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Generalization

The purpose of this chapter is to introduce the vocabulary used
to link theory and observations. Parameters are theoretical values;
they determine the shape and location of the long-range frequency
distributions for observed data. Two parameters will be discussed:
probability, which characterizes both prevalences and cumulative
incidences, and hazard, which characterizes incidence rates. Both
statistical and systematic errors in parameter estimates will be
addressed. Confounding is an example of systematic error that arises
when a planned comparison juxtaposes noncomparable groups. There
is also the uncomfortable, empirical fact that epidemiologic obser-
vations are less fully replicable than statistical models suggest they
ought to be.
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Parameters

While rare exposures, such as standing at ground zero of a
hydrogen blast, may absolutely determine vital status, most deter-
minants of health are accompanied by an element of uncertainty.
Even very similar individuals (identical twins, for example), do not
have precisely the same health status throughout their lives.

A deterministic view of disease causation can account for
uncertainty about the cumulative incidence for any particular group
by holding that study groups are the imperfect reflection of an
underlying reality. The "reality" is envisioned as the class of all
possible subjects meeting study criteria, and the studied property of
that infinite class is the proportion destined, for example, to have a
heart attack within a year. If the presence of that characteristic is
unknown on an individual level, then the proportion that characterizes
the class can differ from the observed cumulative incidence because
of vagaries in the selection of the study population. The class feature
that the observed data approximate, the overall proportion in the
imagined class of similar individuals, is referred to as the probability
of disease.

A probabilistic view of disease causation postulates an unknown
mechanism operating within individuals, a black box, that behaves
as if governed by a random process with stable long-term charac-
teristics. The long-term fraction of persons who manifest disease is
the probability that characterizes the process. Chance here is only
a metaphor for the true mechanism of disease production, just as it
is only a metaphor for the process of subject selection from an
imaginary universe of all possible subjects in the preceding view.

For the purposes of inference from observation to the underlying
reality, the arguments presented later will assume that there_is a
general characteristic of the process giving rise to disease in a par-
ticular study group that can be meaningfully summarized as a single
number between zero and one, inclusive. ’

Probability is a characteristic of the physical processes that give rise
to observable events, and represents the limiting value that would
be observed for a cumulative incidence or a prevalence as larger
and larger numbers of individuals came under scrutiny.52

652. "Risk" is a synonym for probability.

Generalization : - 89

The true probability of an event in an individual is either one
or zero for a determinist, and the 20 percent that might be estimated
from group data is a measure of the determinist’s degree of belief
that any one of the individuals who comprise the group actually
possesses sufficient elements for the manifestation of disease. For
a probabilist, who accepts the black box, the probability of disease
in an individual is the expected value of the cumulative incidence
in essentially similar persons.

The probability of an event is a parameter, the procedure for
obtaining a cumulative incidence is an estimator, and the cumulative
incidence calculated from a particular set of data is an estimate of
the probability.

Parameter. The terms other than those describing the circumstances
of observation and the outcome in the formulaic presentation of
a probability distribution are parameters. Parameters are not
observable, but may be estimated from observations.

Estimator. An estimator is a procedure for obtaining estimates. It
is, equivalently, a random variable whose realization, the "esti-
mate,” will be taken as a measure of a parameter. The estimator
is a function of random variables whose realizations are the data
points being observed. :

Estimate. An estimate is a realization of the estimator. The estimate
_is a function of the observed data.

The following section will address the ways in which estimates provide
information about parameters.

Probability serves the epidemiologist as the parameter corre-
sponding to the prevalence of a characteristic or the cumulative
incidence of disease; for the statistician, probability plays another
role. In a hypothetical population of repeated identical studies,
probability also describes the proportion of studies expected to have
a particular outcome. "Statistical Uncertainty" (below) will speak to
this aspect of probability.

In order to make the transition from the probability parameter
to a parameter that corresponds to the incidence rate, we need to
adopt some formalisms for the description of time and temporal
relations. A bracket, "[" or "]", next to a time designation means that
a starting or stopping time is included in the interval that it bounds.
An ordinary parenthesis, "(" or ")", means that the time point is not
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included in the interval in question. Written symbolically, the interval
that begins just after ¢; and continues through time ¢, is (#9,¢5], and
the cumulative incidence, CI, over that interval is CI(¢1,¢5]. In the
absence of loss to follow-up during (¢1,¢,], the defining equation for
the cumulative incidence is

Cases(t;,t2]
CI(t,,t,]= NG

N(t,) is the size of the population that is at risk to become an
incident case at time ¢;. Denote the probability of acquiring disease
during the interval (¢1,¢5] by R(#;,¢5). CI is an estimate of R. Clearly,
as ¢, gets closer to ¢y, R(#1,¢5] approaches zero. However, by dividing
R(t3,t5] by the length of the time interval over which the cumulative
incidence is calculated (obtained by subtracting ¢, from ¢,), it is
possible to obtain a stable, limiting value, characteristic of ¢;, called
the hazard, and denoted symbolically by 4.

R(t),t
h(t1)=lim-L-i]
1,41, L=t
_ dR(t,.t,]

dt,

t=t,

The symbol ".linz]" means "the value approached as ¢, comes closer

278
to £;." The convention in the second line of the above equation
describes incremental changes; "dx/dy" means "the incremental change
in x associated with each change in y." The vertical bar with the
subscript "t,=t;" at the end of the expression means "evaluated when
t5 equals #;," that is right at the beginning of follow-up. The second
line thus refers to the incremental change in the probability of survival
immediately following #;. The incremental changes could be read
as the slope at t,=¢; of a graph of R(¢y,t5] versus ¢,.5%

Hazard. The hazard is the limiting value of the probability of becoming
an incident case per unit time among those at risk for becoming
a case.

53. Look again at the daily incidence curve of Figure 1.3.
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The hazard function has the units "change in the number of cases
per population size (N) per unit time," so that the unit of measurement,
or dimension, of a hazard is "cases per person time." The units of
the daily incidence of bleeding shown in Figure 1.3 would be cases
per person day.

The dimension of hazard as it appears in the literature of survival
theory, and in some epidemiologic texts, is the reciprocal of time.
The transition from "cases per person time" to "per time" is achieved
by observing that "cases" are simply a count and therefore dimen-
sionless, and that "person time" is a cumulation over persons of times
observed in those persons, and therefore has the dimension of "time."

Defined as they have been above, hazards characterize instants.
During short intervals, an insufficient number of events occurs to
provide a useful estimate of hazard. Therefore, observations designed
to permit an estimate of the hazard invoke the assumption that there
are periods of time and population definitions that together can
specify some finite quantity of person time during which, to a
reasonable approximation, the hazard can be taken to be constant.
Within such blocks of person time, an estimate of the hazard is
provided by the incidence rate.

The relation between incidence rate and hazard is analogous to
that between cumulative incidence and probability. The incidence
rate is the observable counterpart of hazard. The hazard is the
parameter of which the incidence rate is an estimator. The hazard
is the value to which the incidence rate would tend as the amount
of person time under observation became larger and larger. Refer
again to Table 1.2. :

Statistical Uncertainty

When the observed data are precisely those that would be expected
under a hypothesis that some particular parameter value is true, then
we take that hypothesis as an estimate of the parameter. The concept
of statistical uncertainty permits an extension of this procedure to
statements about the consistency of data with parameters that predict
something else, and even to situations in which the data observed
would not have been expected under any single parameter. (This
arises when different estimates of a single quantity disagree.) A
good estimate will be a value that, if it were the parameter, would
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place the observed data in a position of highest possible probability.
There is, however, no guarantee that such an estimate actually equals
the estimated parameter.

The unknown distance that separates an estimate from its cor-
responding parameter raises the problem of statistical inference.
Uncertain observations are compatible with an infinite number of
parametric "truths,” and one job of the statistician is to lay down
limits on the kinds of realities that might have given rise to a set of
data.

Figure 7.1 presents an idealized picture of the relative frequency
of different estimates of a parameter whose true value has been taken
for the purposes of illustration as 5. The curve is an example of a
probability density function, and has a highly characteristic shape.
The area under the curve is precisely one unit, and the probability
that any particular estimate will fall between two values is equal to
the area under the portion of the curve bounded by those values.

From inspection of Figure 7.1, it is evident that the greatest
probabilities are associated with estimates near the true parameter
value, and that the probability of estimates in an interval of any
particular size falls off rapidly as the interval becomes removed from
the true parameter value. The whole open-ended interval that begins
1.96 units above the parameter has an area of 0.025, indicating that
such extreme values occur in about 2.5 percent of estimates. The
curve is symmetrical, and the sum of the two tail areas that are
bounded by 1.96 units above and below is five percent.

The units of the horizontal axis of Figure 7.1 are standard errors,
and the shape of the curve is given by the so called Normal or
Gaussian probability distribution. The curve, first described by Carl
Friedrich Gauss to account for errors of measurement in astronomy,

is the limiting form of the error distribution of all epidemiologic

measures.

Normal distribution, also called the Gaussian distribution, is the
probability density function that describes the distribution of
realizations x of a continuous random variable X when the value
X is the sum of a very large number of random variables whose
probability distribution is arbitrary, but whose variances (see
below) are of similar magnitude.
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Figure 7.1 Distribution of estimates of a hypothetical parameter

The standard error is the square root of the variance, a measure
of the dispersion of a probability distribution. In order to assess the
large sample properties of any estimator of a parameter, the analyst
needs only the parameter value and the standard error of the estimator.

Standard error. The standard error of an estimate is the square root
of the variance of the estimator.

Variance. The variance of a random variable is the expected value

of the square of the deviation of x from the expected value of
X.54

By one convention, estimates that fall more than 1.96 standard
errors away from the parameter value are considered improbable
(though they do occur five percent of the time). The importance of
the convention is that it opens a path for inductive reasoning: begin
with the observations and proceed to a statement about an unknown
parameter. The trick is to hypothesize a parameter value, calculate
the probability distribution of estimates under the hypothesis, and

54. See below and Chaptef 13 for formal definitions of "expected value."
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then to locate the known estimate on that distribution. If the estimate,
which is known, would be improbable under the hypothesis repre-
sented by a particular parameter value, then the parameter value is
rejected as a candidate explanation for the data.

Two widely used applications of this reasoning process are the
p value and the confidence interval. The p (for probability) value is
the tail area beyond the given estimate, assuming a particular
parameter. The parameter assumed is most commonly one that
represents a nil effect, and the p value is the probability of getting
either the estimate actually obtained or an estimate further from the
. nil value. If this tail probability is low, and the hypothesis of a nil
effect is rejected, then it follows that the effect must be non-nil.
When the p value is less than some prespecified cutoff, such as five
percent or one percent, then the estimate differs from the nil effect
level by a statistically significant amount.

p value. The p value is the probability of occurrence of estimates
that are as or more deviant from posited parameter values than
the estimates actually obtained from a body of data. The p value
is a function of observed data. It is the realization of a random
variable whose distribution is uniform in the range [0, 1] under
posited parameter values, and whose distribution becomes non-
uniform, with an increased density near zero, under specified
kinds of deviation from the posited values.

Confidence intervals provide a more exhaustive application of
statistical inference. A range of acceptable parameter estimates can
be derived as those for which the observed data would not be too
improbable. For any estimate, two hypothetical parameter values,
one below the estimate and the other above, are identified to meet
the following criterion: the size of the tail area that the estimate cuts
off from the probability distributions implied by each of the two
hypothetical parameter values is some prespecified amount. The sum
of the two tail areas conventionally is either five or ten percent. If
the tail areas sum to five percent, then the interval between the
hypothetical parameters is a 95 percent confidence interval; if the tail
areas sum to ten percent, then the interval is a 90 percent confidence
interval.

Confidence interval. A confidence interval is a set of possible
parameter values that are consistent with a body of observations
in the sense that the p values for the data given any of the parameter
values in the interval are greater than a specified amount, usually
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designated by a. The salient operational feature of a confidence
interval .is that it is calculated by a mechanism that has.a priori
a 1-a probability of including the true parameter value.

For the measures considered in this text, a large-sample 95
percent confidence interval can always be constructed as follows.

(1) Identify the standard erfor associated with a particular
measure. This value is the square root of the variance of the
measure, and is a function of the parameter being estimated and
of the number and the characteristics of subjects studied.

(2) Calculate the distance separating a parameter from an estimate
that corresponds to a tail area of 2.5 percent. The distance is
1.96 times the standard error.

(3) Add the calculated distance to the estimate to obtain the
upper 95 percent confidence bound.

(4) Subtract the calculated distance from the estimate to obtain
the lower 95 percent confidence bound.

The parameter values that lie within the 95 percent confidence interval
constitute a set of possible realities that are consistent with the
observed data.

The arbitrariness of a choice of 90 or 95 percent confidence
should be evident. The utility of the interval is not explicitly to
include or exclude parameter values of interest, but rather to provide
an indication of the range of true values that may have given rise
to a given set of study results. A number of examples of confidence
interval calculations are given in Chapter §.

Confounding

The analysis of random error presupposes that there is no dif-
ference between comparison groups such as might give rise to dif- -
ferent disease frequencies, other than the factor that is used to define
the groups. Even in a carefully designed study, there is no guarantee
of this kind of comparability. The distortion of analytic results that
can arise from dissimilar comparison groups is called confounding.
Confounding produces an expected value of the estimate that is
different from the value of the parameter being estimates. Con-
founding is a form of bias.
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Expected value. The expected value of a random variable X is the
average value that is observed in many repeated realizations of
X.

Confounding. When imbalances in the composition of compared groups
give rise to an expected value of a comparative measure that
differs from the effect of the factor that defines the groups, the
estimate of the effect of that factor is said to be confounded.

Bias. The difference between the expected value of an estimator and
the parameter whose value is being estimated is the bias of the
estimator.

The relation of confounding to the characteristics of the study
population will be explored in a separate chapter. One proper way
to deal with confounding by factors that can be measured is to
separate the study groups according to levels of the confounding
factor. This is the core of stratified analyses, which will be dealt
with in Chapter 8. The anticipated magnitude of confounding in an
analysis that ignores the confounding factor is the subject of Chapter
9. '

The inclusion of the term “"expected value" in the definition of
confounding implies the existence of chance mechanisms that could
lead to estimates not equal to the parameter value even in the absence
of confounding. In a fully deterministic view of disease causation,
the "chance" processes are unmeasured determinants of disease, and
any net contribution of those factors to disease is a form of con-
founding.

Uncertainty Missed by Statistical Models

In small studies, the estimated effects of chance may overwhelm
errors arising from other sources, and the p values and confidence
intervals calculated in standard ways may provide useful guides to
the imprecision of estimates. This utility does not extend to large
studies. Chance, with its estimable errors, is sadly not the principal
source of invalidity in most observational research.

. Compilations of estimates from multiple studies are undertaken
with increasing frequency, and statistical uncertainty has been found
regularly to understate interstudy variability, particularly when the
numbers of observations have been sufficiently large as to reduce
the statistical uncertainty to modest proportions. For this reason,
inference based on statistical considerations alone gives a more
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optimistic picture of the precision of knowledge than the data really
justify. The chief role for the confidence interval estimates found
in Chapter 8 is to set an upper bound to the analyst’s certainty about
the meaning of the results in hand.

Strict determinism and probabilistic views of disease causation
differ strikingly in the directiops” in which they look to resolve
questions of residual uncertainty. The determinist, driven by the
idea that the origins of every instance of illness are knowable, will
pursue details of exposure and host characteristics that are so indi-
vidual as to reduce epidemiology to case reports. By contrast, the
probabilist’s black box can be enlarged to any dimension, and he is
disinclined to pursue population differences that he ascribes to chance.
Although the latter view empirically seems associated with less time
wasted in the pursuit of the unknowable, the former leads to most
new understanding of causal relations: the specific well-documented
instance becomes the paradigm for a previously unimagined class.
In the area of medical statistics, the role of the determinist is most
often adopted by the investigating clinician, that of the probabilist
by the statistician. Epidemiologists, who may come out of either
tradition, do best when they keep a foot in either camp.





