, .371. 
The likely values of A therefore correspond to a a 
differing from j, by no more than three standard devi- 
ations, I a-pa I < 3a, or equivalently, .0040 < A <.0372. 

In the region of likely values of A, Figure B also graphs 
two risks: BAYES RISK and EB RISK (for empirical Bayes 

B. Likelihood Function of A and Aggregate Operating 
Characteristics of Estimates as a Function of A, 
Conditional on Observed Toxoplasmosis Data 

1.0 

P(EB CLOSER) 
0.8 - 

0.6- 
EB RISK 

0.4 BAYES RISK 

0 . 2 / \ - LIKELIHOOD 

02 .0040 .0058 .0084 .0122 .0177 .0256 .0372 

A (log scale) 

risk), each conditional on the data X. EB RISK5 is the 
conditional risk of the empirical Bayes rule defined (with 
Do--=(l/k) Ek=l Di) as 

1; 
EA E (bi(X) - oi)21 , (3.8) 

kDo i=o 

and BAYES RISI iS 

1 k / A \2 
EA k A + xi o X . (3.9) 

EAkDo~ i=? + D<i 

Since A is not known, BAYES RISK yields only a lower 
envelope for empirical Bayes estimators, agreeing with 
EB RISK at A = .0122. Table 4 gives values to supplement 
Figure B. Not graphed because it is too large to fit in 
Figure B is MLE RISK, the conditional risk of the MLE, 
defined as 

1 k 
EA EI (X - 0)2 1 X . (3.10) 

kDo j-= 

MLE RISK exceeds EB RISK by factors varying from 7 
to 2 in the region of likely values of A, as shown in Table 
4. EB RISK tends to increase and MLE RISK to decrease as 
A increases, these values crossing at A = .0650, about 
41 standard deviations above the mean of the distribution 
of A. 

4. Conditional Risks for Different Values of A 

A 
Risk 

.0040 .0122 .0372 .0650 X 

EB RISK .35 .39 .76 1.08 2.50 
MLE RISK 2.51 1.87 1.27 1.08 1.00 
P(EB CLOSER) 1.00 1.00 .82 .50 .04 

The remaining curve in Figure B graphs the probability 
that the empirical Bayes estimator is closer to 0 than the 
MLE X, conditional on the data X. It is defined as 

PAEL (bi(X) - )2 < E (Xi - G)21 X] . (3.11) 

This curve, denoted P(EB CLOSER), decreases as A 
increases but is always very close to unity in the region 
of likely values of A. It reaches one-half at about 42 
standard deviations from the mean of the likelihood 
function and then decreases as A --oo to its asymptotic 
value .04 (see Table 4). 

The data suggest that almost certainly A is in the 
interval .004 < A < .037, and for all such values of A, 
Figure B and Table 4 indicate that the numbers b (X) 
are much better estimators of the Oi than are the Xi. 
Non-Bayesian versions of these statements may be based 
on a confidence interval for E .02/k. 

Figure A illustrates that the MLE and the empirical 
Bayes estimators order the { 0.} differently. Define the 

5 In (3.8) the & (x) are fixed numbers-those given in Table 3. The expectation 
i8 over the a posteriori distribution (3.4) of the S. 
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correlation of an estimator O of 6 by 

r(6, 0) = E , 0E2)1 (3.12) 
as a measure of how well 0 orders 6. We denote 
P (rEB > rMLE) as the probability that the empirical 
Bayes estimate 6 orders 6 better than X, i.e., as 

PA{r(6, 6) > r(X, 6) X . (3.13) 

The graph of (3.13) given in Figure C shows that 
P(rEB > rMLE) > .5 for A < .0372. The value at A = X 
drops to .046. 

C. Likelihood Function of A and Individual and 
Ordering Characteristics of Estimates as a 
Function of A, Conditional on Observed' 

Toxoplasmosis Data 

1.0 P(92>91 ) 

0.8 
P(rEB> rMLE) 

0.6 
LIKELIHOOD 

0.4- 

0.2 - RSLX 

0 
.0040 .0058 .0084 .0122 .0177 .0256 .0372 

A(log scale) 

Although X1 > X2, the empirical Bayes estimator for 
City 2 is larger, d2 (X) > 61 (X). This is because D1 >? D2, 
indicating that X1 is large under the empirical Bayes 
model because of randomness while X2 is large because 
02 iS large. The other curve in Figure C is 

PA(02 > O1IX) (3.14) 
and shows that 02 > 01 is quite probable for likely values 
of A. This probability declines as A --oo, being .50 at 
A = .24 (eight standard deviations above the mean) 
and .40 at A = oo. 

4. USING STEIN'S ESTIMATOR TO IMPROVE THE 
RESULTS OF A COMPUTER SIMULATION 

A Monte Carlo experiment is given here in which 
several forms of Stein's method all double the experi- 
mental precision of the classical estimator. The example 
is realistic in that the normality and variance assumptions 
are approximations to the true situation. 

We chose to investigate Pearson's chi-square statistic 
for its independent interest and selected the particular 
parameters (m < 24) from our prior belief that empirical 
Bayes methods would be effective for these situations. 

Although our beliefs were substantiated, the outcomes in 
this instance did not always favor our pet methods. 

The simulation was conducted to estimate the exact 
size of Pearson's chi-square test. Let Y1 and Y2 be 
independent binomial random variables, Y1 - bin (m, p'), 
Y2- bin (m, p") so EY1 = mp', EY2 = mp". Pearson 
advocated the statistic and critical region 

2-m(Y -Y2 )2 
T = - > 3.84 (4.1) 

(Y1 + Y2)(2m -y - Y2) 

to test the composite null hypothesis Ho: p' = p" against 
all alternatives for the nominal size a = 0.05. The value 
3.84 is the 95th percentile of the chi-square distribution 
with one degree of freedom, which approximates that of 
T when m is large. 

The true size of the test under Ho is defined as 

a(p, m)- P(T > 3.84 1 p, m) , (4.2) 

which depends on both m and the unknown value 
p p = p". The simulation was conducted for p = 0.5 
and the k = 17 values of m with mj = 7 + j, j = 1, 

., k. The k values of ai 5 a(0.5, mj) were to be 
estimated. For each j we simulated (4.1) n = 500 times 
on a computer and recorded Z, as the proportion of 
times Ho was rejected. The data appear in Table 5. Since 
nZj bin (n, aj) independently, Zj is the unbiased and 
maximum likelihood estimator usually chosen6 to esti- 
mate aj. 

5. Maximum Likelihood Estimates and 
True Values for p = 0.5 

MLE True values 

j mja z1i j 

1 8 .082 .07681 
2 9 .042 .05011 
3 10 .046 .04219 
4 11 .040 .05279 
5 12 .054 .06403 
6 13 .084 .07556 
7 14 .036 .04102 
8 15 .036 .04559 
9 16 .040 .05151 

10 17 .050 .05766 
11 18 .078 .06527 
12 19 .030 .05306 
13 20 .036 .04253 
14 21 .060 .04588 
15 22 .052 .04896 
16 23 .046 .05417 
17 24 .054 .05950 

Under H0 the standard deviation of Zj is approxi- 
mately a = ((.05) (.95)/500} i = .009747. The variables 
Xi 3 (Zj - .05)/o have expectations 

j, EXj = (aj -*05)/ 

5 We ignore anl extensive bibliography of other methods for improing comp?uter 
simulations. Empirical Bayes methods can be applied simultaneously wvith other 
methods, and if better estimates of as than Zf were available then the empirical 
Bayes methods could instead be applied to them. But for simplicity we take Z, 
itself as the quanltity to bi Lmprsvd. 
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and approximately the distribution 

Xji tRindN(Ojy 1), j = 11 2, * * 17 = k, (4.3) 

described in earlier sections. 
The average value Z = .051 of the 17 points supports 

the choice of the "natural origin" a = .05. Stein's rule 
(1.4) applied to the transformed data (4.3) and then 
retransformed according to a2 = .05 + a0i yields 

di = (1 - P) Zj + .05B I Pi = .325 , (4.4) 
where P (k - 2)/S and 

17 

S _ (Zj - .05)2/f2 = 46.15 
i-1 

All 17 true values aj were obtained exactly through a 
separate computer program and appear in Figure D 
and Table 5, so the loss function, taken to be the nor- 
malized sum of squared errors E (t - a.j)2/o2, can be 
evaluated.7 The MLE has loss 18.9, Stein's estimate 
(4.4) has loss 10.2, and the constant estimator, which 
always estimates aj as .05, has loss 23.4. Stein's rule 
therefore dominates both extremes between which it 
compromises. 

Figure D displays the maximum likelihood estimates, 
Stein estimates, and true values. The true values show 
a surprising periodicity, which would frustrate attempts 
at improving the MLE by smoothing. 

D. MLE, Stein Estimates, and True Values for p = 0.5 

0.10 

X Maximum likelihood estimator Z 

0.09 0 Stein's estimator al 
A True values a,, (lined) 

0.08 X x 

0.07 

0.03 X 

0.02 tl 
8 10 12 14 16 18 20 22 24 mj 

On theoretical grounds we know that the approxi- 
mation a (p, m) = .05 improves as m increases, which sug- 
gests dividing the data into two groups, say 8 < m < 16 
and 17 < m < 24. In the Bayesian framework [91 this 
disaggregation reflects the concern that A1, the expecta- 

7 Exact rejection probabilities for other values of p are given in [12]. 

tion of A1* E9=1 (a, - .05)2/9o2 may be much larger 
than A2, the expectation of A2* = L=lo (aC- .05)2/8u2, 
or equivalently that the pull-in factor B1 = 1/(1 + Al) 
for Group 1 really should be smaller than B2 = 1/ (1 + A2) 

for Group 2. 
The combined estimator (4.4), having B1 = B2, is 

repeated in the second row of Table 6 with loss com- 
ponents for each group. The simplest way to utilize 
separate estimates of B1 and B2 is to apply two separate 
Stein rules, as shown in the third row of the table. 

6. Values of ? and Losses for Data Separated into 
Two Groups, Various Estimation Rules 

8cm 17 m 
Rule - 16 Group 1 - 24 Group 2 Total 

loss a2 /oss loss 

Maximum Likelihood 
Estimator .000 7.3 .000 11.6 18.9 

Stein's rule, 
combined data .325 4.2 .325 6.0 10.2 

Separate Stein rules .232 4.5 .376 5.4 9.9 
Separate Stein rules, 

bigger constant .276 4.3 .460 4.6 8.9 
All estimates at .05 1.000 18.3 1.000 5.1 23.4 

In [8, Sec. 5] we suggest using the bolder estimate 
9 

Bi= (ki - .66)/Si Si E (Zj - .05)2/o.2 
j=l 

S2 S-S1, k = 9, k2 =8. 

The constant ki - .66 is preferred because it accounts 
for the fact that the positive part (1.12) will be used, 
whereas the usual choice ki - 2 does not. The fourth 
row of Table 6 shows the effectiveness of this choice. 

The estimate of .05, which is nearly the mean of the 
17 values, is included in the last row of the table to show 
that the Stein rules substantially improve the two ex- 
tremes between which they compromise. 

The actual values are 
9 

Al*= E (aj - .05)2/9u2 = 2.036 
i=i 

for Group 1 and 
17 

A2*= (aj - .05)2/8a2 = .635 
j=10 

so Bj* = 1/(1 + A1*) = .329 and B2* = 1/(1 + A2*) 
= .612. The true values of B1* and B2* are somewhat 
different, as estimates for separate Stein rules suggest. 
Rules with P& and T2 near these true values will ordinarily 
perform better for data simulated from these parameters 
p = 0.5, m-8, , 24. 

5. CONCLUSIONS 
In the baseball, toxoplasmosis, and computer simu- 

lation examples, Stein's estimator and its generalizations 
increased efficiencies relative to the MLE by about 350 
percent, 200 percent, and 100 percent. These examples 
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were chosen because we expected empirical Bayes 
methods to work well for them and because their effi- 
ciencies could be determined. But we are aware of other 
successful applications to real data8 and have suppressed 
no negative results. Although blind application of these 
methods would gain little in most instances, the statis- 
ticiani who uses them sensibly and selectively can expect 
major improvements. 

Even when they do not significantly increase efficiency, 
there is little penalty for using the rules discussed here 
because they cannot give larger total mean squared error 
than the MLE and because the limited translation 
modification protects individual components. As several 
authors have noted, these rules are also robust to the 
assumption of the normal distribution, because their 
operating characteristics depend primarily on the means 
and variances of the sampling distributions and of the 
unknown parameters. Nor is the sum of squared error 
criterion especially important. This robustness is borne 
out by the experience in this article since the sampling 
distributions were actually binomial rather than normal. 
The rules not only worked well in the aggregate here, but 
for most components the empirical Bayes estimators 
ranged from slightly to substantially better than the 
MLE, with no substantial errors in the other direction. 

Tukey's comment, that empirical Bayes benefits are 
unappreciable (Section 1), actually was directed at a 
method of D.V. Lindley. Lindley's rules, though more 
formally Bayesian, are similar to ours in that they are 
designed to pick up the same intercomponent information 
in possibly related estimation problems. We have not 
done justice here to the many other contributors to 
multiparameter estimation, but refer the reader to the 
lengthy bibliography in [12]. We have instead concen- 
trated on Stein's rule and its generalizations to illustrate 
the power of the empirical Bayes theory, because the 
main gains are derived by recognizing the applicability 
of the theory, with lesser benefit attributable to the 
particular method used. Nevertheless, we hope other 
authors will compare their methods with ours on these 
or other data. 

The rules of this article are neither Bayes nor admis- 
sible, so they can be uniformly beaten (but not by much; 
see [8, Sec. 6]). There are several published, admissible, 
minimax rules which also would do well on the baseball 
data, although probably not much better than the rule 
used there, for none yet given is known to dominate 
Stein's rule with the positive part modification. For 
applications, we recommend the combination of sim- 
plicity, generalizability, efficiency, and robustness found 
in the estimators presented here. 

The most favorable situation for these estimators 
occurs when the statistician wants to estimate the 
parameters of a linear model that are known to lie in a 
high dimensional parameter space III, but he suspects 
that they may lie close to a specified lower dimensional 

I See, e.g., (31 for estimating fire alarm probabilities and [4j for estimating reac- 
tion times and sunspot data. 

parameter space Ho C H1.9 Then estimates unbiased for 
every parameter vector in H1 may have large variance, 
while estimates restricted to Ho have smaller variance 
but possibly large bias. The statistician need not choose 
between these extremes but can instead view them as 
endpoints on a continuum and use the data to determine 
the compromise (usually a smooth function of the 
likelihood ratio statistic for testing Ho versus HI) between 
bias and variance through an appropriate empirical 
Bayes rule, perhaps Stein's or one of the generalizations 
presented here. 

We believe many applications embody these features 
and that most data analysts will have good experiences 
with the sensible use of the rules discussed here. In view 
of their potential, we believe empirical Bayes methods 
are among the most under utilized in applied data 
analysis. 

[Received October 1973. Revised February 1975.] 

REFERENCES 

[13 Anscombe, F., "The Transformation of Poisson, Binomial and 
Negative-Binomial Data," Biometrika, 35 (December 1948), 
246-54. 

[2] Baranchik, A.J., "Multiple Regression and Estimation of the 
Mean of a Multivariate Normal Distribution," Technical 
Report No. 51, Stanford University, Department of Statistics, 
1964. 

[33 Carter, G.M. and Rolph, J.E., "Empirical Bayes Methods 
Applied to Estimating Fire Alarm Probabilities," Journal of the 
American Statistical Association, 69, No. 348 (December 1974), 
880-5. 

[4] Efron, B., "Biased Versus Unbiased Estimation," Advances in 
Mathemtics, New York: Academic Press (to appear 1975). 

[53 and Morris, C., "Limiting the Risk of Bayes and 
Empirical Bayes Estimators-Part I: The Bayes Case," 
Journal of the American Statistical Association, 66, No. 336 
(December 1971), 807-15. 

[6] and Morris, C., "Limiting the Risk of Bayes and 
Empirical Bayes Estimators-Part II: The Empirical Bayes 
Case," Journal of the American Statistical Association, 67, No. 
337 (March 1972), 130-9. 

[7] and Morris, C., "Empirical Bayes on Vector Observa- 
tions-An Extension of Stein's Method," Biometrika, 59, No. 2 
(August 1972), 335-47. 

[8] and Morris, C., "Stein's Estimation Rule and Its Com- 
petitors-An Empirical Bayes Approach," Journal of the 
American Statistical Association, 68, No. 341 (March 1973), 
117-30. 

[9] and Morris, C., "Combining Possibly Related Estima- 
tion Problems," Journal of the Royal Statistical Society, Ser. B, 
35, No. 3 (November 1973; with discussion), 379-421. 

[103 and Morris, C., "Families of Minimax Estimators of 
the Mean of a Multivariate Normal Distribution," P-5170, 
The RAND Corporation, March 1974, submitted to Annals 
of Mathematical Statistics (1974). 

[ll] and Morris, C., "Estimating Several Parameters 
Simultaneously," to be published in Statistica Neerlandica. 

[123 and Morris, C., "Data Analysis Using Stein's Estimator 
and Its Generalizations," R-1394-OEO, The RAND Corpora- 
tion, March 1974. 

[133 James, W. and Stein, C., "Estimation with Quadratic Loss," 

9 One excellent example [173 takes Ho as the main effects in a two-way analysis 
of variance and Hi - Ho as the interactions. 



Data Analysis Using Stein's Estimator 319 

Proceedings of the Fourth Berkeley Symposium on Mathematical 
Statistics and Probability, Vol. 1, Berkeley: University of 
California Press, 1961, 361-79. 

[14] Remington, J.S., et al., "Studies on Toxoplamosis in El Sal- 
vador: Prevalence and Incidence of Toxoplasmosis as Mea- 
sured by the Sabin-Feldman Dye Test," Transactions of the 
Royal Society of Tropical Medicine and Hygiene, 64, No. 2 
(1970), 252-67. 

[15] Stein, C., "Inadmissibility of the Usual Estimator for the 
Mean of a Multivariate Normal Distribution," Proceedings of 

the Third Berkeley Symposium on Mathematical Statistics and 
Probability, Vol. 1, Berkeley: University of California Press, 
1955, 197-206. 

[16] , "Confidence Sets for the Mean of a Multivariate 
Normal Distribution," Journal of the Royal Statistical Society, 
Ser. B, 24, No. 2 (1962), 265-96. 

[17] , "An Approach to the Recovery of Inter-Block In- 
formation in Balanced Incomplete Block Designs," in F.N. 
David, ed., Festschrift for J. Neyman, New York: John Wiley 
& Sons, Inc., 1966, 351-66. 


	Article Contents
	p. 311
	p. 312
	p. 313
	p. 314
	p. 315
	p. 316
	p. 317
	p. 318
	p. 319

	Issue Table of Contents
	Journal of the American Statistical Association, Vol. 70, No. 350 (Jun., 1975), pp. 271-496
	Front Matter [pp. ]
	Applications
	Cognitive Processes and the Assessment of Subjective Probability Distributions [pp. 271-289]
	Cognitive Processes and the Assessment of Subjective Probability Distributions: Comment [pp. 290-291]
	Cognitive Processes and the Assessment of Subjective Probability Distributions: Comment [pp. 291-293]
	Cognitive Processes and the Assessment of Subjective Probability Distributions: Rejoinder [pp. 294]
	Natural Fertility, Population Cycles and the Spectral Analysis of Births and Marriages [pp. 295-304]
	Analyzing the Decision-Making Process of the American Jury [pp. 305-310]
	Data Analysis Using Stein's Estimator and its Generalizations [pp. 311-319]
	The Predictive Sample Reuse Method with Applications [pp. 320-328]
	Use of the Randomized Response Technique with a New Randomizing Device [pp. 329-332]
	An Algorithm for the Binomial Distribution with Dependent Trials [pp. 333-340]
	Mortality--Air Pollution Relationships: A Comment [pp. 341-343]
	Tables for Comparing Two Normal Variances or Two Gamma Means [pp. 344-347]

	Theory and Methods
	An Analytical Comparison of Certainty Equivalence and Sequential Updating [pp. 348-350]
	A Bayesian Sequential Procedure for Quantal Response in the Context of Adaptive Mental Testing [pp. 351-356]
	A Secretary Problem with Finite Memory [pp. 357-361]
	Population-Distributed Personal Probabilities [pp. 362-364]
	Iterative Reclassification Procedure for Constructing an Asymptotically Optimal Rule of Allocation in Discriminant Analysis [pp. 365-369]
	A Bayesian Analysis of a Switching Regression Model: Known Number of Regimes [pp. 370-374]
	Residual Optimality: Ordinary vs. Weighted vs. Biased Least Squares [pp. 375-379]
	Estimating Heteroscedastic Variances in Linear Models [pp. 380-385]
	Stable Distributions in Statistical Inference: 2. Information from Stably Distributed Samples [pp. 386-393]
	Life Tests with Periodic Change in Failure Rate--Grouped Observations [pp. 394-397]
	Improved Estimation of Expected Life When One Identified Spurious Observation may be Present [pp. 398-401]
	Exact Variance of Combined Inter- and Intra-Block Estimates in Incomplete Block Designs [pp. 402-406]
	A Monte Carlo Evaluation of Some Ridge-Type Estimators [pp. 407-416]
	Estimation with Incompletely Specified Loss Functions (the Case of Several Location Parameters) [pp. 417-427]
	One-Step Huber Estimates in the Linear Model [pp. 428-434]
	On the Robustness of some Tests of Significance in Sampling from a Compound Normal Population [pp. 435-438]
	Bias in the Estimator of Kendall's Rank Correlation when Extreme Pairs are Removed from a Sample [pp. 439-442]
	A Multivariate Extension of Friedman's χ<sup>2</sup><sub>r</sub>-Test with Random Covariates [pp. 443-447]
	Double Sample Tests for the Mean of a Normal Population [pp. 448-450]
	Optimum Double Sampling Tests of Given Strength I. The Normal Distribution [pp. 451-456]
	A Two-Stage Procedure for the Behrens-Fisher Problem [pp. 457-462]
	On the Distribution of the Difference of Two t-Variables [pp. 463-467]
	On Bounding Moments from Grouped Data [pp. 468-471]
	Most Stringent Bounds on Aggregated Probabilities of Partially Specified Dependent Probability Systems [pp. 472-479]
	On Independence of Sample Mean and Translation Invariant Statistics of Samples from Multivariate Normal Populations [pp. 480-481]

	Book Reviews
	Review: untitled [pp. 482-484]
	Review: untitled [pp. 484]
	Review: untitled [pp. 485-486]
	Review: untitled [pp. 486-487]
	Review: untitled [pp. 487]
	Review: untitled [pp. 487-488]
	Review: untitled [pp. 488]
	Review: untitled [pp. 489]
	Review: untitled [pp. 489]
	Review: untitled [pp. 489-490]
	Review: untitled [pp. 490]
	Review: untitled [pp. 490]
	Review: untitled [pp. 490-491]
	Review: untitled [pp. 491]
	Review: untitled [pp. 491-492]
	Review: untitled [pp. 492]
	Review: untitled [pp. 492]
	Review: untitled [pp. 492]
	Review: untitled [pp. 492]

	Publications Received [pp. 493-494]
	Corrigenda: A Stopping Rule for Variable Selection in Multiple Regression [pp. 494]
	Corrigenda: Improved Approximation to the Non-Null Distribution of the Correlation Coefficient [pp. 494]
	Corrigenda: Estimation of the Location and Scale Parameters of a Pareto Distribution by Linear Functions of Order Statistics [pp. 494]
	Corrigenda: Alternative Analyses for the Singly-Ordered Contingency Table [pp. 494]
	Corrigenda: Combining Unbiased Estimates of a Parameter Known to be Positive [pp. 494]
	Back Matter [pp. ]



