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Confounding results from a mixture of effects in a single estimate.
An uneven distribution of baseline risks across comparison groups
results in a confounded estimate of the differences between the
groups. The stratified analyses that were introduced in the last
chapter to deal with confounding assumed that the information
necessary for segregating study subjects into strata would be available,
and a similar requirement holds for mathematical modeling tech-
niques. Often the crucial data are absent. This chapter addresses
the strength of bias introduced by confounding when confounding
factors are ignored. The approach is entirely theoretical; readers
with low tolerance for the abstract may wish to pass directly to the
section on Implications at the end.



120 Observation and Inference

The Apparent Relative Risk

Let E stand for an exposure that is either present or absent, and
let Pr(E) be the prevalence of one level of E ("exposed”) in a pop-
ulation. Let C stand for a covariate characteristic or exposure, also
with only two levels, and Pr(C) be the prevalence of one level of C
("possessing the covariate") in the same population. The population
prevalences e, f, g, and & displayed in Table 9.1 describe the joint
distribution of the population over E and C.

Table 9.1 Prevalences of exposure and covariate

Exposure
Covariate Present Absent Total
Present e f Pr(C)
Absent a h 1-Pr(C)

Total Pr(E) 1-Pr(E) 1

Let the population described in Table 9.1 be observed without
loss to follow-up for sufficient time to allow the appearance of
disease. Assume that the probability of disease is unrelated to
exposure, but is a function of covariate status. For population
subgroups in which the covariate is present or absent, assume that

the probabilities of disease acquisition are R, or R respectively.

A development exactly analogous to the one that follows can be
laid out for cumuIative incidences, incidence rates, or hazards, any
of which could therefore be substituted for the word "probability"
below.

The total prdbability of disease in exposed persons is
Rce+Rzg
e+qg

E

That in persons not exposed is

RCf+REh
Ry=—" —°
-~ f+h
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The apparent relative risk, comparing exposed to unexposed
segments of the population is

Apparent RR(E)=

Ry Rce+Rzg 1-Pr(F)
Ry Rcf+Rgh  Pr(E)

[1]

Since exposure by definition is not associated with any excess
probability of disease, the apparent relative risk is a direct measure
of confounding. The first term in the expression above is the exposure
odds in cases, the second is the reciprocal of exposure odds in the
study population. Since the exposure odds in the control series of a
case-control study is a consistent estimate of that in the population
in which the cases occurred, the arguments developed here apply to
case-control studies as well as to cohort studies.’

Define the relative risk comparing persons in whom the covariate
is present to those in whom it is absent as

Rc
c

For fixed overall prevalences of exposure and covariate in the
study population, the quantities f, g, and # can be rewritten as
functions of e, Pr(E), and Pr(C).

F=Pr(C)-e g=Pr(E)-e
h=1-Pr(C)-Pr(E)+e

On the basis of the preceding expressions, the apparent relative
risk for exposure can be rewritten as

Apparent RR(F)=

e(RR(C)-1)+Pr(E) 1-Pr(E)
(Pr(C)-e)(RR(C)-1)-Pr(E)+1 Pr(k)

[2]

The import of Equation 2 is that the degree of confounding
introduced into a 2x2 table by the presence of a third, disease-causing
factor depends upon thé strength of the association between the third
factor and disease (RR(C)), on the prevalence of exposure (Pr(E)),
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on the prevalence of the third factor (Pr(C)), and on the proportion
of the study population in which the confounding characteristic and
exposure occur together in the same people (e).

Equation 1 can also be written as
~ Apparent RR(E)=

RR(C)e+g 1-Pr(E)

(3]
RR(C)f+h  Pr(E)

The prevalences of the confounding variable in the exposed and
nonexposed segments of the population are

Pr(ClE)-Pr(zE) Pr(CIf)n-l—_—;:_—(—E—)
Furthermore

— _ g —_— - __nr

PrCIE)=5r0r PrCIE) = 15

By substitution into Equation 3,
Apparent RR(E)=

Pr(C|E)RR(C)+Pr(C|E)

— ——= [4]
Pr(C|E)RR(C)+Pr(C|E)

Special Cases and Limits for Apparent RR(E)
The right hand side of Equation 4 is the ratio of two weighted

averages of the quantities RR(C) and 1. (The weights are different,

bemg P(C | F)and P(C | E)in the numerator and P(C | E)and P(C | E)
in the denominator.) When RR(C)=1, then the Apparent RR(E)=1.
When RR(C)>1, the numerator quantity in the ratio is less than
RR(C), and the denominator is greater than 1. It follows that

Apparent RR(E)<RR(C) [S]

That the relative risk that could be ascribed to confounding must
be less than the relative risk associated with the confounding factor
was first observed by Cornfield, Haenszel, and others.87

67. Cornfield J, Haenszel W, Hammond EC, Lilienfeld AM, Shimkin MB, Wynder EL.
Smoking and lung cancer: Recent evidence snd a dlscusslon of some questlons J Nat
Cancer Inst 1959;22:173-203 (Appendices A and B
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If E and C are independent, in the sense that
e=Pr(E)Pr(C) i [6]

then from Equation 2 the Apparent RR(E)=1. That is to say, there
is no confounding.

From Equation 4 it follows wherf RR(C)>1 and P(C | E)> P(C | E)
that
Pr(C|E)

A t RR(E)<———=*
pparen ( )<Pr(_c ) (7]

I will refer to Equation 7 as "the prevalence inequality." The
prevalence inequality holds that the apparent relative risk associated
with exposure is less than the ratio of the prevalence of the con-
founding variable among the exposed to the prevalence of the
confounding variable among the nonexposed. When the prevalence
of the confounding variable in the study population approaches 100
percent, the degree of confounding approaches nil (Apparent RR(E)
= 1). When the prevalence of the confounding variable is zero, the
right hand side of Equation 7 is undefined, but it follows from
Equation 4 that the Apparent RR(E) = 1 for all values of RR(C)
and of Pr(E)>0.

Using the notation of Table 9.1, we can write the Exposure-
Covariate Odds Ratio (ECOR) as

ECOIE‘—ﬂ

fg

Independence between E and C, in the sense defined by Equation

6, is equivalent to ECOR=1. When ECOR is greater than 1, it always

exceeds the corresponding ratio of confounder prevalences in the
exposed and nonexposed, which in turn exceeds one. That is

< Pr(C|E)

—~<ECOR
Pr(C|E)

which in combination with Equation 7 implies that

1 < Apparent RR(E)<ECOR _ [8]
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Determinants of the Apparent RR(E)

The results of the preceding section place limits on the degree
of confounding that can result from values of Pr(E), Pr(C), RR(C),
and the ECOR, but they do not provide information on the manner
in which the confounding varies as a function of these together. We
will approach this question graphically.

Conditionally upon the margins of Table 9.1 and the ECOR, ¢
can be found as the solution of a quadratic equation. Substitution
of the derived value for e into Equation 2 yields an expression relating
RR(E) to ECOR, Pr(C), Pr(E), and RR(C). The dependence of the
Apparent RR(E) on these terms is graphed in Figures 9.1 - 9.3.

*®

Apparent RR(E)

Figure 9.1 Dependence of the apparent relative risk associated
with exposure on the relative risk associated with the covariate
and on the exposure-covariate odds-ratio for Pr(E)=0.2 and
Pr(C)=0.2
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Figure 9.1 displays the Apparent RR(E) as a function of RR(C)
and the ECOR for Pr(E)=Pr(C)=0.2. ECOR and RR(C) both range
in the figure from 1 to. 4. Where ECOR=RR(C)=1, the Apparent
RR(E)=1. So long as ECOR equals unity, the Apparent RR(E)
remains unity. The same holds true so long as RR(C) equals unity.
For values of ECOR and RR(C) greater than their respective baselines,
the Apparent RR(E) rises with jmtreasing association of exposure
and covariate and does so with increasing slope as RR(C) increases.
Not shown in the figure is the situation when either ECOR or RR(C)
falls below one. Then the confounding is in a negative direction, so -
that the Apparent RR(E) is less than one. When both ECOR and
RR(C) are less than one, the confounding is again positive.

1

0.6

s

Figure 8.2 Dependence of the apparent relative risk associated
with exposure on the overall prevalence of the covariate and on
the exposure-covariate odds-ratio for Pr(E)=0.2 and RR(C)=4
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Figure 9.2 presents the surface described by Pr(C), ECOR, and
RR(E) for Pr(E)=0.2 and RR(C)=4. The values of Pr(C) in Figure
9.2 range from 0 to 1, and those of the ECOR from 1 to 4. Here as
in Figure 9.1, the Apparent RR(E) equals one when there is no
association between E and C, that is, when ECOR=1. For larger
values of ECOR, the degree of confounding (as measured by the
distance between RR(E) and its null value of unity) rises from none
when Pr(C)=0 to a maximum (at Pr(C)=0.2) and then falls back to
none at Pr(C)=1. For values of ECOR less than one (not shown in
Figure 9.2), the Apparent RR(E) falls below unity, the more so as
ECOR approaches 0.

Apparent RR(E)

Figure 9.3 Dependence of the apparent relative risk associated

with exposure on the overall prevalences of exposure and
covariate for ECOR=4 and RR(C) =4
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The relation between the prevalence inequality and Figure 9.2
can be seen most clearly at the upper limit values for Pr(C). When
the prevalence of the confounding variable approaches 1, then the
ratio of confounding variable prevalence in exposed to that in
nonexposed persons must also approach 1, and the Apparent RR(E)
approaches 1 as well. As Pr(C) nears zero, the confounding effect
approaches the null in what appe4rs to be a smooth manner. At
ECOR=4, the prevalence of the covariate characteristic that results
in the greatest distortion of the apparent relative risk associated with
exposure is 0.2.

Figure 9.3 presents the dependence of the Apparent RR(E) on
Pr(E) and Pr(C) for the case of ECOR=5 and RR(C )=4. This figure
comprises an expansion of the foremost slice of Figure 9.2, for which
Pr(E) was set equal to 0.2. The prevalence of the covariate char-
acteristic associated with the maximum degree of confounding can
be seen to increase as the prevalence of exposure rises. It does so
in a linear fashion, increasing from Pr(C)=0.2 when Pr(E) is near
zero to Pr(C)=0.5 when Pr(E) is near one.

Implications ’

The degree of confounding is a joint function of the prevalence
of exposure (Pr(E)), the prevalence of the covariate (Pr(C)), the
relative risk for disease associated with the covariate (RR(C)), and
the exposure-covariate odds ratio (ECOR). None of these terms can
be considered in isolation from the others if a quantitative inter-
pretation is the goal. Qualitatively,

1. Confounding increases as the strength of the association
between disease and the covariate increases (Figure 9.1), but is
always less than the relative risk for disease associated with the
covariate (Equation 5). . '

2. Confounding increases as the strength of the association
between exposure and the covariate increases (Figures 9.1 and
9.2) but is always less than the ratio of the prevalence of covariate
in the exposed to that in the nonexposed group (Equation 7).
Equivalently, confounding is always less than the odds ratio
between exposure and the covariate (Equation 8).
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3. When the covariate is associated positively with exposure and
with probability of disease, then the degree of confounding rises
smoothly as the prevalence of the covariate increases from zero,
reaches a maximum, and then declines toward nil as the covariate
prevalence increases further towards one (Figures 9.2 and 9.3).





