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1 (Binomial) Model for (Sampling)Variability
of Proportion/Count in a Sample

The Binomial Distribution: what it is

• The n+1 probabilities p0, p1, ..., py, ..., pn of observing 0, 1, 2, . . . , n “posi-
tives” in n independent realizations of a Bernoulli random variable Y with
probability π that Y=1, and (1-π) that it is 0. The number is the sum
of n i.i.d. Bernoulli random variables. (such as in s.r.s of n individuals)

• Each of the n observed elements is binary (0 or 1)

• There are 2n possible sequences ... but only n + 1 possible values, i.e.
0/n, 1/n, . . . , n/n (can think of y as sum of n Bernoulli r. v.’s)1

• Apart from (n), the probabilities p0 to pn depend on only 1 parameter:

– the probability that selected individual will be ‘positive’ (‘+ve’) i.e.,

– the proportion of “+ve” individuals in the sampled population

• Usually denote this (un-knowable) proportion by π (sometimes θ)2

Author Parameter Statistic
Clayton & Hills (C & H) π p = D/N
Hanley et al. π p = y/n
Moore &McCabe, Baldi &Moore p p̂ = y/n
Miettinen P p = y/n

• Shorthand: y ∼ Binomial(n, π).

How it arises

• Sample Surveys

• Clinical Trials

• Pilot studies

• Genetics

• Epidemiology ...

1Better to work in same scale as parameter. i.e., (0,1). not the (0,n), count, scale.
2B&M, use p for population proportion and p̂ or “p-hat” for observed prop.n in a sample.

Others use π for population value (parameter) and p for sample proportion. ‘Greek for
parameter’ makes the distinction clearer, some textbooks are not consistent, p for the
population proportion and µ for population mean; B&M use Arabic letter p and the Greek
letter µ (mu)! Some authors (e.g., Miettinen) use UPPER-CASE letters, [e.g. P , M ] for
PARAMETERS and lower-case letters [e.g., p, m] for statistics (estimates of parameters).

Use

• to make inferences about π from observed proportion p = y/n.

• to make inferences in more complex situations, e.g. ...

– Prevalence Difference: π1 − π0

– Risk Difference (RD): π1 − π0

– Risk Ratio, or its synonym Relative Risk (RR): π1 / π0

– Odds Ratio (OR): [ π1/(1− π1) ] / [ π0 / (1− π0) ]

– Trend in several π’s; or π as a (regression) function of several x’s

Requirements for y to have a Binomial (n, π) distribution

• Each element in the “population” is 0 or 1; note we are only interested in
estimating the proportion (π) of 1’s; we are not interested in individuals.

• Fixed sample size n.

• Elements selected at random and independently of each other; each ele-
ment in population has same probability of being sampled: independent
and identically distributed (i.i.d.) Bernoulli’s.

• Denote by yi the value of the i-th sampled element. Prob[yi = 1] is con-
stant (it is π) across i. It helps to distinguish the N3 population values Y1

to YN from the n sampled values y1 to yn. In the ‘What proportion of our
time do we spend indoors?’ example http://www.biostat.mcgill.ca/

hanley/bios601/Mean-Quantile/inside_outside.pdf, it is the ran-
dom/blind sampling of the temporal and spatial patterns of 0s and 1s
that makes y1 to yn independent of each other. The Y s, the elements in
the population can be related to each other [e.g. there can be a peculiar
spatial/time distribution of persons/moments] but if elements are chosen
at random, the chance that the value of the i-th element chosen is a 1
cannot depend on the value of yi−1 or any other y: the sampling is ‘blind’
to the spatial or temporal location of the N 1’s and 0s.

A newer version of some of this material (prepared for epidemiology students)
can be found in section 13.1 in our ‘under construction’ book.

3N is possibly Infinite.
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The 2n possible sequences of n independent Bernoulli observations

With n=5, 32 possible sequences.

Below, sequences leading to the
same positive:negative (RED/blue)
'split' are grouped.

The number of sequences leading
to same split is shown in black.

With n=5,
there are 6 possible splits

The probability of a given split
is the probability of any one 
of the sequences leading to it,
multiplied by the number of such 
sequences.

Prob[ i-th observation is BLUE, i.e. = 1 ] = π

1 − π

π
π

π

π

π

π

π

π

π

π

π

π

π

π

π

1,2,3, ... 10: Number of sequences that yield the
indicated split (can obtain from nCy or Pascal's Triangle).
All sequences leading to the split are equiprobable.

Binomial Probabilities*

* in R: dbinom(0:5,size=5,prob=0.xx)

1
1

1

1

2

1

1

3

3

1

1

4

6

4

1

1 1 x π5 (1 − π)0

5 5 x π4 (1 − π)1

10 10 x π3 (1 − π)2

10 10 x π2 (1 − π)3

5 5 x π1 (1 − π)4

1 1 x π0 (1 − π)5

Figure 1: From 5 (independent and identically distributed) Bernoulli obser-
vations to Binomial(n = 5), π unspecified. There are 2n possible (distinct)
sequences of 0’s and 1’s, each with its probability. We are not interested in
these 2n probabilities, but in the probability that the sample contains y 1’s
and (n − y) 0’s. There are only (n+1) possibilities for y, namely 0 to n.
Fortunately, each of the nCy sequences that lead to the same sum or count
(y), has the same probability. So we group the 2n sequences into (n+ 1) sets,
according to the sum or count. Each sequence in the set with y 1’s and (n−y)
0’s has the same probability, namely πy(1 − π)n−y. Thus, in lieu of adding
all such probabilities, we simply multiply this probability by the number, nCy
– shown in black – of unique sequences in the set. Check: the numbers in
black add to 2n. Nowadays, the (n + 1) probabilities are easily obtained by
supplying a value for the prob argument in the R function dbinom, instead of
computing the binomial coefficient nCy by hand.

1.1 Does the Binomial Distribution Apply if ... ?
4

Interested in π the proportion of 16 year old girls
in Québec protected against rubella∗

Choose n = 100 girls: 20 at random from each of 5 randomly
selected schools [‘cluster’ sample]

Count y how many of the n = 100 are protected

• Is y ∼ Binomial(n = 100, π)?
SMAC1 π Prob[‘abnormal’ |Healthy] =0.03 for each chemistry

in Auto-analyzer with n = 18 channels
Count y How many of n = 18 give abnormal result.

• Is y ∼ Binomial(n = 18, π = 0.03)? (cf. Ingelfinger: Clin. Biostatistics)
Interested in πu proportion in ‘usual’ exercise classes and in

πe expt’l. exercise classes who ‘stay the course’
Randomly 4 classes of
Allocate 25 students each to usual course

nu = 100
4 classes of

25 students each to experimental course
ne = 100

Count yu how many of the nu = 100 complete course
ye how many of the ne = 100 complete course

• Is yu ∼ Binomial(nu = 100, πu) ? Is ye ∼ Binomial(ne = 100, πe) ?
Sex Ratio n = 4 children in each family

y number of girls in family
• Is variation of y across families Binomial (n = 4, π = 0.49)?
Sex Ratio n = 100 twin pairs

y number of females in the 200
• Is variation of y Binomial (n = 200, π = 0.49)?
Pilot To estimate proportion π of population that
Study is eligible & willing to participate in long-term

research study, keep recruiting until obtain
y = 5 who are. Have to approach n to get y.

• Can we treat y ∼ Binomial(n, π)?

1 Sequential Multiple Analyzer plus Computer [Automated Chemistries]
https://pdfs.semanticscholar.org/d035/66a43b92deec8f8eb1baac55d2ee4b297d22.pdf

∗ http://www.biostat.mcgill.ca/hanley/bios601/Proportion/RubellaImmunityQuebecSurvey.pdf

For ways to deal with EXTRA-BINOMIAL VARIATION see here.

4See also section in Ch. 13.2.2 ‘When the Binomial does not apply’ in online book.
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1.2 Calculating Binomial probabilities:

Exactly

• probability mass function (p.m.f.) :

formula: Prob[y] = nCy π
y (1− π)n−y.

recursively: Prob[y] = n−y+1
y × π

1−π×Prob[y−1]; . . . P rob[0] = (1−π)n.

• Statistical Packages:

– R functions dbinom(), pbinom(), qbinom():
probability mass, distribution/cdf, and quantile functions.

– Stata function Binomial(n,k,p)

– SAS PROBBNML(p, n, y) function

• Spreadsheet — Excel function BINOMDIST(y, n, π, cumulative)

• Tables: CRC; Fisher and Yates; Biometrika Tables; Documenta Geigy

Using an approximation

• Poisson Distribution (n large; small π)

• Normal (Gaussian) Distribution (n large or midrange π) 5

– Have to specify scale i.e., if say n = 10, whether summary is a

r.v. e.g. E SD

count: y 2 n× π {n× π × (1− π)}1/2

n1/2 × σBernoulli

proportion: p = y/n 0.2 π {π × (1− π)/n}1/2

σBernoulli/n
1/2

percentage: 100p% 20% 100× π 100× SD[p]

– same core calculation for all 3 [only the scale changes]. JH prefers
(0,1), the same scale as π.

5For when you don’t have access to software or Tables, e.g, on a plane, or when the
internet is down, or the battery on your phone or laptop had run out, or it takes too long
to boot up Windows!

2 Inference concerning a proportion π, based
on s.r.s. of size n

The Parameter π of interest: the proportion, e.g., ...

• with undiagnosed hypertension / seeing MD during a 1-year span

• who would respond to a specific therapy

• still breast-feeding at 6 months

• of pairs where response on treatment > response on placebo

• of Earth’s surface covered by water

• who would enrol in a long-term study or answer a questionnaire

• of twin pairs where left-handed twin dies first

• able to tell imported from domestic beer in a “triangle taste test”

• of all in an RCT who would become HPV-infected, what pro-
portion of them had been vaccinated: e.g., in the RCT of
HPV16 Vaccine, NEJM,2002 ( http://www.epi.mcgill.ca/hanley/BionanoWorkshop/

GardasilKoutskyNEJM2002.pdf ) there were 0 seroconversions in 11084.0 W-Y in
the vaccinated group vs. 41 in 11076.9 W-Y in the placebo group. Thus,
of all (‘n’ = 41 cases, the proportion who had been vaccinated was y/n
= 0/41. [this proportion is a function of the parameter of interest, the
efficacy of the vaccination]

Inference via Statistic: the number (y) or proportion p = y/n ‘positive’ in
an s.r.s. of size n.

Frequentist (§2.1) Bayesian (§2.2)

- based on prob[ data |θ ], i.e. - based on prob[ θ|data ], i.e.,
- probability statements about data - probability statements about π

Evidence (P-value) against H0: π = π0 - point estimate: (mean/median/mode)
Test of H0: Is P-value < (preset) α? of posterior distribution of π
CI: interval estmate - (credible) interval

See “Bayesian Inference for a Proportion (Excel)” here http://www.epi.mcgill.

ca/hanley/c607/ch08/. See also A&B §4.7; Colton §4.
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Binomial distributions, on (0,1) scale (rather than 0:n). Bigger expected
numbers of ‘positives’ and ‘negatives’ imply less probability mass at the
extreme(s) and thus help to approximate the (binomial) sampling distribution

by a Gaussian distribution with mean π and σ = {π(1−π)}1/2√
n

.

The space needed at each extreme to accommodate a Gaussian distribution that does not

spill over beyond the (0,1) boundaries is just another way to explain the (‘taught but not

explained’) rule-of-thumb that the expected numbers, n× π and n× (1− π) should should

exceed 5 (or 10, or 8, depending on the textbook, and the edition!). ??? E - 3×SD > 0

4
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2.1 (Frequentist) Confidence Interval for π, based on an
observed proportion p = y/n
stats::binom.test and mosaic::binom.test in R

Comment : it is sad that even today, with more emphasis on CI’s and less on
p-values and tests, we have to go through the ‘.test’ to get to the CI. It is
also of note that the procedure mentions the model (binomial) rather than
the target parameter, the proportion π.

The base stats::binom.test function in R has just one method, the Clopper-
Pearson one. The mosaic::binom.test one has it and four others, and these
allow us to appreciate why different ones might be used in different circum-
stances. We will start with the most familiar of them, the so-called ‘Wald’ CI,
which, because of its ‘point estimate ±Margin.Of.Error’ form, is symmetric.

In many circumstances, there will be other factors/strata – and even re-
gression functions – involved, so the estimated (fitted) proportions will be
specific to a particular covariate pattern or sub-domain. In many such in-
stances, especially if a regression model is used to smooth or tie the propor-
tions together, then the simple CIs we will calculate (usually from aggregated
data) using the binom.test functions will not be relevant. Good enough, the
mosaic::binom.test allows for a vector of individual 0’s and 1’s, rather than
the tallies of 1’s and 0’s that are usually used as the input to such p-value-
calculators and CI-calculators. But, in most real applications, CIs for
proportions, and functions thereof, will come from regression mod-
els. In that spirit, these notes will – in section 2.3 – make a start on this, by
fitting ‘the mother of all regressions’, namely the regression model with just
an intercept and no ‘x’ variable, where the intercept is the target, the (one)
parameter of interest: the ‘estimand ’, the parameter ‘to-be-estimated.’

2.1.1 CI based on Gaussian approximation to sampling distribu-
tion of the sample proportion p – the ‘Wald’ method in
mosaic::binom.test

To quote from – and in [ .. ] parentheses, add to – the mosaic::binom.test

documentation...

Wald: This is the interval traditionally taught in entry level statistics
courses. It uses the sample proportion [p in our notation] to estimate
the standard error [SE, i.e., estimated SD√

n
in our notation] and uses

normal theory [the Gaussian, or ‘z’ distribution] to determine how
many standard deviations [they should have said what z-multiple

of the SE – and they meant to say how many standard errors] to
add and/or subtract from the sample proportion to determine an
interval.

Up until now, the Wald CI has been taught as having the form :

p± z × SE[p].

If the population sampled from has an (unknown) proportion π of 1’s and an
(unknown) proportion 1−π of 0’s, then the theoretical SD of all of the 1’s and
0’s sampled from is σ0/1 =

√
π(1− π) or {π(1− π)}1/2. See footnote.6 Since

we don’t know the true value of σ0/1 = {π(1 − π)}1/2, we replace it with a
version where we substitute p for π, i.e. the estimated SD of all of the 1’s and
0’s sampled from is σ̂0/1 =

√
p(1− p) or {p(1− p)}1/2. Dividing this σ̂0/1 by

the square root of n, (see Note7) we get the standard error, our best estimate
of the spread of the sampling distribution of a sample proportion, i.e.,

SE[p] =
{p(1− p)}1/2√

n
[ =

σ̂0/1√
n

].

So, as it is traditionally presented, the CI becomes

p ± z × {p(1− p)}
1/2

√
n

.

As we will see below, now that we seldom calculate a CI ‘from scratch,’ today
the Wald CI is better presented in the R-computational form

qnorm(p=c(0.025,0.975), mean= p, sd = sqrt(p*(1-p))/sqrt(n)).

6You should verify that the SD of (a) 5 million 1’s and 5 million 0’s is σ̂0/1 =
√

0.5× 0.5

= 0.5; (b) 8 million 1’s and 2 million 0’s is
√

0.8× 0.2 = 0.4; (c) 9 million 1’s and 1 million
0’s is

√
0.9× 0.1 = 0.3.

It is easy to do in R: just use sd( c( rep(1,8000000), rep(0,2000000) ) ) !!
7Baldi and Moore, and several other textbooks, make it easier on the end user: they

avoid taking two square roots, by first dividing the squared SD (the variance in math-stat
lingo) by n, and then taking the square root. Doing it the long way, dividing σ̂0/1 by

√
n,

helps to distinguish the two factors that are acting against each other in the SE: a bigger
’top’, i.e., greater variability among the population units, makes the SE (and thus the ME)
larger. The worst case is when the population is a 50:50 mix of 1’s and 0’s. In this maximal-
variation case, with 1/2 at 0 and 1/2 at 1, the mean is π = 0.5. Thus every individual value
is either 0.5 below the mean, or 0.5 above the mean. So the average deviation (without
regard to sign) is also 0.5. This fits with our formula σ0/1 =

√
0.5× 0.5 = 0.5. When there

are more individual values of one kind than the other, such as when π = 0.8 or 0.9, the
σ0/1 is smaller.

5
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Example: Baldi & Moore, 3rdE : 99% CI for HPV prevalence 99% CI, so use

z = qnorm(0.995) = 2.576.

p = y/n = 515/1921 = 0.2681.

σ̂0/1 = {0.2681× 0.7319}1/2 = 0.4430

SE(p) =
0.4430√

1921
= 0.0101.

99% CI: 0.2681± 2.576× 0.0101 = 0.2681± 0.0260 = 0.2421 to 0.2941.

26.8%± 2.6%, or 24.2% to 29.4%.

NB: The ±2.6% is pronounced and written as “± 2.6 percentage points”
to avoid giving the impression that it is 2.6% of 26.8%.

Going directly from p = 0.2681 and SE(p) = 0.0101 to symmetric
(Gaussian-based) limits via R

Remember: since we seek a 99% CI, we focus on the 0.5% and 99.5%-iles.

round(qnorm(p=c(0.005,0.995),mean=0.2681,sd=0.0101),4):

> 0.2421 0.2941

Using R: mosaic::binom.test

(Ignore the ‘.test’ & ‘p-value’; and HPV positive 6= ‘success’ !)

mosaic::binom.test(x=515,n=1921,ci.method=c("wald"),conf.level=0.99)

Exact binomial test (with Wald CI)

data: 515 out of 1921

no. of successes = 515, no. of trials = 1921, p-value < 2.2e-16

alt. hypothesis: true probability of success is not equal to 0.5

99 percent confidence interval:

0.2421 0.2941

sample estimates:

probability of success 0.2681

“Large-n”: How Large is large?

• A rule of thumb: when the expected no. of positives, n × π, and the
expected no. of negatives, n × (1 − π), are both bigger than 5 (or 10 if
you read M & M, or 8 if B & M; see Brown’s survey, page 106.)

• JH’s ancient rule: when you couldn’t find the CI tabulated anywhere!

• if the distribution is not ‘crowded’ into one corner (cf. the shapes of
binomial distributions two pages back), i.e., if, with the symmetric Gaus-
sian approximation, neither of the tails of the distribution ‘spills over’
a boundary (0 or 1 if proportions), See M & M p383 and A&B §2.7 on
Gaussian approximation to Binomial. B&M 3rdE (p467) are extra cau-
tious: “Use this interval only when the number of ‘successes’ and the
number of ‘failures’ in the sample [the blue and red in the diagram on
page 9] is at least 15.”

What if we calculated the symmetric (Wald) CI from the 5 (or 20)
‘water or land’ observations?

Suppose our observed proportion of ‘water’ locations was p = 4/5, or 80%.

Let’s use (the more conventional, and default in mosaic::binom.test) 95%,
rather than 99%, confidence level.

JH deleted the results of the silly testing of the (default) null hypothesis
that 50% of the Earth’s surface is covered by water: binom.test tests every
proportion against this 50%. And rounded all proportions to 2 decimal places.

mosaic::binom.test(x=4,n=5,ci.method="wald")

Exact binomial test (with Wald CI)

data: 4 out of 5

number of successes = 4, number of trials = 5

95 percent confidence interval: [For a PROPORTION!]

0.45 1.15 ............................^^^^^^^^^^

sample estimates:

probability of success 0.80

Clearly the proportion or percentage of the Earth’s surface covered by water
cannot be 1.15 or 115%.

Even if the result had been a bit less extreme, say 3/5, or 2/5, the 95% CI
would have extended out past the boundaries for a proportion: 3/5 yields a
Wald 95% CI of 0.17 to 1.03, and 2/5 yields one of -0.03 to 0.83.
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And if we happened to get y/n = 5/5, as some students did, the 95% CI from
this same function is 1 to 1, i.e., 100% to 100%. And if we happened to get
0/5, the 95% CI from this same function is 0 to 0, i.e., 0% to 0%.

Thus, whatever your result, the Wald 95% CI gives a nonsensical re-
sult. Using the Normal/Gaussian approximation to the Binomial
sampling distribution does not work when n = 5.

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

What to do if a symmetric Gaussian-based CI doesn’t make sense?

A: use a non-symmetric one, and one that respects the (0,1) scale.

The other 4 methods in mosaic::binom.test do so.8 Following is a descrip-
tion of the principle/approach behind each one.

2.1.2 Asymmetric (Wilson and Clopper-Pearson) Methods

The text in the next Figure is a shortened, more concrete, and more modern
version of what Wilson wrote in 1927. He began by saying that by adding
(symmetric) margins of error to the point estimate, the usual method up to
then (and still today) gives the wrong impression that the truth (e.g. the
speed of light) varies around the point estimate (best estimate) when in fact
it is the point estimate (best estimate) that varies around the truth !!

So, he suggests that we should reverse our logic and ask under what (almost!)
worst case scenarios involving the truth would we have observed (such) an
extreme point estimate.9

We begin with one of these scenarios, say the one where the point estimate
lands to the right of (is above) the truth. By trial and error (or some other
way) we can find a lower value for the truth, namely πLower, such that the
observed value would be a over-estimate, located at the 97.5%ile.

Then we consider the reverse scenario, and we find an value for the truth,
namely πUpper, such that the observed value would be an under-estimate,
located at the 2.5%ile.

Since the sampling distributions at π = πLower and π = πUpper may well
have very different shapes and widths, the observed proportion, p, will not be
equidistant from π = πLower and π = πUpper.

Wilson, in 1927, was content to use two separate Normal (Gaussian) approx-

8So does switching to the (−∞,∞) logit scale, computing the CI in this scale, and then
back-transforming to the (0,1) scale. We will look at this later.

9He is ‘reverse engineering’ the truth. (ref: Wilson EB, ‘ Probable Inference...’ JASA)

imations to the two Binomial sampling distributions with means π = πLower
and π = πUpper. His paper did not give a numerical example, and did not
convey any sense of what sample size n he had in mind.

Clearly for the sample proportion of p = 4/5, it seems a bit rough; but it
does produce an interval that fits with the (0,1) definition of a proportion.
His method seems to be a bit more realistic at p = 16/20.10 But the more
important aspect of his proposal is his good advice to ‘think the other way
round.’

Clopper and Pearson in 1934 did likewise, but used two Binomials11, rather
than two approximations to them. They also produced a (still) very valuable
idea of using a nomogram to show CI’s for proportions. Below, we will use
the Wilson method to construct such a nomogram.

Because it uses a ‘continuity correction’,12 the Wilson method implemented
in mosaic::binom.test(x=4,n=5,ci.method=c("Wilson")) gives a slightly
wider CI than Wilson suggested in 1927. After an exhaustive study, Brown
et al. (2001) also recommend the original, and against any continuity correc-
tion. The Wilson method implemented in the Hmisc::binconf function uses
the original Wilson limits, but 13with altered limits in the two cases where
the observed proportions are 1/n and (n− 1)/n.

The limits in the Figure that used the 4/5 and 16/20 sample proportions to
explain Wilson’s logic were computed with the original equations in the 1927
article, and confirmed with the versions in Brown et al.

The Clopper-Pearson limits were computed using the
mosaic::binom.test(x=4,n=5,ci.method=c("Clopper-Pearson")).
This is the only method in the binom.test in the basic stats package.

10In fact, the Wilson method is still one of the recommended methods, together with the
Jeffreys method. See Interval Estimation for a Binomial Proportion Author(s): Lawrence
D. Brown, T. Tony Cai, Anirban DasGupta Source: Statistical Science, Vol. 16, No. 2
(May, 2001), pp. 101-117.

11Unfortunately, because they used the actual binomial probabilities to compute tail
areas, their method is often referred to as an ‘exact’ method. Yes, it is ‘exact’ but
only in the sense that it does not use Gaussian approximations to the Binomials. BUT,
it is quite conservative, since it insists on at least 95% (or whatever other nominal percent-
age) coverage no matter the value of π.

12See Newcombe 1998, or https://en.wikipedia.org/wiki/Binomial_proportion_confidence_

interval#Wilson_score_interval
13Following the advice of Agresti and Coull, Approximate Is Better than “Exact” for

Interval Estimation of Binomial Proportions, The American Statistician, Vol. 52, No. 2
(May, 1998), pp. 119-126, end of section 4
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0.0 0.2 0.4 0.6 0.8 1.0

PL 4/5 PU

2.5% 2.5%

WILSON 1927. CI for  proportion P, based on observed sample proportion p.

Probable Inference (USUAL). Say we observe a certain proportion, p, 
in a sample of n. We compute an interval using a statistical model
(binomial or Gaussian) that uses (the statistic) p as the parameter
for the sampling distribution.

It is common to say that the probability that the true proportion, P say,
lies below/above the 2.5/97.5-%ile [of this sampling distribution 
centered on p] is 0.05.

p --- P ('p is an under-estimate'):

p landed at the 2.5%-ile of this
sampling distribution (Distrn):

p = qDistrn(0.025,
prob = P.Upper)

--> solve for P.Upper

P---p ('p is an over-estimate'):

p landed at the 97.5%-ile of this
sampling distribution (Distrn):

p = qDistrn(0.975,
prob = P.Lower)

--> solve for P.Lower

Wilson used 2 Gaussian
sampling distributions

Clopper-Pearson (1934)
used 2 Binomial distributions

pPL

dbinom(0:5, size=5,
prob=0.283)

Σ[4:5]

PU

Σ[0:4]

dbinom(0:5, size=5,
prob=0.995)

2.5% 2.5%

0.0 0.2 0.4 0.6 0.8 1.0

c(
0,

 5
)

PL 16/20 PU

2.5% 2.5%

WILSON 1927 (continued...)

Strictly speaking, this statement is elliptical. Really the chance that
P lies outside a specified range is either 0 or 1. It is the observed
proportion p which has a greater or less chance of lying within a certain
interval of P. If the observer was unlucky to have observed a rare 
event and to have based his inference thereon, he may be fairly wide
of the mark.

Probable Inference (IMPROVED). A better way is to reason:

There is some [true] P. Consider 2 scenarios:
p --- P ('p is an under-estimate'):

p landed at the 2.5%-ile of this
sampling distribution (Distrn):

p = qDistrn(0.025,
prob = P.Upper)

--> solve for P.Upper

P---p ('p is an over-estimate'):

p landed at the 97.5%-ile of this
sampling distribution (Distrn):

p = qDistrn(0.975,
prob = P.Lower)

--> solve for P.Lower

Wilson used 2 Gaussian
sampling distributions

Clopper-Pearson (1934)
used 2 Binomial distributions

pPL

dbinom(0:20, size=20,
prob=0.563)

Σ[16:20]

PU

Σ[0:16]

dbinom(0:20, size=5,
prob=0.943)

2.5% 2.5%

The panels in the left and right of this Figure illustrates the logic behind
the 95% Wilson and Clopper-Pearson confidence intervals, using the sample
proportions p = 4/5 and p = 16/20 respectively. Wilson’s words and notation
have been modernized, but JH has tried to retain his logic.

Even if the SE was not a function of the parameter P (or π) – i.e., if the two
sampling distrns. were symmetric & had the same spread – the PL → p← PU
reasoning is more defensible than the PL ← p→ PU one – EVEN IF the
arithmetic simplifies to the usual (elliptical) ‘point-estimate ± ME’ form.

8
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Wilson 95% CIs for PROPORTION P (or π)

Observed proportion, p

True
 PROPORTION

(P, or π)

+

n = 5

n = 5

πupper

πlower

n = 10

n = 10

πupper

πlower
n = 15

n = 15

πupper

πlowern = 20

n = 20
πupper
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0,
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)
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Wilson 95% CIs for PROPORTION P (or π)

Observed proportion, p

True
 PROPORTION

(P, or π)

+

n = 25

n = 25

Maximal Margin of Error (n: 100 to 900)
(percentage points)

9.8
100

6.9
200

5.7
300

4.9
400

4.4
500

4
600

3.7
700

3.5
800

3.3
900

Maximal Margin of Error (n: 1000 to 9000)
(percentage points)

3.1
1000

2.2
2000

1.8
3000

1.5
4000

1.4
5000

1.3
6000

1.2
7000

1.1
8000

1
9000

n = 100

n = 100

n = 400

n = 400

n = 1600

n = 1600

The panels in this Figure present binomial-based (95%) CIs for a proportion
using the ‘nomogram’ format introduced by Clopper and Pearson – but using
the Wilson method to compute them.

Example : in the case of an observed proportion of say 16/20 = 0.8, the
Nomogram yields a 95% CI of 56.3% (solid square located above p=0.8, on
the innermost – [n = 20] – blue band) to 94.3% (solid circle located at the
same p on the innermost – [n = 20] – red band).

Read horizontally, the nomogram shows the variability of proportions from
s.r.s samples of size n. Read vertically, it shows: (i) CI → symmetry as
p → 0.5 or n ↗ [in fact, as n× p and n(1− p) ↗ ] (ii) the widest ME’s are
at p = 0.5; thus, they can be used as the ‘widest ME’ scenario.

This chart shows what n will give a desired margin of error. [cf B&M p473]

It also shows the ‘quadruple the effort to halve the uncertainty ’ rule.

And – at their widest – how wide the ME’s are for various values of n.

[Wikipedia] Edwin Bidwell Wilson (April 25, 1879 - December 28, 1964) was an American
mathematician and polymath. He was the sole protégé of Yale’s physicist Josiah Willard Gibbs
and was mentor to MIT economist Paul Samuelson. He received his AB from Harvard College in
1899 and his PhD from Yale University in 1901, working under Gibbs (the person Gibbs sampling
is named after.)

[Agresti & Coull] See Stigler (1997) for an interesting summary of Edwin B. Wilson’s career.
Other highlights included service as the first professor and head of the Department of Vital
Statistics at Harvard School of Public Health in 1922, the Wilson-Hilferty normal approximation
for the chi-squared distribution in 1931, and the Wilson-Worcester introduction of the median
lethal dose (LD 50) in bioassay.
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2.1.3 ‘Add 2 to numerator, 4 to denominator’ rule (Agresti and
Coull)

(Wording adapted) from Brown et al.

The Agresti-Coull interval. The standard (Wald) CI is simple and easy to
remember. For the purposes of classroom presentation and use in texts, it
may be nice to have an alternative that has the familiar form

p±
√
p(1− p)/n

with a better and new choice of p rather than p = y/n. This can be ac-
complished by using the center of the Wilson region in place of p. Denote
ỹ = y + z2/2 and ñ = n+ z2. Let p̃ = ỹ/ñ. Define the confidence interval for
π by

p̃± z
√
p̃(1− p̃)/n.

Both the Agresti-Coull and the Wilson interval14 are centered on the same
value, p̃. It is easy to check that the Agresti-Coull intervals are never shorter
than the Wilson intervals. For the case when α = 0.05, if we use the value 2
instead of 1.96 for z [so that z2/2 = 2, and z2 = 4], this interval is the “add
2 successes and 2 failures” interval in Agresti and Coull (1998).

(Wording adapted) from Baldi and Moore 3rdE p.469.

Accurate confidence intervals for a proportion

The confidence interval p̂ ± z
√
p̂(1− p̂)/n for a sample [sic] proportion p 15

is easy to calculate. It is also easy to understand, because it rests directly on
the approximately Normal distribution of p̂. Unfortunately, confidence levels
from this interval are often quite inaccurate unless the sample is very large.
Simulations show that the actual confidence level is usually less than the
confidence level you asked for in choosing the critical value z. That’s bad.
What is worse, accuracy does not consistently get better as the sample size n

14The Wilson interval is

y + z2

2

n+ z2
±

z

1 + z2

n

√
p(1− p)

n
+

z2

4n2

. This is a slight reworking of the form shown in Wikipedia, selected here because the

SE portion has a familiar
p(1−p)

n
component under the square root sign, along with a

component z2

4n2 that disappears with increasing n. The 1 + z2

n
under the z multiplier

outside the square root approaches 1 as n increases. Equivalent computational forms are
found in Wilson; Newcombe; and Brown et al.

15The CI is for the parameter, the population proportion. Here B&M say that the CI is
for the sample proportion. Clearly, this was a slip.

increases. There are “lucky” and “unlucky” combinations of the sample size
n and the true population proportion p.

Fortunately, there is a simple modification that has been shown experimentally
to successfully improve the accuracy of the confidence interval. We call it
the “plus four” method, because all you need to do is add four imaginary
observations, two successes and two failures. With the added observations,
the plus four estimate of π is

p̃ =
number of ‘positives’ in the sample + 2

n+ 4

The formula for the confidence interval is exactly as before, with the new
sample size and number of ‘positives.’ You do not need software that offers
the plus four interval - just enter the new sample size (actual size + 4) and
number of ‘positives’ into the large-sample procedure.

2.2 Jeffreys’ Method (Bayesian)

The posterior credible interval for π, based on the non-informative Jeffreys
prior is also recommended by Brown et al. However, it has been passed over
in introductory textbooks that prefer a tables-at-the-back of the hard-copy
book / hand-calculator approach.

But it is available in R without even having to install a library: using the
stats::qbeta function. The prior is a beta distribution with shape1 and
shape2 parameters of 1/2 each, so the posterior distribution is also a beta
distribution with 1/2 added to the number of positives, and 1/2 to the number
of negatives. One uses these as the ‘shape1 ’ and ‘shape1 ’ parameters in the
qbeta function.

So for an observed proportion of 16/20, α = shape1 = 16.5 and β = shape2 =
4.5 Thus, for a 95% interval, one uses stats::qbeta( p=c(0.025,0.975),

shape1=16.5, shape2=4.5) to obtain the lower and upper limits πL = 0.59
and πU = 0.93.
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2.3 Based on Gaussian distribution of the logit
transformation of the point estimate (p, the observed
proportion) and of the parameter π.

Note16

Parameter: 17

logit{π} = log{ODDS} 18 = log
{

π
(1−π)

}
= log

{
PROPORTION “Positive”
PROPORTION “Negative”

}
Statistic: logit{p} = log{odds} = log

{
proportion “Positive”
proportion “Negative”

}
.

Reverse transformation (to get back from LOGIT to π) ...

π =
ODDS

1 + ODDS
=

exp[LOGIT ]

1 + exp[LOGIT ]
.

likewise...

p =
odds

1 + odds
=

exp[logit]

1 + exp[logit]
.

πLOWER = exp{LOWER limit of LOGIT}
1+exp{LOWER limit of LOGIT} =

exp{logit−zα/2SE[logit]}
1+exp{logit−zα/2SE[logit]}

πUPPER likewise.

SE[logit] =
{

1
# positive + 1

# negative

}1/2

2.3.1 ‘From scratch’

e.g. p = 16/20⇒ odds = 16/4⇒ logit = log[16/4] = 1.386.

SE[logit] = {1/16 + 1/4}1/2 = 0.559

⇒ 95% CI in LOGIT[π] scale: 1.386± 1.96× 0.559 = {0.290, 2.482} 19

⇒ CI in π scale: {exp(0.290)/(1 + exp(0.290), exp(2.482)/(1 + exp(2.482)}
16This sub-section can be skipped for now, but it will become central when logistic re-

gression is introduced in course EPIB621 next term.
17UPPER CASE / Greek = parameter; lower case / Roman = statistic.
18Here, log = ‘natural′ log, i.e. to base e, which some write as ln .
19qnorm(p=c(0.025,0.975), mean=log(16/4), sd=sqrt(1/16+1/4)): 0.290 to 2.482.

2.3.2 Via the generalized linear model (logistic regression)

R

fit = glm(cbind(16.4)} ~ 1, family=binomial)

summary(fit)

......... Estimate ..Std.Error

Intercept 1.386 ... 0.559

library(MASS)}

round(plogis(confint(fit)),2)

2.5% 97.5% 0.08 to 0.61

SAS

DATA CI_propn;

INPUT n_pos n;

LINES;

16 20

;

PROC genmod;

model n\_pos/n =

dist = binomial

link = logit waldci;

Stata

clear

input n_pos n

9 10

7 10

end

glm n_pos,

family (binomial n) link (logit)

11
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3 Applications, and notes

3.1 95% CI? IC? ... Comment dit on... ?

[La Presse, Montréal, 1993] L’Institut Gallup a demandé récemment à un
échantillon représentatif de la population canadienne d′évaluer la manière
dont le gouvernement fédéral faisait face à divers problèmes économiques et
général. Pour 59 pour cent des répondants, les libéraux n’accomplissent pas
un travail efficace dans ce domaine, tandis que 30 pour cent se déclarent de
l’avis contraire et que onze pour cent ne formulent aucune opinion.

La meme question a été posée par Gallup à 16 reprises entre 1973 et 1990,
et ne n’est qu‘une seule fois, en 1973, que la proportion des Canadiens qui se
disaient insatisfaits de la façon dont le gouvernement gérait l‘économie a été
inférieure à 50 pour cent.

Les conclusions du sondage se fondent sur 1009 interviews effectuées en-
tre le 2 et le 9 mai 1994 auprès de Canadiens âgés de 18 ans et plus.
Un échantillon de cette ampleur donne des résultats exacts à 3,1 p.c., près
dans 19 cas sur 20. La marge d’erreur est plus forte pour les régions, par
suite de l’importance moidre de l′échantillonnage; par exemple, les 272 in-
terviews effectuées au Québec ont engendré une marge d’erreur de 6 p.c.
dans 19 cas sur 20. Notice the emphasis on ‘a sample of this size’ and the
procedure.

3.2 1200 are hardly representative of 80 million homes
/ 220 million people!

The Nielsen system for TV ratings in U.S.A.
(Excerpt from article on “Pollsters” from an airline magazine)

“...Nielsen uses a device that, at one minute intervals, checks to see if the
TV set is on or off and to which channel it is tuned. That information is
periodically retrieved via a special telephone line and fed into the Nielsen
computer center in Dunedin, Florida. With these two samplings, Nielsen can
provide a statistical estimate of the number of homes tuned in to a given
program. A rating of 20, for instance, means that 20 percent, or 16 million of
the 80 million households, were tuned in. To answer the criticism that 1,200
or 1,500 are hardly representative of 80 million homes or 220 million people,
Nielsen offers this analogy:

Mix together 70,000 white beans and 30,000 red beans and then scoop out a

sample of 1000. the mathematical odds are that the number of red beans will
be between 270 and 330 or 27 to 33 percent of the sample, which translates
to a ”rating” of 30, plus or minus three, with a 20-to-1 assurance of statistical
reliability. The basic statistical law wouldn’t change even if the sampling
came from 80 million beans rather than just 100,000.” ...

Why, if the U.S. has a 10 times bigger population than Canada, do
pollsters use the same size samples of approximately 1, 000 in

both countries?

Answer: it depends on WHAT IS IT THAT IS BEING ESTIMATED. With
n = 1,000, the SE or uncertainty of an estimated PROPORTION 0.30 is in-
deed 0.03 or 3 percentage points. However, if interested in the NUMBER of
households tuned in to a given program, the best estimate is 0.3N, where N
is the number of units in the population (N=80 million in the U.S. or N=8
million in Canada). The uncertainty in the ‘blown up’ estimate of the TO-
TAL NUMBER tuned in is blown up accordingly, so that e.g. the estimated
NUMBER of households is

U.S.A. 80, 000, 000 [0.3 ± 0.03] = 24, 000, 000 ± 2, 400, 000
Canada 8, 000, 000[0.3 ± 0.03] = 2, 400, 000 ± 240, 000

2.4 million is a 10 times bigger absolute uncertainty than 240,000. Our in-
tuition about needing a bigger sample for a bigger universe probably stems
from absolute errors rather than relative ones (which in our case remain at
0.03 in 0.3 or 240,000 in 2.4 million or 2.4 million in 24 million i.e. at 10% ir-
respective of the size of the universe). It may help to think of why we do
not take bigger blood samples from bigger persons: the reason is that
we are usually interested in concentrations rather than in absolute amounts
and that concentrations are like proportions.

George Gallup and the Scientific Opinion Poll

3.3 The “Margin of Error blurb” introduced (legislated)
in the mid 1980’s

3.3.1 Number of Smokers rises by Four Points: Gallup Poll
The Gazette, Montreal, August 8, 1981

Compared with a year ago, there appears to be an increase in the number
of Canadians who smoked cigarettes in the past week - up from 41% in 1980
to 45% today. The question asked over the past few years was: “Have you
yourself smoked any cigarettes in the past week” Here is the national
trend:

12
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Smoked cigarettes in the past week

Today ..................... 45%
1980 ..................... 41%
1979 ..................... 44%
1978 ..................... 47%
1977 ..................... 45%
1976 ..................... Not asked
1975 ..................... 47%
1974 ..................... 52%

Men (50% vs. 40% for women), young people (54% vs. 37% for those >
50) and Canadians of French origin (57% vs. 42% for English) are the most
likely smokers. Today’s results are based on 1,054 personal in-home
interviews with adults, 18 years and over, conducted in June.

Had the percentage in the population really risen? Without a SE (or
margin of Error, ME) for each percentage, we are unable to judge whether the
‘jump’ from 41% to 45% is real or maybe just sampling variation. By 1985,
margins of error in the reporting of polls had became mandatory...

3.3.2 39% of Canadians Smoked in Past Week: Gallup Poll
The Gazette, Montreal, Thursday, June 27, 1985

Almost two in every five Canadian adults (39 per cent) smoked at least one
cigarette in the past week - down significantly from the 47 percent who re-
ported this 10 years ago, but at the same level found a year ago. Here is the
question asked fairly regularly over the past decade: “Have you yourself
smoked any cigarettes in the past week?” The national trend shows:

Smoked cigarettes in the past week

1985 ..................... 39%
1984 ..................... 39%
1983 ..................... 41%
1982* ..................... 42%
1981 ..................... 45%
1980 ..................... 41
1979 ..................... 44%
1978 ..................... 47%
1977 ..................... 45%
1975 ..................... 47%

(* Smoked regularly or occasionally)

Those < 50 are more likely to smoke cigarettes (43%) than are those 50
years or over (33%). Men (43%) are more likely to be smokers than women
(36%). Results are based on 1,047 personal, in-home interviews with adults,
18 years and over, conducted between May 9 and 11. A sample of this size
is accurate within a 4-percentage-point margin, 19 in 20 times.

Again, notice the emphasis on ‘a sample of this size’ and the proce-
dure. They don’t say – as some unthinkingly do – that this sample is
accurate within .. 19 times out of 20.

4 Test of H0 : π = πNULL

4.1 n small enough → Use Exact Binomial probabilities

• Testing H0: π = π0 vs Ha: π 6= π0 [or Ha: π > π0 ]

• Observe p = y/n.

• Calculate Prob[observed y, or a y that is more extreme | π0] using Halt

to specify which y’s are more extreme i.e. provide even more evidence
for Ha and against H0.

The function pbinom(y, size=n, prob = π0) gives the probability in
the lower tail, while 1-pbinom(y-1, size=n, prob = π0) gives the
probability in the upper tail

or...

use correspondence between a 100(1 − α)% CI and a test which uses a
level of α i.e. check if CI includes π0 value being tested

[there may be slight discrepancies between test and CI: the methods used
to construct CI’s don’t always correspond exactly to those used for tests]

Examples

1. A common question is whether there is evidence against the proposition
that a proportion π = 1/2 [Testing preferences and discrimination in psy-
chophysical matters e.g., therapeutic touch, McNemar’s test for discor-
dant pairs when comparing proportions in a paired-matched study, the
(non-parametric) Sign Test for assessing intra-pair differences in mea-
sured quantities, ...]. Because of the special place of the Binomial at
π = 1/2, the tail probabilities have been calculated and tabulated. See
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the table entitled “Sign Test” in the chapter on Distribution-Free Meth-
ods.

M&M (2nd paragraph p 592) say that “we do not often use significance
tests for a single proportion, because it is uncommon to have a situation
where there is a precise proportion that we want to test”. But they
forget paired studies, and even the sign test for matched pairs, which
they themselves cover in section 7.1, page 521. They give just 1 exercise
(8.18) where they ask you to test π = 0.5 vs π > 0.5.

2. Another example (Triangle Taste Test, below) deals with responses in a
setup where the “null” is π0 = 1/3.

3. The First Recorded P-Value??? (by a physician no less!) 20

“AN ARGUMENT FOR DIVINE PROVIDENCE, TAKEN FROM THE
CONSTANT REGULARITY OBSERVED IN THE BIRTHS OF BOTH
SEXES.”

John Arbuthnot, 1667-1735 physician to Queen Anne

Arbuthnot claimed to demonstrate that divine providence, not chance,
governed the sex ratio at birth.

To prove this point he represented a birth governed by chance as being like
the throw of a two-sided die, and he presented data on the christenings
in London for the 82-year period 1629-1710.

Under Arbuthnot’s hypothesis of chance, for any one year male births
will exceed female births with a probability slightly less than one-half.
(It would be less than one-half by just half the very small probability
that the two numbers are exactly equal.)

But even when taking it as one-half Arbuthnot found that a unit bet that
male births would exceed female births for eighty-two years running to
be worth only (1/2)82 units in expectation, or

1

4 8360 0000 0000 0000 0000 0000

a vanishingly small number.

”From whence it follows, that it is Art, not Chance, that governs.”

Incidentally, Wainer, in his book, ‘Graphic Discovery: A Trout
in the Milk and Other Visual Adventures, 2nd Edition’ tells
how by using graphics someone found a long-unnoticed er-
ror in Arbuthnot’s data. https://mcgill.worldcat.org/title/

graphic-discovery-a-trout-in-the-milk-and-other-visual-adventures/oclc/

861200036&referer=brief_results

20related by Stigler in his History of Statistics

4.2 Large n: Gaussian Approximation

Test: π = π0

Test Statistic: (p− π0)/SE[p] = (p− π0)/{π0 × (1− π0)/n}1/2

Note:
- The test uses the NULL SE, based on the (specified) π0.
- The “usual” CI uses an SE based on the observed p.

4.2.1 (Dis)Continuity Correction

Because we approximate a discrete distribution [where p takes on the values 0
n ,

1
n , 2

n , ... n
n corresponding to the integer values (0,1,2, ..., n) in the numerator of

p] by a continuous Gaussian distribution, authors have suggested a ‘continuity
correction’ (or if you are more precise in your language, a ‘discontinuity’
correction). This is the same concept as we saw back in §5.1, where we said
that a binomial count of 8 became the interval (7.5, 8.5) in the interval scale.
Thus, e.g., if we want to calculate the probability that proportion out of 10 is
≥ 8, we need probability of ≥ 7.5 on the continuous scale.

If we work with the count itself in the numerator, this amounts to reducing
the absolute deviation y − n× π0 by 0.5 . If we work in the proportion scale,
the absolute deviation is reduced by 0.5

n viz.

zc =
|y − nπ0| − 0.5

SE[y]
=
|y − nπ0| − 0.5√
nπ0[1− π0]

or

zc =
|p− nπ0| − 0.5

n

SE[p]
=
|p− nπ0| − 0.5

n

π0[1− π0]/n

1/2

†Colton [who has a typo in the formula on p · · · ] and A&B deal with this;
M&M do not, except to say on p386-7 “because most statistical purposes do
not require extremely accurate probability calculations, we do not emphasize
use of the continuity correction”. There are some ‘fundamental’ problems
here that statisticians disagree on. The “Mid-P” material in the Epi607-2001
Notes on JH’s website gives some of the flavour of the debate.
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Figure 2: From discrete to continuous

4.3 Example of Testing π: The Triangle Taste Test

Before a double blind RCT of lactase-reduced infant formula on infant crying,
Dr Ron Barr’s R.A. tested the experimental formulation for its similarity
in taste to the regular formula. n mothers in the MCH waiting room were
given 3 coded formula samples – 2 containing the regular formula and 1 the
experimental one. Told that “2 of these samples are the same and one sample
is different”, p = y/n correctly identify the odd one. Should the researcher
worry that the experimental formula does not taste the same? (if infants are
no more/less taste-discriminating than their mothers).

The null hypothesis being tested was H0: π(correctly identified samples) =
1/3 against Ha: π() > 1/3 [here, for once, it is difficult to imagine a 2-
sided alternative – unless mothers were very taste-discriminating but wished
to confuse the investigator]

We consider two situations (the real study with n=12, and a hypothetical
larger sample of n=120 for illustration).

Data: y = 5 of n = 12 mothers correctly identified the odd sample.

Degree of evidence against H0 :

= Prob(5 or more correct| π = 1/3) ... (a
∑

of 8 probabilities)

= 1 − Prob(4 or fewercorrect| π = 0.33) ... (a shorter
∑

of only 5)

= 1 − [P (0) + P (1) + P (2) + P (3) + P (4)] = 0.37

(1)

We can also obtain the exact probability (0.03685) directly via Ex-
cel, using the function BINOMDIST(4, 12, 0.333, TRUE), or using
1-sum(dbinom(0:4,12,1/3)) in R. So, by conventional criteria (Prob < 0.05
is considered a cutoff for evidence against H0) there is not a lot of evidence
to contradict the H0 of taste similarity of the regular and experimental for-
mulae. Of course, with a sample size of only n = 12, we cannot rule out the
possibility that a sizeable fraction of mothers could truly distinguish the two.

What if 50 of 120 mothers identified the odd sample?

Test π = 1/3 : z = (0.42∗ − 1/3)/{(1/3)× (2/3)/20}1/2 = 2.1.
So P = Prob[≥ 50 | π = 1/3] = Prob[Z ≥ 2.1] = 0.018

* We treat the proportion 50/120 as a continuous measurement; in fact it is based on an integer
numerator 50; we should treat 50 as 49.5 to 50.5 so ≥ 50 is really > 49.5, and we are dealing
with the probability. of obtaining 49.5/120 or more. With n = 120, the continuity correction
does not make a large difference; however, with smaller n, and its coarser grain, the continuity
correction [which makes differences smaller] is more substantial.
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5 Planning: Sample Size for CI’s and Tests

5.1 n to yield (2-sided) CI with margin of error ME at
confidence level 1− α

(see M&M p. 593, Colton p. 161, B&M 3rdE p. 473)

— margin of error —
(· · · · · · · · · · · · · · · · · · · · · • · · · · · · · · · · · · · · · · · · · · · ) CI

• see CI’s as function of n in tables and nomograms

• (or) large-sample CI: p± Zα/2SE(p) = p±ME

SE(p) = {p[1− p]/n}1/2,

so ...

n =
p[1− p]× Z2

α/2

ME2

If unsure, use largest SE i.e. when p = 0.5 i.e.,

n =
0.25× Z2

α/2

ME2
(2)

5.2 n for power 1 − β to “detect” [ see FOOTNOTE] a
population proportion π that is ∆ units from π0; type
I error = α.

(Colton, p. 161)

n =

{
Zα/2

√
π0[1− π0]− Zβ

√
π1[1− π1]

}2

∆2

≈
{
Zα/2

}2
{√

π[1− π]

∆

}2

[∗]

=
{
Zα/2 − Zβ

}2
{
σ0,1

∆

}2

(3)

* where π is average of π0 and π1.

Notes: Zβ will be negative; formula is same as for testing µ

5.2.1 Worked Example 1: sample size to test for preferences
π = 0.5 vs. π 6= 0.5
or Sign Test that median difference = 0

Test:

H0: MedianD = 0 vs Halt: MedianD 6= 0; α = 0.05 (2-sided);

or

H0: π(+) = 0.5 vs Halt: π(+) > 0.5

For Power 1− β against: Halt: π(+) = 0.65 say.

At π = ave of 0.5 & 0.65,
√
π[1− π] = 0.494.

n ≈
{
Zα

2
− Zβ

}2
{

0.494

0.15

}2

α = 0.05 (2-sided) & β = 0.2⇒ Zα = 1.96; Zβ = −0.84

(Zα
2
− Zβ)2 = {1.96− (−0.84)}2 ≈ 8, i.e.

n ≈ 8

{
0.494

0.15

}2

= 87

5.2.2 Worked Example 2: sample size for ∆ Taste Test:
πcorrect = 1/3 vs. π > 1/3

If set α = 0.05 (hardliners might allow 1-sided test here), then Zα = 1.645; If
want 90% power, then Zβ = −1.28; Then using equation 2 above...

πcorrect : 0.4 0.5 0.6 0.7 0.8

n for 90 Power against this π 400 69 27 14 8

FOOTNOTE: By the probability of detecting’ a given ∆, we really mean the
probability that – if the real difference were ∆ – the statistical test will be
‘positive’, i.e., ‘statistically significant’ at the preset ‘α’ level . Or to be more
cynical, it is the probability that the investigator will be able to submit the
results to a ‘journal of positive tests’. Just because P < 0.05 does not mean
that the real difference is as big as the ∆ used in the pre-study calculations.
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0 Exercises

0.1 (m-s) Working with logits and logs of proportions

In order to have a sampling distribution that is closer to Gaussian (sample
proportions, odds, and ratios of them tend to have nasty sampling distri-
butions), we often transform from the (0,1) π i.e., proportion, scale to the
(−∞, 0) log[π] scale, or the (−∞,−∞) log[π/(1 − π)] scale. The latter
transformation is called the logit transform.

Thus, we do all our inference (SE calculations, CI’s, tests) on the log
or logit scale, then transform back to the proportion or odds or ratio scale.

1. Suppose y ∼ Binomial(n, π) and that p = y/n. Derive the (approx.)
variance for the random variables log[p] and logit[p] = log[p/(1 − p)].
Assume n and π are such that we can ignore the possibility of obtaining
y = 0/n or y = n/n: people often add 0.5 to y and 1 to n to avoid such
complications.

2. The variance of p is largest when π = 0.5 and smallest when π = 0.0. At
what value of π is the variance of logit[p] largest? smallest?

3. How large would the ‘amplitude’21 be in a series of yearly proportions of
male births in a country or province with about (i) 1 million (ii) 10,000
(iii) 100 births per year? What, if instead of a proportion, the series
plotted the sex ratio (males:females, typically 1.04:1, or 104:100)? the
log of this ratio? Do the different amplitudes on different scales fit with
the wider and narrower ranges of the different scales?

If interested to see annual fluctuations, the Canadian data from 1931-1990
are available in the Resources web page under ‘Data / Miscellaneous’.

0.2 Sex ratio estimated from mix of singletons and twins

1. Suppose we estimated the proportion, π, of male births, the Male:Female
ratio Ω = π/(1−π), and the log of Ω from 100 pairs of unrelated singleton
births. In this sampling scheme, the expected proportions of MM, mixed,
and FF pairs are the binomial probabilities π2, 2π(1 − π) and (1 − π)2

respectively. If π were exactly 1/2 [it is slightly greater than 1/2], these
probabilities are the familiar 1/4, 1/2 and 1/4 respectively, i.e., the bi-
nomial variance of the number of males per pair is 2π(1− π) = 1/2.

21If you wish, use the SD or IQR rather than range.

Use your earlier results to show that if in these 200 births, we observed
m males and f females, we would estimate the variance of the log-ratio
as 1/m+ 1/f. Then do the calculation with m = 101 and f = 99.

2. What if, instead, we estimated π, Ω, and log Ω from 100 twin pairs where
we (a) know (b) don’t know which pairs and identical and which are not?

In this context, the expected proportions of MM, mixed, and FF pairs
do not emanate from a single binomial model per pair, but rather from
a mix of two such models: in the pairs where the twins are not identical,
the expected proportions are as above [π is again slightly above 1/2 but
varies somewhat with the mother’s age, and other factors22 But in the
identical pairs, there are just 2 possibilities, namely 0 males or 2 males,
with probabilities close to 1/2 and 1/2 respectively.[In identical twins,
James has found that π is just below 1/2].

For this exercise, the difference between the π in identical and non-
identical twins is small, so assume we are estimating a single parameter.

(a) Suppose we knew 67 of the 100 pairs were identical. Derive an estima-
tor of π, along with its variance, and the variance of the log Ω estimator.

(b) Suppose we did not know how many of the 100 pairs were identical,
but that the expected number is n/3. Derive an estimator of π and derive
it variance, and the variance of the estimator of log Ω. [Hint: you might
work out the variance for the number of males in a pair, and multiply it
by n to obtain the variance for the total number of males in n pairs.]

(c) How much wider is the variance of the log-ratio in cases (a) and (b)
than the naive single-binomial-based 1/m+ 1/f in part 4?

The ‘extra-binomial’ variation emanates from (a) the smaller amount of
information per child in the identical pairs, and – if it is the case – (b)
the unknown mix of the numbers of the two types of twins.

22W. H. James, Annals of Human Biology, 1975,Vol.2, No. 4, 365-378 Sex ratio in twin
births Summary. 1. Data on more than 2.5 million twin births suggest that the regression
of sex ratio in twins on maternal age does not decline monotonically like that of singletons,
but, like the incidence of dizygotic twinning, seems to rise and then fall with maternal age.
2. Accordingly it is hypothesized that the sex ratio in mono-zygotic twins is lower than
that in dizygotic twins or that in singletons. This would account also for the low overall
sex ratio in twins. 3. The data are consistent with the hypotheses that the mono-zygotic
twin sex ratio is constant for all maternal ages at a value of about 0.496, and
that the dizygotic twin maternal age-specific sex ratios are the same as the singleton sex
ratios for the same maternal ages. 4. The hypothesized low sex ratio in monozygotic twins
is reminiscent of that in some congenital malformations: possibly some aetiological factor
is common to monozygotic twins and such congenital malformations. [Note that James
defines the sex ratio as the proportion of males. Today the sex ratio refers to the ratio of
males to females.]
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0.3 Ways to calculate information for a function of a
parameter

Refer to Clayton and Hills, Chapter 9.2-9.4, page 80-85: “Approximate like-
lihoods”. They address ‘transforming the parameter’ in section 9.3. One
way is to re-write the log-likelihood ‘from scratch’ as a function of the trans-
formed parameter, and calculate its curvature. In section 9.4 they talk about
a [shorter] method that “agrees with the expression obtained by the (earlier)
longer method” [line 4 p 87]. Exercise : Repeat the ‘longer’ and ‘shorter’
calculations for what they call the ‘risk’ parameter, π, i.e., the results given
at the bottom half of page 85 and the top of page 86.

0.4 (m-s) Greenwood’s formula for the SE of an esti-
mated Survival Probability

In survival analysis, we often estimate the surviving proportion S after a
fixed number k of time intervals as a product of (estimated) conditional

probabilities, ie Ŝ =
∏k

1 Ŝi. The i-th element is the conditional probabil-
ity of surviving the i-th interval, given that one survived the previous intervals.

For inference regarding S, we need SE[Ŝ]. To derive this, it is easier

to work in the log[S] scale, so that log Ŝ =
∑k

1 log[Ŝi], to calculate the SE
and CI in this scale, and then transform back to the (0,1) S scale.

Exercise: Treat Ŝi ∼ (1/ni)× Binomial(ni, Si), with ni fixed (in practice,
the ni’s are random, but there are good reasons to treat them as fixed for the
variance calculation). Derive the variance for log[Ŝ], and from this (via the
same math applied to the reverse, i.e., antilog, transform) the variance for Ŝ.

0.5 (m-s) The link between the exact tail areas of the
Binomial and F distributions

In a 1935 article “The Mathematical Distributions used in Common Tests”
http://www.biostat.mcgill.ca//hanley/bios601/Mean-Quantile/

Fisher_math_stat_tests_1935.pdf R. A. Fisher gave some very helpful
‘tricks’ for calculating the (exact) tail areas of the Poisson and Binomial
distributions by using the links between these tails areas and the tail areas of
the Chi-square and F distributions. These two continuous distributions had
been extensively tabulated by that time, whereas the Poisson and Binomial
distributions had not. Nowadays the tail areas of the Poisson and Binomial

distributions are available in Excel and in most statistical packages (e.g.,
pbinom and ppois in R) and so these links have been forgotten. However,
some software packages make use of them to derive confidence intervals for
the parameters of the Binomial or Poisson distributions, so the links are still
relevant to statisticians, even if they are no longer so to end-users.

In previous years JH asked bios601 students to study Fisher’s 1935 article, and
to re-write his proofs in their own notation. They did not find Fisher’s article
easy to digest. Moreover, Fisher linked the Binomial and the F distributions,
and the Poisson and the Chi-square distributions, simply because these were
the continuous distributions that were most accessible. However, now that
spreadsheet and statistical packages have a much larger range of continuous
distributions built in, we today can use more direct links between the tail
areas of discrete and continuous distributions (as you did when working out
the probability that you would still have 4 good tires at the end of a 7,500
Km trip!)

JH has recently made a start on re-introducing the useful links, but exploit-
ing more direct ones, rather than the indirect ones Fisher exploited. In his
2019 Statistics in Medicine article “A more intuitive and modern way to
compute a small-sample confidence interval for the mean of a Poisson dis-
tribution”, https://onlinelibrary-wiley-com.proxy3.library.mcgill.

ca/doi/10.1002/sim.8354 he began with the easier of the two, the link be-
tween the Poisson and the Erlang distribution – the Erlang distribution is
a specific case of the gamma distribution where the shape parameter is an
integer.

And he now invites you to complete the job: replacing Fisher’s (hard to
follow) link between the binomial and the F distributions with the more direct
link between the tail areas of the binomial and the beta distributions. The
theory has already been nicely illustrated in the 1963 article ‘The Relationship
Between the Binomial and F Distributions’ by G. H. Jowett in the Journal of
the Royal Statistical Society. Series D (The Statistician), Vol. 13, No. 1, pp.
55-57. See https://www-jstor-org.proxy3.library.mcgill.ca/stable/

2986663?origin=crossref&seq=1#metadata_info_tab_contents. Unfor-
tunately, because the beta distribution was not so accessible back then, Jowett
reverted to using the F distribution – even though his very first sentence in
his article links the binomial and the beta!

What remains is for us to ‘promote’ that direct link and to illustrate it graph-
ically and intuitively, as JH did with the Poisson-Erlang link.

In class JH will suggest a plan for doing this.
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0.6 Clusters of Miscarriages [based on article by L Abenhaim]

Assume that:

• 15% of all pregnancies end in a recognized spontaneous abortion (miscar-
riage) – this is probably a conservative estimate.

• Across North America, there are 1,000 large companies. In each of them,
10 females who work all day with computer terminals become pregnant
within the course of a year [the number who get pregnant would vary, but
assume for the sake of this exercise that it is exactly 10 in each company].

• There is no relationship between working with computers and the risk of
miscarriage.

• a “cluster” of miscarriages is defined as “at least 5 of 10 females in the
same company suffering a miscarriage within a year”

Exercise : Calculate the number of “clusters” of miscarriages one would ex-
pect in the 1,000 companies. Hint: begin with the probability of a cluster.

0.7 “Prone-ness” to Miscarriages ?

Some studies suggest that the chance of a pregnancy ending in a spontaneous
abortion is approximately 30%.

1. On this basis, if a woman becomes pregnant 4 times, what does the
binomial distribution give as her chance of having 0,1,2,3 or 4 spontaneous
abortions?

2. On this basis, if 70 women each become pregnant 4 times, what number
of them would you expect to suffer 0,1,2,3 or 4 spontaneous abortions?
(Think of the answers in (i) as proportions of women).

3. Formally compare these theoretically expected numbers out of 70 with the
following observed data on 70 women, each of whom had 4 pregnancies:

No. of spontaneous abortions: 0 1 2 3 4
No. of women with this many abortions: 23 28 7 6 6

4. Why might the expected numbers not agree very well with the observed
numbers? i.e. which assumption(s) of the Binomial Distribution are pos-
sibly being violated? (Note that the overall rate of spontaneous abortions
in the observed data is in fact 84 out of 280 pregnancies or 30%).

5. To see if the distribution exhibits ‘extra-binomial’ variation, calculate
the empirical variance and compare it with the (theoretical) binomial
variance when π = 30%.

6. What happens if you try to fit a random effects (hierarchical) model, e.g.,
for i = 1, 2, . . . 70, πi ∼ Beta(α, β); yi|πi ∼ Binomial(4, πi)?

0.8 Automated Chemistries (from Ingelfinger et al)

At the Beth Israel Hospital in Boston, an automated clinical chemistry an-
alyzer is used to give 18 routinely ordered chemical determinations on one
order (glucose, BUN, creatinine, ..., iron). The “normal” values for these 18
tests were established by the concentrations of these chemicals in the sera of
a large sample of healthy volunteers. The normal range was defined so that
an average of 3% of the values found in these healthy subjects fell outside.

1. Using the binomial formula [even if it is näıve to do so here], compute
the probability that a healthy subject will have normal values on all 18
tests. Also calculate the probability of 2 or more abnormal values.

2. Which of the requirements for the binomial distribution are definitely
satisfied, and which ones may not be?

3. Among 82 normal employees at the hospital, 52/82 (64%) had all normal
tests, 19/82 (23%) had 1 abnormal test and 11/82 (13%) had 2 or more
abnormal tests. Compare these observed percentages with the theoretical
distribution obtained from calculations using the binomial distribution.
Comment on the closeness of the fit.

0.9 Binomial or Opportunistic? Capitalization on
chance... multiple looks at data
(Question from Ingelfinger et al.)

Mrs A has mild diabetes controlled by diet. Blood values vary rapidly, so
think of each day as a new situation. Her morning urine sugar test is negative
80% of the time and positive (+) 20% of the time [It is never graded higher
than +].

1. At her regular visits to her physician, the physician always asks about
last 5 days. At this particular visit, she tells the physician that the test
has been + on each of the last 5 days. What is the probability that
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this would occur if her condition has remained unchanged? Does this
observation give reason to think that her condition has changed?

2. Is the situation different if she observes, between visits, that the test is
positive on 5 successive days and phones to express her concern? [By the
way: how does this relate to the length of the largest run in a series of
100 Bernoulli observations?]

0.10 Can one influence the sex of a baby?

These data are taken from an article in the NEJM 300:1445-1448,
1979 http://www.biostat.mcgill.ca/hanley/bios601/Proportion/

InfluenceSexOfBaby.pdf.

1. Consider a binomial variable with n = 145 and π = 0.528. Calculate the
SD of, and therefore a measure of the variation in, the proportions that
one would observe in different samples of 145 if π = 0.528.

2. Then consider the following, abstracted from the NEJM article: and
answer the question that follows the excerpt.

The baby’s sex was studied in births to Jewish women who
observed the orthodox ritual of sexual separation each month
and who resumed intercourse within two days of ovulation. The
proportion of male babies was 95/145 or 65.5% (!!) in the
offspring of those women who resumed intercourse two days
after ovulation (the overall percentage of male babies born to
the 3658 women who had resumed intercourse within two days
of ovulation [i.e. days -2, -1, 0, 1 and 2] was 52.8%)”.

3. How does the SD you calculated above help you judge the findings?

0.11 It’s the 3rd week of the course: it must be Binomial

In which of the following would Y not have a Binomial distribution? Why?

1. The pool of potential jurors for a murder case contains 100 persons chosen
at random from the adult residents of a large city. Each person in the pool
is asked whether he or she opposes the death penalty; Y is the number
who say “Yes.”

2. Y = number of women listed in different random samples of size 20 from
the 1990 directory of statisticians.

3. Y = number of occasions, out of a randomly selected sample of 100 oc-
casions during the year, in which you were indoors. (One might use this
design to estimate what proportion of time you spend indoors)

4. Y = number of months of the year in which it snows in Montréal.

5. Y = Number, out of 60 occupants of 30 randomly chosen cars, wearing
seatbelts.

6. Y = Number, out of 60 occupants of 60 randomly chosen cars, wearing
seatbelts.

7. Y = Number, out of a department’s 10 microcomputers and 4 printers,
that are going to fail in their first year.

8. Y = Number, out of simple random sample of 100 individuals, that are
left-handed.

9. Y = Number, out of 5000 randomly selected from mothers giving birth
each month in Quebec, who will test HIV positive.

10. You observe the sex of the next 50 children born at a local hospital; Y is
the number of girls among them.

11. A couple decides to continue to have children until their first girl is born;
Y is the total number of children the couple has.

12. You want to know what percent of married people believe that mothers
of young children should not be employed outside the home. You plan
to interview 50 people, and for the sake of convenience you decide to
interview both the husband and the wife in 25 married couples. The
random variable Y is the number among the 50 persons interviewed who
think mothers should not be employed.

13. Y : the number of males in 100 twin pairs.

0.12 Tests of intuition

1. A coin will be tossed either 2 times or 20 times. You will win $2.00 if
the number of heads is equal to the number of tails, no more and no less.
Which is correct? (i) 2 tosses is better. (ii) 100 tosses is better. (iii) Both
offer the same chance of winning.

2. Hospital A has 100 births a year, hospital B has 2500. In which hospital
is it more that at least 55% of births in one year will be boys.
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0.13 Test of a proposed mosquito repellent

An entomologist carried out the following experiment as a test of a proposed
mosquito repellent. Thirty-five volunteers had one forearm treated with a
small amount of repellent and the other with a control solution. The subjects
did not know on which forearm the repellent had been used. At dusk the
volunteers exposed themselves to mosquitoes and reported which forearm was
bitten first. In 10/35, the arm with the repellent was bitten first.

1. Make a statistical report on the findings.

2. How would you analyze the results if: (a) some arms were not bitten at
all? (b) some people were not bitten at all?

0.14 Triangle Taste test

In its 1974 manual “Laboratory Methods for Sensory Evaluation of Food”,
Agriculture Canada described tests (the triangle test, the simple paired com-
parisons test,...) to determine a difference between samples

In the triangle test, the panelist receives 3 coded samples and is told
that 2 of the samples are the same and 1 is different and is asked to
identify the add sample. This method is very useful in quality control
work to ensure that samples from different production lots are the
same. It is also used to determine if ingredient substitution or some
other change in manufacturing results in a detectable difference in
the product. The triangle test is often used for selecting panelists.

Analysis of the results of triangle tests is based on the probability
that - IF THERE IS NO DETECTABLE DIFFERENCE - the odd
sample will be selected by chance one-third of the time. Tables for
rapid analysis of triangle test data are given below. As the number
of judgements increases, the percentage of correct responses required
for significance decreases. For this reason, when only a small number
of panelists are available, they should perform the triangle test more
than once in order to obtain more judgements.

The results of a test indicate whether or not there is a detectable
difference between the samples. Higher levels of significance do not
indicate that the difference is greater but that there is less probability
of saying there is a difference when in fact there is none.

Chart: Triangle test difference analysis [Table starts at n = 7 and ends at
n = 2000; selected entries shown here]

Number of correct answers necessary to establish...

level of significance
No. Tasters 5% 1% 0.1%

7 5 6 7
10 7 8 9
12 8 9 10
30 16 17 19
60 28 30 33

100 43 46 49
1000 363 372 383

1. Show how one arrives at the numbers 7, 8 and 9 of correct answers nec-
essary to establish the stated levels of significance for the case of n=10
tasters. Hint: you can work them out from the BINOMDIST function in
Excel or [since we are only interested in the principles involved, and not
in getting answers correct to several decimal places] you should be able to
interpolate them from probability distributions tabulated in the text [the
setup here is similar to the therapeutic touch study, but with π = 1/3
rather than π = 1/2].

2. Calculate the exact 90, 98 and 99.8 percent 2-sided CI’s for the propor-
tions 7/10, 8/10 and 9/10 respectively, and from these limits verify that
indeed 7/10, 8/10 and 9/10 are significantly greater than 0.33, at the
stated levels of significance .(I am presuming that their Ha is 1-sided, ie.
0.33 vs. > 0.33

You can obtain these CI’s from the spreadsheet “CI for a proportion”,
under Resources for Ch 8.

3. Show how one arrives at the numbers 43, 46 and 49 of correct answers
necessary to establish the levels of significance for the case of 100 tasters.
Hint: you should be able to use a large-sample approximation.

4. How well would this large-sample approximation method have done for
the case of n = 10?

5. If you set the α at 0.05 (1-sided), what number of tasters is required
to have 80 percent power to ‘detect’ a ‘shift’ from H0 : π = 1/3 to (i)
Ha : π = 1/2 (ii) Ha : π = 2/3? Use the sample size formula in section
8.1 of the notes.

Notes: See worked example 2 in notes on Chapter 8.1. This is an good
example where a one-sided alternative is more easily justified, so with
α = 0.05 1-sided, Za = 1.645. Note that power of 80 percent means that
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Zβ = −0.84. The Zβ is always one-sided, since one cannot be on both
sides of H0 simultaneously!

0.15 Variability of, and trends in, proportions

The following data are the proportion of Canadian adults responding YES to
the question “Have you yourself smoked any cigarettes in the past week?” in
Gallup Polls for the years 1974 to 1985.

1974 ’75 ’76 ’77 ’78 ’79 ’80 ’81 ’82 ’83 ’84 85
% 52 47 . 45 47 44 41 45 42* 41 39 39

. question not asked in 1976;
* question worded “occasionally or regularly” in 1982.

Results are based on approximately 1050 personal in-home interviews each
year with adults 18 years and over.

1. Plot these percentages along with their 95 confidence intervals.

2. Is there clear evidence that the trend is downward? To answer this, try
to draw a straight line through all (or most of) the confidence intervals
and ask can the straight line have a slope of zero i.e. be parallel to the
horizontal axis. You might call this a “poor-person’s test of trend.”

For recent national and provincial figures, see

http://www.statcan.gc.ca/tables-tableaux/sum-som/l01/cst01/health74b-eng.htm

0.16 A Close Look at Therapeutic Touch

[Rosa L et al., JAMA. 1998;279:1005-1010; for those interested, there is con-
siderable follow-up correspondence] See the full article under Resources..

In the last paragraph of Methods the authors state (italics by JH):

“The odds of getting 8 of 10 trials correct by chance alone is 45 of 1024
(P=.04), a level considered significant in many clinical trials. We decided
in advance that an individual would “pass” by making 8 or more correct
selections and that those passing the test would be retested, although the
retest results would not be included in the group analysis.”

1. Use statistical software, or Table C of M & M3, or first principles, to
verify that the probability of getting exactly 8 of 10 correct is indeed 45
of 1024.

2. In the next sentence the authors state that in fact they used “8 or more
correct” as their criterion. Explain why this definition of “evidence for
the therapeutic touch” (or, if you prefer, “against the skeptic’s null hy-
pothesis”’) is more logical than the “exactly 8” for which they calculate
the P=0.04 [ Hint: See the second half of the first paragraph (about
specific outcomes) under P-values in M & M page 457. In our context,
imagine that there were 400 trials: then the probability of – by chance
alone – getting exactly 320 is indeed, in Dr. Arbuthnot’s words, “vanish-
ingly small.” but the probability of getting specifically 200 (a value that
provides no evidence against H0, is also small (0.04)]

3. Calculate – under the “null” hypothesis, the probability of “8 or more
correct”. Is it indeed less than the arbitrary “level considered significant”
of 0.05? If not, then what would the criterion need to be so that the
probability – again calculated under “H0” – of reaching this criterion is
< 0.05.

4. Figure 2 shows the scores of the 28 subjects. Multiply the set of Binomial
probabilities with n=10 and p = 0.5 (i.e., p[0/10 correct — p = 0.5] to
p[10/10 correct — p = 0.5] by 28 to obtain theoretical frequencies. These
are the numbers of subjects, out of 28, one would expect to get 0/10, 1/10,
... 10/10 trials correct if all they were doing in each trial was guessing.
Compare the theoretical frequencies of subjects with the observed ”No.
of subjects” with each score. Comment. Ignore for the moment the fact
that the 28 people tested were really only 21 distinct people – 14 tested
once (10 trials each) and 7 tested twice (10 trials, twice)

0.17 Is this the correct way to calculate a CI for a pro-
portion?

Using an observed π̂ = 2/1094 ‘positivity rate’, a sociologist calculated the
lower and upper 95% limits for the theoretical proportion positive (π) using
the following method:

{πL, πU} = qbinom(c(0.025,0.975), size = 1094, prob= 2/1094)/1094

1. Calculate the limits using the ‘exact’ method described in section 2.1.1.
[i.e., instead of obtaining the upper 95% CI using the point estimate, one
should vary the upper limit until the probability of 2 or fewer is 0.025;
and conversely for the lower limit.] Compare your answer with that of
the sociologist, and comment.

2. What limits would the sociologist have obtained had the observed pro-
portion been 0/1094?
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3. What (posterior) limits would you obtain had it been 0/1094?

4. What limits would Laplace, with his ‘law of succession,’ have obtained ?

5. {Comment by JH; not on agenda }: You probably obtained the limits by
trial and error, varying the limit until you obtained the appropriate tail
areas. It is possible to use Fisher’s shortcut (which uses the equivalence
between the Binomial tail area and the tail area of an F distribution with
certain numerator and denominator degrees of freedom – see question
0.3) to avoid the trial and error, in other words, it is possible obtain the
limits for π directly, using the qf(p, dfnum, dfdenom) function.

6. How far off would you be if you treated the numerator (the 2) as the
realization of a Poisson (rather than Binomial) random variable with
mean (expectation) µ, obtained the 95% CI for µ [see next chapter], and
then divided its limits by 1094 to get the 95% CI for π?

7. Find a few other instances in the recent literature where an ‘exact’ bino-
mial CI was used, and say whether it made a material difference.

0.18 Village of the Dames Inside the mysterious Polish
village where a baby boy hasn’t been born for a
decade

See the story in this tabloid newspaper https://www.thesun.co.uk/news/

9837866/polish-village-no-baby-boy-decade/

1. Before going on parts 2 and 3, compose a short letter to the Editor
addressing the statistical probabilities.

2. Look to see how more serious newspapers covered the story, and summa-
rize what you found.

3. Search for more technical follow-up stories, such as this one:
https://theconversation.com/polish-village-hasnt-seen-a-boy-born-in-nearly-10-years-heres-how-that-computes-122176

and relate it back to a few of the earlier exercises. What do these have
in common with this pieces http://www.biostat.mcgill.ca/hanley/

Reprints/LotteriesProbabilitiesHANLEY1984TeachingStatistics.

pdf and http://www.biostat.mcgill.ca/hanley/Reprints/jumping_

to_coincidences.pdf

0.19 Are their planning calculations covered by the for-
mulae in section 5?

See the account of this trial http://www.biostat.mcgill.ca/hanley/

bios601/Proportion/RespiratorsVSmasksFLUclusterRCT.pdf. Are their
sample size calculations (see ‘Statistical Analyses’, p.827, first column) cov-
ered by the formulae presented in section 5? Why? Why not?

0.20 Number in household who (a) had visited a physi-
cian in the previous year (b) were male

1. Fit a hierarchical (e.g. beta-binomial) model to the numbers of household
members had had visited a physician in the previous year. The data
can be found under the heading ‘When the Binomial does not apply’ in
Chapter 13 of the online book.23

Do so by the Method of Moments, by the GEE framework24, and
by MCMC. Compared with what you get from the much simpler Method
of Moments, what extra information do you get for the extra effort
involved to deploy the GEE and the MCMC approaches?

Is it possible to fit the model by mazimizing the likelihood directly?

2. How might you estimate the proportion of males, and quantify its uncer-
tainty?

0.21 How often do thumbtacks land point up?

Given that the authors no longer remember which of the 320 sequences
belong to which tack, which surface and which flicker, suggest models that
might fit the data in Diaconis and Beckett (1994) and Liu 1996.25. Suggest
how you might fit them.

23They are also found in the article
GEE Analysis of negatively correlated binary responses: a caution

24Statistical Analysis of Correlated Data Using Generalized Estimating Equations: An
Orientation

25They are also available in the DPpackage in R
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0.22 A sum of ‘i, non-i distributed’ Bernoulli random
variables

Consider the sum, Y , of a known number, N , of independent Bernoulli random
variables, a fixed (but unknown) n of which have expectation p, with the
remaining N − n having expectation 1− p. 26

In some applications, p is chosen by the investigator, and the objective is to
use a realization of Y to estimate n.

1. Derive the Expectation and Variance of Y.

2. For n = 9 and N = 12, use the method of convolutions and R to find
and plot the exact numerical probability mass function for Y. Comment
on its shape. Do you think the shape would be the same for all possible
values of n?

3. Derive the Method of Moments estimator for (the parameter) n.

4. Derive the variance of this estimator, and comment on its form, and what
it does and does not depend on.

5. At what p does this variance reach its maximum? minimum?

6. Explain why it is not possible to estimate n if p = 0.5.

7. In the case where N = 12, and p = 0.75, apply the estimator to the
(single) observed data point Y = 8, and calculate a 95% Margin of Error.

8. Consider the case where N =12, and p = 0.75, and where we observed Q
= 9 independent realizations of Y , namely 9, 9, 9, 8, 8, 10, 7, 3, and 6.
Estimate n and calculate a 95% Margin of Error.

9. What value of Q would lead to a margin of error of 1?

10. We happen to know that in the context where these data were gathered,
the value of n was 9. Does the value of 3 look suspicious? Why is it not
appropriate to use the results in 2. to calculate P [Y ≤ 3 | n = 9]? What
P [] might you calculate instead?

11. Consider the case of N = 1, and suppose your prior probabilities for n =
{1, 0} are π = {0.8, 0.2} so that the pre-data odds P [n = 1] : P [n = 0]
is 4:1. Again, take p to be 0.75, Suppose you gather Q = 8 realizations.
Post-data, how ‘sure’ will you expect to be about the true value of n?
[Hint : compute a Likelihood Ratio – using E[Y1 + . . . + Y8] as the
‘expected’ data.] What if you only use Q = 4?

26See Bernoulli Trials, Poisson Trials, Surprising Variances, and Jensen’s Inequality.

0.23 Re-making the Fagan Nomogram using R graphics

The New England Journal of Medicine 
Downloaded from nejm.org at MCGILL UNIVERSITY LIBRARY on September 14, 2015. For personal use only. No other uses without permission. 

 From the NEJM Archive. Copyright © 2010 Massachusetts Medical Society. All rights reserved. 

We already saw this nomogram in the material on Probability. Curiously,
it is read from right to left, since the prior (i.e., pre-Test) probability (of
Disease) is shown on the right, the likelihood ratio in the middle, and the
end-result, the post-Test probability, is on the left. It has been reproduced in
many textbooks, but nobody has re-done it with modern graphics facilities,
so it reads left to right, or could have different ranges, or better labels. JH’s
impression is that few people were able to figure out how Fagan calculated
where to place the values shown on the 3 rulers.

1. How does the multiplicative relationship

Post (+ve)Test Odds of D = Prior Odds of D × LR+

appear when plotted on the log(odds) scale?

2. How does this help you to do your own calculations and to re-plot it?
(See next page for a version produced by JH.)
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