
Course BIOS601: intensity rates:- models / inference / planning v. 2022.10.01

Resources:
• Course webpage
• section 13.2.3 (Poisson Distribution) in under-construction online book
• Some history • Gosset • Rutherford
• Clayton & Hill’s Chapter 5 on (Likelihood) Inference for Rates.

CONTENTS

1. The Poisson Distribution

• What it is, and some of its features

• How it arises & derivations of its ‘prob. mass’ function dpois() 1

• Examples of when it might apply

• Examples of when it might NOT:
“extra-” or “less-than-” Poisson variation

• Probability calculations

2. Inference re Poisson parameter (µ) [NOTE: µ, mean, expected no.]

• First principles - exact and approximate - CIs

• z-based CI’s

3. Inference re event rate parameter, λ [NOTE: λ 6= µ]

4. Fitting event rates in a regression model

5. Bootstrap CIs for the (µ) and rate (λ) parameters

6. Applications / worked examples

• Sample size for ‘counting statistics’

• Headline: “Leukemia rate triples near Nuke Plant: Study”

• Percutaneous Injuries in Medical Interns

• ‘Clusters’ of events

7. Planning: sample size, precision, statistical power

8. From event-rates to risks (probabilities).

9. References

• Exercises

1See also: derivation & applications (counting yeast cells in
beer) in Student’s 1907 paper “Counting with a Haemacytometer”;
Ch. from Armitage et al.; earlier versions of ‘Poisson’ distribution and
“Randomness at the root of things: Poisson sequences”.

1 (Poisson) Model for (Sampling)Variability of
a Count in a given amount of “experience”

The Poisson Distribution: what it is, and some of its features

• The (infinite number of) probabilities P0, P1, ..., Py, ..., of observing Y =
0, 1, 2, . . . , y, . . . “events”/“instances” in a given amount of “experience.”

• These probabilities, Prob[Y = y], or PY [y]’s, or Py’s for short, are gov-
erned by a single parameter, the mean E[Y ] = µ.

• P [y] = exp[−µ] µ
y

y! dpois(): too bad ‘µ’ is referred to as ‘lambda.’ cf §3.

• Shorthand: Y ∼ Poisson(µ).

• σ2
Y = Variance[Y ] = µ ; σY =

√
µY .

• Fairly well approximated by N(µ, σY = µ1/2) when µ >> 10 (see p.4).

• Open-ended (unlike Binomial), but in practice, has finite range.

• Poisson data sometimes called ”numerator only”: (unlike Binomial) may
not “see” or count “non-events”: but there is (an invisible) person-time
denominator “behind’ the no. of “wrong number” phone calls you receive.

How it arises / derivations

• Count of events (items) that occur randomly, with low homogeneous in-
tensity, in time, space, or ‘item’-time (e.g. person–time).

• Binomial(n, π) when n→∞ and π → 0, but n× π = µ is finite.

• Y ∼ Poisson(µY ) ⇔ T time b/w events ∼ Exponential(µT = 1/µY ).
See articles by physicists: here, and (Marsden & Barratt) here.

• As sum of ≥ 2 independent Poisson rv’s, with same or different µ’s:
Y1 ∼ Poisson(µ1) Y2 ∼ Poisson(µ2)⇒ Y = Y1 + Y2 ∼ Poisson(µ1 + µ2).

• Examples: numbers of asbestos fibres, deaths from horse kicks*, needle-
stick or other percutaneous injuries, bus-driver accidents*, twin-pairs*,
radioactive disintegrations*, flying-bomb hits*, white blood cells, typo-
graphical errors, “wrong numbers”, cancers; chocolate chips, radioactive
emissions in nuclear medicine, cell occupants – in a given volume, area,
line-length, population-time, time, etc. [* included in these Resources.]

1

http://www.medicine.mcgill.ca/epidemiologyhanley/bios601/Intensity-Rate/
https://jameshanley.github.io/statbook/distributions.html
https://www.tandfonline.com/eprint/E8VYVV3FCAGIHUEN9SCS/full?target=10.1080/00031305.2022.2046159
http://www.medicine.mcgill.ca/epidemiology/hanley/Gosset/
http://www.medicine.mcgill.ca/epidemiology/hanley/Rutherford/
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/ch05-2021-orig-notes-exercises.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/Student_counting.pdf
https://www.jstor.org/stable/pdf/2341203.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/Randomness_poisson.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/Randomness_poisson.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/Rutherford/
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/
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Figure 1: Events in Population-Time randomly generated from intensities
that are constant within (2 squares high by 2 squares wide) ‘panels’, but vary
between such panels. In Epidemiology, each square might represent a number
of units of population-time, and each dot an event.
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Figure 2: Events in Time: 10 examples [1/row], randomly generated from
constant over time intensities. Simulated with 1000 Bernoulli(small π)’s per
time unit. See earlier exercise on Tire Ruptures.

1.1 Does the Poisson Distribution apply to. . . ?

• Yearly variations in numbers of persons killed in plane crashes? 2

• Daily variations in numbers of births?3

• Daily variations in numbers of deaths [extra variation over the seasons]

• Daily variations in numbers of traffic accidents [variation over the seasons,
and days of week, and with weather etc.]

• Daily variations in numbers of deaths in France in summer 2002 & 20034

• Variations across cookies/pizzas in numbers of chocolate chips/olives.

• Variations across days of year in numbers of deaths from sudden infant
death syndrome. See link.

1.2 Calculating Poisson probabilities:

• Exactly

– R: dpois, ppois, qpois rpois mass/cum./quant./rand

– SAS: POISSON;

– Stata: www.ats.ucla.edu/stat/stata/faq/pprob.htm

– Spreadsheet — Excel function POISSON(y, µ, cumulative)

• Using Gaussian Approximations to distribution of y or transforms of it:
described below, under Inference.

• In ‘the old days’ i.e. in the years BC (‘Before Computers’), Poisson
tail probabilities were often calculated using links to the tail areas of
other better-tabulated continuous distributions, such as the Chi-Square
distribution. See a more modern way.

2Yearly variations in no.s of plane crashes may be a bit closer to Poisson [apart from
variation due to improvements in safety, fluctuations in numbers of flights etc]. See here.

3See e.g. Number of weekday and weekend births in New York in August 1966;
daily, in England and hourly, in USA; Variations are closer to Poisson if use weekly counts.

4c.f. Impact sanitaire de la vague de chaleur en France survenue en août 2003. Rapport
d’étape 29 aoút2003 [on course webpage] and Vanhems P et al. Number of in-hospital
deaths at Edouard Herriot Hospital, and Daily Maximal Temperatures during summers
of 2002 and 2003, Lyon, France. New Eng J Med Nov 20, 2003, pp2077-2078. ibid. see
Resources.

2

http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/AlcoholSIDS.pdf
www.ats.ucla.edu/ stat/stata/faq/pprob.htm
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/Hanley2019SIM.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/airline-data-sas.txt
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/blackout.pdf
https://www.significancemagazine.com/culture/585-betting-on-a-royal-birth-how-many-babies-will-be-born-the-same-day?highlight=WyJoYW5sZXkiLCJhbGFtIl0=
http://www.medicine.mcgill.ca/epidemiology/hanley/MysteryData/
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/
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2 Inference re µ, based on observed count y

Instead of the usual “point-estimate ± some (z or t) multiple of standard
error,” a first-principles 100(1−α)% CI is the pair (µLOWER, µUPPER) such
that P (Y ≥ y |µLOWER) = α/2 and P (Y ≤ y |µUPPER) = α/2. For example,
as is shown below, the 95% CI for µ, based on y = 6, is {2.20, 13.06}.

0   1   2   3   4   5   6   7   8   9  10  11  12  13  14  15  16  17...   
count (y)

 y prob(y|2.2)

 4  0.0182
 5  0.0476
 6  0.0174
 7  0.0055
 8  0.0015
 9  0.0004
10  0.0001
..  ..

Prob (y >= 6) 

= 0.0250

if mean = 2.2

 y prob(y|13.06)

 0  0.0000
 1  0.0000
 2  0.0002
 3  0.0008
 4  0.0026
 5  0.0067
 6  0.0147
 7  0.0274
..  .. observed count6

...

Prob (y <= 6) 

= 0.0250

if mean = 13.06

LOWER

UPPER

For a given confidence level, there is one CI for each value of y. Each one
can be worked out by trial and error, or – as has been done for the last 80
years – directly from the (exact) link between the tail areas of the Poisson
and χ2 distributions. These CI’s – for y up to at least 30 – were found
in special books of statistical tables or in textbooks. As you can check, z-
based intervals (sub-section 2, next page) are more than adequate beyond
this y. Today, if you have access to R (or Stata or SAS) you can obtain
the first principles CIs directly for any value of y. [See next column, and
Hanley, Statistics in Medicine, 2019.
However, for those occasions where you do not have access to them or to
the internet, you can use the z-based ones – provided you can remember (or
reconstruct) the formulae.

1st-principles CIs for the expectation [i.e. the µ parameter] of a
Poisson random variable

Example: if observe 6 events in a certain amount of experience, then 95% CI
for the mean count µ for this same amount of experience is 2.20 to 13.06.

y 95% 90% 80%
0 0.00 3.69 0.00 3.00 0.00 2.30
1 0.03 5.57 0.05 4.74 0.11 3.89
2 0.24 7.22 0.36 6.30 0.53 5.32
3 0.62 8.77 0.82 7.75 1.10 6.68
4 1.09 10.24 1.37 9.15 1.74 7.99

5 1.62 11.67 1.97 10.51 2.43 9.27
6 2.20 13.06 2.61 11.84 3.15 10.53
7 2.81 14.42 3.29 13.15 3.89 11.77
8 3.45 15.76 3.98 14.43 4.66 12.99
9 4.12 17.08 4.70 15.71 5.43 14.21

10 4.80 18.39 5.43 16.96 6.22 15.41
11 5.49 19.68 6.17 18.21 7.02 16.60
12 6.20 20.96 6.92 19.44 7.83 17.78
13 6.92 22.23 7.69 20.67 8.65 18.96
14 7.65 23.49 8.46 21.89 9.47 20.13

15 8.40 24.74 9.25 23.10 10.30 21.29
16 9.15 25.98 10.04 24.30 11.14 22.45
17 9.90 27.22 10.83 25.50 11.98 23.61
18 10.67 28.45 11.63 26.69 12.82 24.76
19 11.44 29.67 12.44 27.88 13.67 25.90

20 12.22 30.89 13.25 29.06 14.53 27.05
21 13.00 32.10 14.07 30.24 15.38 28.18
22 13.79 33.31 14.89 31.41 16.24 29.32
23 14.58 34.51 15.72 32.59 17.11 30.45
24 15.38 35.71 16.55 33.75 17.97 31.58

To obtain these, we leave behind the well-worn link between the Poisson and
χ2 distributions5, and use the natural link between the Poisson and the gamma
distributions.6 In R, e.g., the 95% limits for µ based on y = 6 are obtained as
{µL, µU} = qgamma( c(0.025,0.975), c(6, 7) ), or, generically, for any
y, as {µL, µU} = qgamma( c(0.025,0.975), c(y, y+1) ).

These limits can also be found using stats::poisson.test or (the less ver-
bose) survival::cipoisson [both R functions use the gamma quantiles].
stats::poisson.test(6) [poisson.test(x, T=1,r = 1,..,conf.level=0.95)]
--> Exact Poisson test number of events = 6, time base = 1, p-value = 0.0006

alternative hypothesis: true event rate is not equal to 1
95% confidence interval: 2.20 13.06 sample estimates: event rate 6

survival::cipoisson(6) [cipoisson(k, time = 1, p = 0.95, method = c("exact", "anscombe"))]
--> lower: 2.20 upper: 13.06

5The real link is with the gamma distributions. The χ2 ones were used because textbooks
tabulated their key %-iles, whereas none tabulated the %-iles of the gamma distributions.

6See Links between the discrete & continuous and ‘A more intuitive and modern way to
compute a small-sample confidence interval for the mean of a Poisson distribution.’

3

http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/Hanley2019SIM.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Mean-Quantile/forAccromathBackTranslate.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/Hanley2019SIM.pdf
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z-based confidence intervals

The Figure below shows that once µ is in the upper teens, the Poisson
distributions can be reasonably well approximated by Gaussian distributions.
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Thus, a ‘point-estimate ∓ z×SE’ CI based on SE = σ̂ =
√
µ̂ =
√
y, is simply

{µL, µU} = y ∓ z ×√y. [1]

From a single realization y of a N(µ, σY ) random variable, we can’t estimate
both µ and σY : for a SE, we would have to use outside information on σY .
In the Poisson(µ) distrn., σY = µ1/2, so we calculate a “

:::::::::::
model-based” SE.

How large a y? Above, when µ > 5, the distrn isn’t ‘crowded’ into the cor-
ner; the lower tail of the Gaussian approxn doesn’t spill over the 0 boundary.

A more principled z-based way, à la Wilson.: Use the µL → y ← µU
reasoning rather than the µL ← y → µU one: i.e., Y ' N(µ, σ = µ1/2).

Thus, if the the lower limit (‘y is an over-estimate’ scenario) is µL, then the
observed y is at the upper (say 97.5) percentile,

y = µL + z975 ×
√
µL.

Solving this (quadratic in
√
µL ) equation and back-transforming to µL yields

µL =

{
−z975 +

√
z2

975 + 4y

2

}2

.

Likewise, if the upper limit (‘y is an under-estimate’ scenario) is µU , then the
observed y is at the lower (say 2.5) percentile,

y = µU + z025 ×
√
µU .

Solving this (quadratic in
√
µL ) equation for µL yields

µU =

{
−z025 +

√
z2

025 + 4y

2

}2

.

Together, we have, in the R language,

((-qnorm(c(0.975, 0.025)) + sqrt(qnorm(c(0.975, 0.025))^2 + 4*y))/ 2)^2

At y = 30, this yields the still-slightly-non-symmetric7 95% interval 21.0 to
42.8, just slightly narrower than the (already somewhat conservative) 20.2 to
42.8 obtained earlier.8 Note that differences tend to be greater at the µL end,
where the Poisson distribution is not as close to Gaussian as it is at the µU
end. This also emphasizes that any ‘rules of thumb’ about when the Gaussian
distribution provides a good approximation to the Poisson distribution should
refer to the purpose/focus. If the focus is on a (null) hypothesis test of µ = µ0

say, then the concern is with the shape of the Poisson distribution with mean
µ0. If the focus is on a CI, then the concern is more the shape at the lower
limit µL, not with the shape when µ = y.

Bayesian interval, with Jeffreys’ prior

{µL, µU} = qgamma( c(0.025,0.975), y+0.5).

7The fast but unprincipled ‘point.est ∓ SE’ gives 30 ∓1.96×
√

30 = 19.3 to 40.7.
8As told by JH in Statistics in Medicine, 2019, that ‘earlier’ method that uses the Poisson

tail probabilities themselves, rather than a Gaussian approximation to them, dates back to
Garwood, Fiducial Limits for the Poisson Distribution, Biometrika, Volume 28, Issue 3-4,
1 December 1936. and to Fisher’s 1935 paper.

4

http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/Hanley2019SIM.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Intensity-Rate/Garwood1936.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Mean-Quantile/Fisher_math_stat_tests_1935.pdf
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The panel above shows 95% CI’s for the mean, µ, of a Poisson distribution,
based on an observed count y, ranging from 0 to 50.

Note the greater symmetry with larger y.

The nomogram can also be read horizontally, i.e., µ→ y.

This panel shows 95% CI’s for the mean, µ, of a Poisson distribution, based
on a count y, ranging from 25 × 1, 2, 4, 8, 16, 32, 64, 128, and 256, i.e., from
25 to 6400. With these large y’s, the percentage margins of error are 100

×1.96×
√
y

y ≈
200%√
y . Also shown is the upper/lower ratio. Thus, if say y = 25,

the upper limit is more than double the lower limit (ratio 2.28). if y = 400,
the uncertainty is 1.22 ‘fold’ (‘fois’). i.e., µU is approximately 1.22 times µL.
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3 Inference re an event rate parameter λ,
based on observed number of events y in a
known amount of population-time, PT

Some writers refer to the parameter λ as Incidence Density (‘ID’). For the
origin of this term, see Section 3.1 of the groundbreaking 1976 article:

3.1. The parameters. Incidence density (“force of morbidity” or “force
of mortality”) – perhaps the most fundamental measure of the occurrence
of illness – is the number of new cases divided by the population-time
(person-years of observation) in which they occur.

So far, we have focused on inference regarding µ, the expected number of
events in the amount of experience actually studied. However, for

::::::::::
comparison

purposes, the frequency is more often expressed as a rate, or intensity. e.g.,
we convert y = 211 deaths from lung cancer in 232978 women-years (WY)
in the age-group 55-60 in Quebec in 2002 into a rate or incidence density of
211/(232,978WY) = 0.00091/WY or 91 per 100,000WY. This makes it easier
to compare the rate with the rate in the same age group in 1971, namely 33
lung cancer deaths in 131200WY, or 0.00025/WY = 25 per 100,000WY.

The
:::::::
statistic, the empirical rate or empirical incidence density, is

rate = id = ˆID = λ̂ = y/PT.

where y is the observed number of events and PT is the amount of Population-
Time in which these events were observed. We think of id or ˆID or λ̂ as a
point estimate of the (theoretical) Incidence Density parameter, ID or λ.

3.1
:::
CI for the rate parameter λ

To calculate a CI for the ID parameter, we treat the PT
::::::::::::
denominator as

a constant, and the
::::::::::
numerator, y, as a Poisson random variable, with

expectation E[y] = µ = λ× PT , so that

λ = µ÷ PT,

λ̂ = µ̂÷ PT = y ÷ PT,

CI for λ = {CI for µ} ÷ PT. (1)

The y = 211 (above) leads to a (large-sample, SE-based)

95% CI for µ : 211∓ 1.96× 2111/2 ⇒ 211∓ 28.5⇒ {182.5, 239.5}

95% CI for λ : {182.5, 239.5} ÷ 232, 978WY⇒ {78.3,102} per 100, 000WY

Whereas it matters little which method – exact or approximate – to use for
the 95% CI from the 2002 data, the number of deaths in 1971 is a much
smaller y = 33. Thus we will use a non-symmetric first principles CI for µ.
Our table of such CIs stops at y = 24, so we will use the

{µL, µU} = qgamma( c(0.025,0.975), c(33,34) )

R function with a count of y=33. It yields lower and upper limits of 22.7
and 46.3 for µ. Thus, to accompany the point estimate of 25 deaths per
100,000WY, we have

95% CI for λ : {22.7, 46.3} ÷ 131, 200WY⇒ {17.3,35.3} per 100, 000WY

We get the same limits with stats::poisson.test(x=33,T=131200) and
survival::cipoisson(k=33,t=131200)

3.2
:::::
Test of H0 : µ = µ0, i.e. λ = λ0, & inference re.
Standardized Incidence Ratios (SIR’s), SMR’s etc

Evidence: P-Value = Prob[y or more extreme | H0], with ‘more extreme’
determined by whether Halt is 1-sided or 2-sided. For a formal test, at level
α, compare this P-value with α.

Example: Cancers in area surrounding the Douglas Point and Pick-
ering nuclear stations in Ontario [full story below]:

Denote by {CY1, CY2, . . . } the numbers of Douglas Point child-years of ex-
perience in the various age categories that were pooled over. Denote by
{λOnt1 , λOnt2 , . . . } the age-specific leukemia incidence rates during the period
studied. If the underlying incidence rates in Douglas Point were the same as
those in the rest of Ontario, the Expected total number of cases of leukemia
for Douglas Point would be

E = µ0 =
∑
ages

CY1 × λOnti = 0.57.

The actual total number of cases of leukemia Observed in Douglas Point was

O = y =
∑
ages

Oi = 2.

So, (age-) Standardized Incidence Ratio (SIR) = O/E = 2/0.57 = 3.5.

6
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Q: Is the y = 2 cases of leukemia observed in the Douglas Point experience
statistically significantly higher than the E = 0.57 cases “expected” for this
many child-years of observation if in fact the rates in Douglas Point and the
rest of Ontario were the same? Or, is the y = 2 observed in this community
compatible with H0 : y ∼ Poisson(µ = 0.57)?

A: Under H0, the age-specific numbers of leukemias {y1 = O1, y2 = O2, . . . }
in Douglas Point can be regarded as independent Poisson random variables,
so their

:::
sum y can be regarded as a

::::
single Poisson random variable with

µ = 0.57. Thus P = Prob[Y ≥ y | µ = 0.57] = P [2] + P [3] + . . . , i.e.

Puppertail = 1− {P [0] + P [1]} = 1− { exp[−0.57]× (1 + 0.57/1!)} = 0.11.

To get the
::
CI

:::
for

::::
the

::::
SIR, divide the CI for Douglas Point µDP by the null

µ0 = 0.57 (Ontario scaled down to the same size and age structure as Douglas
Point.) We treat it as a constant because the Ontario rates used in the scaling
are measured with much less sampling variability that the Douglas Point ones.

From page 3 of the notes, the y = 2 cases translates to a 95% CI for µDP of
0.24 to 7.22, so the CI for the SIR is 0.24/0.57 to 7.22/0.57 or 0.4 to 12.7.

We can trick stats::poisson.test or survival::cIpoisson to get the
same CI by putting time as 0.57, i.e., stats::poisson.test(x=2,T=0.57),
stats::poisson.test(k=2,t=0.57)

data: 2 time base: 0.57
number of events = 2, time base = 0.57, p-value = 0.11
alternative hypothesis: true event rate is not equal to 1 [*]
95 percent confidence interval: 0.42 12.67
sample estimates:
event rate 3.5 [* Using T=0.57 means 3.5 is the point estimate of the rate RATIO]

The OTHER way is to use c(2,5700) for the counts, and c(1,10000) for the times:
poisson.test(c(2,5700),c(1,10000)) Comparison of Poisson rates

data: c(2, 5700) time base: c(1, 10000)
count1 = 2, expected count1 = 0.57014, p-value = 0.1122
alternative hypothesis: true rate ratio is not equal to 1
95 percent confidence interval: 0.42 12.68
sample estimates: rate ratio 3.5

**************

At the Pickering generating station, the Observed number was 18, versus
an Expected of 12.8, for an SIR of 1.4.

Exercises: Calculate the uppertail P-value i..e. P =
∑
y≥18 Prob[y | µ0 =

12.8], and compute a 95% CI for the SIR.

Comment on the newspaper headline (see section 6) , and what re-wording or
other emphasis Dr Clarke might have suggested, had the reporter given her a
chance to see the completed story before it was published.

4 Generalized linear (regression) models for
counts and event rates

4.1 For counts

• First with Poisson error but
:::::::
identity

::::
link.

Example with y = 24, using the glm function in R:

summary( glm(y ∼ 1, family = poisson(link=identity) ) )

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 24.000 4.899 4.899 9.63e-07 ***

Note the (‘Wald’) Std. Error (SE) = namely
√

24 = 4.899, calculated at
the point estimate y, namely

√
24 = 4.899..

• Second with Poisson error but the
::::::
default

::::
log

::::
link.

This default fits a linear model to
::::::
log(µ), so in this simple case, with no

regressor variables, we are just fitting the constant log(µ).

summary( glm(y ∼ 1, family = poisson ) )

coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 3.1781 0.2041 15.57 <2e-16 ***

---

Signif. codes: 0 ?***? 0.001 ?**? 0.01 ?*? 0.05 ?.? 0.1 ? ? 1

3.1781 is the estimate of log(µ), i.e., l̂og(µ) = 3.1781, so µ̂ = exp(3.1781) = 24.

What statisticians call the “Delta Method” yields the approximate SE for a

function of the random variable l̂og(µ), assuming the Prob[Y = 0] is negligible.

SE[l̂og(µ)] ≈ SE[µ̂]× {(d log x/dx)|x=µ̂} =
√
µ̂× (1/µ̂) = 1/

√
µ̂ =

√
1/y.

Thus the (‘Wald’) Std. Error (SE) for l̂og(µ) is
√

1/24 = 4.899, calculated

at the point estimate y, namely
√

1/24 = 0.2041.

We will make a lot of use of this SE, especially for the variance (SE2)
of the log of a rate, and for the variance of the log of a rate ratio (i.e., the
variance of the difference of the logs of two rates).

7
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4.2 For event rates
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Depiction of empirical lung cancer mortality rate in age-group 55-60 in Quebec
in 2002 as the slope of the line joining the point (Y = 0 cases, PT = 0 WY )
and the point (Y = 33, PT = 121300 WY ). Also shown are the Poisson
Distributions, with µUPPER = 46.3 and µLOWER = 22.7 respectively, such
that Prob[Y ≥ 33 | µ = 22.7) = Prob[Y ≤ 33 | µ = 46.3) = 0.025.

This Figure is a simple mathematical reversal of the fundamental epidemio-
logical definition of an empirical rate or incidence density (id)

rate = id =
number of cases

amount of population-time that generated these cases

i.e.,

number of cases = rate× amount of population-time.

There is a corresponding equation for the expected number of cases, µ in
terms of the theoretical rate, λ:

µ = λ× amount of population-time.

or, if we take logs, with the log of the product as the sum of the logs,

log(µ) = log(λ)× 1 + 1× log(amount of population-time).

This re-statement has 2 important implications

(i) in epidemiology, we are students of rates and

(ii) Generalized Linear Models (GLMs) allow us to fit regression equa-
tions of this very type .

Even though we put the numbers of cases on the left hand side of the regression equation, these
GLMs allow us to express the theoretical rates (the focus of our investigations) as functions of
the determinants of interest (e.g. age, smoking, diet, calendar time, treatment, ... etc) while
treating the amounts of population time as constants that are of no intrinsic interest. In the
lung cancer mortality dataset, we could have a (no. deaths, PT) ‘data point’ for every ‘covariate
pattern’ or x-vector.

The
:::
two

::::
most

::::::
common

:::
rate

::::::
models are the

:::::
additive and

:::::::::
multiplicative forms:-

rate[x] = β0 + β1x & rate[x] = exp(β0 + β1x).

• This code fits the simple rate model (just 1 fitted constant, λ) to the data above, (the ‘-1’
removes the β0, or ‘intercept’, term: if 0 time, 0 deaths!. ‘link = identity’ means fit µ itself)

y = 33; PT = 131200

fit.mu = summary(glm(y ~ -1 + PT, family = poisson(link=identity) ))
fit.mu

Coefficients:
Estimate Std. Error z value Pr(>|z|)

PT 2.515e-04 4.378e-05 5.745 9.22e-09 ***

round(10^5*qnorm(c(0.025,0.50,0.975), #
mean = fit.mu$coefficients[1,1],
sd = fit.mu$coefficients[1,2]),1)

[1] 16.6 25.2 33.7

The fitted constant (25.1/105) is the fitted rate, with SE = 4.38/105.

• log(µ) = log(λ)× 1 + 1× log(PT) = β0 × x0 + β1 × x1, where β0 = log(λ), x0 = 1, β1 = 1, and
x1 = log(PT ). But β1 is known to be 1, and should be fitted as such, and so x1 = log(PT ) has
special status, namely an ‘offset’ variable.

This code fits the simple log rate model (just 1 fitted constant) to the data above, (the ‘1’ says

fit log(λ) as the ‘intercept’ in the log(µ) model. The (default) ‘link = log’ means fit the log(µ)
model. Specifying that log(PT) is an ‘offset’ sets its accompanying regression coefficient to 1.)

> fit.log.mu = summary( glm(y ~ 1+ offset(log(PT)), family = poisson))
> fit.log.mu
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -8.2880 0.1741 -47.61 <2e-16 ***

round( # *** CI in ’log rate’ scale -> CI in rate scale ***
10^5 * exp( # *** The ’exp’ function is the ’anti-log’ function ***
qnorm(c(0.025,0.50,0.975),

mean = fit.log.mu$coefficients[1,1],
sd = fit.log.mu$coefficients[1,2])

),1)

[1] 17.9 25.2 35.4

The fitted constant (-8.28) is the (natural) log of the fitted rate, with SE = 0.1741 =
√

1/33.
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5 Bootstrap CIs for the µ (or λ) that gener-
ated a event-count y in a given amount of
experience, PT

Example, y = 24 ‘events’ (needle-stick injuries) in PT = 2159 Intern-Months
(IM) of experience. The point-estimate for λ is 24 events per 2159 IM, or
0.0111 per IM, or 1.11 per 100 IM. (see data in §6.3.)

Even though it looks like we have only 1 ‘observation’, we can split up the
overall experience into a large number (N) of very small segments, each so
small that it has at most 1 event (most will have 0 events).

In the diagram on next page, each rectangle represents a segment, and the
total area represents 2159 IM.

So, we can make a long vector (e say) containing 24 1’s and the rest 0s.

We can then bootstrap the sum of the entries:

bootstrap <- do(4000) * sum( resample(e) )

As you can see (in black at the bottom right of the Figure), the most likely sum
is 24, but it was sometimes as few as 9 or 10 or as many as 40 or so. The 2.5%-
and 97.5%-iles, obtained from quantile(bootstrap$sum, probs=c(0.025,

0.975)) are 17 and 31.

So, can we (and should we) use 17/2159 and 31/2159 as a 95% CI for λ?

One limitation is that the bootstrap simply reproduces (to with Monte Carlo
precision) the Poisson distribution with µ = 24. But we know that the true
rate (in an infinite amount of experience) is not limited to some integer divided
by 2159 - the possible values for λ should be allowed to be on a continuum.
λ should not be measured by a ruler with discrete values only.

We could do better, if instead of relying on the single sampling distribution
based on the point estimate, we follow Wilson’s ‘more principled’ approach.
Remember that he would see the y = 24 as having been generated by (but at
the ‘edge of’) a Poisson distribution with a mean, µ, to the right/left of the
24.

But if µ is above the 24 (or, as Wilson saw it, 24 is below µ), the sampling
distribution will have a different shape than if µ is below the 24,

We need to put µ just far enough above that the 24 is at its 2.5%-ile. We can
do this using the theoretical gamma-Poisson link, BUT one can also locate it
by trial and error, using nothing more than re-sampling.

We could put say 33 (or 34, or 35, .. ) events in the long vector representing
2019 IM’s, and bootstrap each one, and pick the one for which the 2.5%-ile is
24. And so the same for µ below 24.

But how to use µ steps smaller than integers?

Instead of sampling 2157 IM from a vector representing 33 events in 2157 IM,
why not sample 2157 IM (the same amount of IM that generated the observed
data) from a (say) 100-times-longer vector (E, say ) representing 3347 events
in 215700 IM, i.e., from a vector that represents 33.47 events per 2157 IM?

It turns out that the mosaic::resample function allows you to sample 2157
from a larger universe, using the size= argument.

bootstrap = do(1000)*sum(resample(E,size=2157))

The µU value of 35.5 in the Figure was found by continuing to increase µ (to
change the composition of E) until the 24 was at the 2.5%-ile. The µL value
of 15.4 was found similarly by continuing to move µ to the left until 24 was
at the 97.5%-ile.

If we use sufficient bootstrap samples and a fine enough search, this approach
reproduces the limits based on the two Poisson distributions.

This example emphasizes why Wilson’s µL → y ← µU approach is superior to
the unprincipled ‘point-estimate ± SE’ or µL ← y → µU approach, especially
if the sampling distribution is different at the lower and upper limits for the
parameter being aimed at.

It also shows how, with a bit of extra computing time, we can compute limits
for an event rate without explicitly invoking the Poisson distribution per se.
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24 Needlestick Injuries in 2159 Intern-Months (IM)

Total of rectangular areas represents 2159 IM

17 31

4 8 12 16 20 24 28 32 36 40 44 48 52

No. Injuries in (bootstrap) samples of 2159 IM

Try µ values above 24 until...

Prob[ <= 24  | mu ]Prob[ >= 24  | mu ]

0.020.02
0.0250.025
0.030.03

µU
35.5 / 2159 IM

No. Injuries in samples of 2159 IM
from 215900 IM, 3550 Injuries

Try µ values below 24, until...

µL
15.4 / 2159 IM

No. injuries in 2159 IM from
215900 IM, 1540 Injuries

Computing limits for an event rate without explicitly invoking the
Poisson distribution per se : The sample experience is split into a large
number (N) of very small segments, each so small that it has at most 1 event
(most will have 0 events): a long vector containing 24 1’s and the rest 0s.

We can then bootstrap the sum of the entries, to get the (not quite satisfac-
tory) sampling distribution shown in black. Thus, ...

we (again) follow Wilson’s (trial-and-error) µL → y ← µU approach, but – to

:::::
allow

:
µ
:::
to

::::
vary

:::
on

::
a
::::::::::
continuum – we use small µ steps by sampling 2157 IM

from (say) a 100-times-longer vector representing 3347 events in 215700 IM,
i.e., 33.47 events per 2157 IM.

::::
Note

::::
that

::::
the

:::::::
shapes

::::
and

:::::::
widths

::
of

::::
the

::::::::
sampling

::::::::::::
distributions

::
at

:::
the

::::::
lower

:::
and

:::::::
upper

:::::
limits

:::
for

::
µ
::::
are

:::::::::
different.
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6 Applications, and Notes

6.1 How large a count so that margin of error < 15%?†

An estimate of the White Blood Cell (WBC) concentration can be made by
manually counting enough fields (n) until say a total of y = 200 cells have
been observed. This is not quite a Poisson distribution since y = 200 is
fixed ahead of time and n is the random variable – but the variability in the
estimate 200/n is close to Poisson-based, so as a first approximation we will
treat the y as the variable and the denominator n as fixed. The estimate has
margins of error (ME) of 13% and 15% – since [as one can derive from trial
and error] a total count of 200 (marked by ↑ below) could be a high reading
from a concentration which produces a µ of 173 (for the same n), or a low
reading from a concentration which produces an average of µ = 230, i.e.

y per n: 160..170..180..190..200..210..220..230..240...

.................µL............↑..............µU.......

...................200 = 173 + 1.96× {173}1/2..............

...................200 = 230− 1.96× {230}1/2..............

Can do this by trial and error in R using various counts (y): e.g. 120
y = 120; L=qgamma(c(0.025,0.975),c(y,y+1));

paste(toString(round(100*L/y)),"%")

† As told in our history of what we now know as the ‘Poisson’ distribution, “To help

users of a new Zeiss microscope that allowed one to count the number of blood

cells in a sample, in 1879, Abbe determined the number of cells one needed to

count in order to achieve a sufficiently small ‘probable error’ for an
::::::::
estimated

:::::
blood

:::
cell

::::::::::::
concentration.” In 1905,

::::::::
Schweidler provided error calculations for

counting radioactive transformations. At the Guinness company in 1907, Gosset

(‘Student’) was also concerned with the precision of ‘
:::::::
counting’ statistics.

6.2 Leukemia Rate Triples near Nuke Plant: Study

OTTAWA (CP)9 - Children born near a nuclear power station on Lake Huron
have 3.5 times the normal rate of leukemia, according to figures made public
yesterday. The study conducted for the Atomic Energy Control Board, found
the higher rate among children born near the Bruce generating station at
Douglas Point. But the scientist who headed the research team cautioned
that the sample size was so small that that actual result could be

:::::
much

:::::
lower

- or
:::::
nearly

::::
four

::::::
times

::::::
higher.

Dr. Aileen Clarke said that while the Douglas Point results showed 3.5 cases

9Montreal Gazette, Friday May 12, 1989.

of leukemia where one would have been normal10, a larger sample size could
place the true figure somewhere in the range from 0.4 cases to 12.6 cases.11

Clarke will do a second study to look at leukemia rates among children aged
five to 14. The first study was on children under age 5. Clarke was asked
whether parents should worry about the possibility that childhood leukemia
rates could be over 12 times higher than normal around Douglas point. ”My
personal opinion is, not at this time,” she said. She suggested that parents
worried by the results should put them in context with other causes of death
in children.

“Accidents are by far and away the chief cause of death in children, and what
we’re talking about is a very much smaller risk than that of death due to
accidents,” she said.

The results were detailed in a report on a year-long study into leukemia rates
among children born within a 25-kilometre radius of five Ontario nuclear facil-
ities. The study was ordered after British scientists reported leukemia rates
among children born near nuclear processing plants were nine times higher
than was normal. The Ontario study was based on 795 children who died of
leukemia between 1950 and 1986 and 951 children who were diagnosed with
cancer between 1964 and 1985.

It showed a lower-than-normal rate among children born near the Chalk River
research station and only slightly higher than expected rates at Elliot Lake
and Port Hope, uranium mining and conversion facilities.

At the Pickering generating station, the ratio was slightly higher still, at 1.4
- meaning there were 1.4 cases for every expected case. But the confidence
interval - the range of reliability - for that figure set the possible range between
0.8 cases and 2.2 cases.12

Comment [JH]: It is interesting that it is the more extreme, but much less
precise, SIR of 3.5, based on O = 2, E = 0.57 that made the headline, while
the less extreme, but much more precise, SIR of 1.4, based on O = 18, E =
12.8, was relegated to the last paragraph.

10SIR = 3.5 = No.Observed/No.Expected. It is not O = 3.5, E = 1, since one cannot
observe a fractional number of cases): SIR = 3.5; she simply scaled the O and the E so
that E (reference “rate”) is 1

11CI = (CI derived from O)/Expected = 0.4 to 12.6 (a 31-fold range). O is an integer.
By trial and error, starting with O=1, and “trying all the CI’s on for size” until one gets
a 31-fold range, one comes to O = 2. (CI 0.242 to 7.22, range 31 fold). Dividing 2 by 3.5
gives an E of 0.57. Check: 95% CI for SIR (0.242 to 7.22) / 0.57 = 0.4 to 12.6.

12SIR = 1.4 = O/E;CI = (CI derived from O)/E has 0.8 to 2.2. This 2./0.8= 2.75-fold
uncertainty comes from uncertainty generated by O. Examine range of 95% CI associated
with each possible value of O, until come to 10.67 to 28.45 when O = 18. Divide 18 by 1.4
to get E = 12.8. Check 95% CI 10.67 to 28.45)/12.8 = 0.8 to 2.2.

11

https://www.tandfonline.com/eprint/E8VYVV3FCAGIHUEN9SCS/full?target=10.1080/00031305.2022.2046159
http://www.medicine.mcgill.ca/epidemiology/hanley/statbook/SchweidlerPremiercongres1905.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/Gosset/
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6.3 Risk of Self-reported Percutaneous (‘Needle stick’)
Injuries in Interns

In Relation to Extended Work Duration (link)

Context In their first year of postgraduate training, interns commonly work
shifts that are longer than 24 hours. Extended-duration work shifts are associ-
ated with in- creased risks of automobile crash, particularly during a commute
from work. Interns may be at risk for other occupation-related injuries.

Objective To assess the relationship between extended work duration and
rates of percutaneous injuries in a diverse population of interns in the United
States.

Design, Setting, and Participants National prospective cohort study of
2737 of the estimated 18 447 interns in US postgraduate residency programs
from July 2002 through May 2003. Each month, comprehensive Web-based
surveys that asked about work schedules and the occurrence of percutaneous
injuries in the previous month were sent to all participants. Case-crossover
within-subjects analyses were performed.

Main Outcome Measures Comparisons of rates of percutaneous injuries
during day work (6:30 AM to 5:30 PM) after working overnight (extended
work) vs day work that was not preceded by working overnight (nonextended
work). We also compared injuries during the nighttime (11:30 PM to 7:30
AM) vs the daytime (7:30 AM to 3:30 PM).

Results From a total of 17 003 monthly surveys, 498 percutaneous injuries
were re- ported (0.029/intern-month). In 448 injuries, at least 1 contributing
factor was reported. Lapse in concentration and fatigue were the 2 most com-
monly reported con- tributing factors (64% and 31% of injuries, respectively).
Percutaneous injuries were more frequent during extended work compared
with nonextended work (1.31/1000 opportunities vs 0.76/1000 opportunities,
respectively; odds ratio [OR]13, 1.61; 95% confidence interval [CI], 1.46-1.78).
Extended work injuries occurred after a mean of 29.1 consecutive work hours;
nonextended work injuries occurred after a mean of 6.1 consecutive work
hours. Injuries were more frequent during the nighttime than dur- ing the
daytime (1.48/1000 opportunities vs 0.70/1000 opportunities, respectively;
OR, 2.04; 95% CI, 1.98-2.11).

Conclusion Extended work duration and night work were associated with
an increased risk of percutaneous injuries in this study population of physi-
cians during their first year of clinical training. JAMA. 2006;296:1055-1062
www.jama.com

13This is not an odds ratio. It is a Rate ratio or an Incidence Rate ratio. Injuries occur
in person-time. Odds are transforms of probabilities, and refer to people.

(part of) Table 1. Rates of Percutaneous Injuries by Residency Program.
No. of No. of Rate (95% CI*)

Type of Intern- Percutaneous per
Residency Months Injuries Intern-Month
All 17003 498 0.0293 (0.0268-0.0318)
Internal medicine 3995 57 0.0143 (0.0106-0.0179)
Surgery 1730 124 0.0717 (0.0595-0.0838)
Family medicine 2008 51 0.0254 (0.0185-0.0323)
Emergency medicine 1007 40 0.0397 (0.0277-0.0518)
Pediatrics 2159 24 0.0111 (0.0067-0.0155)
Psychiatry 658 1 0.0015 (0.0000-0.0045)
Pathology 283 15 0.0530 (0.0269-0.0791)
Obstetrics/gynecology 964 94 0.0975 (0.0788-0.1160)
Other specialties 4199 92 0.0219 (0.0175-0.0263)

*Method not specified, but {498∓ 1.96× 4981/2}÷ 17003 = {0.0267, 0.0318}.

Exercise: Try to match the others to the methods described above.14

[We will come back, in the section of the course dealing with comparisons,
to the issue of event-rate differences and event-rate ratios, and we will dispel
the notion that one needs to invoke the odds ratios mentioned in the Results
section.]

14If you don’t succeed, try page134 in Chapter 7 in Rothman’s 2002 edition of
Epidemiology: An Introduction.

The one Rothman adapts from ‘D. Byar (unpublished)’ has at its core method No.
2 (‘Wilson-Hilferty’ 15) among the 19 (!!) CI’s described in this investigation: “Com-
parison of confidence intervals for the Poisson mean: some new aspects” REVSTAT –
Statistical Journal Volume 10, Number 2, June 2012, 211?227, which can be found here.
https://www.ine.pt/revstat/pdf/rs120203.pdf

Rothman’s 2nd Edition, 2012, omits this CI method, and limits his presentation to
the y = 8 example.

12
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6.4 “Cluster of Events” Newspaper Stories

1. In the Montreal Gazette in April 25, 198916

Double Trouble in Moose Jaw School
(caption to a photograph showing 6 sets of twins)

Every morning, teachers at Prince Arthur school in Moose Jaw,
Saskatchewan see double – and its not because of what they were
up to the night before. Six pairs of identical twins attend the school,
which has an enrollment of 375. Identical births occur once in 270
births.

What is the probability P of having 6 or more sets of twins in a school of size
n = 375, when the twinning probability is π = 1/270?

This can be obtained with the Binomial(n, π) distribution; because n is large
and π is small, the distribution can also be approximated by the Poisson(µ)
distribution, where µ = n× π = 1.3.

P = P [Y ≥ 6] = 1− P [Y ≤ 5],

i.e., as

1− exp[−1.3]× {1 + 1.3/1! + 1.32/2! + 1.33/3! + 1.34/4! + 1.35/5!} = 0.0022.

or as 1-ppois(5,lambda=1.3)

Thus, the (
::::::::
computed

::::::
before

::::
the

::::
fact) probability is low that this particular

school would have six or more sets. BUT, on average, in 1000 schools of this
size, there will be 2.2 with this many or more. Thus, if we scan over a large
number of such schools, finding some school somewhere with this extreme
a number is not difficult. If the newswires scanned a large number of schools
in 2007, there is a good chance the Montreal Gazette could re-use the headline
– but they would have to change “Moose Jaw” to “Town X”, with “X” to be
filled in. See also the ‘Texas Sharpshooter’ refererence in 2nd column p 441
of this article.

Moral: The Law of Large Numbers at play here is the same as the one in the
video display terminals and miscarriages” story. Natural “clusters” do occur
by chance alone, and distinguishing ones caused simply by chance from ones
caused by some environmental or other such factor is not an easy task.

16See ‘Births Case #3’ in Hanley J, the American Statistician, 1992,
“Jumping to coincidences: defying odds in the realm of the preposterous”

.

2. In the Montreal Gazette, week of May 8 , 1991

Double trouble Down Under
(caption to a photograph showing five sets of twins)

It was a very busy week in the obstetrics department of Baulkham
Hills Private Hospital in Sydney Australia, as five mothers gave birth
to twins. Hospital officials offered no explanation of the sudden run
of multiple births, but the proud mothers are happy to pose with
their infants. Everyone is doing well.

!!

3. In the Montreal Gazette, week of May 15 , 1991...

No Double trouble anywhere this week!
no photograph, no twins!

4. In the Montreal Gazette, week of May 22 , 1991...

No Double trouble anywhere this week!
no photograph, no twins

!!!

5. But, ... stay posted..!
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7 Planning: Sample Size for CIs and Tests

7.1 Precision

Even though it is tempting to specify the ‘sample size’ in terms of the Amount
of Experience that needs to be studied to achieve this precision, ultimately
the precision is governed by the number of events. So it is safer to specify
sample size in these terms.

7.2 Amount of experience required to achieve a specified
Coefficient of Variation (CV) for an estimated rate

See the example of the number of cells needed to count: approx. 200 so that
have a margin or error of 15%.

7.3 Power – to detect Rate Ratio RR = Ealt/E0

Exactly, using qpois and ppois in R:

(a) use qpois to establish the (smallest) number of cancers y∗ would be (just
be) ‘statistically significantly higher’ than the null µ = E0.

(b) use qpois(y∗,E0 ×RR,lower.tail=FALSE) to calculate the probability,
if µalt = RR× E0, of observing a statistically significant elevation.

Approximately, using Gaussian approximations to the sampling distribu-
tions Poisson(µ = E0) and Poisson(µ = Ealt = RR× E0), by solving

Zα × {E0}1/2 + Zβ × {Ealt}1/2 = Ealt − E0.

(use Zα/2 if it is to be a 2-sided alternative). Note: if the power is more than
50%, Ealt > critical value y∗, and Zβ will be a negative quantity, but the two
absolute distances Zα×{E0}1/2 and |Zβ | × {Ealt}1/2 will add to the positive
quantity Ealt − E0. We will switch the sign of Zβ later.

Substituting RR× E0 for Ealt , we get

Zα × {E0}1/2 + Zβ ×RR1/2 × {E0}1/2 = E0[RR− 1],

or

Zβ (with sign corrected) = −E
1/2
0 × [RR− 1]− Zα

RR1/2
.

(Working with Poisson distributions avoids issues of signs; if you do use Nor-
mal approximations, draw a diagram to get the signs for Zα and Zβ correct).

POWER OF (1-sample) Poisson-based test of Ε_null versus Ε_alt
jh 2006.03.18

 supply Ε_null, alpha level, Ε_alt

n 20 Rate
Ε_null 4.5 Ratio
Ε_alt 13.5 3.00

2-sided alpha 0.050
POWER

y <- # Events in the amount of Experience studied 0.865
   ↓ critical region

↓ y Prob( y | 
E_null =4.5)

Prob( ≥ y | 
E_null =4.5)

Prob( y | E_alt = 
13.5)

Prob(≥ y | 
E_alt = 13.5)

0 0.0111 1.0000 0.0000
1 0.0500 0.9889 0.0000
2 0.1125 0.9389 -0.0001
3 0.1687 0.8264 -0.0006
4 0.1898 0.6577 -0.0019
5 0.1708 0.4679 -0.0051
6 0.1281 0.2971 -0.0115
7 0.0824 0.1689 -0.0222
8 0.0463 0.0866 -0.0375
9 0.0232 0.0403 -0.0563

* 10 0.0104 0.0171 -0.0760 0.865
* 11 0.0043 0.0067 -0.0932
* 12 0.0016 0.0024 -0.1049
* 13 0.0006 0.0008 -0.1089
* 14 0.0002 0.0003 -0.1050
* 15 0.0001 0.0001 -0.0945
* 16 0.0000 0.0000 -0.0798
* 17 0.0000 0.0000 -0.0633
* 18 0.0000 0.0000 -0.0475
* 19 0.0000 0.0000 -0.0337
* 20 0.0000 0.0000 -0.0228
* 21 0.0000 0.0000 -0.0146
* 22 0.0000 0.0000 -0.0090
* 23 0.0000 0.0000 -0.0053
* 24 0.0000 0.0000 -0.0030
* 25 0.0000 0.0000 -0.0016
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y
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Figure 3: Using exact Poisson Probabilities [see ‘Power for test of E = Enull
vs E = Ealt: Excel worksheet’ here. It could be made much nicer with R

or with a shiny app.
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8 From
::::::::::::::::
event-rates to

::::::
risks

We can use the observed injury rate in Obstetrics/gynecology to derive the
1-year risk (probability) of suffering an injury.

Note that
:::
risk refers to the

::::::::::
probability for an individual, estimated using

a 12-month cumulative incidence - a
:::::::::
proportion. It assumes the person is

‘available’ (at risk of being injured) for the full year – or at least until the
injury.

See Rothman, 2nd Ed, 2012, page 38-39.

For simplicity, assume that individuals are subject to this constant17 force of
0.0975 injuries per inter-month throughout the 12 months.

Hint : the answer is not 12 ×0.0975 = 1.17, as some previous students calcu-
lated. It is 0.69. See Rothman’s Epidemiology: An Introduction, 2ndE 2012,
Chapter 4.

It may help to use Edmonds’ concept of a ‘person-year’ as 1 person (
:::
not

:::::::::
necessarily the

::::
same person) constantly at risk, He used the term ‘a given

number of persons constantly living ’ when originating the term ‘force of mor-
tality.’18

If you treat an intern-year as 3000 working hours (h), you could also write
the incidence density (or λ) as 0.00039 percutaneous injuries h−1, or so many
per intern-week, or intern-decade, or intern-century!

As Edmonds did, take the ‘given number of interns’ to be one (1). Imagine
a ‘chain’, starting at t′ = 0 and extending for 12 months until t′′ = 12. The
chain is begun with a randomly selected never-injured intern, who continues
until he/she either reaches 12 months or is injured before then. If the latter,
and it occurs at age t, he/she is immediately replaced by another randomly
selected never-injured intern. The chain proceeds, ‘with further replacements
as needed,’ until t′′ = 12. From t′ to t′′, the 1 constantly-serving candidate
constitutes a dynamic population with a constant membership of 1.

The number of
:::::::::::
replacements required is a random variable, with possible val-

17See http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/

SurvivalAnalysis/IncidenceFunctionToRisk2018.pdf for a more comprehensive treat-
ment of the ‘exponential’ formula linking a rate function and risk, including cases where
the event-rate function, λ(t), varies considerably over the time/age span – one such
rate-function is the force of human mortality over the lifespan).

18Edmonds, T. R. (1832) The Discovery of a Numerical Law regulating the Exis-
tence of Every Human Being illustrated by a New Theory of the Causes producing
Health and Longevity. London: Duncan. Available as an on-line digital version at url-
http://books.google.com.
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Figure 4: An average of 1.17 transitions (percutaneous injuries) in 1 intern-year (I-Y) of

experience (117 in 100 I-Y), so that ID = 1.17 year−1. 100 ‘chains’ start at t = 0 (the 100

chains are represented by 100 horizontal lines, so close to each other that the total person time

appears as a rectangle 100 interns high by 12 months wide); each chain continues for 12 months,

each using as many replacements (Gen. 1, 2, . . . ) as necessary to complete the chain. The

different shaded areas represent the population-time for generations 0, 1, . . . . The proportion

of chains that are completed using the initial (Gen. 0) intern is exp[−1.17] = 0.31, i.e., 31%,

so the 1-year risk is 100% - 31% = 69%. The proportion of chains in which, by time t, the

initial (Gen. 0) intern has been replaced, i.e., the cumulative incidence rate up to time t, is

1 − exp[−ID × t] = 1 − exp[−(integral up to time t)] The straight line (the product of ID and

time, scaled up by 100) involves a constant number of candidates at each time point, and thus

overestimates the cumulative incidence rate – substantially so as generation 0 is replaced. The

numbers of transitions do not sum exactly to 117 because of rounding.

The gen0, gen1, gen2, ... fractions ‘still there’ at 12 months are the Poisson probabilities of 0, 1,

2 ... ‘replacements’ when the replacement (injury) rate is λ = 0.0975 per intern-month, i.e., in

an intern-year, µ = 1.17. round(dpois(0:5,1.17),2): 0.31 0.36 0.21 0.08 0.02 0.01
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ues 0, 1, 2, . . . . Its expected value (mean) is µ = 0.0975 m−1 × 12 m =
0.00039 h−1 × 3000 h = 1.17 first injuries. Readers will recognize µ as in-
tegral of the ID(t) function over the 12-month age-span. The probability
that the chain is completed by the same intern who initiated it is the proba-
bility that 0 replacements are required. The probability that it is not is the
complement of this ‘survival’ probability. Since the number of replacements
(transitions, first injuries) in the 12 months is a Poisson random variable, the
probability that the chain is completed by the same intern who initiated it
is the Poisson probability of observing 0 events when 1.17 are expected, i.e.,

as exp[−1.17] = exp
[
−
∫ t′′
t′
ID(t)dt

]
= 0.31. The probability that this intern

fails to complete the chain, i.e., is injured before the 12 month period ends is

1− exp
[
−
∫ t′′
t′
ID(t)dt

]
= 1− 0.31 = 0.69. Thus the 12-month risk of injury

is 69%.

Fig 4, modeled after Fig 1 in Miettinen,19 gives the expected values for a
total of 100 separate such chains, and shows why the product of ID and time
(the 1.17, the integral) is not a risk, but rather an expected number of events
(transitions, turnovers, injuries) in a dynamic population of size 1. To provide
100 intern-years of service, an average of 217 interns is required. Of the 100
who began the chains (the average service of these 100 in ‘generation 0’ is
0.596 P-Y per intern) 31 complete them and 69 do not. Thus, the 12-month
risk is 69%. On average, of their 69 replacements (generation 1), 36 complete
the chains and 33 do not; and so on, so that in all – over the initial and
replacement generations, totaling 100 P-Y – 117 do not and 100 do.

The proportion of chains in which, by time t, the ‘Gen. 0’ intern has been
replaced, is 1−exp[−ID× t] = 1−exp[−(integral up to time t)]. The straight
line (the product of ID and time, scaled up by 100) involves a constant num-
ber of candidates at each time point, and thus overestimates the cumulative
incidence rate – substantially so as ‘gen. 0’ is replaced.

Table 4.2 & Fig. 4.3 in Rothman’s 2nd Edition show a 20-year incidence pro-
portion, but using an ID of 0.011 yr−1, so the expected number of transitions
in a dynamic population of 1 is 0.011yr−1× 1 yr = 0.22. His curve is identical
to the first 0.22/0.0975 = 2.3 months of the percutaneous injuries curve.

The expected numbers of ‘cumulative deaths’ column in Rothman’s Table 4.2
can be (and probably were) arrived at using the ‘exponential’ formula

1000× { 1− exp[− 0.011yr−1 × (number of years)] }.

The 0.011 yr−1 × (number of years) is the integral of the ID function, i.e.,
the expected number of transitions, over the number of years in question.

195. Miettinen, O. S. (1976) Estimability and estimation in case-referent studies. Am. J.
Epidem., 103, 226-235.
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10 Credits

From ‘Practical Applications of the Statistics of Repeated Events’ Particularly to Industrial
Accidents’ by Ethel M. Newbold, Journal of the Royal Statistical Society, Vol. 90, No. 3
(1927), pp. 487-547 ( https://www.jstor.org/stable/pdf/2341203.pdf)

The path to the (Poisson as a binomial) limit is very simple; as Bortkiewicz has
remarked, it does not need a first-class mathematician like Poisson to obtain
this limit, and it has been arrived at independently more than once by other
people dealing with statistical or physical problems in time or space. “Student”
(On the Error of Counting with a Haemacytometer,” Biometrika, V, 1906-7, pp.
351-60) obtained it when searching for the probable error of the number of yeast
cells counted in the squares of a hoemacytometer; Bateman,(The Probability
Variations in the Distribution of a Particles, Phil. Mag., 6th series, 1910, vol.
xx, p. 696) in an appendix to a paper by Rutherford and Geiger, by a different
method of approach obtained it as an exact formula to describe the frequency of
emission of α particles per unit of time in radioactive radiation. Von Bortkiewicz
(“Das Gesetz der Kleinen Zahlen” 1898) and Mortara ( “Sulle Variazioni di
Frequenza di Alcuni Fenomeni Demografici Rari Annali di Statistica,” serie V,
vol. 4, 1912, pp. 5-61) have used it to describe infrequent events in vital and
social statistics, and it has become familiar in many later applications.

Incidentally, Poisson’s name has stuck to the series, because it has often
been stated that he was the first to apply it to probability problems, but this
is, I think, incorrect. Poisson’s Recherches sur la Probabilite des Jugements was
published in 1837; but over a hundred years before, in 1718, in the first edition
of his Doctrine of Chances, De Moivre applied the exponential limit to the
following problem :–Problem V (p. 14): “To find in how many Trials an Event
will Probably Happen, or how many Trials will be requisite to make it indifferent
to lay on its Happening or Failing; supposing that a is the number of Chances
for its Happening in any one Trial, and b the number of Chances for its Failing.”
De Moivre make the chances of the event happening (i.e. happening at least
once in the total number of trials) or failing equal, by equating the first term of
the binomial (or, as he calls it, “Sir Isaac Newton’s theorem”) to the rest; his
binomial is .. He then proceeds to two limits, first he makes the chance of an
event =0.5, ... , then he makes x and q both infinite, the mean x/q remaining
finite, and so the left hand of his equation becomes

1 +
x

q
+

x2

2!q2
+ +

x3

3!q3
+ ...,

and hence x
q

= loge 2.

This problem of De Moivre’s really contains the basis of Proposition LI of Whit-
worth’s Choice and Chance: “If an event happens at random on an average once
in time t, the chance of its not happening in a given period T is e−T/t,” i.e. the
first term of a Poisson series. [ Stigler disagrees with Newbold. ]

Abraham
:

de
::::::
Moivre 1667 - 1754

https://en.wikipedia.org/wiki/Abraham_de_Moivre

Siméon Denis
:::::
Poisson 1781-1840

from http://www.york.ac.uk/depts/maths/histstat/people/sources.htm

See also...
http://www.encyclopedia.com/topic/Simeon Denis Poisson.aspx and
http://en.wikipedia.org/wiki/Poisson distribution and

Stephen M. Stigler. Poisson on the Poisson Distribution

::::::
Abstract. A translation of the totality of Poisson’s own 1837 discussion of the Poisson
distribution is presented, and its relation to earlier work of De Moivre is briefly noted.
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0 Exercises

0.1 (m-s) Working with logs of counts and logs of rates

In order to have a sampling distribution that is closer to Gaussian – sample counts,
and ratios of them tend to have nasty sampling distributions – we often transform from
the (0,∞) scale for a count y and its expectation, µ, to the (−∞,∞) log[y] and log[µ] scale.

Thus, we do all our inference (SE calculations, CI’s, tests) on the log scale, then
transform back to the count or rate (or if comparative, rate ratio) scale.

1. Suppose Y ∼ Poisson(µ) with associated rate estimate λ̂ = Y/PT 20. Derive the

variances for the random variables log[Y ] and log[λ̂]. Ignore the possibility of obtaining

µ̂ = 0 i.e., λ̂ = 0/PT = 0.

2. What is the variance for the log of a rate ratio, i.e., log[λ̂2 ÷ λ̂1] ? Since, in practice,
you do not know µ1 and µ2, substitute (‘plug in’) their empirical counterparts.

0.2 (m-s) The Poisson Family as a ‘Closed under Addi-
tion’ Family

Show that if Y1 ∼ Poisson(µ1) and Y2 ∼ Poisson(µ2) are independent random variables,
then Y = Y1 +Y2 ∼ Poisson(µ1 +µ2). Then, look for and cite examples in earlier pages of
these Notes where this property is (implicitly) used in practice.

0.3 Link between Poisson & Exponential (and Gamma)
Distributions

1. Show that if the random times T1, T2, . . . between successive events can be regarded
as i.i.d observations from an exponential distribution with mean µT , then the number
Y of events in a fixed time-window of length W has a Poisson Distribution with mean
or expectation µY = W × λ = W × (1/µT ).

2. Show the reverse.

3. Marsden and Barratt (see bottom of Rutherford website) gave empirical examples.
How complete a two-way mathematical proof did they give?

4. Genest and Hanley (see here and here) gave a space-exploration-inspired example.
How complete a two-way mathematical proof did they give?

5. Hanley’s ‘A more intuitive and modern way to compute a small-sample confidence
interval for the mean of a Poisson distribution’ (available here) uses this 2-way link.
How complete a two-way mathematical proof does he give?

6. Do you consider the ‘tire-ruptures’ and ‘space-journey’ applications as ‘proofs by ex-
ample’? In other words, if you were grading the answers to parts 1 and 2, would you
accept these applications as (algebra-less or calculus-less) ‘proofs’?

20PT = amount of Population Time

0.4 (m-s) The Fisher information that a Poisson random
variable carries about its expectation and about the
log of this expectation

(Wikipedia) “The Fisher information is the amount of information that an observable ran-
dom variable Y carries about an unknown parameter θ upon which the likelihood function
of θ, L(µ) = f(Y ; θ), depends.” The Fisher Information is defined as

I(θ) = E

{[
d

dθ
ln f(Y ; θ)

]2∣∣∣∣
θ

}
.

As per Casella and Berger, 2nd Ed. p338, in an exponential family we also have that

E

{[
d

dθ
ln f(Y ; θ)

]2∣∣∣∣
θ

}
= −E

{
d2

dθ2
ln f(Y ; θ)

∣∣∣∣
θ

}
.

1. Calculate the Fisher Information about the parameter µ in the case of the random
variable Y ∼ Poisson(µ), with

L(µ) = f(Y ;µ) = exp[−µ]× µY /Y !

2. Calculate the Fisher Information about the parameter θ = log(µ).

3. In both the above, you probably left the expressions in terms or the µ parameter.
This

:::::::
‘expected ’ information is helpful for planning purposes, i.e., for anticipating how

much information you expect to have. But, the expression can also be used after the
fact to compute a variance to be used in computing a standard error and margin of
error. In this case you will probably plug in the point estimate of µ as a substitute for
µ itself. This is called the (after the fact) ‘

::::::
observed ’ information. Give a numerical

example from the ‘Needle-stick’ (Percutaneous) Injuries in Interns study.

0.5 (m-s) The Poisson distribution as an approximation
to the binomial distribution

Stigler, in The American Statistician, February 2013 (see Resources), writes

“The Poisson distribution is often introduced as an approximation to the bino-
mial distribution, an approximation that improves in accuracy as n, the number
of binomial trials, increases, while np, the expected value, does not:

e−np(np)k

k!
∼=
(n
k

)
pk(1− p)n−k

The presentation is usually accompanied by a proof that invokes some ver-
sion of the approximation (1 − 1/n)−n ∼= e = 2.71828 . . . . Poisson’s
own derivation proceeded in much the same manner (Poisson 1837, p. 206;
Stigler 1982), as did a bestselling textbook published in 1936 by Hyman
Levy and Leonard Roth. Those authors were, respectively, professor of
Mathematics and assistant lecturer in Mathematics at Imperial College Lon-
don. Figure 1 reproduces the relevant passage from Levy and Roth (1936).
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Figure 1. Part of page 80 of Levy and Roth (1936), showing the
approximation and the footnote.

1968. Neither man seems to have left a comment on this small
matter.

3. LESSONS LEARNED

Aside from reinforcing the fact that it pays to read carefully
and to check footnotes, what can be learned from this? For one
thing, it alerts us to the fact that the Poisson may not be a very
close approximation to the binomial unless n is huge. For small
n, the approximation is only qualitatively accurate (Table 2).
This might be obvious from the fact that the binomial is sup-
ported by but n + 1 values, while the support of the Poisson
extends to all nonnegative integers. Over the years, a number of
scholars have concocted improvements to the Poisson approxi-
mation (e.g., Gebhardt 1969; Morice and Thionet 1969; see also
LeCam 1960). None of these improvements seem to have been
adopted, probably because for practical work the approximation
from the Poisson is usually adequate despite the error, and the

Table 1. Illustrations of the different rates of convergence for two
approximations of e

n (1 − 1
n )−n

∑n
0 1/k!

1 1.0000000000 2.0000000000
2 4.0000000000 2.5000000000
3 3.3750000000 2.6666666667
4 3.1604938272 2.7083333333
5 3.0517578125 2.7166666667
6 2.9859840000 2.7180555556
7 2.9418974337 2.7182539683
8 2.9102853680 2.7182787698
9 2.8865075782 2.7182815256
10 2.8679719908 2.7182818011
11 2.8531167061 2.7182818262
12 2.8409443766 2.7182818283
100 2.7319990264
791 2.7200020786
792 2.7199999041
1000 2.7196422164
10000 2.7184177550
e 2.7182818285

Table 2. Two examples of the fit of the Binomial and the Poisson
distributions. Left: Binomial with n = 10 trials and p = .1; Poisson
with mean 1.0. Of the nonzero probabilities, only the 1st, 3rd, and the
5th are accurate to the 1st significant digit, and none are accurate in
later digits. Right: Binomial with n = 20 trials and p = .05; Poisson
with mean 1.0. Here, the fit is slightly improved, but not as measured
by 1st significant digits

k Binomial Poisson k Binomial Poisson

0 0.34867844 0.36787944 0 0.35848592 0.36787944
1 0.38742049 0.36787944 1 0.37735360 0.36787944
2 0.19371024 0.18393972 2 0.18867680 0.18393972
3 0.05739563 0.06131324 3 0.05958215 0.06131324
4 0.01116026 0.01532831 4 0.01332759 0.01532831
5 0.00148803 0.00306566 5 0.00224465 0.00306566
6 0.00013778 0.00051094 6 0.00029535 0.00051094
7 0.00000875 0.00007299 7 0.00003109 0.00007299
8 0.00000036 0.00000912 8 0.00000266 0.00000912
9 0.00000001 0.00000101 9 0.00000019 0.00000101

10 0.00000000 0.00000010 10 0.00000001 0.00000010
11 0.00000000 0.00000001 11 0.00000000 0.00000001
12 0.00000000 0.00000000 12 0.00000000 0.00000000

Poisson distribution is too beautiful a mathematical object to
permit tampering for less than compelling reasons.

4. A FINAL NOTE

The curious accuracy of the Levy and Roth footnote was
noticed by my father no later than 1943–1945, when he was
working on war-related problems with the Statistical Research
Group at Columbia University. At the time he circulated a note
to friends, including a statement that Levy and Roth could have
made a stronger claim: “In future editions they may point out that
if n = 2 the thirteenth decimal place is not affected.” One of those
receiving the note, Churchill Eisenhart, sent an edited version
of the note to a technical journal where it was published (Stigler
1945). However, Churchill removed the suggestion about n =
2 and the 13th place because he feared some readers might not
see the tongue-in-cheek and take it seriously—some jokes can
have unintended harmful consequences.

[Received November 6, 2012. Revised November 27, 2012.]
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5 For many years, I have been presenting my class with a copy of this page from

Levy and Roth and asking them, as a homework exercise, to answer a simple
question: Is the footnote correct? ”

BIOS601 Exercise: Answer Stigler’s question.

0.6 CI’s for the incidence of percutaneous injuries in the
various types of residencies

The NEJM authors did not say how they got the CIs for the Rates per Intern-Month, shown
in Table 1 on page 12. The CI for the overall rate closely matches the large-sample one
that JH has in his Notes. Apply the exact method to obtain CI’s for the 3 ‘P’s’, Pediatrics,
Psychiatry and Pathology, where the observed numerators are all under 30. [Table on p. 3
may help]

0.7 Comparison of various CI’s for the expectation, µ of
a Poisson random variable, on the basis of a single
count y

Fill in the blanks in the table below, and compare the accuracy of different approximations
to the exact 95% CI for µ, based on a count of y.

Observe y = 3* 6 8** 33** 78**** 100

‘Exact’ (but conservative) CI:

stats::gamma( ) ? ? ? ? ? ?
stats::poisson.test( ) ? ? ? ? ? ?
survival::cipoisson(,method="exact") ? ? ? ? ? ?

Approximation

Wilson-Hilferty ? ? ? ? ? ?
1st principles, y ? ? ? ? ? ?

1st principles, y1/2 ? ? ? ? ? ?
SE-based, y ? ? ? ? ? ?
SE-based, log(y) ? ? ? ? ? ?
survival::cipoisson(,method="anscombe") ? ? ? ? ? ?

Any others you wish to try ? ? ? ? ? ?

* Rothman (2002 p134) : 3 cases in 2500 PY.
** Rothman (2002 p133, 2012 p.165 ) : 8 cases in 85,000 PY.
** No. lung cancer deaths in 131,200 W-Y, women 55-60, Quebec,1971.
***Total no. cancers in concerned area in Alberta Sour Gas study. (µ0 = 85.9) (Table 5,
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567589/pdf/envhper00423-0270.pdf

“Cancer Downwind from Sour Gas Refineries”). “A total of 30,175 person-years of risk
within Alberta were experienced by this cohort from 1970 to 1984.”

“The significance of the resulting standardized incidence ratios (SIR) was tested by com-
puting 95% confidence intervals around them using methods described by Ederer, F., and
Mantel, N. Confidence limits of the ratio of two Poisson variables. Am. J. Epidemiol.
100:165-167(1974).”

0.8 Power Calculations

From “Cancer Downwind from Sour Gas Refineries”:

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1567589/pdf/envhper00423-0270.pdf

“A priori sample size calculations were based on an estimate of 2000 people in
the IACS with an expected 30,000 person-years of observation. Approximately
102 incident cancers were expected (5), yielding greater than 90% power (6) to
detect elevations in the incidence rate by [a factor of 1.2 or more 21 using a one
sided test with a confidence level of 0.05.

(5) Cancer Registration in Alberta. Edmonton: Provincial Cancer Hospitals
Board, 1978.

(6) Beaumont, J.J. and Breslow, N.E. Power considerations in epidemiologic
studies of vinyl chloride workers. Am. J. Epidemiol. 114:725-734 (1981).”

Exercise: The amount of PT is fixed. Thus there is no point in the researcher calculating
what amount of PT would be required for a desired power against a given alternative.
Instead re-do the (pre-study) calculation by (as described in section 7.3)

21Their wording: ‘detect elevations in relative risk of 1.2 or more.’
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(a) establishing what (smallest) number of cancers y∗ would be ‘statistically significantly
higher’ than the null µ0 = 102 calculated on the basis of the sex-age-specific rates in the
(much larger) reference areas.

(b) calculating the probability, if µalt = 1.2 × µ0, of observing a statistically significant
elevation.

Compare your calculated power with that claimed by the authors. Do you think they made
a ‘Type III error’ somewhere?

Comment : you may find it easier (and more transparent) to work with the exact Poisson
probabilities in R rather than with the (quite good in this 3-digit zone) Normal distributions
centered on µ0 and µalt. However, working with the latter (as in section 7.3) makes it easier
to develop generic power/sample size formula.

0.9 From Event-Rates (λ’s) to Risks (π’s)

Section 8 above introduced a special case of the general formula for converting a rate, λ, that
may vary over time – and is thus written as the function λ(t) – into a risk (a probability):

The risk, R, over the time span t′ to t′′ is

R = 1− exp

[
−
∫ t′′

t′
λ(t)dt

]
.

if, as we estimated from the obstetrics/gynecology experience, λ(t) = 0.0975m−1 (and

constant-over-time) over the span t′ = 0 to t′′ = 12m then the integral
∫ t′′
t′ λ(t)dt is simply

0.0975m−1 × 12m = 1.17 injuries in 12-intern-months of continuous service. Thus, the
12-month risk is

R0→12 = 1− exp[−1.17].

Exercise:

1. Find a 95% CI for the 1.17, and from it compute a 95% CI for the 12-month risk. Hint :
what part of the 1.17 is random/subject to sampling variation?

2. Repeat the exercise using the λ̂ for Pediatrics. Does Rothman’s approximate risk equa-
tion, i.e., 4-1 in the 2012 Edition, do a good job approximating the 12-month risk in this
specialty?

0.10 RCT of HPV vaccine

The following excerpt is from the Vaccine Arm of Table 3 of an Article in the NEJM in
2002 22. We will look at the comparison with the Placebo arm when we get to comparative
studies.

Efficacy Analyses of a Human Papillomavirus Type 16 L1 Virus-like-particle Vaccine.

End point HPV-16 VACCINE GROUP

Efficacy Type of No. of Cases Woman-Yr Rate per 100
Analysis HPV-16 Women Of At Woman-Yr

Infection Infection Risk At Risk

(1)* P. 768 0 1084.0 0
(2)** P. 800 0 1128.0 0
(3)* P. or T. 768 6 1084.0 0.6

(1) Primary per-protocol

(2) Including women with general protocol violationsà

(3) Secondary per-protocol

P = Persistent; T=transient

*The per-protocol population included women who received the full regimen of study vaccine
and who were seronegative for HPV-16 and negative for HPV-16 DNA on day 0 and negative
for HPV-16 DNA at month 7 and in any biopsy specimens obtained between day 0 and
month 7; who did not engage in sexual intercourse within 48 hours before the day 0 or month
7 visit; who did not receive any nonstudy vaccine within specified time limits relative to
vaccination; who did not receive courses of certain oral or parenteral immunosuppressive
agents, immune globulin, or blood products; who were not enrolled in another study of an
investigational agent; and who had a month 7 visit within the range considered acceptable
for determining the month 7 HPV-16 status.

**The population includes women who received the full regimen of study vaccine and who
were seronegative for HPV-16 and negative for HPV-16 DNA on day 0 and negative for
HPV-16 DNA at month 7 and in any biopsy specimens obtained between day 0 and month
7.

Questions

1. In their Statistical Methods, the authors state: “The study employed a fixed-number-
of-events design. At least 31 cases of persistent HPV-16 infection were required for the
study to show a statistically significant reduction in the primary end point (assuming
that the true vaccine efficacy was at least 75 percent with a power of at least 90 per-
cent). Accounting for dropouts and women who were HPV-16-positive at enrollment
and assuming an event rate of approximately 2 percent per year, we estimated that
approximately 2350 women had to be enrolled to yield at least 31 cases of HPV-16
infection. Although the study will continue until all women complete four years of
follow-up, the primary analysis was initiated on August 31, 2001, as soon as at least
31 cases were known to have occurred. Thus, the primary analysis includes all safety
and efficacy data from visits that occurred on or before that date.”

22 A Controlled trial of a Human Papillomavirus Type 16 Vaccine by Laura A. Koutsky
et al., for The Proof of Principle Study Investigators.
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Why did the authors use a ‘fixed-number-of-events’ rather than ‘fixed number of sub-
jects for a fixed amount of time’ design?

2. Calculate 95% 2-sided CIs to accompany the 3 point estimates of infection rate.

0.11 How well do Poisson models describe variation
in. . . ?

1. Yearly Numbers of Dengue Fever Cases https://www.nature.com/articles/
d41586-018-05914-3 and here https://gatesopenresearch.org/articles/2-36/v1

2. Daily (and hourly!) Numbers of births? https://www.significancemagazine.com/585
and https://rss-onlinelibrary-wiley-com.proxy3.library.mcgill.ca/doi/full/10.1111/j.
1740-9713.2017.01026.x or hanley/mysteryData/

3. Daily numbers of Sudden Infant Deaths? https://www.ncbi.nlm.nih.gov/pubmed/21059188

4. Monthly numbers of earthquakes in a region? https://earthquake.usgs.gov/earthquakes/
search/

5. Yearly numbers of major hurricanes? https://www.nhc.noaa.gov/pastdec.shtml

6. Yearly numbers/incidence of hospitalized injuries in a region? http:www.medicine.mcgill.
ca/epidemiology/hanley/c609/Material/LidkopingALL.pdf

7. Yearly Accidents, Fatalities, and Rates, 1982 - 2000, U.S. Air Carriers Operating Under 14
CFR 121 http:www.medicine.mcgill.ca/epidemiology/hanley/c626/airline-data-sas.txt

8. Quarterly & Monthly (prevalence) rates of Spina Bifida and Anencephaly Among
Births (in relation to fortification of Foods with Folic Acid) http://www.medicine.mcgill.
ca/epidemiology/hanley/c626/folic_acid.pdf. See more data on webpage http://www.
medicine.mcgill.ca/epidemiology/hanley/c626/.

9. (Yearly) fatal and nonfatal crash rates on a toll highway (following a 5-15 mph (8-24 kph)
decrease in speed limits) https://www.ncbi.nlm.nih.gov/pubmed/1251837

10. Yearly numbers of accidents before/after change to Daylight Savings Time) https://www.
nejm.org/doi/full/10.1056/NEJM199604043341416

11. Daily numbers of in-hospital deaths and Daily Maximal Temperatures during sum-
mers of 2002 and 2003 (France) http://www.medicine.mcgill.ca/epidemiology/hanley/c626/
Heatwave_death_lyon.pdf

12. The (daily) incidence of crimes reported to 3 police stations in different towns (one rural,
one urban, one industrial) vis-a-vis the day of the lunar cycle http://www.medicine.mcgill.
ca/epidemiology/hanley/c626/fullmoon.pdf

13. Daily numbers of Deaths (Postponement of Death Until Symbolically Meaningful Occasions)
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/holidays.pdf

14. Rates of audience fidget. (F Galton) http://www.medicine.mcgill.ca/epidemiology/hanley/
c626/measure_of_fidget_galton.pdf

15. Number of Deaths by Horsekicks in the Prussian Army from 1875-1894 for 14 Corps
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/horsekicks.txt and http://www.
medicine.mcgill.ca/epidemiology/hanley/c626/horsekicks_anthrax_poisson.pdf

16. Daily counts of individuals involved in a car crash with at least one fatality (here)

17. Weekly COVID-19 cases reported on McGill’s campuses (McGill’s Case Tracker)

0.12 Pure cultures - Gosset 1907 & Part A Exam 2019

‘Student’/Gosset ended his 1907 Biometrika paper on counting yeast cells – where he derived
the Poisson distribution from first principles – with an application to the creation of a pure
culture (a population of cells that originates from a single cell, so that the cells are genetic
clones of one another). He wrote:

“To do so, it is customary to estimate the concentration of cells and then dilute
so that each two drops of the liquid contain on an average one cell. Different
flasks are then seeded with one drop of the liquid in each, and then most of those
flasks which show growths are pure cultures.”

He used the Poisson distribution to show that “approximately three-quarters of those flasks
which show growth are pure cultures.”

Exercise: Derive the analytic expression for this proportion.

0.13 With luck, will the Royal Mint have enough coins?

Refer to the story “Babies who share royal birthday will coin it” 23 on next page and to
the ‘average of 1,983 births a day.’

1. (From the information in the article) what is the probability that the Mint will have
enough, if they mint 2,013 coins? State any assumptions made.

2. How many should they mint to be 99.99% sure of having enough?

3. The average number of births per day varies slightly by season, and substantially by
day of the week – JH could not find day-of-week data for the UK24, but did find 2010
data from the USA.25 Rework questions 1 and 2 using a worst case scenario, and
assuming the same day-of-week patterns seen in the USA apply in England and Wales
[scale row 1 of the CDC table for the USA down to match the size of UK ]

4. For shorthand purposes, refer to the probability of having enough coins as the ‘non-
exceedance’ probability.26 How close is the mean of the 7 non-exceedance probabilities
to the non-exceedance probability calculated at the mean no. of births per day? How
close is the median non-exceedance probability? What if we switched focus to the
exceedance probability rather than the non-exceedance probability?

5. (Again, under your worst case scenario) how many pink and blue pouches would you
recommend they have ready?

23Seems that ‘to coin it’ means means ‘to profit’
24

http://www.statistics.gov.uk/hub/population/births-and-fertility/live-births-and-stillbirths

25http://www.cdc.gov/nchs/data access/Vitalstatsonline.htm
26A New Zealand webpage entitled What does Annual Exceedance Probability or AEP

mean? says ‘This term is generally referred to in rules that regulate discharges of contami-
nants including stormwater, wastewater, greywater. It can also be referred to in rules that
regulate the use of land that may result in a discharge including offal pits, storage facilities
for animal effluent, stockpiling organic matter (including composting) and storage of haz-
ardous substances. The Annual Exceedance Probability is the chance or probability of a
natural hazard event (usually a rainfall or flooding event) occurring annually and is usually
expressed as a percentage. Bigger rainfall events occur (are exceeded) less often and will
therefore have a lesser annual probability. Example 1: 2% exceedance probability rainfall
event: A 2% Annual Exceedance Probability rainfall event has a 2% chance of occurring in
a year, so once in every 50 years. Example 2: 20% exceedance probability rainfall event: A
20% Annual Exceedance Probability rainfall event has a 20% chance of occurring in a year,
so once in every 5 years.

21

https://www.nature.com/articles/d41586-018-05914-3
https://www.nature.com/articles/d41586-018-05914-3
https://gatesopenresearch.org/articles/2-36/v1
https://www.significancemagazine.com/585
https://rss-onlinelibrary-wiley-com.proxy3.library.mcgill.ca/doi/full/10.1111/j.1740-9713.2017.01026.x
https://rss-onlinelibrary-wiley-com.proxy3.library.mcgill.ca/doi/full/10.1111/j.1740-9713.2017.01026.x
hanley/mysteryData/
https://www.ncbi.nlm.nih.gov/pubmed/21059188
https://earthquake.usgs.gov/earthquakes/search/
https://earthquake.usgs.gov/earthquakes/search/
https://www.nhc.noaa.gov/pastdec.shtml
http:www.medicine.mcgill.ca/epidemiology/hanley/c609/Material/LidkopingALL.pdf
http:www.medicine.mcgill.ca/epidemiology/hanley/c609/Material/LidkopingALL.pdf
http:www.medicine.mcgill.ca/epidemiology/hanley/c626/airline-data-sas.txt
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/folic_acid.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/folic_acid.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/
https://www.ncbi.nlm.nih.gov/pubmed/1251837
https://www.nejm.org/doi/full/10.1056/NEJM199604043341416
https://www.nejm.org/doi/full/10.1056/NEJM199604043341416
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/Heatwave_death_lyon.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/Heatwave_death_lyon.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/fullmoon.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/fullmoon.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/holidays.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/measure_of_fidget_galton.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/measure_of_fidget_galton.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/horsekicks.txt
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/horsekicks_anthrax_poisson.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/c626/horsekicks_anthrax_poisson.pdf
https://www.tandfonline.com/doi/full/10.1080/09332480.2021.1915033
https://www.mcgill.ca/coronavirus/case-status


Course BIOS601: intensity rates:- models / inference / planning v. 2022.10.01

DayOfWeek Total January February March April May June July August September October November December

Total 3999386 323249 301994 338613 325028 328273 334535 345199 349747 350745 336809 326220 338974

Sunday 369704 34516 27851 27331 27326 34675 28456 29104 36658 30460 36798 28536 27993

Monday 606424 45873 45899 57699 46839 54815 47351 44502 61073 45406 47795 60967 48205

Tuesday 666686 50373 49751 62979 50302 51071 63178 51325 65572 53189 51056 65209 52681

Wednesday 656694 49042 49277 62067 49237 50024 63541 52202 51530 67103 49698 49109 63864

Thursday 649636 49448 49230 48981 61017 49637 50787 64681 51511 67279 49963 45162 61940

Friday 633899 55630 48382 48155 59075 48472 48887 62232 49800 52728 61238 45280 54020

Saturday 416343 38367 31604 31401 31232 39579 32335 41153 33603 34580 40261 31957 30271

See 1.
:::::
article, by a student and teacher of bios601, on this topic

https://www.significancemagazine.com/585 and

2.
::::::
Mystery

::::
Data

::::
Quiz, in Significance Magazine, also on the timing of births.

https://rss-onlinelibrary-wiley-com.proxy3.library.mcgill.ca/doi/full/10.1111/

j.1740-9713.2017.01026.x

or http://www.medicine.mcgill.ca/epidemiology/hanley/mysteryData/

2013-09-11 8:43 PMBeyond 20/20 WDS - Table view - ME_ROUT by DOB_WK (2010 Birth Data - State Detail)

Page 1 of 1http://205.207.175.93/Vitalstats/TableViewer/tableView.aspx?ReportId=59678

CDC Home | NCHS Home | Contact NCHS | NVSS Home | VitalStats Home | Privacy Policy | Accessibility

Tables Table Chart  
  

 ME_ROUT by DOB_WK (2010 Birth Data - State Detail) 

Other:  

    DOB_WK  Total Sunday Monday Tuesday Wednesday Thursday Friday Saturday

    ME_ROUT           

Total 3,999,386 369,704 606,424 666,686 656,694 649,636 633,899 416,343

Vaginal-Spontaneous 1,931,624 203,437 280,188 310,516 309,225 306,652 295,023 226,583

Vaginal-Forceps 20,868 2,069 3,055 3,456 3,506 3,352 3,056 2,374

Vaginal-Vacuum 89,879 9,114 12,669 14,962 14,761 14,358 13,566 10,449

Cesarean 995,945 67,410 163,540 176,929 170,666 168,245 170,456 78,699

Not stated 17,568 1,574 2,682 3,022 2,964 2,793 2,730 1,803

Not on certificate 943,502 86,100 144,290 157,801 155,572 154,236 149,068 96,435
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0.14 2 (indep.) Poisson r.v.’s → 1 Binomial distribution

Suppose we wish to compare 2 event-rates, λ1 in ‘exposed’ (1) person time and λ0 in
‘unexposed’ (0) person time. Denote the (to-be-observed) numbers of events in Y1 and Y0
person-years by D1 and D0 respectively.27

Then
D1 ∼ Poisson(µ1) and D0 ∼ Poisson(µ0),

where
µ1 = λ1 × Y1 and µ0 = λ0 × Y0.

Show that by conditioning on (fixing) the sum D = D1 +D0, we obtain a binomial random
variable:

(D1 | D) ∼ Binomial
(
D, π =

µ1

µ1 + µ0
=

λ1Y1

λ0Y0 + λ1Y1
=

θY1

Y0 + θY1

)
,

where θ is the Rate Ratio λ1/λ0,

and that

Ω =
π

1− π
=
E[D1]

E[D0]
=
Y1

Y0
×
λ1

λ0
.

0.15 Cancer screening trials: sample size/data-analysis

[new in 2017, and a prelude to the visit of Steven Skates (UK Ovarian Cancer Screening
Trial) on Oct 3, 2017 ]

The following sections are taken from ‘Biometric design of the Mayo Lung Project for early
detection and localization of bronchogenic carcinoma.’ by Taylor WF, Fontana RS. Cancer.
1972 Nov;30(5):1344-7. More material here, under ‘Cancer Screening Trials’]

ABSTRACT

Several important aspects of the Mayo Lung Project demand evaluation. These are: 1.
Acceptance. Will people accept such a screening program? 2. Case finding. Does the screen
pick out the people most likely to have or develop bronchogenic carcinoma? 3. Effectiveness.
If an early case of bronchogenic carcinoma is found, will prompt treatment extend life
beyond the time at which death from this disease would have occurred if treatment had
been delayed? Direct measurement of effectiveness is not possible, and indirect methods
must be used. A group of patients, all of whom are considered suitable for the screening
program, are being divided randomly into two sub- groups, one to be screened and the
other to be kept as an unscreened control. Mortality in the two groups is to be compared
for 5 years, and hopefully for 10 years. We also consider here sample size requirements and
reports on some of the characteristics of the first 500 patients.

DESIGN OF PROJECT

Subjects and methods: In the course of usual procedure at the Mayo Clinic, we identify
each male patient who is 45 years of age or older and who smokes at least one pack of

27Clayton and Hills used the letter D, since it is short for numbers of ‘deaths’; not all of
the events in epidemiology are terminal, or unwanted.

cigarettes a day. As part of the routine health examination of such patients, a standard 14
by 17-inch posterior-anterior chest roentgenogram is made and studied and a pooled 3-day
“deep cough” sputum specimen is examined cytologically. We have the patients answer a
Lung-Health Questionnaire as part of this project. All men found free from clinical evidence
of lung cancer and free from other serious diseases (to the degree that life expectancy is
estimated as at least 5 years) are included in this study. These patients are assigned at
random to one of two groups.

1. One group, designated controls, receives care and advice of the standard which is current
practice at Mayo Clinic. This includes the recommendation of the Clinic’s Division of
Thoracic Diseases that a chest roentgenogram and a sputum cytology test be obtained at
least once a year and that the patient stop smoking.

:::::::
However,

:::::
these

::::
men

:::
will

:::
be

:::
told

::::::
nothing

::
of

:::
the

:::::::
screening

:::::::
program. Rather, they will be examined and will receive care at

their own request as if no screening program existed. A routine follow-up communication
will be made with each man at least once a year for at least 10 years to determine survival
status. If a man dies, his death certificate will be obtained and the circumstances of his
death will be determined from his local doctor.

2. The other group, called participants, will be treated initially just as the first group,
but these men will also be urged to participate in the intensive bronchogenic carcinoma
screening project.28 Men who refuse will not be dropped; they will be followed as closely
as possible through correspondence and will be included when comparisons are made with
the first group.

Analysis: If the work is carefully clone and if adequate time is allotted for the project, a
moderate difference in observed lung cancer mortality can be deemed significant statistically
and can be attributed to some aspect and effect of the screening procedure. (We may not
know which aspect, but at least we will have established that screening and early treatment
have some effect, and we will have incentive to pursue the matter further. Such aspects
as how intensive the screening should be or how costs can be reduced are perhaps better
delayed until the question of gross effectiveness is answered.)

Notice that we will not merely compare survival time of early-discovered and late-discovered
cases. There is an unknown bias in favor of early-discovered cases, even if no treatment
is employed. Notice also that we do not rely on volunteers for one group and let the
comparison group consist of nonvolunteers. Instead, we divide the group of eligible people at
random into two groups, offer the screening to one of them, and then compare the two groups
in their entirety. Finally, it should be noted that we do not plan to make a comparison of
the incidence of cancer or the survival of cancer patients among the unscreened controls
with that of the participants, because to get such detailed information we would have to
communicate with the control patients and thus lose part of the difference between control
and screened patients. The screened group may have a higher observed incidence because
we observe them more closely. We want the two groups to be observed with different
intensity-within the bounds of currently acceptable medical practice-because this is what
the study is all about.

A word about eligibility: An early benefit from this work results from the first screening.
The cases of lung cancer found then will be interesting in themselves and will be worked
up thoroughly. The initial screening should also eliminate from further study patients who
for other reasons are considered to have an unusually short expectation of life. This, of
course, will be somewhat subjective, but decisions will be made as consistently as possible,

28“We decided to use a 4-month screening interval because previous studies suggested
that longer intervals were too long. We thought a 4-month interval would be acceptable to
our patients and achievable by our technical personnel.”
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in accord with written guidelines.

Sample size and time required : We have considered sample size in relation to comparison
of mortality from bronchogenic carcinoma in the two designated groups. Suppose we admit
N men into each group. After 5 years there will have occurred T1 and T2 man-years of
exposure in each group, and D1 and D2 deaths. If T1

∼= T2, as is likely, we merely must
determine whether the control deaths D1, exceed significantly the screened deaths D2. It
is reasonable to consider the D1 and D2 deaths as independent binomial trials.
Let p denote the probability that, given a death occurs, it occurs in the controls. Let
H0 be the hypothesis p = 1/2, and let H1 be the alternative of interest, p = 2/3. (This
corresponds to reducing the lung cancer death rate in the screened group to half that in the
controls.) We want the following two conditions to be met,

P(reject H0 in favor of H1|H0 true) = α = 0.05

P(reject H0 in favor of H1|H1 true) = β = 0.95.

We reject H0 in favor of H1 whenever

[ ( D1

D1 +D2
−

1

2

)/√1

4

1

D1 +D2

]
≥ 1.645.

The probability that this occurs under H0 is about 0.05. The probability under H1 is about
0.95 if D1 + D2 = 90.

Now the question is: how how many men must we examine for how long to get about
90 deaths from bronchogenic carcinoma? (The following information is in the nature of a
first attempt to estimate this quantity.) Suppose we wish to get an answer in 5 years, and
assume from published data and some educated guessing that 5 deaths per 1,000 man-years
will occur among the controls and 2.5 deaths per 1,000 man-years among the participants in
the close surveillance. We expect to have 60 deaths among the controls and 30 among the
participants if we observe 12,000 man-years in each. These estimates, based on averages,
do not take into account chance variation. If we wish to be 95% sure of obtaining 60 and
30 deaths, respectively, we need to observe 12,000 man-years in each group. We think we
can obtain such numbers from our present case load but not without difficulty. Initial plans
calling for a total of 6,000 men (3,000 in each group) may have to be modified and will be
as soon as deemed essential. We anticipate some losses; there may well be men who refuse
to continue under screening These are not to be entirely lost; their cases will be followed
anyway by mail. But it does dilute the difference between the qroups and makes the true
effects of screening more difficult to detect. The surveillance effort will have to be vigorous
and encouraging.

Will 5 years be long enough, even with the numbers of subjects proposed? Perhaps not;
but regardless of the early outcome and regardless of whether the actual screening goes on
beyond 5 years, these men should continue to be traced for at least a total of 10 years.
In our opinion, important information about survival following early treatment will require
more than 5 years’ study. This opinion is based on possible recurrence of the initial cancer,
as well as concern over development of an entirely new primary cancer, particularly in
individuals with squamous cell carcinoma.

— — —

Questions - for bios601 exercise

1. re-write the sentence “It is reasonable to consider the D1 and D2 deaths as independent
binomial trials.”

2. With D = 90 and (the null) p = 0.5, use the pbinom function to calculate dcritical1 ,
the smallest d1 such that Prob[D1 ≥ d1] < α. [see Note29]

3. (Staying with D = 90) use the non-null p = 2/3 in the pbinom function to calculate
Prob[D1 ≥ dcritical1 ] and check the value against the ‘about 95%’ [power] given by
Taylor and Fontana.

JH finds that rough diagrams are a big help in setting up power calculations like these.

4. Comment on their use of the letter β to denote this probability.

5. Taylor and Fontana did not have easy access to binomial calculations, so they used a
Normal approximation to the binomial. i.e,

(D1|D) ∼ N [ µ = D × p, Var = D × p× (1− p) ].

(Staying with D = 90) use this approximation to repeat the above calculations for
p = 1/2 and p = 2/3.

6. In the above H1 the alternative of interest, p = 2/3, corresponded to reducing the lung
cancer death rate in the screened group to half that in the controls, i.e. (using their
‘1’ to denote to denote the controls, and ‘2’ to denote the participants) to a situation
where λ2 = 0.5× λ1.
But what if this alternative is too optimistic? Consider four more modest scenarios:
H2 : λ2 = 0.6×λ1; H3 : λ2 = 0.7×λ1; H4 : λ2 = 0.8×λ1; and H5 : λ2 = 0.9×λ1, i.e.,
reductions of 40%, 30%, 20%, and 10% respectively. First, convert these 4 scenarios
to the corresponding 4 non-null values of p and (staying with D = 90), calculate
Prob[D1 ≥ dcritical1 ], i.e., the statistical power, for each of these.30

7. As you will have found, the power against H4 (a 20% reduction) is low when D is just
90. By trial and error, or directly, calculate the D one would need to have 80% power
(rather than their 95%) but against just a 20% reduction.

Convert this required D to a required number of man-years, using a mortality rate of
3 per 1,000 man-years in the controls.31

29Note the values of pbinom(3,4,.5) and pbinom(3,4,.5,lower.tail=FALSE)
30Use exact binomials, or normal approximations, as you wish.
31This rate of 3/1,000 MY was calculated ‘after-the-fact’ in 1986, after 115 lung cancer

deaths had been observed in 4,600 men followed for an average of just over 8 years. As you
will have seen above, the rate used for planning purposes was 5 per 1,000 man-years.
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AFTERMATH 1981, 1986, 2000 || CT screening: 2006, 2011

Some Results of Screening for Early Lung Cancer 

WILLIAM F. TAYLOR, PHD, ROBERT S. FONTANA, MD, MARY ANN UHLENHOPP, BA, AND CHARLES S. DAVIS, MS 

Screening for lung cancer is somewhat controversial in that very few evaluations of the screening 
process have been made, and even fewer have involved the use of concomitant, unscreened controls. 
This report of the Mayo Lung Project provides evaluation of a randomly selected 4500 clinic patients, 
offered screening for lung cancer at four-month intervals for six years. Another 4500 randomly selected 
controls not offered screening were merely observed. Good screening is defined, the Mayo project 
is evaluated, and puzzling results are presented and discussed. 

From the screened group, 98 new cases of lung cancer have been detected, 67 by study screening 
and 31 by spontaneous reporting of symptoms (15) or by x-ray examinations (16) done in other than 
study circumstances. From the controls, 64 new lung cancer cases have been detected, 43 by symptoms 
and 21 by other methods. Lung cancer mortality is 39 for study patients and 41 for controls. There 
is thus no evidence at this time that early case finding has decreased mortality from lung cancer. 

Cancer 47:1114-1120, 1981. 

N 19703 THE THORACIC DIVISION of the Mayo Clinic I recommended that patients thought to be at high risk 
of lung cancer do three things: 1) stop smoking, 2) each 
year have a chest roentgenogram, and 3) each year have 
a sputum cytology examination. Specifically, this rec- 
ommendation was directed to men over 45 who were 
heavy smokers. 

In 1970 this advice was believed to be the best avail- 
able medical wisdom, because the two tests were the 
only ones proved capable of detecting presymptomatic, 
potentially curable lung cancer. The recommendation 
was made with full realization that it was based on un- 
proven assumptions about either the possibility or the 
efficacy of detection of early stage lung cancer. It was 
strictly empiric and pragmatic. It remains so today, and 
the recommendation remains in effect today. 

Also in 1970, after many months of discussion, a 
group of Mayo investigators proposed to develop and 
evaluate a long-term lung cancer screening program 
for high-risk men.2’4 The proposal was accepted by 
the National Cancer Institute, and late in 1971 the Mayo 
Lung Project (MLP) began screening. 

This interim report reviews the status of the MLP 
at the end of 1979. It looks back at the 1970 proposal 

Presented at the American Cancer Society National Conference 
on Cancer Prevention and Detection, Chicago, Illinois, April 

From the Mayo Clinic and Mayo Foundation, Rochester, 

Supported by Research Contract CB-53886 from the National 

Address for reprints: Mayo Clinic. Rochester, MN 55905. 
Accepted for publication August 25, 1980. 

17-19, 1980. 

Minnesota. 

Institutes of Health. 

and asks whether the original objectives have been met. 
It also looks at the potential of lung cancer screening 
for reducing mortality in the future. 

Met hods 

The goal of the MLP has been to determine if lung 
cancer mortality could be significantly reduced in high- 
risk Mayo outpatients if chest roentgenograms and spu- 
tum tests were obtained often enough. Tests have been 
obtained every four months, which is more often than in 
any previous lung cancer screening program. The four- 
month interval was also about as often as even health- 
conscious Mayo patients would tolerate.2 Men in the 
comparison (control) group of the MLP were given the 
standard Mayo recommendation of annual chest roent- 
genography and sputum cytology. All patients in the 
MLP have been advised to stop smoking. 

The design of the MLP is as follows: Non-volunteer 
Mayo outpatients in the high-risk group of men over 45 
years of age who were chronic excessive cigarette smok- 
ers without known lung cancer received chest roent- 
genograms and cytology tests of three-day “pooled” 
collections of sputum. If either test proved positive 
for lung cancer on this initial screening, the patient 
became a “prevalence” case. (These prevalence cases 
are not studied here. Cases considered in this paper 
are “incidence” cases occurring after the result of the 
initial screening of the patient was found negative.) 

Those who had negative initial screens and who met 
certain other criteria for continued screening were sub- 
sequently studied in two randomized groups. In the 
study (or screened) group the patients were asked to 

0008-543X/81/0301/1114 $0.85 0 American Cancer Society 
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JH is puzzled by the sentence ‘Lung cancer mortality is 39 for study patients and
41 for controls.’ in the above summary. The 39 and 41 do not agree with the
numbers (42 and 50) given elsewhere in the text and in the various Figures.
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Figure 4B. Very few low stage small cell cancers were 
found. For reasons that are not apparent, some high 
stage small cell cases were found even earlier in con- 
trol patients than in screened ones, although this tended 
to even out as time went by. Five low stage cases were 
found by screening, only one in the controls. The im- 
pression is that screening by chest roentgenography 
and sputum cytology every four months does not pick 
up cases of small cell cancer earlier than those appear- 
ing among controls. Moreover, those cases detected by 
the screen are generally of high stage. 
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FIG. 5.  Cumulative number of Mayo Lung Project patients dying 
from lung cancer by time from entry into the study until death-con- 
trol and screened patients. A. All patients dying of lung cancer. B.  
Small cell patients. C. Large cell patients. D. Squamous patients. E. 
Adenocarcinoma patients. 

At the other end of the spectrum (Fig. 4C), five cases 
of squamous cancer were detected by screening before 
the first control case appeared. Squamous cancer showed 
a large excess of low stage cancers in the group screened 
every four months. These are the reasons for this. First, 
squamous cancer has the most favorable prognosis of 
any cell type of lung cancer. Second, the early favor- 
able roentgenographically negative, cytologically posi- 
tive “occult” lung cancer is almost always squamous. 
These facts explain part of the excess in Figure 1 .  In 
addition, there have been fewer high stage squamous 
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FIG. 7. Lung cancer death rates by time in study-control and 
screened patients. 

In Figures SB-SE, the various cell types of lung 
cancer are examined. Again, there were considerable 
differences. Small cell and large cell had one or two 
more lung cancer deaths in the screened group than in 
the control group, whereas among those with squamous 
and adenocarcinoma, there were quite a few more lung 
cancer deaths among the controls. 

The most pessimistic picture of the benefits of screen- 
ing appears when patients with small cell and large cell 
undifferentiated cancer are grouped together as in 
Figure 6A. Here, there is no evidence of any benefit 
from screening. The difference is three lung cancer 
deaths in the wrong direction-not favoring screening. 

We get the most optimistic picture when squamous 
and adenocarcinoma patients are combined, as in Figure 
6B. This Figure appears to show a strong benefit from 
screening. There were fewer deaths from lung cancer 
in the screened group compared with the controls. 
However, the difference between the two curves is 
not statistically significant. 

Discussion 

At this writing, lung cancer screening is not 
uniformly encouraging with respect to the reduction of 
mortality from lung cancer. However, there are some 
reasons for restrained optimism. First of all, at  the time 

of this report (December 3 1, 1979), there are 32 more 
cases of lung cancer in the screened group than among 
the controls, and almost all of the difference is due to an 
excess number of low stage cases in the screened group. 
Probably, there are several cases of lung cancer among 
the controls that have not yet been discovered. 
These cases may surface in the next few years. Some 
should have progressed to high stage cancer by then, 
and mortality should result. The potential for this is 
demonstrated in Figure 4A with the small but 
pertinent observed excess of high stage controls after 
about 60 months in the study. 

A second hopeful observation has to do with the 
actual lung cancer death rates for controls and 
screened patients, as shown in Figure 7. Attention is 
directed particularly to the rates for those patients who 
have been in the study four years or more. 
The death rate from lung cancer for the controls 
exceeds that of the screened group by a considerable 
amount, although this is not yet statistically significant 
either. However, this trend has been observed for the 
last three years, and the difference is growing. 

We believe that lung cancer screening appears 
promising for squamous cancers and for adeno- 
carcinomas but not for small or large cell un- 
differentiated tumors. Our recommendation now is to 
continue observation well into the follow-up phase 
(at least three to five more years). We suggest that no 
lung cancer screening projects be established for the 
general population of older male smokers at this time. 
But, we also suggest that we do not now know enough 
about this matter to make definitive statements. 
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[From Discussion] ‘A second hopeful observation has to do with the actual lung cancer
death rates for controls and screened patients, as shown in Figure 7. Attention is directed
particularly to the rates for those patients who have been in the study four years or more.
The death rate from lung cancer for the controls exceeds that of the screened group by a
considerable amount, although this is not yet statistically significant either. However, this
trend has been observed for the last three years, and the difference is growing.

We believe that lung cancer screening appears promising for squamous cancers and for
adeno-carcinomas but not for small or large cell un-differentiated tumors. Our recommen-
dation now is to continue observation well into the follow-up phase (at least three to five
more years). We suggest that no lung cancer screening projects be established for the gen-
eral population of older male smokers at this time. But, we also suggest that we do not
now know enough about this matter to make definitive statements.
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Lung Cancer Screening: The Mayo Program [1986]

Robert S. Fontana, MD; David R. Sanderson, MD; Lewis B. Woolner, MD; William F.
Taylor, PhD; W. Eugene Miller, MD; and John R. Muhm, MD

Journal of Occupational Medicine/Volume 28 No. 8/August 1986

(Summary) The National Cancer Institute has sponsored three randomized controlled trials
of screening for early lung cancer in large, high-risk populations to determine whether
(1) lung cancer detection can be improved by adding sputum cytological screening every
4 months to chest roentgenography done either yearly or every 4 months; and (2) lung
cancer mortality can be significantly reduced by this type of screening program, followed
by appropriate treatment. Results of the three trials suggest that (1) sputum cytology
alone detects 15% to 20% of lung cancers, almost all of which are squamous cancers with
a favorable prognosis; and (2) chest roentgenography may be a more effective test for
early-stage lung cancer than previous reports have suggested. Nevertheless, results of the
randomized trial conducted at the Mayo Clinic showed that offering both procedures to high-
risk outpatients every 4 months conferred no mortality advantage over standard medical
practice that included recommended annual testing.

(From results section) In the MLP randomized trial, the death rates from all causes (per
1,000 person-years) were high: 24.8% in the screened every 4 months and 24.6% in the
control group. The major competing death risk was ischemic cardiovascular disease.

There were 122 lung cancer deaths in the group screened every 4 months and 115 in the
control group. Seven deaths in the group screened every 4 months and six deaths in the
control group were attributed to surgery for lung cancer. These were treated as lung cancer
deaths.

The death rate from lung cancer was 3.2/1,000 person-years in the group screened every 4
months and 3.0 among the control subjects. Like the cumulative numbers of unresectable
cancers, the cumulative numbers of lung cancer deaths in the two groups were comparable,
both during and after the period of active screening.

Comments

The results of the MLP randomized controlled trial do not justify recommending large-scale
programs of radiological or cytological screening for lung cancer. Such programs are usually
initiated by those who conduct them and should benefit the participants by reducing lung
cancer mortality.’ The MLP trial did not demonstrate this sort of benefit.

Neither do the results of the MLP mean that testing high-risk patients for lung cancer by
chest x-ray film or sputum cytology is not useful, as some have claimed.’ All who partici-
pated in the MLP trial received an initial (prevalence) radiological and cytological screen-
ing. The randomized trial simply shows that offering the two procedures every 4 months
to high-risk Mayo outpatients who have had one negative screening confers no morality
[sic]32 advantage over routine Mayo Clinic practice with a recommendation of annual test-
ing. The randomized, controlled trials conducted at the Johns Hopkins Medical Institutions
and at the Memorial Sloan-Kettering Cancer Center offered all participants annual chest
roentgenograms. In addition, half of the men in each of these trials were randomly allocated
to a group offered sputum cytology every 4 months. Results from both trials indicate that
in the populations screened by x-ray film only, as well as in the populations screened by
x-ray film and cytology, the proportion of early-stage, resectable lung cancers and the lung
cancer survivorship have been substantially better than those observed in previously re-
ported lung cancer screening programs. However, like the MLP, no significant difference in

32https://en.wikipedia.org/wiki/Sic

lung cancer mortality has been observed between the two populations in either the Hopkins
or the Memorial trial.’

It should be emphasized that when the NCI randomized controlled trials commenced, it was
generally accepted that yearly chest roentgenograms would not reduce lung cancer mortality.
It was also believed that a large proportion of lung cancers would be detected cytologically,
and the trials were designed with this in mind. Yet in all three screening programs, the great
majority of lung cancers have been detected radiologically. Furthermore, sizable numbers
were detected by nonstudy chest x-ray films in the control group of the MLP and by annual
chest x-ray films in the control populations of the other two trials. It would be of interest
to know what might have happened in these cases if chest roentgenograms had not been
available to the control subjects.

The randomized controlled trial is ideal for assessing new procedures such as mammography,
or new application of procedures such as screening populations at high risk of lung cancer
by sputum cytology. Unfortunately, once a procedure has become an established part of
medical practice, as the chest roentgenogram has (more than 80 million are taken year in
the United States), it may become necessary to resort to other, less precise methods of
evaluation, such as case-control studies.

Summary

Three large, long-term randomized controlled trials of screening for early-stage lung cancer
by periodic chest x-ray film and sputum cytology have been conducted under the auspices
of the National Cancer Institute. Cytological screening alone has detected only a small
proportion of the lung cancers in these programs, although cytologically detected lung
cancers tend to have a very favorable prognosis. Modern chest roentgenography appears to
be a better method of detecting early-stage, resectable lung cancer than previous stud- ies
have indicated.

Everyone who participated in the Mayo Clinic randomized trial had a satisfactory and
negative initial (prevalence) radiological and cytological screening. The study group was
then offered re-screening every 4 months, while the control group was offered standard
medical care and advised to have annual chest radiography and sputum cytology.

The Mayo trial has shown significantly increased lung cancer detection, resectability, and
survivorship in the study group compared with that of the control groups. Yet the death
rates from lung cancer and from all causes have been almost identical in the two groups.

2000

Lung Cancer Mortality in the Mayo Lung Project: Impact of Extended Follow-up Pamela
M. Marcus, Erik J. Bergstralh, Richard M. Fagerstrom, David E. Williams, Robert Fontana,
William F. Taylor, Philip C. Prorok. [JNCI]

Background: The Mayo Lung Project (MLP) was a randomized, controlled clinical trial
of lung cancer screening that was conducted in 9211 male smokers between 1971 and 1983.
The intervention arm was offered chest x-ray and sputum cytology every 4 months for 6
years; the usual-care arm was advised at trial entry to receive the same tests annually.
No lung cancer mortality benefit was evident at the end of the study. We have extended
follow-up through 1996.

Methods: A National Death Index-PLUS search was used to assign vital status and date
and cause of death for 6523 participants with unknown information. The median survival for
lung cancer patients diagnosed before July 1, 1983, was calculated by use of Kaplan-Meier
estimates. Survival curves were compared with the log-rank test.

Results: The median follow- up time was 20.5 years. Lung cancer mortality was 4.4 (95%
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confidence interval [CI] = 3.9-4.9) deaths per 1000 person-years in the intervention arm
and 3.9 (95% CI = 3.5-4.4) in the usual-care arm (two-sided P for difference = .09). For
participants diagnosed with lung cancer before July 1, 1983, survival was better in the
intervention arm (two-sided P = .0039). The median survival for patients with resected
early-stage disease was 16.0 years in the intervention arm versus 5.0 years in the usual-care
arm.

Conclusions: Extended follow-up of MLP participants did not reveal a lung cancer mortal-
ity reduction for the intervention arm. Similar mortality but better survival for individuals
in the intervention arm indicates that some lesions with limited clinical relevance may have
been identified in the intervention arm. [J Natl Cancer Inst 2000;92:1308-16]

Mortality

Our NDI search and our matching algorithm identified 396
lung cancer deaths, bringing the lung cancer death totals to 337
among participants in the intervention arm (76 760.7 person-
years) and 303 among participants in the usual-care arm
(76 772.4 person-years) as of December 31, 1996 (Fig. 1; Table
2). The median follow-up time was 20.5 years. The lung cancer

mortality rate was 4.4 deaths per 1000 person-years (95% CI !
3.9–4.9) in the intervention arm and 3.9 deaths per 1000 person-
years (95% CI ! 3.5–4.4) in the usual-care arm; the two rates
were not statistically significantly different (P ! .09; 95% CI
for the observed 13% increase in lung cancer mortality in the
intervention arm: −5% to 30%). All-cause mortality and mor-
talities from other cancers, COPD, IHD, and respiratory ailments
other than COPD and lung cancer also did not differ by study
arm (Table 2).

The finding of similar lung cancer mortalities in both study
arms remained after adjustment for four established lung cancer
risk factors (age, smoking [measured as pack-years smoked],
exposure to non-tobacco lung carcinogens, and history of pul-
monary illness) (unadjusted hazard ratio [HR] ! 1.1 [95% CI !
1.0–1.3]; adjusted HR ! 1.1 [95% CI ! 1.0–1.3]). Further-
more, when assessed individually, neither age (HR ! 1.0 for
<55 years, HR ! 1.1 for 55–64 years, and HR ! 1.6 for !65
years), amount smoked (HRs ! 1.1 for <50 pack-years, 50–99
pack-years, and !100 pack-years), exposure to non-tobacco
lung carcinogens (HRs ! 1.1 for both never and ever), nor
history of other pulmonary illness (HR ! 1.2 for never and HR
! 1.0 for ever) acted as effect modifiers.

Of 933 participants noted in the Mayo Clinic registration
system to have died after July 1, 1983 (with no available cause
of death), our algorithm correctly identified 91%. Of these, 89%
had exact agreement on date of death and 98% had agreement
within 30 days.

Table 2. Mortality in the Mayo Lung Project, as of December 31, 1996

Cause of death*

Deaths, No. (%)
Mortality rate (95% confidence interval)

per 1000 person-years

Intervention arm
(n ! 4607)

Usual-care arm
(n ! 4585)

Intervention arm
(76 760.7 person-years)

Usual-care arm
(76 772.4 person-years)

Lung cancer 337 (7) 303 (7) 4.4 (3.9–4.9) 3.9 (3.5–4.4)

Causes other than lung cancer 2148 (47) 2133 (47) 28.0 (26.8–29.2) 27.8 (26.6–29.0)
Cancers other than lung cancer 403 (9) 391 (9) 5.3 (4.8–5.8) 5.1 (4.6–5.6)
Chronic obstructive pulmonary disease 156 (3) 149 (3) 2.0 (1.7–2.4) 1.9 (1.6–2.3)
Ischemic heart disease 816 (18) 816 (18) 10.6 (9.9–11.4) 10.6 (9.9–11.4)
Other respiratory causes 60 (1) 44 (1) 0.8 (0.6–1.0) 0.6 (0.4–0.8)
Other 712 (15) 733 (16) 9.3 (8.6–10.0) 9.5 (8.9–10.3)

All causes 2493 (54) 2445 (53) 32.5 (31.2–33.8) 31.8 (30.6–33.1)

*Seventeen participants (eight in the intervention arm and nine in the usual-care arm) had unknown causes of death.

Fig. 1. Cumulative lung cancer deaths by
study arm. Sample size was 4607 in the in-
tervention arm (solid line) and 4585 in the
usual-care arm (dashed line). Numbers in
parentheses are the numbers of lung cancer
deaths as of December 31, 1996. The Na-
tional Death Index was used, as described in
the text, to follow-up Mayo Lung Project
participants for whom vital status on Decem-
ber 31, 1996, was unknown.

Table 1. Assignment of vital status for Mayo Lung Project participants

Intervention
arm,

No. (%)

Usual-care
arm,

No. (%)
Total,

No. (%)

Total participants 4618 4593 9211
Vital status already known

Dead as of around July 1,
1983

994 (22) 983 (21) 1977 (21)

Alive on December 31,
1996

372 (8) 320 (7) 692 (8)

Records sent to National
Death Index

Returned with no match* 796 (17) 794 (17) 1590 (17)
Returned, false match* 946 (20) 1026 (22) 1972 (21)
Returned, true match† 1499 (32) 1462 (32) 2961 (32)

Refusals 11 (0) 8 (0) 19 (0)

Total participants,
without refusals

4607 4585 9192

*Assumed to be alive.
†Assumed to be dead.
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LOW-DOSE CT SCREENING
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Survival of Patients with Stage I Lung Cancer 
Detected on CT Screening
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Background
The outcome among patients with clinical stage I cancer that is detected on annual 
screening using spiral computed tomography (CT) is unknown.

Methods
In a large collaborative study, we screened 31,567 asymptomatic persons at risk for 
lung cancer using low-dose CT from 1993 through 2005, and from 1994 through 
2005, 27,456 repeated screenings were performed 7 to 18 months after the previ-
ous screening. We estimated the 10-year lung-cancer–specific survival rate among 
participants with clinical stage I lung cancer that was detected on CT screening and 
diagnosed by biopsy, regardless of the type of treatment received, and among those 
who underwent surgical resection of clinical stage I cancer within 1 month. A pathol-
ogy panel reviewed the surgical specimens obtained from participants who under-
went resection.

Results
Screening resulted in a diagnosis of lung cancer in 484 participants. Of these par-
ticipants, 412 (85%) had clinical stage I lung cancer, and the estimated 10-year sur-
vival rate was 88% in this subgroup (95% confidence interval [CI], 84 to 91). Among 
the 302 participants with clinical stage I cancer who underwent surgical resection 
within 1 month after diagnosis, the survival rate was 92% (95% CI, 88 to 95). The 
8 participants with clinical stage I cancer who did not receive treatment died within 
5 years after diagnosis.

Conclusions
Annual spiral CT screening can detect lung cancer that is curable.

Copyright © 2006 Massachusetts Medical Society. All rights reserved. 
Downloaded from www.nejm.org at MCGILL UNIVERSITY HEALTH SCIENCES LIB on October 27, 2006 . 
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stage I cancer, the distribution according to the 
type of cell is shown in Table 3. The median tu-
mor diameter was 13 mm at baseline and 9 mm 
on annual CT. The pathology-review panel con-
firmed the diagnosis of clinical stage I cancer in 
the specimens obtained from the 375 participants 

who underwent resection according to World 
Health Organization criteria of 2004.16 With re-
gard to spread or invasion (Table 4), the panel 
identified lymph-node metastases (hilar or ipsi-
lateral mediastinal) in 28 participants (7%) and 
more than one cancer, either in the same or in 
different lobes, in another 35 (9%). Among the re-
maining participants, each with a solitary cancer, 
the panel identified invasion of the pleura in 62 
(17%); bronchial, vascular, or lymphatic invasion 
or a combination in another 28 (7%); invasion of 
the basement membrane alone in 203 (54%), and 
no invasion in the remaining 19 (5%). (Because of 
rounding, percentages may not total 100.) Thus, 
of the 375 participants who underwent resection, 
347 had pathological stage I cancer, and their es-
timated 10-year survival rate was 94% (95% CI, 
91 to 97).

Discussion

In making decisions about instituting CT screen-
ing for lung cancer, a major consideration is the 
outcome of treating a cancer detected on screen-
ing. In our study, the estimated 10-year lung-can-
cer–specific survival rate among the 484 partici-
pants with disease diagnosed on CT, regardless 
of the stage at diagnosis or type of treatment (in-
cluding no treatment), was 80% (95% CI, 74 to 85) 
(Fig. 2). Among the 412 participants with clini-
cal stage I lung cancer — the only stage at which 
cure by surgery is highly likely — the estimated 
10-year survival rate was 88% (95% CI, 84 to 91), 
and among those with clinical stage I lung cancer 
who underwent surgical resection within 1 month 
after the diagnosis, the rate was 92% (95% CI, 88 
to 95). The diagnosis of lung cancer of one type 
or another was verified by a panel of five expert 
pulmonary pathologists. In our series, the opera-
tive mortality rate was low — 0.5% — and was less 
than the 1.0% reported with lobectomy in a large 
cooperative study.17

Sobue et al.18 reported a 5-year survival rate of 
100% in their series of 29 patients who underwent 
resection after pathological stage I cancer was 
detected on CT. Before CT screening, reports based 
on registries showed 10-year survival rates of 80% 
among 17 patients with pathological stage I lung 
cancer 20 mm or less in diameter19 and 93% among 
35 patients with pathological stage I cancer less 
than 10 mm in diameter.20 The National Cancer 
Institute’s Surveillance, Epidemiology, and End 

Table 3. Types of Cancer among 412 Participants with Clinical Stage I Lung 
Cancer Detected on Baseline or Annual CT Screening.

Type of Cancer

Diagnosed on Baseline 
Screening
(N = 348)

Diagnosed on 
Annual Screening

(N = 64)

no. of participants

Adenocarcinoma

Bronchioloalveolar subtype 20 1

Other subtypes 243 30

Squamous cell 45 14

Adenosquamous 3 0

Non–small-cell* 5 2

Neuroendocrine

Atypical carcinoid 2 1

Large cell 15 8

Small cell 9 7

Other 6 1

* If this cell type cannot be differentiated, the category is known as “not other-
wise specified.”
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Figure 2. Kaplan–Meier Survival Curves for 484 Participants with Lung 
Cancer and 302 Participants with Clinical Stage I Cancer Resected 
within 1 Month after Diagnosis.

The diagnoses were made on the basis of CT screening at baseline com-
bined with cycles of annual CT.

Copyright © 2006 Massachusetts Medical Society. All rights reserved. 
Downloaded from www.nejm.org at MCGILL UNIVERSITY HEALTH SCIENCES LIB on October 27, 2006 . 

The National Lung Screening Trial:

Overview and Study Design [Gatsonis et al. Radiology: Volume 258: Number 1, January
2011]

The National Lung Screening Trial (NLST) is a randomized multicenter study comparing
low-dose helical computed tomography (CT) with chest radiography in the screening of older
current and former heavy smokers for early detection of lung cancer, which is the leading
cause of cancer-related death in the United States. Five-year survival rates approach 70%
with surgical resection of stage IA disease; however, more than 75% of individuals have
incurable locally advanced or metastatic disease, the latter having a 5-year survival of less
than 5%. It is plausible that treatment should be more effective and the likelihood of death
decreased if asymptomatic lung cancer is detected through screening early enough in its
preclinical phase. For these reasons, there is intense interest and intuitive appeal
in lung cancer screening with low-dose CT. The use of survival as the determinant
of screening effectiveness is, however, confounded by the well-described biases of lead time,
length, and overdiagnosis. Despite previous attempts, no test has been shown to reduce lung
cancer mortality, an endpoint that circumvents screening biases and provides a definitive
measure of benefit when assessed in a randomized controlled trial that enables comparison
of mortality rates between screened individuals and a control group that does not undergo
the screening intervention of interest. The NLST is such a trial. The rationale for and
design of the NLST are presented.

Sample Size Considerations

Preliminary computations of the required sample size for the NLST were made by using
the approach of Taylor and Fontana, which is based on several simplifying assumptions
and does not account for the number of screenings. The final computations were based on
an elaboration of the approach of Hu and Zelen, modified to allow for staggered entry of
participants and analyses based on calendar time instead of time on study. Parameters for
the Hu-Zelen model are listed in Appendix E8 (online) and were estimated by using data
from the Mayo Lung Project. With 25 000 participants enrolled in each of years 1
and 2 of the trial, [i.e., 25,000 per arm, enrolled over 2 years] statistical power of
90% for detecting a 21% reduction in lung cancer mortality in the low-dose CT
arm relative to the chest radiographic arm may be achieved in an analysis conducted
on events occurring through August 2008. Because of lags in data availability and entry,
such an analysis would not occur until 2010. Therefore, we continued to collect information
on lung cancer cases and deaths occurring through December 2009 so that information
would not have to be obtained retroactively if needed.
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A BS TR AC T

Background
The aggressive and heterogeneous nature of lung cancer has thwarted efforts to 
reduce mortality from this cancer through the use of screening. The advent of low-
dose helical computed tomography (CT) altered the landscape of lung-cancer screen-
ing, with studies indicating that low-dose CT detects many tumors at early stages. 
The National Lung Screening Trial (NLST) was conducted to determine whether 
screening with low-dose CT could reduce mortality from lung cancer.

Methods
From August 2002 through April 2004, we enrolled 53,454 persons at high risk for 
lung cancer at 33 U.S. medical centers. Participants were randomly assigned to un-
dergo three annual screenings with either low-dose CT (26,722 participants) or sin-
gle-view posteroanterior chest radiography (26,732). Data were collected on cases of 
lung cancer and deaths from lung cancer that occurred through December 31, 2009.

Results
The rate of adherence to screening was more than 90%. The rate of positive screen-
ing tests was 24.2% with low-dose CT and 6.9% with radiography over all three 
rounds. A total of 96.4% of the positive screening results in the low-dose CT group 
and 94.5% in the radiography group were false positive results. The incidence of 
lung cancer was 645 cases per 100,000 person-years (1060 cancers) in the low-dose 
CT group, as compared with 572 cases per 100,000 person-years (941 cancers) in 
the radiography group (rate ratio, 1.13; 95% confidence interval [CI], 1.03 to 1.23). 
There were 247 deaths from lung cancer per 100,000 person-years in the low-dose 
CT group and 309 deaths per 100,000 person-years in the radiography group, 
representing a relative reduction in mortality from lung cancer with low-dose CT 
screening of 20.0% (95% CI, 6.8 to 26.7; P = 0.004). The rate of death from any cause 
was reduced in the low-dose CT group, as compared with the radiography group, 
by 6.7% (95% CI, 1.2 to 13.6; P = 0.02).

Conclusions
Screening with the use of low-dose CT reduces mortality from lung cancer. (Funded 
by the National Cancer Institute; National Lung Screening Trial ClinicalTrials.gov 
number, NCT00047385.)

The New England Journal of Medicine 
Downloaded from nejm.org on June 29, 2011. For personal use only. No other uses without permission. 
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lung cancer. The decrease in the rate of death from 
any cause with the use of low-dose CT screening 
suggests that such screening is not, on the whole, 
deleterious.

A high rate of adherence to the screening, low 
rates of lung-cancer screening outside the NLST, 
and thorough ascertainment of lung cancers and 
deaths contributed to the success of the NLST. 
Moreover, because there was no mandated diag-
nostic evaluation algorithm, the follow-up of posi-
tive screening tests reflected the practice patterns 
at the participating medical centers. A multidis-
ciplinary team ensured that all aspects of the 
NLST were conducted rigorously.

There are several limitations of the NLST. First, 
as is possible in any clinical study, the findings 
may be affected by the “healthy-volunteer” effect, 
which can bias results such that they are more 
favorable than those that will be observed when 
the intervention is implemented in the commu-
nity.24 The role of this bias in our results cannot 
be ascertained at this time. Second, the scanners 
that are currently used are technologically more 
advanced than those that were used in the trial. 
This difference may mean that screening with 
today’s scanners will result in a larger reduction 
in the rate of death from lung cancer than was 
observed in the NLST; however, the ability to de-
tect more abnormalities may result only in higher 
rates of false positive results.25 Third, the NLST 
was conducted at a variety of medical institutions, 
many of which are recognized for their expertise 
in radiology and in the diagnosis and treatment 
of cancer. It is possible that community facilities 
will be less prepared to undertake screening pro-
grams and the medical care that must be asso-
ciated with them. For example, one of the most 
important factors determining the success of 
screening will be the mortality associated with 
surgical resection, which was much lower in the 
NLST than has been reported previously in the 
general U.S. population (1% vs. 4%).26 Finally, the 
reduction in the rate of death from lung cancer 
associated with an ongoing low-dose CT screen-
ing program was not estimated in the NLST and 
may be larger than the 20% reduction observed 
with only three rounds of screening.

Radiographic screening rather than community 
care (care that a participant usually receives) was 
chosen as the comparator in the NLST because 
radiographic screening, as compared with com-
munity care, was being evaluated in the PLCO 

trial at the time the NLST was designed.11 The 
designers of the NLST reasoned that if the PLCO 
trial were to show a reduction in lung-cancer mor-
tality with radiographic screening, a trial of low-
dose CT screening in which a community-care 
group was the control would be of less value, 
since the standard of care would have become 
screening with chest radiography. Nevertheless, 
the choice of radiography precludes a direct com-
parison of low-dose CT with community care. 
Analysis of the subgroup of PLCO participants 
who met the NLST criteria for age and smoking 
history indicated that radiography, as compared 
with community care, does not reduce mortality 
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Figure 1. Cumulative Numbers of Lung Cancers and of Deaths from Lung 
Cancer.

The number of lung cancers (Panel A) includes lung cancers that were di-
agnosed from the date of randomization through December 31, 2009. The 
number of deaths from lung cancer (Panel B) includes deaths that occurred 
from the date of randomization through January 15, 2009.

The New England Journal of Medicine 
Downloaded from nejm.org on June 29, 2011. For personal use only. No other uses without permission. 
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0.16 Telephone calls; stars in the sky (bios700, 2020)

1. The Poisson distribution says that if, for example, during a given time the average
number of calls is µ, then the probability (Py) of y telephone calls being originated is
e−µµy/y! One way to derive this law is via a statistical equilibrium argument33 which
leads to the recurrence relation Py = Py−1 × µ

y
.

Describe the remaining steps in the proof.

2. Mention one other way to derive the distribution, and the main steps involved.

3. An early application of this distribution involved an argument about whether the stars
are scattered at random over the heavens, which Newcomb divided into 41,253 spaces
of 1 square degree each. He supposed that there were approximately 1500 stars of the
fifth and higher brightness level spread at random over these entire 41,253 square de-
grees of heavens; thus 1500/41,253 = 0.03636 stars per square. The arguments focused
on the six brightest stars in the Pleiades (a cluster of stars), and so he calculated the
probability that any square degree selected at random contains six stars.

(a) Write down the expression for this probability.

(b) He went on to calculate the probability that some one of the 41,253 square
degrees would contain six stars. [The original, written in 1860, had these exact
words, and had them in italics; today he might have simply referred to the
probability that one of the 41,253 square degrees would ... ]. Write down an
expression for this, along with an approximation.

(c) Explain to a ‘p-hacker’ why Newcomb’s distinction between any square degree

::::::
selected

::
at

::::::
random and

::::
some

:::
one

::
of the 41,253 square degrees is important.

(d) With today’s computing power, one could go further, and try to find six stars
so near together that ‘a square degree could be fitted on so as to include them.’
How does the probability of such a finding compare with those in (a) and (b)?
How might you set about computing it?

4. Although it is an over-simplification, suppose that a business firm has certain busy
days every week corresponding to a mean value µ1, and certain less busy days corre-
sponding to a mean value µ2. Let the busy portion of the week be π1, and the less
busy portion π2 = 1 − π. Suppose you wish to express the variations in the number
of calls from day to day in terms of one single law of distribution, with a mean value
and a variance. Write down expressions for these. [Example is from Erlang ]

5. Suppose you wanted an infinite mix of µ’s. What mixing distribution might you
suggest, and why?

6. List 2 way to fit the parameters of your model from the previous question.

0.17 Vacancy rate in US Supreme Court

Refer to Updating a Classic: ‘The Poisson Distribution and the Supreme Court’ Revisited

1. Update Table 1 and calculate an updated vacancy rate (expressed as vacancies per
year) for the period 1933-2020.

2. Based only on your updated point-estimate of the rate [i.e. without using any infor-
mation on the health of the current court], what is the probability that the next US
president (the one who takes office in 2021) will be able to appoint 0, 1, 2 ... new
judges if (s)he stays in office for (a) four (b) 8 years?

33See Erlang’s derivation in section 3.4 of the history article.

0.18 Mortality rates in the o l d e s t old

Refer to the ‘cool Lexis diagram’ one of our graduates (now teaching at Berkeley) sent to
JH.

1. Merging all ages and both sexes, calculate the overall incidence density (deaths per
person year)

2. Ignoring the sexes, calculate age-band-specific incidence densities: use the age-bands
105-110, 110-115, and 115- .

3. Fit the incidence density (λ) as the following 2-parameter function of calendar time

λ[date] = λ[1955]× exp[β(date− 1955)].

4. Refine the model so that it includes age (and sex?).

0.19 Where Flying Bombs landed in London in 1944

The classic textbook An introduction to probability theory and its applications by Feller
included the data from this 1946 article. The ‘randomness’ became a statistical legend and
the story was included [along with Deaths from Horsekicks and the rate of audience fidget] in
the examples (mainly from Feller’s book) of Observations fitting the Poisson Distribution
in JH’s courses. It was finally debunked in 2018 and 2019. See the note from the
Editor of Significance Magazine and the full Significance article, along with an even
bigger-picture analysis by Canadian authors in 2018.

1. Write a short paragraph that updates the entry in Feller.34

2. Suggest how, if you had easier access to the counts in the 1km grid squares in Figure
5 of the 2018 article, you might model them – especially if you want to follow up on
the ‘revised target’ hypothesis put forward in the 2018 and 2019 articles.

0.20 Re-analysis of data in Student 1907, and in Ruther-
ford, Geiger and Bateman 1910

1. Repeat the calculation of the 2 moments and the GoF statistic for Student’s counts
from concentration IV (full spatial data in Table I).

2. Do likewise for the counts from concentration III. Note that (unlike those from
IV) they show a slight extra-Poisson variation. Suggest a model that allows
for extra-Poisson variation [Hint: see the ’infinitely compound’ model adopted in
Greenwood & Yule’s 1920 article, section IV], and how you might fit it.

3. How many degrees of freedom did his reference χ2 distribution have? In light of
the work of Greenwood and Yule 1915, pp 117-119; Yule, 1922; and Fisher, 1922 how
many should it have? [Pearson’s 1900 paper, with may interesting worked examples,
can be found here.]

4. Repeat the calculation of the 2 moments and calculate the GoF statistic for the counts
in the ‘Sum’ row of Rutherford and Geiger’s table (p 701). See Snow1911. Again, be
careful with the number of degrees of freedom.

34If you would like to see the original, you can get temporary access via the McGill
Library. The entry starts at page 160 in the 3rd Edition.
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http://www.medicine.mcgill.ca/epidemiology/hanley/Rutherford/RutherfordGeigerBateman1910gof.pdf
https://catalog.hathitrust.org/api/volumes/oclc/555740.html?


Course BIOS601: intensity rates:- models / inference / planning v. 2022.10.01

5. Summarize Bateman’s and Erlang’s (time-based) derivations of the Poisson distribu-
tion. Which ‘time-based’ argument do your prefer, Bateman’s or [recounted in the
draft ms.] Erlang’s? Why?

0.21 Marsden and Barratt – see JH’s ‘Rutherford’ web-
site

These two physicists are (possibly) the first to point out the important statistical link
between what you observe in the ‘count’ scale and the ‘time between events’ scale. It is the
same one that we encountered in our more modern ‘ruptured tires’ example.

1. Summarize their argument as to why they thought using the (continuous) time be-
tween events scale provides a more stringent test of randomness than the count scale.

2. Instead of their data, collect and analyze your own (bin-count and ‘time between
events’) data from the 2020 re-enactment of minute 1 [the frame-numbers can be
regarded as from an ‘effectively continuous’ time-scale]. Naturally, you won’t be able
to say a lot from the 8 counts in the 7.5 sec. bins, but maybe there will more of a
definite pattern to the distribution of the lengths of the (more numerous) inter-event
intervals.

3. If Rutherford and Geiger had counted into 1-minute rather than 1/8 of a minute bins,
would they have learned a lot about the frequency law that governs the 1/8 of a minute
bins? Why/why not?

0.22 Underdispersion: A statistical anomaly in reported
Covid data

1. In your own words, summarize the article by Dmitry Kobak in Significance in April
2022.

2. From the list in the ‘Does the Poisson Distribution apply to. . . ?’ in section 1.1 of the
Notes, can you identity any context where there might be under -dispersion? Add one
of your own.
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