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Estimation
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On the basis of data, we make estimates. The estimates are
constructed in such a way that they bear a known relation to the
parameters of processes that gave rise to the data. This chapter
describes the mechanics of obtaining estimates and of judging the
relation between estimate and parameter for closed and open cohort
studies, and for case-control studies. All the statistical terms used
here are defined in Chapter 13.
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Analysis of Closed Cohort Studies

The methods presented here will be illustrated using the data of
Example 5.1, which you should review before continuing.

Calculation of attack rates and cumulative incidence differences.
Since pharyngitis could only occur once during the period of
observation, the designation of each of the cohort members as a case
or non-case was unambiguous, and it was reasonable to calculate the
fraction of persons in each cohort who became ill. This is the
cumulative incidence, as defined in Chapter 1. Infectious disease
epidemiology has its own term for the cumulative incidence: attac
rate (AR).55 '

Attack rate. The attack rate is the cumulative incidence of disease
in persons who are exposed to an agent whose effect is shorter
than the time of potential follow-up. The period of follow-up
begins at the time of exposure and continues over a closed interval
that allows the expression of all possible new cases attributable
to the exposure.

The attack rate provides an estimate of the probability of
infection that each of the cohort members faced at the beginning of
the convention. Since the attack rate and the cumulative incidence
are identical quantities, the latter term will be used in the remainder
of this section for consistency. Readers should bear in mind that
the infectious disease literature uses the former term. The cumulative
incidence difference is obtained by subtracting the cumulative
incidence in an unexposed group from that in an exposed group.
Thus, in Table 5.1, the cumulative incidence difference associated
with luncheon attendance is (47/86)-(11/77) or 40.4 percent in those
who attended the dance and (8/23)-(1/40) or 32.3 percent in those
who did not attend the dance.

Cumulative incidences and cumulative incidence differences
observed in particular studies are estimates. Approximate confidence
intervals for each of the corresponding probabilities and for their
differences can be derived by assuming that the number of cases is
distributed as a binomial variable.

55. The word "rate" in this term is a misnomer in the system of nomenclature presented
here, since the attack rate is not a rate but a proportion.
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Binomial distribution is the probability distribution that describes the
number of events observed in N opportunities to observe an event,
when the probability of observing a single event at any opportunity
is m, and is unaffected by the observation of an event at any other
opportunity.

Pr(x|N)= n (1l -n§¥=

N!
x!(N-x)!
E(X)=nN
Var(X)=Nn(l-n)

The range of possible values for x is [0,N]. =« is the binomial
parameter.

In this definition, as elsewhere, "Pr(x|N)" means "the probability of
observing x cases among N observed persons”, "E(X)" means "the
expected value of the random variable X"; and "Var(X)" means "the
variance of the random variable X."

In the calculation of a cumulative incidence, x is the number of
cases and N is the number of individuals in the population at risk;
the cumulative incidence is given by x/N. The variance of x/N is
X(N-x)/N3.56 The bounds of an approximate 95 percent confidence
interval for the probability of pharyngitis, of which x/N is an
estimate, are obtained by adding and subtracting 1.96 times the
standard error (the square root of the variance) to and from x/N.
For those who attended the luncheon and the dance, x is 47 and N
is 86, so that

CI = AR = x/N = 47/86 = 0.547

The 95 percent confidence bounds for the probability of pharyngitis
are _ .

56. c.f. Table 1.2 and Chapter 13. Note that .

X
-

CIN

CIQ-Cl)_x(N-x)
N N?



102 Observation and Inference

[x(N-x
lower——— 1.96 les_l
1.9 l47(86 47)

=0.441

x(N-x

upper=%+ 1.96, [ _(N:’_)
|47 (86-47) 86 47
+1.96 7( )

=0.652

The cumulative incidence for conventioneers who attended both the
luncheon and the dance was 55 percent, with 95 percent confidence
bounds of 44 and 65 percent. (In the above calculation, an extra
digit has been retained in the values derived in intermediate steps
for accuracy. In practice, all intermediate values should be retained
with as many digits as possible, with rounding employed only for
the final result.)

The calculation of the confidence interval above has two
important limitations. First, the method employed is a large sample
technique, whose accuracy improves as the number of study subjects
becomes larger. When the smallest count involved in the calculation
is larger than 30, then the results are virtually identical to more
accurate methods of calculation, which can be found in intermediate
textbooks of epidemiology or statistics. When the smallest count is
ten or greater, the results are close enough for most any purpose;
when the smallest count is five or less, the method gives bounds that
are only roughly indicative of the range of parameter values.

The second important feature is that the method assumes
independence of individual results. The risk in any individual is
assumed not to be affected by the outcome in other individuals. In
contemporary epidemiology, this means that the method given is
inappropriate when the number of ill persons is the result of
person-to-person transmission of risk.
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The variance of the cumulative incidence difference can be
estimated by summing the estimated variances of the cumulative
incidences that make up the cumulative incidence difference. (See
Chapter 13 for rules about the manipulation of variances.) An
estimate of the variance associated with the cumulative incidence
difference between the dancers attengmg the luncheon and those not
doing so is

47(86-47) 11(77-11)
863 77°

Var(CID)=

=0.004472

Thus

=0.4037

and the 95 percent confidence bounds for the difference in the
probabllmes of pharyngitis are

lower =0.4037 -1.96y0.004472

=0.273
upper = 0.4037 +1.96y0.004472
=0.535

Summarizing experience across several strata. The cumulative
incidence differences associated with attending the luncheon in those
who attended the dance and in those who did not attend the dance
are somewhat different (40.4 percent and 32.3 percent, respectively).
There are a variety of ways in which these two estimates might be
summarized in a single overall figure. One approach is to take a
weighted average of dancers’ and nondancers’ cumulative incidences
among the luncheon attendees, and then to do the same for the
nonattendees, using the same weights. The weighted averages are
said to be ad justed for the effects of attendance at the dance. Because
the same weighting scheme is used to adjust the rates of the luncheon
"exposed" and "unexposed” groups, the comparison between exposure
groups is a valid one. The resulting weighted averages are referred
to as standardized cumulative incidences.
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Standardization. Standardized measures are formed from a series
of individual measures by taking a weighted average of the
individual values.

Standard. The set of weights used for standardization is the standard.
These weights sum to 1.

One convenient standard is the distribution of dancers among
luncheon attendees. Of the attendees, 86/(86+23) or 78.9 percent
went to the dance, and 23/(86+23), or 21.1 percent, did not. Call
the cumulative incidences that are standardized over categories of
dance attendance the standardized cumulative incidences (SCI). The
cumulative incidences for dancers and nondancers among luncheon
attendees were 47/86 (54.7 percent) and 8/23 (34.8 percent),
respectively, The SCI for luncheon attendees is

86 \(a7 23 8
SCI(exposed) = (86+ 23)(%)+ (86+ 23)(%)

=0.5046

For those who did not attend the luncheon, the cumulative incidences
among dancers and nondancers were 11/77 (14.3 percent) and 1/40
(2.5 percent), respectively. The SCI for nonattendees is

86 11 23 1
SCI(unexposed) = (8————6+23)(%—7_)+(86+23)(E)

=0.1180

The standardized cumulative incidence_difference (SCID) is the
difference between the standardized cumulative incidences.

SCID = SCI (exposed)—SCI (unexposed)
=0.3866

Note that this result is identical to the result that would be
obtained by applying the standard weights to the stratum-specific
cumulative incidence differences. The cumulative incidence dif-
ferences are 0.4037 for those who attended the dance and
(8/23)-(1/40) = 0.3228 for those who did not. Standardized over
categories of dance attendance, the cumulative incidence difference
would be

i)
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SCID=( (0.4037)+(

86+23) 86+ 23

)(0.3228)
=0.3866

The standardized cumulative incidence difference can be seen as a
weighted average of the component eumulative incidence differences.

The variance of a weighted average is given by the sum of the
component variances, each weighted by the square of the corre-
sponding weight, so that

86 \?
Var(SCID) = (m) (0004472)

23 }?
—==__) (0.0
+(86+23)( 1047)

=0.003250

95 percent confidence bounds to the SCID are therefore

lower = 0.3866-1.9640.003250

=0.2749
upper = 0.3866 + 1.96/0.003250
=0.4983

The luncheon "effect" is standardized according to the dancing
choices of those who actually attended the lunch. The final measure
is intuitively satisfying in that it is directly tied to the experience
of the exposed group: it addresses the question "What would have
been the difference between those who attended the luncheon and
those who did not if the nonattendees had the same fraction of
dancers as those who attended?" Other weighting schemes that might
have been used include an external standard (such as equal weights
for each group), or an internal standard based on the reciprocals of
the variances5? of the stratum-specific cumulative incidence dif-
ferences. This last standard minimizes the variance of the final

57. The reciprocal of the variance of an estimate is also known as the "information"
contained in the estimate. Very precise estimates have small variance and high infor-
mation.
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estimate, but its proper use presupposes that the only source of
discrepancy between the stratum-specific cumulative incidence
differences is chance.

Confounding. If the interest in Table 5.1 had focussed on the
cumulative incidence difference associated with attendance at the
dance, the investigators could have calculated estimates of (47/86) -
(8/23) or 20 percent in those who attended the luncheon and (11/77)
- (1/40) or 12 percent in those who did not. Any standardized
estimate of an overall effect would lie between these two values. If
luncheon attendance were ignored, a crude cumulative incidence
difference might also have been calculated as

_47+11 8+1
86+77 23+40

CID

=0.213

or 21 percent. This value lies outside of the range of stratum-specific
estimates. Because luncheon attendance was more common among
dancers than among those who did not dance, the crude cumulative
incidence difference reflects a part of the cumulative incidence
associated with luncheon attendance, in addition to the effect of
dance attendance on risk. The crude cumulative incidence diff. erence
therefore provides a biased estimate of the increase in probability
of pharyngitis associated with attendance at the dance.

Analysis of Open Cohort Studies

Example 5.2 will be used to illustrate the techniques presented
here. .

Error estimates and comparisons of incidence rates. Just as the
observed proportion of the disease in a closed cohort study is an
estimate of the underlying probability of developing disease, so the
ratio of cases to person time, the incidence rate, provides an estimate
of the underlying hazard of disease. The most straightforward
technique for assessing the variability of incidence rates in open
cohort studies is based on a treatment of the incidence rate calculation
as if the numerator (the number of cases) were variable and the
denominator (the amount of person time) were fixed. If x is the

Estimation 107

number of observed events and P is the person time at risk, thqq X
is the realization of what is called a Poisson process. Thg prq_bablhty
distribution from which x is drawn is the Poisson distribution.58

Poisson distribution is the probability distribution that describes the
number of events observed in a block of person time when the
expected number of events is directly proportional to the total
person time of observation. Lel 6 be the expected number of events
- per unit of person time and X = OP be the number of events expected
in a block of person time of size P.

E PRt 8

Pr(x)==7

E(X)=A

Var(X)=A

The range of possible values for x is [0, o). A is the Poisson
parameter. If P is imagined as being composed of a very Iqrge
number of discrete units of person time, so that the probab{l{ty
of an event in any person time unit is very small, then the probz_zbzlzty
distribution of the number of events in P may also be considered
to be binomial, with N taken as the number of discrete person
time units. All the formulas above are derivable from their
binomial counterparts in the limiting case in which N approaches
infinity, with P and X constant.

The number of observed events x is an estimate of a Poisspn
parameter A. The incidence rate estimate IR is givep by x/P, with
variance x/P2.59 The mortality rate estimate and its variance for
the period from 30 through 34 years since first exposure (Table 5.2)
are given by -

is directly
58. The development here presumes that the expected number of cases is direc
proportional to fhe amount of peraon time of observation. P‘u‘t another way, we presume
that there is no element of contagion, in which the probability of a case occurring is a
function of the number of other cases that have occurred.

59. c.f. Table 1.2 and Chapter 13. Note that

x

IR
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103
IR_11,598

=0.008881 cases per person year

103

Val‘(IR)=(11’TS)2

=7.657x1077
The 95 percent confidence bounds are

lower =0.00881 -1.9647.657x10°7

=0.00717 cases per person year

upper = 0.00881 +1.967.657x 1077
=0.01060 cases per person year

All the techniques for estimating incidence rate differences and
summary incidence rate changes over strata are precisely analogous
to those presented earlier for risks in closed cohort studies. The sole
differences are to introduce incidence rate estimates (x/P) in the
place of cumulative incidence estimates (x/N) and variance estimates
for incidence rates (x,/P2) in the place of variance estimates for
cumulative incidences (x(N~-x)/N3) in all the formulae.

It is common practice to examine the ratios of incidence rates
in open cohort studies; this is the result of an empirical observation
in chronic disease research, that incidence rate ratios tend to be more
constant from study to study or from stratum to stratum of a single
study than are rate differences. The easiest way to account for
variability in incidence ratio estimates is on a logarithmic scale, in
which the ratio estimate can be examined as a difference between
the logarithms of the component incidence rate estimates. All of the
foregoing procedures can then be adapted to confidence interval
estimation on the log scale. Estimates, once obtained, are transformed
back to the natural scale by exponentiation.

Denote the natural logarithm of the incidence rate estimate as
In(x/P). The variance of this quantity is approximately 1/x. The
variance of the logarithm of the incidence rate ratio is the sum of
the variances -of the logarithms of the component incidence rates.

e -
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Thus, to compare the lung cancer rate at 30-34 years after first
exposure to that 20-24 years after first exposure, the procedure would

be as follows:
103 57
kR "(11,598)/(31,268)

=4.87

In(RR)=1n(4.87)
=1.5834

1 1
Var[ln(RR)]= m""s_?
=0.02725

The 95 percent confidence bounds for the logarithm of the ratio are

lower =1.5834~1.96y0.02725S

-1.260
upper = 1.5834+1.96,/0.02725
=1.907

The 95 percent confidence bounds for the ratio are then
lower = exp(1.260)
=3.52
uppe.r =exp(1.907)
=6.73

The ratio of lung cancer mortality rates for insulation workers
30-34 years from first exposure to asbestos to that 20-24 years from
first exposure was approximately 4.9, with 95 percent confidence
bounds of 3.5 and 6.7.

Stratified analysis. Two techniques are commonly used for
summarizing incidence rate ratios across strata. Consider the
hypothetical data in Table 8.1. The first subscript on the symbols
displayed indicates the presence (1).or absence (0) of exposure, and
the second subscript indicates the age group: 50-54 (1) or 55-59 (2).
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Table 8.1 Lung cancer mortality in men exposed and unexposed to
asbestos (hypothetical data)

Age Group
50-54 55-59
Quantity Symbol Quantity Symbol

Exposed

Person Years 1,000 P11 500 P12

Cases 40 Xq4 40 x12
Unexposed _

Person Years 10,000 Po1 15,000 Pg2

Cases 100 X01 200 x02

The summary technique most used in occupational health studies
is to compare the number of cases of disease in the exposed group
to that which would have been expected among the exposed, had the
incidence rates observed in unexposed persons applied to those
exposed. This expectation is obtained by multiplying the person
years at risk in each stratum of the exposed group by the incidence
rates observed in the unexposed group, and summing over all strata.
Thus, in exposed workers,

Observed = x,, + x,,

=40+ 40
=80 .
- X X 02
Expected=P,,—+ P ,—
Y ”Pm lzP02
100 200
'1'000(1o.ooo)+5°°(15,ooo)
=16.67

The ratio of observed to expected cases is designated (for his-
torical reasons) as "the" standardized mortality (or morbidity) ratio
(SMR). The ratio is standardized because it is algebraically identical
to the ratio of age-standardized incidence rates in exposed and
unexposed study subjects, taking for each the age distribution among
exposed as the standard. In the present case
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Obs 80

) ==
MR Exp 16.67
=4.80

In practice, the SMR is rarely used except when the unexposed
population is very large (most commonly a geographically defined
population that éncompasses the exposed persons). When the number
of events is large in every stratum of the comparison population, the
variance of the SMR is approximately Obs/Exp2. In the present
example

Obs 80

Var(SMR) = = -7
¢ _ ) Exp? (16.67)2

=0.2880
The 95 percent confidence bqunds can be obtained therefore as
lower = 4.800 - 1.96,/0.2880
=3.75
lower = 4.800 + 1.96,/0.2880
.= 5.85

When the sole source of stratum to stratum variation is thought
to be random error, an incidence rate ratio estimate whose form is
due to Mantel and Haenszel®0 is obtainable by summing the quantities

4= Z1Fo B = ForPu
P+ Py YOPy+ Py,

over the strata, indexed here by i, and dividing the sums. In the
present example,

60. The use of the procedure in open cohort studies was first proposed by Kenneth
Rothman and John Boice. (Rothman KJ, Boice JR. Epidemiologic Analysis with.a
Programmable Calculator, NIH Publication No. 79-1649, Washington, 1979) The
rationale was developed by David Clayton. (Clayton DG. The analysis of prospective
studies of disease etiology. Commun Statist 1982;A11:2129-2155)
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A=Y 4= (40)(10,000) _ (40)(15,000)
B i710,000+1,000 15,000+500

=75.07

(100)(1,000)  (200)(500)
B= ZBt: +
: 10,000+1,000 15,000+500 .

=15.54

(When a variable, here i, appears below a sigma without any indication
of the range of summation, the summation is taken over all possible
values of the variable. In the present example, the possible values
for i are 1 and 2.) The summary estimate, known as the Mantel-
Haenszel estimate of the ratio is '

A
RR = I

=4.831

The variance of the logarithm of the Mantel-Haenszel estimator
is obtained by taking a further sum,

c ='Z (x 1+ x)P | Po/(Pyy+ P0i)2
[
The variance estimate is then®!
. C
VaI‘[ll’l(RRMH)]— Z—B

Here,
C =(40+100)(1,000)(10,000)/(1,000+10,000)2
+(40+200)(500)(15,000)/(500+15,000)2
=19.06

and

19.06
(75.07)(15.54)

Var[In(RR,,)] = =0.01634

61. Greenland S, Robins JM. Estimation of a common effect parameter from sparse
follow-up data. Biometrics 1985;41:55-68
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The natural logarithm of the hazard ratio estimate is In(4.831) =
1.575. Proceeding as before, the 95 percent confidence interval to
the logarithm of the incidence rate ratio can be found to be 1.325
to 1.826, yielding a corresponding interval on the ratio scale of 3.8
to 6.2.

When the ratios observed in the strata being summarized are not
very disparate, when the amounts of person time under study in each
exposure group do not vary greatly across strata, or when the person
time of the unexposed group is vastly larger than that of the exposed
in each stratum, the SMR and the Mantel-Haenszel estimate of the
incidence rate ratio will be very close to one another, and there is
little practical distinction to be made between the two. In the last
situation, the closeness of the Mantel-Haenszel estimator to the SMR
arises from the fact that both procedures give weight-in approximate
proportion to the information contained in the exposed half of each
stratum.52 The theory underlying their respective derivations leads
to a choice of the SMR whenever the stratum-specific hazard ratios
are inconstant, and to the Mantel-Haenszel estimator when they do
not vary greatly,

Case-Control Studies

Random Error. Analysis of the variability of odds ratios and of
more complex functions involving odds ratios is almost always carried
out on a logarithmic scale. Expressed as a logarithm, the odds ratio
has a simple additive structure:

1n(RR)=1n(w)

Y1Xo
=In(x;)+1n(y,)-1n(y,) - In(x,)
Here as before "In(x)" stands for the natural logarithm of x.

An estimate of the variance of the logarithm of a count is given
bys3

62. Walker AM. Small sample properties of some estimators of a common hazard ratio.
Appl Statistics 1985;34:42-8

63. The capital X in the formula is the random variable, of which the value x is the
observed value.
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VarUn(X)]éi

Let O stand for the parameter of which the odds ratio is an estimate.
Since the variance of the sum or difference of terms equals the sum
of the variances of the terms, we have an estimate of the variance
of the logarithm of an odds ratio.

Var[ln(0)]= Var[In(X )]+ Var[ln(X,)]
+Var[ln(Y )]+ Var[ln(Y,)]

Approximate 95 percent confidence limits on the log scale are
derived by subtracting 1.96 standard errors from In(RR) to derive
the lower limit, and adding (1.96 - SE) to In(RR) to derive the upper
limit. = Finally, the confidence interval is expressed on the
untransformed scale of the RR by exponentiating the limits just
obtained.

Using the data from Example 6.1, the variance of the logarithm
of the rate ratio is

1 1 1 1
Var[ln(RR) =ﬁ+§+5—79'+5%

=0.5622

The 95 percent confidence interval is

lower = exp{ln(8.808)-1.96y0.5622]
=2.026

upper = exp[In(8.808)+ 1.96y0.5622]
=38.30

To two significant digits, the rate ratio is 8.8 with a 95 percent
confidence interval of 2.0 to 38.

The dominant term in the variance estimate given above is due
to the two controls with a history of undescended testis. Their
contribution to the total estimated variance is so great that despite
a relatively large number of exposed cases, the overall estimate of

N e ey ey, s
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effect remains very uncertain, as evidenced by the wide confidence
interval. This example illustrates one of the limitations of case-control
research: when the exposure under study is rare, estimates are likely
to be highly unstable.

Analysis of Stratified Data. The most widely used estimate of
a summary odds ratio over strata in,a case-control study is that of
Mantel and Haenszel.6¢ The Mantel-Haenszel estimator provides a
central value for the odds ratio to which each of the stratum-specific
estimates contributes in approximate proportion to its own precision.
It is calculated as follows. For each stratum i define the values xy;,
Xo;» Y1i» and yg;, as above, and calculate their sum, 7;.

Ty =x *Xq*Yu*Yo

Now calculate two more derived quantities for each stratum, 4; and
B:

i-

XuYou
A=—
‘ T,

YuXo
B =——-
& Tl

Sum the values of A and B over the strata.
A=) A,
T
B=) B,
]

The Mantel-Haenszel summary estimate of the relative rate of disease
over strata is

A
RRMH=’E

The parameter estimated by RRyy is a postulated odds ratio that is -
common to all the strata. Under proper study design, this parameter
is identical to the hazard ratio in the source population giving rise
to cases and controls. As in the analysis of a single. stratum, a
confidence interval for the hazard ratio is best calculated on the

64. Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective
studies of disease. J Natl Cancer Inst 1959;22:719-48
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logarithmic scale and then transformed back to the natural scale by
exponentiation. In order to obtain an estimate of the variance of
the estimator In(RRy4g), it is necessary to calculate several further
quantities for each stratum.65

=x11+ZYm
i T,

_YutXo

D, T

The four derived quantities are combined and summed, stratum by

stratum, as follows:
(AC) = Z AC,
(AD)= Z A,D,
(BC)= ZB,C,

(BD) = Z‘:BIDI

The variance of In(RRyqy) is, approximately,

(AC)  (AD)+(BC) (BD)
AZ AB BZ

Var[ln(RRyy)]= %[

As before, the standard error is calculated as the square root of the
variance, and 95 percent confidence ingervals are obtained on the
logarithmic scale by adding and subtracting 1.96 times the standard
error to In(RRpg), after which all of these are transformed back to
the original rate ratio scale. '

At first glance, the calculation of the 95 percent confidence
interval seems a burdensome job, and it does entail a good deal of
arithmetic when carried out by hand. An important feature of the
formulas is that the data from each stratum need to be processed
only once and added to the various accumulating terms. Repeated
stratum-by-stratum accumulations are readily accommodated in

65. Robins J, Greenland S, Breslow NE. A general estimator for the variance of the
Mantel-Haenszel odds ratio. Am J Epidemiol 1986;124:719-23
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spreadsheet programs and programmable calculators. When there is
only one stratum, all the above formulas simplify to those given
previously for the unstratified case.

Example 8.1. Body mass index and the relative incidence of breast
cancer .56

Seventy-two premenopausal woinen with breast cancer newly
diagnosed at the Group Health Cooperative of Puget Sound from
July 1975 through June 1978 were interviewed, along with 80
premenopausal women from the same HMO who were hospi-
talized with a variety of acute conditions. For each subject, the
body mass index was ascertained. Women with a body mass
index (weight in kilograms divided by the square of height in
meters) greater than 28 were classified as "heavy." The first two
panels on the left side of Table 8.2 give the distribution of study
subjects over categories of disease status, age, and body mass
index, together with the age-specific estimates of the rate ratio
and the 95 percent confidence intervals.

Calculated values for each of the quantities necessary for the
summary estimate of the rate ratio and for the corresponding 95
percent confidence intervals are shown in the right hand panels of
Table 8.2, and the resulting estimates are shown in the lower left.
Heavy women appear to be at lower risk of breast cancer in both
age groups than are other women. Both age-specific estimates are
very unstable, because of the small number of heavy women in the
study, and particularly so because of the paucity of heavy cases. The
common estimate, which accumulates the information available from
both strata, is more precise than either of the component values.
Note that the common estimate lies within the range of the
stratum-specific estimates, as will always be the case.

66. Jick H, Walker AM, Watkins RN, D’Ewart D, et al. Oral contraceptives and breast
cancer. Am J Epidemiol 1980;112:577-85
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Table 8.2 Body mass index and the relative incidence of breast cancer
among premenopausal women Calculation of table-specific and summary

measures for a case-control study

Age<45 ) Not
Heavy Heavy T1 =78
A1 =07692 A4Cq= 0.3156
Breast Ca 2 35 By = 0.4103 A{Dq = 0.4536
Cq= 49359 B{Cq = 20250
Controls ‘11 30 D1 = 05897 B1D{ = 29109
RR =0.16 Variance of In(RR) = 0.6528
95% Cl = 0.032-0.76
Age > 45 Not
Heavy Heavy To =173
Ao = 0.8767 AosCo = 0.4083
Breast Ca 2 33 Bo = 27123 AoDo = 0.4684
Co = 0.4658 BoCo = 1.2633
Controls 6 32 Do = 0.5342 BoDo = 1.4491
AR = 0.32 Variance of In(RR) = 0.7282
95% Cl = 0.061-1.7

‘Summary A =1.6459 AC = 0.7239
B = 7.6482 AD = 0.9220
RAMH = 0.22 BC = 3.2883
95% Cl = 0.069 - 0.67 BD = 4.3600

Variance of in(RR) = 0.3381






