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Being approximately
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precisely wrong

PREFACE

Few general statistics textbooks1 deal with the topic of measurement error.
However, it an important topic. Measurement error is present in all scientific
work; while it can sometimes be lessened with careful planning and extra
effort, it cannot be completely avoided. It some contexts it just adds noise and
makes signals harder to detect. But in others, its effects are both more subtle
and more serious: it systematically shifts the parameter estimates produced
by models.

Its effects become more complicated and unpredictable in larger statistical
models with two or more measured-with-error variables. We will restrict at-
tention here to simple comparative situations involving one X and one Y. We
will focus on the ‘classical error model ’ where the errors in the measurements
are uncorrelated with the true values being measured. We briefly mention the
‘Berkson error model,’ where the errors in the measurement are uncorrelated
with the error-containing measurement – and thus correlated with the true
value being measured.

More complicated cases (for example, human under-/over-reporting of values)
require some knowledge of the subject matter area to know when such are
likely to be present.

In the following home-grown material, JH will rely in part on notes he pre-

1Examples of specialized textbooks focusing just on measurement error are Measurement
error in nonlinear models by Carroll, Ruppert, and Stefanski 1998 and the 2006 Measure-
ment error in nonlinear models : a modern perspective. by Carroll, the 1987 Measurement
error models by Fuller, the 2004 Measurement error and misclassification in statistics and
epidemiology : impacts and Bayesian adjustments by Gustafson. See also the excellent
Chapter 1 ‘Reliability of Measurent ’ in the (older) book The design and analysis of
clinical experiments by Fleiss. These, and others, are available from the McGill Library.
A Google search will bring up more, as well as a large number of journal articles and other
literature on this now-more-widely-studied topic.

pared when teaching measurement concepts/principles to graduate students
in the physical and occupational therapy sciences. There, since the quali-
ties/quantities being ’measured’ were often psychophysical rather than
physical, he drew on the very long history of ‘psychometrics’ in the psy-
chology and education literature. This was a learning experience for him,
since, up until then, he had mainly been concerned with the physical quanti-
ties measured in medical research.2 He was greatly helped by reading parts of
the textbook Psychometric Theory by Nunnally, and found that Nunnally’s
examples of constructing (and measuring something by) exams were concrete
and understandable illustrations of the concepts and principles. For those in-
terested, his 1975 ‘lookback’ is a very nice introduction to the subject. There
he tells us that

Since Spearman wrote on the topic in 1904, the theory of measurement
:::::::
reliability, or

the
::::::
converse of that, the theory of measurement

::::
error, has been a special interest of

psychologists. I have always thought that this was partly out of necessity and partly
because reliability theory is so neatly mathematized. In his 1904 article. Spearman
developed most of the basic statistics pertaining to reliability that are still with us,
including corrections for attenuation, the standard error of measurement, the correc-
tion of the split-half reliability coefficient for test length, and other statistics that are
identified with test reliability. This deductive model, and the attendant mathematical
developments, stood as a comprehensive theory of reliability for over 30 years.

QUANTIFYING THE QUALITY OF A MEASURING INSTRUMENT

Not surprisingly, much of our terminology comes from psychology, where mea-
surements are seldom in centimetres, or kilogram. For the latter we have es-
tablished standards established/regulated by various governmental agencies,
such as those in the US, Canada , the EU and the UK

There are two aspects, Reliability (‘reproducibility’ / ‘precision’, the degree
to which measurements of the same (unchanged) object would stay the same,
and thus the relative positions of different objects would remain unchanged,
if the measurement were repeated) and Validity (the extent to which the
measurements measure what they are intended to measure).

But which to consider first?

When asked which they would study first, most students jump im-
mediately to validity. Thus, in the following case, described in a
Dr Fowler’s 1982 letter to the Editor of JAMA they want to know how the
predictions turned out.

2JH was aware of measurement errors when as part of his PhD work, he made low-tech
exhaled-breath measurements of the carbon monoxide in the blood of cigarette smokers,
and used the amounts of various substances found in their cigarette butts to estimate their
mouth-level exposure to nicotine. But he did nothing about it. Later, when he began
working in clinical trials in oncology, he got a rude awakening. Fortunately, this time, after
seeing just how much measurement error there was, and heeding the warning in the report,
the Eastern Cooperative Oncology Group changed their cutoff for a partial response from
a 25% to a 50% reduction in the cross-section area of the measured tumour.

1

http://www.biostat.mcgill.ca/hanley/bios601/Surveys/NunnallyLookback1975.pdf
https://en.wikipedia.org/wiki/Charles_Spearman
http://www.biostat.mcgill.ca/hanley/bios601/Surveys/Spearman1904.pdf
https://www.nist.gov
https://www.tpsgc-pwgsc.gc.ca/ongc-cgsb/index-eng.html
https://en.wikipedia.org/wiki/Institute_for_Reference_Materials_and_Measurements
https://en.wikipedia.org/wiki/Weights_and_Measures_Acts_(UK)
http://www.biostat.mcgill.ca/hanley/bios601/Surveys/DranoTest.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/Reprints/Effect_of_Measuring_1976.pdf
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The “Drano Test”: [ Drano is a gel, sold by Johnson and Johnson, “for-

mulated thick enough to easily pour through water straight to the clog[ged

drain], dissolving it fast.” ]
During the past several years, we have been asked frequently to do

:::
the

:::::::
“Drano

::::
test”

:::
to

:::::::::
determine

:::
the

:::
sex

::
of

:::
an

:::::::
unborn

::::
baby. It has been

published in the lay press that this is a reliable means of sex deter-
mination. A Medline search failed to reveal anything in the medical
literature concerning the Drano test. As a result, we performed the
test in 100 consecutive pregnant women, checking monthly during
the last trimester. The test was done by adding a small amount
of crystal Drano to approximately 2 mL of urine, agitating, and in-
terpreting results in one minute’s time. Reportedly, the color green
indicates a male baby, and yellow to amber indicates a female.

But Dr Fowler knew that consistency 3 i.e. repeatability, is a prerequisite
for accuracy (validity)

Of the 100 patients, 21 failed to have the same color change
consistently.

Of the babies born to these 21, eleven were girls and ten were boys.
Of the remaining 79, we were right in sex determination of 37; of
these, there were 20 girls and 17 boys. We were wrong in 42 predic-
tions; of these, there were 22 girls and 20 boys.

P r e d i c t i o n
Inconsistent Girl Boy TOTAL

GIRL 11 20 22 53
“TRUTH”

BOY 10 20 17 47
21 40 39 100

From this brief study, it would appear that the Drano test for ante-
natal sex determination is roughly equivalent to flipping a coin.

JH has also watched technicians test a photocopying machine. They first test
was to see if the machine gave the same copy of a single object. The next
was how faithful it was to the original.

⇒ So we will start with reliability .

3Not to be confused with its meaning in mathematical statistics, when at issue is the
behaviour of statistical estimators.

Roadmap for the remainder of these Notes

The notes on pages 3-19 are from lectures JH gave in a course on measurement
for the rehabilitation sciences.

• Pages 3-7: since few of these students had had experience with ANoVA’s
(widely used to estimate reliability coefficients) the lectures began with
a general introduction to these, showing how the ANoVA table –
usually used for F tests - can also be used to estimate variance
components. This use of them (and the Method of Moments) may be
new to you too.

• Page 8 is a nice introduction to reliability and validity: the ideas
are general, not confined to examinations, but to any measurement
method/instrument.

Note the two reliability measures:

– a standard deviation (SD) measured in the same scale (scores, cm,
Kg, ... ) that the instrument uses, [

::::::
smaller

::
is

::::::
better]

– a (more abstract) fraction of overall variance. Psychometricians
prefer the latter because – unlike in physical measurement –
their scales are arbitrary and the object being measured is not a
phenomenon, but more a noumenon (abstract). [

:::::
bigger

::
is
::::::
better]

These are the
:::::::::
‘converses’ that Spearman mentioned

• Pages 9-17 use ANoVA tables to estimate the variance components
used as inputs to the reliability coefficients (Intra-Class Correlations,
p.10).

• Pages 18-19 are ways to assess validity. [NB the different ways terms like
accuracy, reliability, validity are used in statistics, and outside statistics].

• Pages 20-22: the Effects of Measurement Error & role of the ICC.

• Pages 22-23: Berkson Error

A passing comment: If JH had his way, we would be using the term re-
producibility rather than reliability. One possible problem with the word
‘reliable’ is that it has many meanings in everyday English. What does one
mean by a ’reliable’ friend, or car, or clock, or watch? (and if you look up
the history of the word, it was not without controversy grammar-wise). To
JH at least, the word reproducible is less ambiguous. There is also the joke
about a stopped clock: it is correct 2 times a day! Does that make its result
reproducible? reliable? ? ?

2
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RELIABILITY (Reproducibility, Precision): The extent to which one obtains
the same (or very similar) answers/values/scores if an object/subject is measured
repeatedly under similar situations

Some ways to quantify Reliability
• For one subject (s) or object:

– average variation of individual measurements around their mean... either
the square root of the average of squared deviations, i.e. standard devia-
tion (SD); or the average absolute deviation, which will usually be quite
close to the SD. Could also use range or other measures such as Inter
Quartile Range.

–
::
SD

::
of
:::
the

::::::::::::
measurements

:::
as

:
a
:::::::::
percentage

::
of

:::
the

:::::
mean

::
of

:::
the

::::::::::::
measurements

... the [within-subject]
::::::::
Coefficient

::
of
:::::::::
Variation

::::
(CV).

• For several subjects (ss.) or objects:

– average the CV’s calculated for the different subjects; if CV’s are highly
variable, may want to give some sense of this using the range or other
measure of spread of the CV’s. In biochemical determinations, CV may
differ at different concentrations.

– The (within-ss) CV gives no sense of how well the measurements of differ-
ent subjects (ss) segregate from each other. We might compare the SD of
the within-ss measurements with the SD of the between-ss measurements,
but, as we will see below,

:
it
::::::
makes

:::::
more

::::
sense

:::
to

::::
focus

:::
on

::::::::
variances.

– Can we use correlation (Pearson or Spearman) if we have 2 assessments
of each ss.? What if we have a triplets of measurements for each subject?
(cf. study of otitis media in twins and triplets)

– Using correlation between scores on random halves of a test, can estimate
how ‘reproducible’ the full test is (helpful if cannot repeat the test)

• If the object is a population (.e.g., the percentage of smokers, or showing
immunity, among

::::::::
Canadian

:::::
adults) and if it is measured (estimated) using a

statistic: e.g. the proportion in a random sample of 1000 adults, it is possi-
ble from statistical laws concerning averages to quantify the reliability of the
statistic without having to actually perform repeated measurements (samples).
For simple random sampling, the formula

SE[mean] =
SD[individuals]

number of individuals measured

allows us to quantify the reliability indirectly. If we didn’t know this formula,
we could also arrive at an answer by various re-sampling methods applied to
the individuals in the sample at hand – again without resorting to observing
any additional individuals.

• When the scale is arbitrary , it is common to use a function of the (theoret-
ical) Variance of the Within-ss measurements and the Variance of theBetween-
ss values. Classically, these Components of Variance were estimated using
Analysis of Variance (ANoVA). We will also use a Bayerian approach.

First, a General Orientation to Anova and its primary/classical use:
testing differences between µ’s of k ( 2 ) different groups. 4

E.g. 1-way ANOVA:

Int roduct ion t o Measurement  St at ist ics   2

First, a General Orientation to ANOVA and its primary use, namely
testing differences between µ's of k  ( 2 ) different groups.

DE-COMPOSITION OF OBSERVED (EMPIRICAL) VARIATION

∑∑(y–ij  – y–)2  =  ∑∑(y–i – y–)2     +  ∑∑(y–ij  – y–i)2

TOTAL Sum = BETWEEN Groups + WITHIN Group
of Squares Sum of Squares  Sum of Squares

E.g. 1-way ANOVA:

DATA:

Group ANOVA TABLE1            2            .             i             .             k
       Subject Sum of   Degrees  Mean   F P-Value

Squares of Freedom Square Ratio1 y11 . . . . .
2
. . . . . . .

SOURCE SS       df MS
MSBETWEEN

MSWITHIN
Prob(>F)j yij

. . . . . . .  (= SS /df)

BETWEEN xx.x      k–1 xx.x x.xx 0.xx 
WITHIN xx.x    k(n–1) xx.x

n ykn

Mean y–1 y–2 y–i y–k

Variance s21 s22 s2k LOGIC FOR F-TEST (Ratio of variances) as a test of

H0 :  1  =  2  =  . . .  =  i  =  . . .  =  k

MODEL

µk

... ...

σ σ σ

σ ijy
εij

UNDER H0

µ = µ1 = µ2 = ... = µi = ... = µk

Means, based on samples of n, 
should vary around µ with a variance of σ2

n

µ1

µ2

µi

µk
µ

... ...

σ

σ
σ

σ

refers to the variation (SD) of all possible individuals in a group;
It is an (unknowable) parameter; it can only be ESTIMATED.

σ

ijy
εij

Thus, if H0 is true, and we calculate the empirical variance of the k different y–i's, it

should give us an unbiased estimate of  σ
2

n

Or, in symbols . . .

yij  =  µi  +  eij   =   µ   +   (µi – µ)   +    eij

4 This and the next several pages contain images of pages made with MS Word decades
ago. JH hasn’t had time to redo them in LateX. 2020 additions in red

3
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µ

... ...

σ

σ
σ

σ

refers to the variation (SD) of all possible individuals in a group;
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σ

ijy
εij

Thus, if H0 is true, and we calculate the empirical variance of the k different y–i's, it

should give us an unbiased estimate of  σ
2

n

Or, in symbols . . .

yij  =  µi  +  eij   =   µ   +   (µi – µ)   +    eij
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i.e. 
∑[y–i –  y–]2

k-1   is an unbiased estimate of  σ
2

n

i.e.  
n ∑[y–i –  y–]2

k-1   is an unbiased estimate of  σ2

How ANOVA can be used to estimate Components of Variance used
in quantifying Reliability.

The basic ANOVA calculations are the same, but the MODEL underlying them is
different. First, in the more common use of ANOVA just described, the groups can
be though of as all the levels of the factor of interest. The number of levels is
necessarily finite. The groups might be the two genders, all of the age groups, the 4
blood groups, etc. Moreover, when you publish the results, you explicitly identify
the groups.i.e.  

∑∑[y–i –  y–]2
k-1   = MSBETWEEN is an unbiased estimate of  σ2

When we come to study subjects, and ask "How big is the intra-subject variation
compared with the inter-subject varaition, we will for budget reasons only study a
sample of all the possible subjects of interest. We can still number them 1 to k, and
we can make n measurements on each subject, so the basic layout of the data doesn'y
change. All we do is replace the word 'Group' by 'Subject' and speak of BETWEEN-
SUBJECT  and WITHIN-SUBJECT variation. So the data layout is...

Whether or not H0 is true, the empirical variance of the n (within-group) values

yi1  to yin   i.e. 
∑[y–ij  –  y–i]2

n–1   should give us an unbiased estimate of σ2

i.e. s2i  =  
∑[y–ij  –  y–i]2

n–1    is an unbiased estimate of σ2

so the average of the k diferent estimates,

    1k ∑ s2i  =   1k ∑ 
∑[y–ij  –  y–i]2

n–1

is also an unbiased estimate of  σ2

DATA:

Subject
1            2            .             i             .             k

    Measurement
1 y11 . . . . .
2
. . . . . . .
j yij

i.e.   
∑∑[y–ij  –  y–i]2

k[n–1]    = MSWITHIN is an unbiased estimate of  σ2 . . . . . . .
n ykn

THUS, under H0, both MSBETWEEN and MSWITHIN are unbiased estimates of
estimates of   σ2 and so their ratio should, apart from sampling variability, be 1.
IF however, H0 is not true, MSBETWEEN will tend to be larger than MSWITHIN,
since it contains an extra contribution that is proportional to how far the µ's are
from each other.

In this "non-null" case, the MSBETWEEN is an unbiased estimate of

  σ2  +   
∑n[µi –   µ–]2

k–1

and so we expect that, apart from sampling variability, the ratio 
MSBETWEEN
MSWITHIN 

should be greater than 1.  The tabulated values of the F distribution (tabulated
under the assumption that the numerator and denominator of the ratio are both
estimaes of the same quantity) can thus be used to assess how extreme the observed
F ratio is and to assess the evidence against the H0 that the µ's are equal.

Mean y–1 y–2 y–i y–k

Variance s21 s22 s2k

MODEL

The model is different. There is no interest in the specific subjects. Unlike the critical
labels "male" anf "female", or "smokers", "nonsmokers" and "exsmokers" to identify
groups of interest, we certainly are not going to identify subjects as Yves, Claire,
Jean, Anne, Tom, Jim, and Harry in the publication, and nobody would be fussed if
in the dataset we used arbitrary subject identifiers to keep track of which
measurements were made on whom. we wouldn't even care if the research assistant
lost the identities of the subjects -- as long as we know that the correct measurents
go with the correct subject!

4
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i.e. 
∑[y–i –  y–]2

k-1   is an unbiased estimate of  σ
2

n

i.e.  
n ∑[y–i –  y–]2

k-1   is an unbiased estimate of  σ2
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and so we expect that, apart from sampling variability, the ratio 
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should be greater than 1.  The tabulated values of the F distribution (tabulated
under the assumption that the numerator and denominator of the ratio are both
estimaes of the same quantity) can thus be used to assess how extreme the observed
F ratio is and to assess the evidence against the H0 that the µ's are equal.

Mean y–1 y–2 y–i y–k

Variance s21 s22 s2k

MODEL

The model is different. There is no interest in the specific subjects. Unlike the critical
labels "male" anf "female", or "smokers", "nonsmokers" and "exsmokers" to identify
groups of interest, we certainly are not going to identify subjects as Yves, Claire,
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The "Random Effects" Model uses 2 stages:

(1) random sample of subjects, each with his/her own µ
(2) For each subject, series of random variations around his/her µ

DE-COMPOSITION OF OBSERVED (EMPIRICAL) VARIATION

∑∑(y–ij  – y–)2  =  ∑∑(y–i – y–)2     +  ∑∑(y–ij  – y–i)2

TOTAL Sum = BETWEEN Subjects + WITHIN Subjects
of Squares Sum of Squares  Sum of Squares

Notice the diagram has considerable 'segregation' of the measurements on different
individuals. There is no point in TESTING for (inter-subject) differences in the µ's.
The task is rather to estimate the relative magnitudes of the two variance components
σ2

B and  σ2
W. ANOVA TABLE (Note absence of F and P-value Columns)

Sum of   Degrees  Mean What the Mean
Squares of Freedom Square Square is an

estimate of*

σ

refers to the variation (SD) of all possible measurements on a subject
It is an (unknowable) parameter; it can only be ESTIMATED.

σ

ijε

µ's  for Universe 
of Subjects

µ(Tom)

µ(Anne)

refers to the SD of the universe of µ's ; It is an 
unknowable parameter and can only be ESTIMATED

B

W

σW

y   = µ(Tom) + 

σ

σ

B

W

Yves

Jim

ij

SOURCE SS       df MS
 (= SS /df)

BETWEEN Subjects xx.x      k–1 xx.x 2
W + n 2

B

WITHIN    Subjects xx.x    k(n–1) xx.x 2
W

ACTUAL ESTIMATION OF 2 Variance Components

MSBETWEEN  is an unbiased estimate of  2
W + n 2

B

MSWITHIN    is an unbiased estimate of  2
W

By subtraction...

MSBETWEEN  –  MSWITHIN  is an unbiased estimate of  n 2
B

MSBETWEEN  –  M S WITHIN  
n  is an unbiased estimate of  2

B
Or,  in symbols . . .

yij  =  µi  +  eij   =   µ   +   (µi – µ)   +    εij

=   µ   +        αi       +    εij

 αi ~ N(0, σ2
B)

εi ~ N(0, σ2
W)

This is the definitional formula; the computational formula may be different.

------------------

* Pardon my ending with a preposition, but I find it difficult to say otherwise. These
parameter combinations are also called the "Expected Mean Squares". They are the
long-run expectations of the MS statistics  As Winston Churchill would say, "For
the sake of clarity, this one time this wording is something up which you would
put".

j
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µ(Anne)

refers to the SD of the universe of µ's ; It is an 
unknowable parameter and can only be ESTIMATED

B

W

σW

y   = µ(Tom) + 

σ

σ

B

W

Yves

Jim

ij

SOURCE SS       df MS
 (= SS /df)

BETWEEN Subjects xx.x      k–1 xx.x 2
W + n 2

B

WITHIN    Subjects xx.x    k(n–1) xx.x 2
W

ACTUAL ESTIMATION OF 2 Variance Components

MSBETWEEN  is an unbiased estimate of  2
W + n 2

B

MSWITHIN    is an unbiased estimate of  2
W

By subtraction...

MSBETWEEN  –  MSWITHIN  is an unbiased estimate of  n 2
B

MSBETWEEN  –  M S WITHIN  
n  is an unbiased estimate of  2

B
Or,  in symbols . . .

yij  =  µi  +  eij   =   µ   +   (µi – µ)   +    εij

=   µ   +        αi       +    εij

 αi ~ N(0, σ2
B)

εi ~ N(0, σ2
W)

This is the definitional formula; the computational formula may be different.

------------------

* Pardon my ending with a preposition, but I find it difficult to say otherwise. These
parameter combinations are also called the "Expected Mean Squares". They are the
long-run expectations of the MS statistics  As Winston Churchill would say, "For
the sake of clarity, this one time this wording is something up which you would
put".
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Example. . . .

DATA: Subject

Estimating Components of Variance using "Black Box"

PROC VARCOMP; class subject ; model Value = Subject ;
See worked example following...Tom       Anne       Yves       Jean        Claire    
2 measurements (in mm) of earsize of 8 subjects by each of 4
observers

    Measurement
1 4.8 5.5 5.1 6.4 5.8 4.5
2 4.7 5.2 4.9 6.2 6.3 4.1 subject    1               2               3                4
3 4.9 5.2 5.3 6.6 5.6 4.0 obsr 1   2   3  4    1   2  3   4    1   2  3   4     1   2  3   4

1st 67 65 65 64   74 74 74 72   67 68 66 65   65 65 65 65Mean 4.8 5.3 5.1 6.4 5.9 4.2   Variance = 0.614

Variance 0.01 0.03 0.04 0.04 0.13 0.07
2nd 67 66 66 66   74 73 71 73   68 67 68 67   64 65 65 64

subject    5               6               7                6
obsr 1   2   3  4    1   2  3   4    1   2  3   4     1   2  3   4

ANOVA TABLE (Check... I did it by hand!) 1st 65 62 62 61   59 56 55 53   60 62 60 59   66 65 65 63
2nd 61 62 60 61   57 57 57 53   60 65 60 58   66 65 65 65Sum of   Degrees  Mean What the Mean

Squares of Freedom Square Square is an
estimate of. . .  *

INTRA-OBSERVER VARIATION (e.g. observer #1)
e.g. observer #1SOURCE SS       df MS

 (= SS /df)

BETWEEN Subjects 9.205      5 1.841 2
W + n 2

B

WITHIN    Subjects 0.640     12 0.053 2
W

PROC GLM in SAS ==> estimating components 'by hand'
INPUT subject rater occasion earsize; if observer=1;
   The data set has 16 obsns & 4 variables.

proc glm; class subject; model earsize=subject / ss3;
  random subject ;

TOTAL   9.845     17  General Linear Models Procedure: Class Level Information

Class   Levels ValuesESTIMATES OF VARIANCE COMPONENTS SUBJECT    8    1 2 3 4 5 6 7 8 ; # of obsns. in data set = 16

MSWITHIN  = 0 .053  is an unbiased estimate of  2
W Dependent Variable: EARSIZE

                      Sum of    Mean
Source            DF  Squares  Square  F Value  Pr > F1.841   –  0 . 0 5 3

3  =  0 .596  is an unbiased estimate of 2
B Model             7   341.00   48.71    35.43    0.0001

Error             8    11.00    1.38
Corrected Total  15   352.001-Way ANOVA Calculations performed by SAS; Components estimated manually
R-Square      C.V.   Root MSE       EARSIZE Mean
0.968750     1.80    1.17260           65.0PROC GLM in SAS ==> estimating components 'by hand'

DATA a;  INPUT   Subject Value; LINES; Source           DF  Type III SS  Mean Square  F Value   Pr > F
1 4.8 SUBJECT           7   341.00      48.71         35.43    0.0001
1 4.7
... Source      Type III Expected Mean Square
6 4.5 SUBJECT     Var(Error) + 2 Var(SUBJECT)
proc glm; class subject; model value=subject / ss3;

Var(Error) + 2 Var(SUBJECT) = 48.71  random subject ;
Var(Error)                  =  1.38
             2 Var(SUBJECT) = 47.33See worked example using earsize data.
               Var(SUBJECT) = 47.33 / 2 = 23.67If unequal numbers of measurements per subject, see formula in A&B or Fleiss

Emma

This is an example of the method of moments.
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Example. . . .

DATA: Subject

Estimating Components of Variance using "Black Box"

PROC VARCOMP; class subject ; model Value = Subject ;
See worked example following...Tom       Anne       Yves       Jean        Claire    
2 measurements (in mm) of earsize of 8 subjects by each of 4
observers

    Measurement
1 4.8 5.5 5.1 6.4 5.8 4.5
2 4.7 5.2 4.9 6.2 6.3 4.1 subject    1               2               3                4
3 4.9 5.2 5.3 6.6 5.6 4.0 obsr 1   2   3  4    1   2  3   4    1   2  3   4     1   2  3   4

1st 67 65 65 64   74 74 74 72   67 68 66 65   65 65 65 65Mean 4.8 5.3 5.1 6.4 5.9 4.2   Variance = 0.614

Variance 0.01 0.03 0.04 0.04 0.13 0.07
2nd 67 66 66 66   74 73 71 73   68 67 68 67   64 65 65 64

subject    5               6               7                6
obsr 1   2   3  4    1   2  3   4    1   2  3   4     1   2  3   4

ANOVA TABLE (Check... I did it by hand!) 1st 65 62 62 61   59 56 55 53   60 62 60 59   66 65 65 63
2nd 61 62 60 61   57 57 57 53   60 65 60 58   66 65 65 65Sum of   Degrees  Mean What the Mean

Squares of Freedom Square Square is an
estimate of. . .  *

INTRA-OBSERVER VARIATION (e.g. observer #1)
e.g. observer #1SOURCE SS       df MS

 (= SS /df)

BETWEEN Subjects 9.205      5 1.841 2
W + n 2

B

WITHIN    Subjects 0.640     12 0.053 2
W

PROC GLM in SAS ==> estimating components 'by hand'
INPUT subject rater occasion earsize; if observer=1;
   The data set has 16 obsns & 4 variables.

proc glm; class subject; model earsize=subject / ss3;
  random subject ;

TOTAL   9.845     17  General Linear Models Procedure: Class Level Information

Class   Levels ValuesESTIMATES OF VARIANCE COMPONENTS SUBJECT    8    1 2 3 4 5 6 7 8 ; # of obsns. in data set = 16

MSWITHIN  = 0 .053  is an unbiased estimate of  2
W Dependent Variable: EARSIZE

                      Sum of    Mean
Source            DF  Squares  Square  F Value  Pr > F1.841   –  0 . 0 5 3

3  =  0 .596  is an unbiased estimate of 2
B Model             7   341.00   48.71    35.43    0.0001

Error             8    11.00    1.38
Corrected Total  15   352.001-Way ANOVA Calculations performed by SAS; Components estimated manually
R-Square      C.V.   Root MSE       EARSIZE Mean
0.968750     1.80    1.17260           65.0PROC GLM in SAS ==> estimating components 'by hand'

DATA a;  INPUT   Subject Value; LINES; Source           DF  Type III SS  Mean Square  F Value   Pr > F
1 4.8 SUBJECT           7   341.00      48.71         35.43    0.0001
1 4.7
... Source      Type III Expected Mean Square
6 4.5 SUBJECT     Var(Error) + 2 Var(SUBJECT)
proc glm; class subject; model value=subject / ss3;

Var(Error) + 2 Var(SUBJECT) = 48.71  random subject ;
Var(Error)                  =  1.38
             2 Var(SUBJECT) = 47.33See worked example using earsize data.
               Var(SUBJECT) = 47.33 / 2 = 23.67If unequal numbers of measurements per subject, see formula in A&B or Fleiss

The measurements were made by 4 physical/occupational therapy graduate
students (obsr 1-4), on the remaining n = 8 subjects – 6 fellow students and
2 instructors, JH and SD. After a short meeting to standardize themselves,
and using clear plastic rulers, each of the 4 measured each of the 8 twice (1st
and 2nd) The final subjcet whould be numbered 8, not 6.
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Estimating Variance components using PROC VARCOMP in SAS

proc varcomp; class subject ; model earsize = subject ;

Variance Components Estimation Procedure: Class Level Information

Class    Levels    Values

SUBJECT    8    1 2 3 4 5 6 7 8 ; # obsns in data set = 16

MIVQUE(0) Variance Component Estimation Procedure

                         Estimate
Variance Component       EARSIZE

Var(SUBJECT)              23.67
Var(Error)                 1.38

• ICC (Fleiss § 1.3)

      Var(SUBJECT)                23.67
ICC = ------------------------- = -------------- = 0.94
      Var(SUBJECT) + Var(Error)   23.67 + 1.38

1-sided 95% Confidence Interval (see Fleiss p 12)

df for F in CI: (8-1)= 7 and 8

so from Tables of F distribution with 7 & 8 df, F = 3.5

So lower limit of CI for ICC is

      35.43  - 3.5
    = -------------------- = 0.82
      35.43 + (2 - 1)•3.5

EXERCISE: Carry out the estimation procedure for one of the other 3 observers.
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INTERPRETING YOUR GRE SCORES
RELIABILITY(Blurb from Educational Testing Service)

Your test score is an estimate, not a complete and perfect measure, of your
knowledge and ability in the area tested. In fact, if you had taken a different
edition of the test that contained different questions but covered the same
content, it is likely that your score would have been slightly different. The only
way to obtain perfect assessment of your knowledge and ability in the area
tested would be for you to take all possible test editions that could ever be
constructed. Then assuming that your ability and knowledge did not change,
the average score on all those editions, referred to as your "true score,"
would be a perfect measure of your knowledge and ability in the content
areas covered by the test. Therefore, scores are estimates and not perfect
measures of a person's knowledge and ability. Statistical indices that address
the imprecision of scores in terms of standard error of measurement and
reliability are discussed in the next two sections.

The reliability of a test is an estimate of the degree to which the relative
position of examinees' scores would change if the test had been
administered under somewhat different conditions (for example, examinees
were tested with a different test edition).
Reliability is represented by a statistical coefficient that is affected by errors of
measurement. Generally, the smaller the errors of measurement in a test, the
higher the reliability. Reliability coefficients may range from 0 to 1, with 1
indicating a perfectly reliable test (i.e., no measurement error) and zero
reliability indicating a test that yields completely inconsistent scores.
Statistical methods are used to estimate the reliability of the test from the data
provided by a single test administration. Average reliabilities of the three
scores on the General Test and of the total scores on the Subject Tests
range from .88 to .96 on recent editions. Average reliabilities of subscores on
recent editions of the Subject Test range from .82 to .90.

STANDARD ERROR OF MEASUREMENT Data regarding standard errors of measurement and reliability of individual
GRE tests may be found in the leaflet Interpreting Your GRE General and
Subject Test Scores, which will be sent to you with your GRE Report of
Scores.

The difference between a person's true and obtained scores is referred to as
"error of measurement."* The error of measurement for an individual person
cannot be known because a person's true score can never be known. The
average size of these errors, however, can be estimated for a group of
examinees by the statistic called the "standard error of measurement for
individual scores:" The standard error of measurement for individual scores is
expressed in score points. About 95 percent of examinees will have test
scores that fall within two standard errors of measurement of their true scores.
For example, the standard error of measurement of the GRE Psychology Test
is about 23 points. Therefore, about 95 percent of examinees obtain scores
in Psychology that are within 46 points of their true scores. About 5 percent
of examinees, however, obtain scores that are more than 46 points higher or
lower than their true scores.

VALIDITY
The validity of a test—the extent to which it measures what it is intended to
measure—can be assessed in several ways. One way of addressing validity is
to delineate the relevant skills and areas of knowledge for a test, and then,
when building each edition of the test, make sure items are included for each
area. This is usually referred to as content validity. A committee of ETS
specialists defines the content of the General Test, which measures the
content skills needed for graduate study. For Subject Tests, ETS specialists
work with professors in that subject to define test content. In the assessment
of content validity, content representativeness studies are performed to
ensure that relevant content is covered by items in the test edition.

Errors of measurement also affect any comparison of the scores of two
examinees. Small differences in scores may be due to measurement error
and not to true differences in the abilities of the examinees. The statistic
"standard error of measurement of score differences" incorporates the error
of measurement in each examinee's score being compared. This statistic is
about 1.4 times as large as the standard error of measurement for the
individual scores themselves. Approximately 95 percent of the differences
between the obtained scores of examinees who have the same true score
will be less than two times the standard error of measurement of score
differences. Fine distinctions should not be made when comparing the
scores of two or more examinees.

Another way to evaluate the validity of a test is to assess how well test scores
forecast some criterion, such as success in grade school. This is referred to
as predictive validity. Indicators of success in graduate school may include
measures such as graduate school grades, attainment of a graduate degree,
faculty ratings, and departmental examinations. The most commonly used
measure of success in assessing the predictive validity of the GRE tests is
graduate first year grade point average. Reports on content
representativeness and predictive validity studies of GRE tests may be
obtained through the GRE Program office.

* The term "error of measurement" does not mean that someone has made a
mistake in constructing or scoring the test. It means only that a test is an
imperfect measure of the ability or knowledge being tested.

This excellent blurb is from the days when Graduate Records Examinations
(GRE’s) were taken on paper and took 3 hours or more. Today, with the
’adaptive testing’ that is possible with online tests, the exams can be per-
sonalized and speeded up, by starting with questions that are used to get a
general sense of one’s ability/knowledge, and them using questions of known
difficulty to move up or down. So the sequence (and number) of questions
one candidates gets differ from those another candidate gets. This leads into
a later topic: the method of split halves used to measure reliability.

This last comment about the meaning of the word ’error’
also applies in statistics more generally. When communicating
with non-statisticians, we should carefully explain our terminology.
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Outline

Some ways to quantify Reliability:
Reliability Coefficient

- Reliability Coefficient
r XX = 

σ2T 
 σ2T + σ2ε

  i.e. the fraction of observed variation that is 'real'

Note that one can 'manipulate' r by choosing a large or small σ2T

- Internal Consistency (Cronbach's α)

Implications:
-

...................................................................................
Effect of # of Items on Reliability Coefficient
(if all items have same variance and same intercorrelations)

Model for Reliability

SCALE 2   N Times more items than SCALE 1

r SCALE 2  =  
N  × rSCALE 1

1 + [N–1] × rSCALE 1

e.g.

Scale # Items   r

  1    10 0.4

  2    20 (× 2) 0.57

  3    30 (× 3) 0.67

Distribution of 
TRUE values 
for individuals

T

ε

Var
2σ

Τ

σ 2

ε

X = T + ε

2σ
Τ

+ σ 2

ε

Distribution of 
OBSERVED values 
for individuals

+
+

0

"True" scores / values not knowable;

Variance calculation assumes that the distribution of errors is independent of T

.

ε ⊥ T The above ‘
:::::::::::::
stepped-up

:::::::::::::::
reliability’ formula is of-

ten called the Spearman–Brown prediction formula.
See Brown 1910: correlation of mental abilities.
See Wainer et al. on why unnecessarily long tests may
be impeding the progress of Western civilisation.
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Cronbach's 
INTRACLASS CORRELATIONS (ICC's)

k items

 = 
k × r–

 1 + [k–1] × r–
    , where  r– = average of inter-item correlations

• Various versions

TEST-RETEST

INTRA-RATER

INTER-RATER...
is an estimate of the expected correlation of one test with an alternative form
with the same number of items.

• Formed as Ratios of various Variances

e.g. 
σ2

TRUE

σ2
TRUE + σ2

ERROR

with estimates of various σ2 's substituted for the σ2 's .

Estimates of various components typically derived from ANOVA.

is a lower bound for r XX    i.e   r XX  ≥ 

r XX  = if items are parallel.

parallel

Average [ item 1] = Average [ item 2] =Average [ item 3] =  ...

Variance[ item 1] = Variance[ item 2] =Variance [ item 3] =  ...

Correlation[ item 1, item 2] = Correlation[ item 1, item 3] = ...

   =Correlation[ item 2, item 3] = ...
• Note the distinction between DEFINITIONAL FORM (involving

PARAMETERS) and COMPUTATIONAL FORM (involving
STATISTICS)

Fleiss Chapter 1 good here; Norman & Streiner not so good!!)

.

To prevent cheating, in some multiple choice exams students get versions with the order of questions permuted – or even different questions.

How reproducible are students’ scores? Do students rank the same if we use the subtotals for the even- and odd-numbered questions?

We could correlate a random-half versus the reminder. We could average the correlation over many such random splits.

Cronbach’s alpha is seen as a way of not having to run a second exam, but to work out the reliability ‘internally ’ from the one exam

The ETS has a large enough question bank to ensure a high correlation between scores on different versions
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ICC's (Portnoy and Wilkins) model: weight gain  for person j in family i = µ + µ + αi + e ij

(1) multiple (unlabeled) measurements of each subject

(2) same set of raters measure each subject; raters thought of as a random sample
of all possible raters.

1-way Anova and Expected Mean Square (EMS)

Source Sum d.f Mean     Expected Mean Square
of Sq Square(3) as in (2), but these raters studied are the only raters of interest

............................................................................
Between (families)  99 11   9.0     σ2"error" + k0 σ2between

(1) multiple (unlabeled) measurements of each subject

σSUBJECTS
ERRORσ

µ
µ + α

µ + α + ε

Error(Within families)  30 12   2.5     σ2"error"
---------------------------------------------------------------------------------
Total 129 23

In our example, we measure k=2 members from each family, so k0 is simply 2

[if the k's are unequal, k0 is somewhat less than the average k... k0 = average k –
(variance of k's) / (n times average k) ...see Fleiss page 10]

Estimation of parameters that go to make up ICC

2.5 is an estimate of σ2"error"

ICC = 
σ2

SUBJECTS

σ2
SUBJECTS + σ2

ERROR

9.0 is an estimate of σ2"error" +  2 σ2between
-------------------------------------------------------

∴ 6.5 is an estimate of                   2 σ2between
Model for observed data:

y[subject i, measurement j] = µ + αi + εij

EXAMPLE 1

6.5
2   is an estimate of                     σ2between

6.5
2

6.5
2  + 2.5

 =    
3.25

3.25 + 2.5 = 0.57

is an estimate of ICC  =  
  σ2between

σ2between + σ2error

This example is in the spirit of the way the ICC was first used, as a measure of the
greater similarity within families than between families: Study by Bouchard (NEJM)
on weight gains of 2 members  from each of 12 families: It is thought that there will
be more variation between members of different families than between members of
the same family: family (genes) is though to be a large source of variation; the two
twins per family are thought of as 'replicates' from the family and closer to each other
(than to others) in their responses. Here the "between" factor is family i.e. families
are the subjects and the two twins in the family are just replicates and they don't need
to be labeled (if we did label them 1 and 2, the labels would be arbitrary, since the
two twins are thought to be 'interchangeable'. (weight gain in Kg over a summer)

... backstory of example 1 here; data & R Code∗ here

∗R code uses MCMC to obtain a credible interval for ICC

Origin of w’in- (‘intra-’) vs. b’ween- family (’class’) terminology
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COMPUTATIONAL Formula for "1-way" ICC

MSbetween – MSwithin
k0

MSbetween – MSwithin
k0

   + MSwithin 

=  
MSbetween– MSwithin

MSbetween + (k0–1)MSwithin    [shortcut]

is an estimate of the ICC

Increasing Reliability by averaging several measurements

In 1-way model: yi,j  = µ + αi + e ij

where    var[αi ] = σ2between subjects ;     var[eij ] = σ2"error"

Then if we average k measurements, i.e.,

ybari =  µ + αi + ebari

then

 Va
i
r [ybari ] = σ2between + 

  σ2"error" 
k

So ICC[k]  =  
  σ2between

σ2between + 
  σ2"error" 

k

Notes:
• Streiner and Norman start on page 109 with the 2-way anova for inter-observer
variation. There are mistakes in their depiction of the SSerror on p 110 [it should be
(6-6)2+(4-4)2+(2-1)2 +...(8-)2 =10. If one were to do the calculations by hand, one
usually calculates the SStotal and then obtains the SSerror by subtraction] This is called "Stepped-Up" Reliability.
• They then mention the 1-way case, which we have discussed above,  as "the
observer nested within subject" on page 112
• Fleiss gives methods for calculating CI's for ICC's.

EXAMPLE 2: INTRA-OBSERVER VARIATION FOR 1 OBSERVER

Computations performed on earlier handout...

Var(SUBJECT) = 23.67 Var(ERROR) = 1.38

IĈC = 23.67 / (23.67 + 1.38) = 0.94

An estimated 94% of observed variation in earsize measurements by this observer is
'real' .. i.e. reflects true between-subject variability.

Note that I say 'an estimated 94% ...". I do this because the 94% is a statistic that is
subject to sampling variability (94% is just a point estimate or a 0% Confidence
Interval). An interval estimate is given by say a 95% confidence interval for the true
ICC (lower bound of a 1-sided CI is 82% ... see previous handout)

.

Computational versions, used to save steps when computing statistics by hand, hide the concept (definition) behind these statistics.

The MCMC method yields a more realistic credible interval than Fleiss’ CI.
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ICC's (Portnoy and Wilkins).
ESTIMATING  INTER-OBSERVER VARIATION  from occasion=1;

(2) same set of raters measure each subject; raters thought of as a random sample
of all possible raters. PROC GLM in SAS ==> estimating components 'by hand'

INPUT subject rater occasion earsize; if occasion=1; (32 obsns)

• Model proc glm; class subject rater; model earsize=subject rater / ss3;

Subjects

1

4

5

2

3

Raters
←II
0

I←

←
←

←
←
II

I

y for subject 2, rater  II

y for subject 2, rater  I

II

I

y for subject 3, rater  II

y for subject 3, rater  I

etc ...

µ α [subject] [rater]β ε

σ 2
subjects σ 2

raters

+ + +

σ 2
error

  random subject rater;

 General Linear Models Procedure: Class Level Information

Class    Levels    Values
SUBJECT       8    1 2 3 4 5 6 7 8
RATER         4    1 2 3 4 Number of observations in data set = 32

                      Sum of    Mean
Source            DF  Squares  Square  F Value  Pr > F
Model             10  764.500  76.45   78.80    0.0001
Error             21   20.375   0.97
Corrected Total   31  784.875

R-Square       C.V.  Root MSE   EARSIZE Mean
0.974040   1.534577   0.98501      64.1875

Source   DF  Type III SS  Mean Square  F Value  Pr > F
SUBJECT   7   734.875000   104.98     108.20  0.0001
RATER     3    29.625000     9.87      10.18  0.0002

Source      Type III Expected Mean Square
SUBJECT     Var(Error) + 4 Var(SUBJECT)
RATER       Var(Error) + 8 Var(RATER)

So... solving 'by hand' for the 3 components...

Var(Error) + 4 Var(SUBJECT) = 104.98
Var(Error)                  =   0.97
        ==>  4 Var(SUBJECT) = 104.01• From 2- way data layout (subjects x Raters)

estimate σ2"subjects" ,  σ2"raters"  and   σ2"error" by 2-way ANOVA
        ==>    Var(SUBJECT) = 104.01 / 4 = 26.00

Var(Error) + 8 Var(RATER)   =   9.87
Var(Error)                  =   0.97

• Substitute variance estimates in appropriate ICC form         ==>  8 Var(RATER)   =   8.90
        ==>    Var(RATER)   =   8.90 / 8 =  1.11

e .g . 2 measurements (in mm) of earsize of 8 subjects by each of 4 observers
               Var(Error)                =  0.97

subject    1               2               3                4
obsr 1   2   3  4    1   2  3   4    1   2  3   4     1   2  3   4 Estimating Variance components using PROC VARCOMP in SAS
1st 67 65 65 64   74 74 74 72   67 68 66 65   65 65 65 65 proc varcomp; class subject rater; model earsize = subject rater;
2nd 67 66 66 66   74 73 71 73   68 67 68 67   64 65 65 64

                         Estimate
subject    5               6               7                6 Variance Component        EARSIZE
obsr 1   2   3  4    1   2  3   4    1   2  3   4     1   2  3   4 Var(SUBJECT)              26.00
1st 65 62 62 61   59 56 55 53   60 62 60 59   66 65 65 63 Var(RATER)                 1.11
2nd 61 62 60 61   57 57 57 53   60 65 60 58   66 65 65 65 Var(Error)                 0.97

.
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Quantifying Reliability   6

• ICC: "Raters Random" (Fleiss § 1.5.2)

USING ALL THE DATA SIMULTANEOUSLY
      Var(SUBJECT)                            26.00
ICC = ------------------------------------- = -------------- = 0.93 (can now estimate subject x Rater interaction .. i.e extent to which raters 'reverse

themselves' with different subjects)      Var(SUBJECT) + Var(RATER) + Var(Error)  26.00+1.11+0.97

1-sided 95% Confidence Interval (see Fleiss p 27)
Components of variance when use both measurements (all 64 obsns)

df for F in CI: (8-1)= 7 and v* , where
proc varcomp;                       proc varcomp;
 class subject rater;               class subject rater;      (8-1)(4-1)(4•0.93•10.18 + 8[1+(4-1)•0.93]-4•0.93)2

 model earsize = subject rater;     model earsize = subject raterv*  = -------------------------------------------------- = 8.12
                                                    subject*rater;      (8-1)•42•0.932•10.182 +  (8[1+(4-1)•0.93]-4•0.93)2

                    Estimateso from Tables of F distribution with 7 & 8 df, F = 3.5
Variance Component   EARSIZE       Variance Component    EARSIZE

So lower limit of CI for ICC is
Var(SUBJECT)          25.52        Var(SUBJECT)            25.47

      8(104.98  - 3.5•0.97) Var(RATER)             0.70        Var(RATER)               0.67
    = --------------------------------------------- = 0.78 Var(Error)             1.37        Var(SUBJECT*RATER)       0.31
      8•104.98 + 3.5•[4•9.87 + (8•4 - 8 - 4)•0.97]                                    Var(Error)               1.13

• ICC: if use one "fixed" observer (see Fleiss p 23, strategy 3)

      Var(SUBJECT)                26.00
ICC = ------------------------- = ------------ = 0.96
      Var(SUBJECT) + Var(Error)   26.00 + 0.97

lower limit of 95% 1-sided CI (eqn 1.49: F = 2.5 ; 7 & 7x3=21 df)

      104.98 - 2.5
ICC = ------------------ = 0.91
      104.98 + (4-1)•2.5

.
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Quantifying Reliability   7

LINK between STANDARD ERROR OF MEASUREMENT
and RELIABILITY COEFFICIENT Confidence Intervals / Sample Sizes for ICC's

Example: GRE Tests (cf blurb from Educational Testing Service)
see Fleiss...

Standard Error of Measurement = 23 points
CI's based on F distribution tables;

Reliability Coefficient: R = 0.93
recall... CI's not symmetric;

Distribution of 
TRUE values 
for individuals

T

ε

Var
2σ

Τ

σ 2

ε

X = T + ε

2σ
Τ

+ σ 2

ε

Distribution of 
OBSERVED values 
for individuals

+
+

0

More interested in 1-sided CI's   i.e.  (lower bound, 1) i.e. ICC ≥
0.xx;

See also Donner and Eliasziw.

NOTE: If interested in ICC that incorporates random raters, then
sample size must involve both # of raters and  # of raters

CI will be very wide if use only 2 or 3 raters

Approach sample size as "n's or raters and subjects needed for a
sufficiently narrow CI.

 σ2
e  = 23     ==> σ2

e   =  529 ;

R =  
σ2 T 

σ2 T  +  σ2
e
   =  0.93   ==> σ2 T  = 

R  × σ2
e

1 –  R
  =  

0.93 × 529
1 – 0.93

   = 7028

 σ2 T  + σ2
e    = 7028 + 529  =  7557  ==>   σ2 T  +  σ2

e  =  7557 = 87

So if 3 SD's on either side of the mean of 500 covers most of the observed scores,
this would give a range of observed scores of 500 – 261 = 239 to 500 + 261 = 761.

Another way to say it (see Streiner and Norman, bottom of page 119) :-

σe    =  σ2 T  +  σ2
e    × 1 – R    = SD[observed scores] × 1  –  R

.

See section 12.7.2 (Measurement error, here for a colour-based depiction of the mixing of ’true’ and ’error’ distributions.

15

https://jameshanley.github.io/statbook/


Course BIOS601: The Quality of Measurements and the Effects of Measurement Error. Fall 2020, v. 08.19
Quantifying Reliability   8

Why Pearson's r is not always a good [or practical]
measure of reproducibility

Method of Bland & Altman [Lancet                 ]

Difference of 2 
measurements

average*
  of 2 

x

x
x

xx

x

x

x

x

x

x

x
x

x

x

xx

xx
x

* use mean of 2 if neither measurements 
is considered the gold standard; use gold 
standard otherwise

1.  It does not pick up "shifts"

x

x
x

x
x x

x x
x

x x

icc includes "shifts" 
and is lower than r

+++  see biases quickly

can explain to your in-laws
(can you explain ICC to them?)

emphasises errors in measurements scale itself
(like ±23 in GRE score)

2. not practical if > 2 measurements or variable # of measurements
per subject

ICC 'made for' such situations

– – –  if don't know real range, magnitudes of standard error of
measurement not helpful (see Norman & Streiner)

cannot use with > 2 measurements

doesn't generalize to raters

.
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Quantifying Reliability   9

Assessing reproducibility of measurements made on a
CATEGORICAL scale

Categorizations of 
subjects by RATER 1

Categorizations of n 
subjects by RATER 2

C1

C1

C3

C2

C2 C3

n

See chapter 13  in Fleiss's book on Rates and Proportions
or  pp 516-523 of Chapter 26 of Portnoy and Wilkins

• Simple Measure

% agreement = 
# in diagonal cells

n  x 100

• Chance-Corrected Measure

κ = 
 % agreement – % agreement expected by chance* 
100% agreement – % agreement expected by chance

* expected proportion = ∑ p[row]*p[col] --- ∑ over the diagonals

(see Aickin's arguments against 'logic' of chance-correction:
Biometrics                                    199 )

can give weights for 'partial' agreement

if > 2 raters, use range or average of pairwise kappas

with quadratic weights, weighted kappa = icc

.
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Validity Statistics

INSTRUMENT CRITERION STATISTIC(S)

numerical numerical - same scale • calculate discrepancies (Altman & Bland)

• describe distribution of discrepancies

numerical numerical - different scale • correlation

  [Pearson or Spearman]

numerical ordered categories (e.g. known groups) • correlation [ranks]

• ANOVA [groups]

ordered categories ordered categories • Kendall's "tau"

numerical or ordered categories binary • difference in means

   [ parametric/  nonparametric test ]

• ROC curve

binary binary • sensitivity

     (Probability + on instr.  if Criterion +)

  &

  specificity

    (Probability  –  on instr. if Criterion –)

• predictive values
• ϕ (phi) statistic (see Streiner & Norman)

.

For many reasons, this treatment of
::::::::
Validity is short: if the quality is

::::::::
physical, we usually have a gold standard, so assessment is direct

(example: Tracking Physical Activity Data). If it is
:::::::::::::::
psycho-physical or

:::::::::::
conceptual the challenge is less in the statistical methods, and

more in finding indirect ways to assess it: see the paragraph on VALIDITY in the blurb about the
:::::
GRE, or the q. on

:::::::::::
readability

in Exercises 1 and 2 below.
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Receiver Operating Characteristic Curve

instrument criterion

x

x

x

x

Sensitivity 
(TPF)

1 minus 
Specificivity 

(FPF)

0 1
0

1

no discrimination

TPF: True Positive Fraction
FPF: False Positive Fraction

numerical or ordered scale binary ( • or o)

• SERIES of {sensitivity, specificity} statistics,
each based on a different cut-off

• usually plotted on a graph, showing tradeoff between sensitivity and
specificity

• Summary statistics (performance)
- sensitivity at a given (specified) specificity
- area under the ROC curve

Sensitivity 
(TPF)

1 minus 
Specificity

(FPF)

3/10

1/10

9/10

8/10

6/10

3/10

8/10

6/10

numerical  or 
ordinal  scale

criterion positive

criterion negative

Reference: section 5 chapter 13  in 2nd edition of Basic & Clinical
Biostatistics by Beth Dawson-Saunders and Robert Trapp, Appleton &
Lange, Norwalk (CT)

.
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.

CONSEQUENCES

of

MEASUREMENT
ERROR

Effect of Measurement Er-
rors in X and Y on mea-
sured correlation and slope
.

typeset with LATEX

Denote the “true” (but unobservable) values by X and Y and the observed
(error-containing) measurements by X ′ and Y ′. We quantify the degree to
which the errors in X ′ and Y ′ distort the correlation ρX,Y and the slope βY/X

From the general formulae

ρX,Y =
E[XY ]− E[X]× E[Y ]

SD[X]× SD[Y ]
=

Covar[X,Y ]√
V ar[X]× V ar[Y ]

(1)

and

βY/X =
E[XY ]− E[X]E[Y ]

V AR[X]
= ρX,Y

SD[Y ]

SD[X]
, (2)

we can derive the consequences of the errors in X and in Y.

Let X ′ = X + εX where εX has mean 0 and variance V ar[εX ], and is
independent of X5, so that

E[X ′] = E[X + εX ] = E[X] + E[εX ] = E[X] + 0 = E[X] (3)

V ar[X ′] = V ar[X + εX ] = V ar[X] + V ar[εX ] (4)

Let Y ′ = Y + εY , where εY has mean 0 and variance V ar[εY ], and is indepen-
dent of Y , so that

E[Y ′] = E[Y + εY ] = E[Y ] + E[εY ] = E[Y ] + 0 = E[Y ] (5)

V ar[Y ′] = V ar[Y + εY ] = V ar[Y ] + V ar[εY ] (6)

E[X ′Y ′] = E[{X + εX}{Y + εY }] = E[XY + εXY + εYX + εXεY ] = E[XY ].
(7)

By definition

ICC[X] =
V ar[X]

V ar[X] + V ar[εX ]
& ICC[Y ] =

V ar[Y ]

V ar[Y ] + V ar[εY ]
, (8)

with

0 ≤ ICC[X] ≤ 1 & 0 ≤ ICC[Y ] ≤ 1. (9)

5 This is known as the ‘Classical’ error model.
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1 ρX ′,Y ′ : expected correlation of two error-
containing variables

ρX′,Y ′ =
E[X ′Y ′]− E[X ′]× E[Y ′]

SD[X ′]× SD[Y ′]

=
E[XY ]− E[X]× E[Y ]√

V ar[X ′]× V ar[Y ′]

=
Covar[X,Y ]√

{V ar[X] + V ar[εX ]} × {V ar[Y ] + V ar[εY ]}

dividing above and below by
√
V ar[X]× V ar[Y ]

=

Cov[X,Y ]√
V ar[X]×V ar[Y ]√

V ar[X]+V ar[εX ]
V ar[X] × V ar[Y ]+V ar[εY ]

V ar[Y ]

=
ρX,Y√

1
ICC[X] ×

1
ICC[Y ]

so that...

ρX′,Y ′ =
√
ICC[X]×

√
ICC[Y ]× ρX,Y ≤ ρX,Y .

Thus, the correlation is attenuated* (dampened/weakened) by the imper-
fections (random errors) in the X and Y measurements.

One can reverse the equation to get a “de-attenuated” correlation:

ρX,Y =
βX′,Y ′√

ICC[X]×
√
ICC[Y ]

http://www.m-w.com/dictionary/attenuate

*Main Entry: 1atátenáuáate ; Function: adjective

Etymology: Middle English attenuat, from Latin attenuatus, past

participle of attenuare to make thin, from ad- + tenuis thin

1 : reduced especially in thickness, density, or force

2 : tapering gradually usually to a long slender point

2 βY ′/X ′ : expected slope of error-containing Y
on error-containing X

βY ′/X′ =
E[X ′Y ′]− E[X ′]× E[Y ′]

V ar[X ′]

=
E[XY ]− E[X]× E[Y ]

V ar[X] + V ar[εX ]

=
Covar[X,Y ]

V ar[X] + V ar[εX ]

=
Covar[X,Y ]

V ar[X]
× V ar[X]

V ar[X] + V ar[εX ]

= βY/X × ICC[X].

so that...

βY ′/X′ = βY/X × ICC[X] ≤ βY/X

i.e., the slope is attenuated (dampened / weakened / flattened / moved
towards 0) by the imperfections in the X measurements. Random errors in Y
add to the residual variation, and thus increase the instability of the estimated
slope, but do not (on average) attenuate the slope.

One can reverse the equation to get a “de-attenuated” slope:

β̂Y/X =
β̂Y ′/X′

ICC[X]

As Spearman told us, this method goes back to 1904. In the last 40 years, there
have been major developments in the statistical handling of measurement er-
ror (see the textbooks mentioned at the beginning). One of the more creative
is Simulation Extrapolation Estimation (‘SIMEX’) in Parametric Mea-
surement Error Models, Cook and Stefanski, (1994) JASA , 89, 1314-1328. See
also the article Simulation-Extrapolation: The Measurement Error Jackknife
by the same authors, as well as the simex Package for R.
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3 Relationship between test-retest (X ′, X ′′) and
ICC[X]

X ′ and X ′′ denote 2 independent measurements of the X on a randomly
selected individual, e.g., measuring one’s cholesterol / height/ IQ twice in
a short period of time, where X has not changed, and where ε1 and ε2 are
independent.

In psychometrics, the term “test-retest” is reserved for a self-administered
test, such as a questionnaire that is completed by the subject rather than
an observer or test-administrator. Otherwise (e.g., if one wishes to study
intra-observer or inter-observer variation) psychometricians speak of observer
variation, rather than test-retest, studies.

Exercise: Show that

ρX′,X′′ = ICC[X]

4 Relationship between ρX ′,X and ICC[X]

This applies when we can think of X as the ‘gold standard’.

Exercise: Show that

ρX′,X =
√
ICC[X]

Berkson error model
Results 1-4 are based on the Classical error model.

There is another, less common, error model, where the consequences
are different. This is the ‘Berkson’ error model, named after this
Mayo Clinic statistician/epidemiologist, Joseph Berkson.

• Again, we denote the “true” (but unobservable) values by X and the
observed (error-containing) measurements by X ′

• Let X ′ = X + εX where εX has mean 0 and variance V ar[εX ], and is
independent of X ′

This type of error is present in some environmental epidemiology studies, as
nicely illustrated in the folllowing excerpt from this teaching piece.6

This distinction [between classical and Berkson error models] is
not well known and a little tricky to understand, but it has major
implications for the effects of the error.

• Classical: The average of many replicate measurements of
same true exposure would equal the true exposure.

• Berkson: The same approximate exposure (proxy) is used
for many subjects; the true exposures vary randomly about this
proxy, with mean equal to it.

Example:

A study investigates the relation of mean exposure to lead up to age
10 with intelligence quotient (IQ) in 10 year old children living in the
vicinity of a lead smelter. The IQ is measured by a test administered
at age 10. Consider two study designs for assessing exposure:

• Design 1 : Each child has one measurement made of blood lead, at
a random time during their life. The blood lead measurement will
be an approximate measure of mean blood lead over life. However,
if we were able to make many replicate measurements (at different
random time points), the mean would be a good indicator of lifetime
exposure. This measurement error is thus classical.

6Its author, Ben Armstrong, worked in Occupational Health at McGill for some years,
and (as you many gather from his piece) was known as an outstanding teacher. When here,
Ben worked with Gilles Thériault on studies of electromagnetic fields and cancer in electric
utility workers in Québec and France.
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• Design 2 : The children’s place of residence at age 10 (assumed
known exactly) are classified into three groups by proximity to
the smelter - close, medium, far. Random blood lead samples,
collected as described in design 1, are averaged for each group,
and this group mean used as a proxy for lifetime exposure for
each child in the group. Here the same approximate exposure
(proxy) is used for all subjects in the same group, and true
exposures, although unknown, may be assumed to vary randomly
about the proxy. This measurement error is thus Berkson type error.

Another situation giving rise to Berkson error is when expo-
sures are estimated from observed determinants of exposure with
an exposure prediction model. Often error has both classic and
random components, although one usually predominates.

On page 6 of these notes JH gives an example of Berkson error, which he
thinks he got from Ben Armstrong.7

It would apply if you recorded the temperature X ′ to which a stove or thermo-
stat was ‘set’, but the true temperature X at the time the response (Y ) was
observed/measured could be somewhat above or below X ′. The red dots in
JH’s diagram are what one might observe, and thus used to fit the regression
model.

One way to think of the effect of Berkson error is that it moves the Y [X ′]
value vertically, but keeps it directly above the X ′ value.

By contrast, the effect of Classical error is that it moves the Y [X] value
horizontally to X ′, but keeps it at the same vertical position.

Panel B (opposite) shows temperature fluctuations about a ‘set’ value.8

You could also ‘see’ why the Berkson error does not ‘flatten the line’ if (with

X ′ – and thus X – centered) you examine the structure of β̂ =
∑
X′×YX′∑
(X′)2 .

7This situation is alluded to in this article.
8From the thesis work of Scott Weichenthal

Figure 6a and 6b. Real-time overnight indoor UFP concentrations (cm") (top line) and 

temperature (°C) (bottom line) as a sign of home heating system activation. (A) Home with a 

stand-alone wood stove, (B) Home with electric baseboard heaters. 
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Figure 6a and 6b. Real-time overnight indoor UFP concentrations (cm−3 (top line) and

temperature (◦C) (bottom line) as a sign of home heating system activation. (A) Home

with a stand-alone wood stove, (B) Home with electric baseboard heaters.
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.

EXERCISES...
.

1. Refer to the descriptions of the SMOG index, the Fry method, the Flesch
Reading Ease, and the Flesch-Kincaid Grade Level, for measuring read-
ability (under Resources for Measurement/Surveys).9

For the article or text you have chosen (as per discussion in class), ran-
domly select three separate 100 word passages, and use this set of three
passages to measure the readability (F1) using the Fry graph. Rather
than do so manually, you can use the SMOG calculator to determine the
average number of sentences and syllables per hundred words. Repeat
the readability measurement (F2) with a second different set of three
passages. Repeat once more (F3), using a third set.

Using these same three sets, calculate the SMOG index, the Flesch Read-
ing Ease, and the Flesch-Kincaid Grade Level.

For each index, use the 3 estimates to calculate the standard error of
measurement, and the coefficient of variation. Comment.

2. Propose a method to assess the validity of a readability index.

3. [m-s] Derive the link between the standard error of measurement and
the (intraclass correlation) reliability coefficient [last line, column 1, p15
in the notes above.] Hint: it’s simply a matter of using the definition of
R.

4. [m-s] Exercise in section 3 (p. 22 of notes) of Relationship between test-
retest correlation and ICC(X) [In notes on Effect of Errors in X and Y
on measured correlation and slope]

5. [m-s] Exercise section 4: Relationship between correlation(X,X ′) and
ICC(X) [ibid.]

6. Francis Galton (1822-1911) found that the correlation between (self-
reported) parental and (adult) offspring heights was strongest for the
one between father and son [0.396 ± 0.024], and weakest for the one be-
tween mother and daughter [0.284 ± 0.028]. Given the way he obtained

9ToneCheck ( https://techcrunch.com/2010/07/20/tonecheck/) ‘sounded’ like an in-
teresting tool; it’s not clear if ‘make it’ commercially, or was bought by another company!

the measurements, can you imagine why this was? 10 [It was 0.302±0.027
for mother & son; 0.360± 0.026 for father & daughter.]

7. Bridging the physical- and the psycho-metric: The notes on “In-
creasing Reliability by averaging several measurements” on the right hand
column of page 12 of JH’s notes on Quantifying Reliability give the for-
mula for the so-called “Stepped-Up Reliability”. In psychometrics (where
the number of items on a test serves as the “several measurements”)
this formula serves as the basis for the “Spearman-Brown prediction for-
mula”.11

[m-s] Invert the formula on p.12 to derive the one on the right hand
column of p.9 for the Spearman-Brown prediction formula relating the
reliability of two versions of a test, one with N times more items than the
other.

8. You are trying to estimate, from imperfect observations of F and C,
the values of the two coefficients B0 and B1 in the temperature relation
F = B0 +B1 × C.

For each of the following situations, and using the true values B0 = 32 and
B1 = 9/5 = 1.8, simulate12 1000 datasets and investigate the behaviour
of the 1000 estimates, b0 and b1, of B0 and B1. In each simulation, use
samples of size n = 4, with temperatures of C = 14, 16, 18 and 20.

(a) C measured perfectly, F measured with εF ∼ Gaussian(µ = 0, σεF =
1) errors that are independent of F . Check – formally, using a test
(or CI) based on the mean of the 1000 estimates – for evidence of
bias in b1. Also check whether the empirical variance of b1 agrees
with that given by the theoretical formula, namely

V ar(b1) = σ2
εF /

∑
(x− x̄)2.

(b) F measured perfectly, C measured with εC ∼Gaussian(µ = 0, σεC =
1) errors that are independent of C [Classical type error: someone

10After you have thought about it for a while, and looked carefully at Galton’s Notebook,
you might wish to compare your answer with Karl Pearson’s explanation: “Why Galton got

different parent-offspring correlations in heights” http://www.biostat.mcgill.ca/hanley/bios601/

Surveys/pearson1930vol3ach14p17-18.pdf and also look at “why he (KP) got larger ones”
http://www.biostat.mcgill.ca/hanley/bios601/Surveys/PearsonBka1902pp377-378.pdf using this
protocol (p358-) http://www.biostat.mcgill.ca/hanley/bios601/Surveys/PearsonLee1903.pdf in

the ‘Measurement – Lecture Notes, etc’ section of the bios601 resources page for Measurement.
11Wikipedia has an entry called ‘Spearman Brown prediction formula’.
12If new to simulations, see “Computer code to simulate datasets with measurement

error” http://www.biostat.mcgill.ca/hanley/bios601/Surveys/FandC.R.txt at the bottom of the
Resources webpage for measurement/surveys. It gives some ‘starter’ computer code, which
you can modify to suit.
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else chose situations when C was indeed exactly 14, 16, etc, but
didn’t tell you what C was, and instead asked you to independently
record C using your own imperfect instrument, and to use your
recordings of C in your estimation of the equation]. Again, formally
test for evidence of bias in b1.

(c) F measured perfectly, C recorded from a thermostat that was ‘set’
to 14, 16, etc, where εC ∼ Gaussian(µ = 0, σεC = 1) around the
set value13 [Berkson Error ]: you use the set values of C in your
estimation of the equation]. Again, formally test for evidence of
bias in b1.

Do your findings line up with the predictions in the Notes? If the patterns
are difficult to see, you might change the number of simulations, the sizes
of the errors, the range of C or the sample size.14

9. Attenuation of fitted ‘F on C’ slopes when progressively greater
amounts of error are added to the C measurements

Run the R code provided under the heading ‘Animation (in R) of effects of
errors in X on slope of Y on X’. http://www.biostat.mcgill.ca//hanley/bios601/

Surveys/ErrorsInXAnimation.R.txt It uses the ‘animation’ package to add pro-
gressively greater amounts of error to the C measurements and show how
effects they affect the fitted slopes. Include the plot with your answers.
Examine the trace of the fitted slopes, and try to mathematically link the
pattern of the ‘decay’ with the amount of error. Hint : as we saw earlier,
the attenuation should be a function of (actually, proportional to) the
ICCC ; so use the various amounts of error in C (ranging from σεC = 0
to σεC = 22) to calculate the various ICCC ’s and see if the predicted
attenuations line up with the trace.

10. Before we study how well we can digitize survival curves, here is an
exercise on communicating what the curves are meant to convey
and the context in which they were generated.

Refer to the article “Associations between C-reactive protein, coronary
artery calcium, and cardiovascular events: implications for the JUPITER
population from MESA, a population-based cohort study”, available in
the Resources link opposite ‘Applications’ in bios601. We digitized the
lowermost (green) curve in Figure 2A of that article.

13Figure 6b on page 23 suggests it would not be exactly Gaussian.
14The article by Hutcheon et al. “Random measurement error and regression dilu-

tion bias”, http://www.biostat.mcgill.ca/hanley/Reprints/RegressionDilutionBMJ.pdf in the
Resources for Measurement page tries to explain these patterns intuitively.

(a) Read the Abstract and study the Figures in the article. Then, write,
in your own words, a short news item of 250 words or so (2-3 minutes
or so on radio) for your local newspaper and radio station, where
you moonlight as a health reporter. In your piece address (i) the
rationale for the study (ii) the principal findings and (iii) the im-
plications of these findings. Also suggest a headline for your story.
[You might want to study some health reports to see how they are
structured.. the order may not be the (i)-(iii) order listed above. An
interesting but slightly more highbrow website devoted to science
reporting in general is http://www.sciencedaily.com/.
The websites
urlhttp://www.cnn.com/HEALTH/, http://www.nytimes.com/pages/

health/index.html, http://www.bbc.co.uk/news/health/ and http:

//www.cbc.ca/news/health/ are also worth consulting, and indeed
monitoring.

(b) A 65-year old relative of yours reads your story, looks on the inter-
net and finds that a test that measures coronary artery calcium is
available in a private clinic in Montreal, and phones you to ask if it
would be worth being tested and getting her “score”. What would
you say to this relative?

11. Errors in digitization

Refer to the duplicate readings you made of the Kaplan-Meier survival
curve in the study entitled “Associations between C-reactive protein,
coronary artery calcium, and cardiovascular events: implications for the
JUPITER population from MESA, a population-based cohort study”
available in the Resources link opposite ‘Applications’ in bios601

For now, ignore the point-wise measures of precision, i.e., the standard
errors and confidence intervals, that often accompany such curves. These
are (decreasing) functions of the numbers of subjects and the numbers of
‘events’; we will cover their calculation later in the term. For now, focus
only the loss of precision as a result of your digitization.

Focus on your two measurements of each of the reported y-year risks,
where y= 1, 2, 3, 4, 5, 6, 7:

y-year CHD risk = 100× (1− proportion free of CHD at year y)%

(a) From your two measurements at each of the 7 timepoints, obtain a
7d.f. estimate of the ‘standard error of measurement’. Do so using
a ‘canned’ statistical routine and also ‘from scratch’ in R
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Write out the statistical model that you used to obtain this, and list
any assumptions it makes.

(b) The estimate in (a) is an estimate of the ‘within’ observer variation.

In order to estimate the ‘between’-observer variation, what is the
minimal information you would need from each of you co-observers?
(since JH has access to all of them, he will supply each of them once
you email him with your specific request: he can supply the full raw
data that could be then put into a canned statistical routine, but he
would prefer that you do the calculations ‘from scratch’ in R).

Again, write out the statistical model that you used to obtain this,
and list any assumptions it makes.

(c) Here the ‘objects’ to be measured were 7 very specific (fixed) time-
points. Assume for the sake of this exercise that the 7 objects were
7 randomly selected human subjects and that we were interested in
calculating an intra-class correlation coefficient to serve as a reliabil-
ity measure. Carry out the ICC calculation. Restrict you attention
to years 1-5 and recalculate the new ICC. Comment on why the ICC
becomes smaller.

12. Bernoulli Error? A not-discovered-for-almost-300-years error in
Bernoulli’s book? Or a not-discovered-for-almost-7-years error by
A.W.F. Edwards. Which is it?

In his ‘Ars conjectandi three hundred years on’ article in Significance
Magazine, Cambridge University Professor Edwards tells us that, a
few years ago, he was reviewing Sylla’s English translation of (Jacob)
Bernoulli’s book. He worked through one of the expectation problems,
and came up with a different answer than Bernoulli. In early June of
2013, a week before the Edwards item was published in Significance, Ju-
lian Champkin, the magazine Editor, and a journalist by profession, used
this ‘300-year-old error’ in the ‘trailer/teaser’ for the upcoming piece, and
his question ‘Can you correct it?’ generated a number of responses on
the Significance website.

JH has collected together in one .pdf file the item by Champkin, some of
the original Bernoulli text in Latin, the full article by Edwards, the Ed-
wards review of the Sylla translation into English, and Sylla’s translation
of Berrnoulli’s treatment of the problem.

The question arises as to whether it is the probabilities that are incor-
rect, or the expectation based on them, or whether it is Edwards who is
incorrect.

What is your answer? [Remember that Edwards had studied
Bernoulli earlier, when writing his book on Pascal’s triangle, and had
found an error, that had been reproduced over the centuries in differ-
ent books, in a table of Bernoulli numbers. So might Bernoulli (or the
printers) had been a little bit careless?]

Here is the R code JH used to count the cases, and here is Edward’s reply.

Wikipedia entry for Edwards.

One wonders what he thinks of the removal of the Latin Square from the
dining hall window at Gonville and Caius College, Cambridge.

13. Imprecision in recording event times

The Introduction to a recent (2013) journal article “Driving under the
(Cellular) Influence” by Saurabh Bhargava and Vikram S. Pathania of
Carnegie Mellon University begins:

Does talking on a cell phone while driving increase your risk of
a crash? The popular belief is that it does – a recent New York
Times/CBS News survey found that 80 percent of Americans
believe that cell phone use should be banned. This belief is
echoed by recent research. Over the last few years, more than
125 published studies have examined the impact of driver cell
phone use on vehicular crashes. In an influential paper pub-
lished in the New England Journal of Medicine, Redelmeier
and Tibshirani (1997) – henceforth, RT – concluded that cell
phones increase the relative likelihood of a crash by a factor of
4.3. Laboratory and epidemiological studies have further com-
pared the relative crash risk of phone use while driving to that
produced by illicit levels of alcohol.

Later, in bios602, you will be introduced to the very clever study design
that RT used to arrive at the 4.3.

The 2013 authors then go on to study the topic using a very different but
also clever design.

We investigate the causal link between driver cell phone use and
crash rates by exploiting a natural experiment induced by the
9pm price discontinuity that characterizes a majority of recent
cellular plans. We first document a 7.2 percent jump in driver
call likelihood at the 9 pm threshold. Using a prior period as a
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comparison, we next document no corresponding change in the
relative crash rate. Our estimates imply an upper bound in the
crash risk odds ratio of 3.0, which rejects the 4.3 asserted by
Redelmeier and Tibshirani (1997). Additional panel analyses
of cell phone ownership and cellular bans confirm our result.

But while they had very precise data on when cell phones were being
used, (see Fig2) the data on crashes were quite messy. To quote the
authors:

94	 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY� AUGUST 2013

present additional evidence on cell phone calls (this time by drivers and nondrivers) 
and 30,000 pricing plans across 26 markets to affirm the sensitivity of cellular users 
to the 9 pm price threshold. The rise in call likelihood at 9 pm represents the first 
stage of our analysis.

We next test whether the rise in call likelihood at the threshold leads to a cor-
responding rise in the crash rate. In order to smooth crash counts that are subject to 
well recognized periodicity due to reporting conventions, we aggregate crashes into 
bins of varying sizes. While this strategy improves estimate precision, it introduces 
a bias due to potential covariate changes away from the threshold. To account for 
such movement in covariates, we adopt a double-difference approach to compare 
the change in crashes at the threshold to the analogous change in a control period 
prior to the prevalence of 9 pm pricing plans and characterized by low cellular use.

Figure 3 plots the universe of crashes for the state of California on Monday to 
Thursday evenings in 2005 and during the control period from 1995 to 1998.3 The 
plot, and subsequent regressions, indicate that crash rates in 2005, or in the extended 
time frame of 2002 to 2005, do not appear to change across the 9 pm threshold rela-
tive to the preperiod. We then generalize our crash analysis to include eight addi-
tional states for which we have the universe of crash data. Placebo tests of weekends 
and proximal hours, as well as robustness checks to account for the reporting bias 
in crashes, confirm that cell phone use does not result in a measurable increase in 
the crash rate.

Our estimates of the relative rise in crashes and call likelihood at 9 pm imply a 
3.0 upper bound in the crash risk odds ratio (and a 1 s.e. upper bound of 1.4) under 

3 The periodicity evident in Figure 3 is due to the aforementioned reporting bias in the timing of accident 
reports.
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Figure 2. Cell Phone Call Volume from Moving Vehicles for California from 8pm to 10pm in 2005

Our analysis principally relies on two sources of crash data.
First, the State Data System (SDS) provides data for the
universe of reported crashes from 1990 to 2005 for Califor-
nia, Florida, Illinois, Kansas, Maryland, Mississippi, Missouri,
Ohio, and Pennsylvania. A well recognized drawback of us-
ing a crash database based on self-reports is the presence of
substantive periodic heaping .

.

The trajectory of a crash record helps to illuminate the origins
of this bias. Once a vehicular crash is reported, police at the
scene document various details of the incident, including the

minute of the crash occurrence, and submits the paperwork
to one of several possible state agencies. While states vary in
the specifics that govern data collection and crash qualifica-
tion criteria, crash records are ultimately centralized and sent
once a year to the NHTSA where they are standardized and
maintained.

.

.

Figure 4 illustrates the nature of the heaping in reports
that characterizes a representative hour in 2005 across the
states in our sample. A close examination indicates that
nearly 11 percent of crash reports fall exactly on the
hour, 31 percent are on the hour, half hour, or quar-
ter hour, and 61 percent reside in a minute ending in
either zero or five.

.
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trajectory of a crash record helps to illuminate the origins of this bias. Once a vehic-
ular crash is reported, police at the scene document various details of the incident, 
including the minute of the crash occurrence, and submits the paperwork to one of 
several possible state agencies. While states vary in the specifics that govern data 
collection and crash qualification criteria, crash records are ultimately centralized 
and sent once a year to the NHTSA where they are standardized and maintained.26 
Figure 4 illustrates the nature of the heaping in reports that characterizes a represen-
tative hour in 2005 across the states in our sample. A close examination indicates 
that nearly 11 percent of crash reports fall exactly on the hour, 31 percent are on the 
hour, half hour, or quarter hour, and 61 percent reside in a minute ending in either 
zero or five.

Second, the Fatality Analysis Reporting System (FARS), also administered by 
the NHTSA, provides data for the universe of fatal crash records from 1987 to 2007 
for each of the 50 states. FARS captures any vehicle crash resulting in a death within 
30 days of the collision. Like the SDS data, FARS suffers from severe periodicity in 
the specific minute of the crash reports.

Figure 1 depicts the trends in crashes, indexed to highway traffic volume, for each 
year from 1988 to 2007.27 The plot indicates a decrease in crashes over the last fif-
teen years, with a slight rise in the mid-1990s. Much of the drop in crash rates over 

unavailability to state-years for which a critical variable is not reported (e.g., Pennsylvania in 2002; Illinois in 2004 
and 2005).

26 States differ in the criteria used to qualify a crash for reporting. Minor crashes below a minimum dollar value 
(typically $400 to $500) or not requiring a tow-away may not be reported.

27 Crash data for this plot is from the General Estimates Survey, a national probability sample calculated by the 
NHTSA, and FARS.
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Figure 4. Periodicity in SIDS Crashes across Representative Hour in 2005 for All States in Sample

Exercise: In this study, the primary contrast involves crash rates in the
1 hour after and the 1 hour before cellphone calls became “free” at 9 pm.
Do you think the heaping errors are an insurmountable problem? If you
do, why? If not, suggest ways to deal with them.
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14. Galton’s data more than century later

[See also Questions 3-5 above, and see JH’s notes on Quantifying Relia-
bility under the Measurement Lecture Notes heading in the website]

The 1985 article “Galton’s Data a Century Later” re-analyzes the exten-
sive data collected by Francis Galton at his anthropometric laboratory in
the South Kensington Museum in London.

JH has contacted one of the authors (Frank Ahern) who replied that
“Despite a great deal of searching, neither I or Jerry McClearn have been
able to find the original data that were used back in ’85.”

So, we will start again. But this time, instead of having to go to Lon-
don and photocopy the records, you can take advantage of the scanned
copies provided by the Wellcome Library and the Galton archives. To
save you having to find the books (each containing about 500 records)
in the large amount of material in the Galton archives, JH has down-
loaded them and put them on the bios601 website, in the Resources for
Sampling/Measurement folder, under the heading (flagged in red) “Data
from Galton’s Anthropometric Laboratory.”’

For this exercise, which is designed to familiarize you with how to sta-
tistically quantify the psychometric (and psychophysical) properties of
different measuring instruments, we will focus on subjects who have been
measured more than once, so that we can assess the reliability of the var-
ious measures. For now, we will ignore the fact that there is quite a bit
of time between some of the measurements, and that some attributes are
age-related (we will try later to see at what age the peak is), and so some
of the non-repeatability is for legitimate biological reasons.

So as to get a feel for the (small sample) sampling variability of these
measures, and also so that it is not too big a data entry burden, you are
asked to enter the complete records for 10 such subjects, i.e., subjects
who were measured on more than one date. We can pool these student
datasets later to get a more – statistically – reliable estimate of the various
reliability measures.

In order to standardize the variable names, and provide a small element of
quality control, a .csv file (Spreadsheet for Data Entry) with several
subjects from the first book is provided on the website, immediately after
the data books. Add to it the data for the first ten eligible ones you find
in the range assigned to you (enter all of the records per subject, no
matter how close or far apart they are in time). After you have added
your entries, delete the ones already there — they were merely provided
so as to standardize the naming of variables, and to act as a guide to

align the columns correctly, and to make it easier to see any items that
are mis-entered.

A few notes at this point (we may discover other oddities that we need to
deal with as we go along). JH has noticed that subsequent measurements
are some times recorded in metric units rather than Imperial (e.g., cm
instead of inches and tenths or inches). We could discuss other ways
to enter such mixed units (from JH’s past experience, converting as we
enter is not an option!) but JH decided that when he met a metric
measurement when he had allocated a pair of fields for say inches and
tenths, he simply put the metric measurement in the first field and left
the second field blank. It should be relatively easy to use programming
to harmonize them later.

In the case of blanks, or illegible recordings, please leave the field blank.

JH has noticed some instances where there were several (4 in subject
0001) rows for the first several items (up to the Snellen test) but fewer
(e.g. 2 in subject 0001) rows for the later items at the bottom of the
page, from sitting height to strength of blow with fist. In such instances,
use any indications you can to decide which rows at the bottom of the
page go with which ones at the top (in the case cited, JH decided that
the first and fourth rows were complete, as were both of the bottom ones,
so he put these with the first and fourth). In such cases, use the remarks
column to flag the case.

Here are the books assigned to the different students. Contact JH if your
ID number is not in the list.

ID Subjects

JH 0001-0491

26xxxxx21 0511-1028
26xxxxx19 1029-1530
26xxxxx57 1531-2020
26xxxxx99 2021-2520
26xxxxx78 2521-3021
26xxxxx65 3022-3521
26xxxxx58 3522-4000
26xxxxx90 4001-4500
26xxxxx94 4501-5000

5001-5500
5501-6000
6001-6500
7001-7459
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Once you have entered the data, adopt the supplied R code to calculate
the ICC for each of the measures shown in Table 1 of the 1985 article. Do
not worry about timing or segregation by sex, or age-correction – you will
not have enough data to do so; we will do this later when we pool the data.
It appears (but JH is not entirely certain) that the 1985 authors used a
simple Pearson product moment correlation with paired measurements.
The advantage of the ICC is that while it is still connected mathematically
with the Pearson correlation (see exercises above), it is more general and
it uses whatever number of measurements per person there are. It is less
cumbersome than using all possible pairwise correlations, or selecting just
two.

Compare the ICCs with the test-retest correlations in Table 1 of the 1985
‘a century later’ paper, and comment on any substantial differences.

15. Physical Activity: JH 2010-2017
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Since 2010, JH has used a ‘step-counter’ (pictured above left) to record
how many steps he takes each day. His spouse AM has done the same,
and has entered the pairs of daily counts onto a log book.

Refer to the six files (2010-2011, 2012-2013 , 2014-2015, 2016-2017, 2018,
2019-2020) under the heading “Physical Activity: How many steps a day
has JH being doing since 2010?” near the top of the Resources webpage.
The 2010-2011 .csv file has the paired recordings for 2010, as well as JH’s

ones for 2011. The 2012-2013, 2014-2015, 2016-2017, 2018 and 2019-2020
pdf files have scanned images (see above right) of the pages of paired
recordings from the log-book.

The exercise in sampling from these data raised the issue of how many
days one needs to sample in order to ensure that the estimate one gets is
close to what one would obtain with a census, i.e., a 100% sample of days.
Similar issues occur in dietary recall surveys. The least costly method
is the food frequency questionnaire (Google for more info); a much more
costly one is the x-day 24-Hour dietary recall method. How large x should
be for different sub-populations (e.g., children, young adults, the elderly)
has been studied. In measuring physical activity, it is common to use
quite expensive accelerometers, and so they are usually given to research
subjects for just one randomly chosen week.

The Omron model shown costs a lot less, and unlike the accelerometers –
which store minute by minute activity – just records the number of steps
for each of the last 7 days. JH’s data help us answer the question of how
many weeks are needed to get a good estimate of his yearly activity.

(a) divide the 2010-2111 data into weeks, and derive a (somewhat over-
simplified) 1-way analysis of variance table, with week as the factor.

in this greatly oversimplified model, the numbers of steps (y) on any day
(j) within week w (i=1. . . 104) can be written as

yw,j = µ+ bw + εw,j

(b) For didactic purposes, treat the model as a random-effects one, i.e.,
with week as the random factor. Thus, the 104 bw’s are assumed to be
a random sample drawn from a N(0, σ2

w) distribution.15 Even though
they may have a lot of structure, treat the variations across days within
a week as uncorrelated ‘disturbances’ or ‘errors’ (εyr,w.y,j) with variance
σ2 but no structure (i.e. treat all ε’s as exchangeable, so that order of
observations within the same week is irrelevant – in the file, you only
need to know which week it is, not which day of the week. Clearly, there
may be strong intra-week patterns, but for now assume that you are not
even told which observation corresponds to which day of the week.

From the Expected Mean Squares (EMS) for this model16

15Using Roman b’s and Greek β’s to distinguish random effects from fixed effects is a
recent convention: it was not used when JH learned linear models.

16See also pages 4 and 5 of Notes on Introduction to Measurement Statistics, and pages 3
and 4 of the Notes on Quantifying Reliability (on the Resources website, under the heading
‘Measurement – Lecture Notes, etc’). ‘Weeks’ in the current example correspond to ‘persons’
or ‘subjects’ or ‘families’ in those examples.
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Source Sum of Squares df Mean Square EMS

Weeks SSw 103 SSw/df σ2 + 7σ2
w

Error SSe 104× 6 SSe/df σ2

use the method of moments to estimate the σ2
w and σ2 components.

(c) Using the results from (b), and the same overly simplified model, work
out the expected variance of estimators that average recordings from (i)
3 random days in 1 random week (ii) 1 random day in each of 3 random
weeks (iii) 3 random days in each of 3 random weeks.

(d) Could you have arrived at the results in (c) using the ‘Stepped-Up’
Reliability formula referred to in page 4 of the Quantifying Reliability
notes?

——–

See p7-8, week to week variability in JH’s average steps per day, 2010-11.

——–

16. Repeatability of a Test – and of the statistical analysis itself !

Refer to the report ‘A Novel Test of Endurance Running Performance’
in the Resources website [under the tab ‘Data from various repeatability
studies’]. as well as the data and R code.

(a) Redo the 2-way ANOVA ‘with participant and trial as main effects’
to see if you can reproduce the reported coefficient of variation.

(b) Use a 1-way ANOVA, with subjects as a random effect, and the 3
trials as replicates (i.e. ignoring the order) and calculate an over-
all coefficient of variation. [A very similar 1-way ANOVA is shown
in the 1st column of page 6 of the ‘Introduction to Measurement
Statistics’ Notes on the Resources website. Page 11 of the Notes
‘Quantifying Reliability’ has an example with 2 measurements per
family, but the principle is the same.]
Which makes more sense to you, the CV based on their 2-way
ANOVA, or yours based on a 1-way ANOVA?

(c) Calculate subject-specific coefficients of variation (just as was re-
ported in Table 1 in the article on breath alcohol – the link to this
article can be found just above the one for the endurance test). Sum-
marize the 10 CVs using say the median and the range. Would you

report the ‘overall’ CV the authors did, or some summary of the 10
subject-specific ones? Give a reason for your choice.

(d) Use the results of the 1-way ANOVA17 to calculate an intra-class
correlation (ICC).

(e) In this setting, which makes more sense, a CV or an ICC? Why?

(f) Rerun the ICC code several times on random subsets of the subjects.
As you reduce the sample size to just 2 or 3, does the ICC stay
stable? Use the example to say what the ICC tells us that the CV
can not, and what the CV tells us that the ICC can not.

(g) How could one ‘rig’ (i.e., manipulate) the sample of subjects in the
breath alcohol study to (i) maximize (ii) minimize the ICC?

17. How reproducible and accurate are free smartphone apps to
track your steps, calories burned, distance and active time?

The letter ‘Accuracy of Smartphone Applications and Wearable Devices
for Tracking Physical Activity Data’ in JAMA in February 2015 [under
the tab ‘Data from various repeatability studies’] reports

This prospective study recruited healthy adults aged 18 years
or older through direct verbal outreach at a university. Partic-
ipants gave verbal informed consent to walk on a treadmill set
at 3.0 mph for 500 and 1500 steps, each twice, for no compensa-
tion. An observer (M.A.C.) counted steps using a tally counter
in August 2014. This study was approved by the University of
Pennsylvania institutional review board.
A convenience sample of 10 applications and devices was se-
lected from among the top sellers in the United States. On the
waistband, each participant wore the Digi-Walker SW-200 pe-
dometer (Yamax), which has been well validated for research,6
and 2 accelerometers: the Zip and One (Fitbit). On the wrist,
each wore 3 wearable devices: the Flex (Fitbit), the UP24
(Jawbone), and the Fuelband (Nike). In one pants pocket,
each carried an iPhone 5s (Apple) simultaneously running 3
iOS applications: Fitbit (Fitbit), Health Mate (Withings), and
Moves (ProtoGeo Oy). In the other pants pocket, each carried
the Galaxy S4 (Samsung Electronics) running 1 Android ap-
plication: Moves (ProtoGeo Oy).
Across all devices, 552 step count observations were recorded

17The R code supplied makes use of an ICC package, but it is always safer to check with
a worked example that a package you don’t know is doing what you want it to do.
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from 14 participants in 56 walking trials. Participants were
71.4% female, had a mean (SD) age of 28.1 (6.2) years, and
had a mean (SD) self-reported body mass index (calculated as
weight in kilograms divided by height in meters squared) of
22.7 (1.5).

Copyright 2015 American Medical Association. All rights reserved.

Letters

RESEARCH LETTER

Accuracy of Smartphone Applications and Wearable
Devices for Tracking Physical Activity Data
Despite the potential of pedometers to increase physical ac-
tivity and improve health,1 there is little evidence of broad
adoption by the general population. In contrast, nearly two-
thirds of adults in the United States own a smartphone2 and
technology advancements have enabled these devices to track
health behaviors such as physical activity and provide conve-
nient feedback.3 New wearable devices that may have more
consumer appeal have also been developed.

Even though these devices and applications might bet-
ter engage individuals in their health, for example through
workplace wellness programs,3 there has been little evalua-
tion of their use.3-5 The objective of this study was to evalu-
ate the accuracy of smartphone applications and wearable
devices compared with direct observation of step counts, a
metric successfully used in interventions to improve clinical
outcomes.1

Methods | This prospective study recruited healthy adults aged
18 years or older through direct verbal outreach at a univer-
sity. Participants gave verbal informed consent to walk on a
treadmill set at 3.0 mph for 500 and 1500 steps, each twice,
for no compensation. An observer (M.A.C.) counted steps using
a tally counter in August 2014. This study was approved by the
University of Pennsylvania institutional review board.

A convenience sample of 10 applications and devices was
selected from among the top sellers in the United States. On
the waistband, each participant wore the Digi-Walker SW-200
pedometer (Yamax), which has been well validated for
research,6 and 2 accelerometers: the Zip and One (Fitbit). On
the wrist, each wore 3 wearable devices: the Flex (Fitbit), the
UP24 (Jawbone), and the Fuelband (Nike). In one pants pocket,
each carried an iPhone 5s (Apple) simultaneously running 3 iOS
applications: Fitbit (Fitbit), Health Mate (Withings), and Moves
(ProtoGeo Oy). In the other pants pocket, each carried the Gal-
axy S4 (Samsung Electronics) running 1 Android application:
Moves (ProtoGeo Oy).

At the end of each trial, step counts from each device were
recorded. In rare instances that a device was not properly set
to record steps (8 of 560 observations), these data were not in-
cluded. The mean step count and standard deviation for each
device was estimated using Excel (Microsoft).

Results | Across all devices, 552 step count observations were
recorded from 14 participants in 56 walking trials. Partici-
pants were 71.4% female, had a mean (SD) age of 28.1 (6.2) years,
and had a mean (SD) self-reported body mass index (calcu-
lated as weight in kilograms divided by height in meters
squared) of 22.7 (1.5).

Figure 1 shows the results for the 500 step trials by device
and Figure 2 shows the results for the 1500 step trials. Com-
pared with direct observation, the relative difference in mean
step count ranged from −0.3% to 1.0% for the pedometer and
accelerometers, −22.7% to −1.5% for the wearable devices, and
−6.7% to 6.2% for smartphone applications. Findings were
mostly consistent between the 500 and 1500 step trials.

Discussion | We found that many smartphone applications and
wearable devices were accurate for tracking step counts. Data
from smartphones were only slightly different than observed
step counts, but could be higher or lower. Wearable devices dif-
fered more and 1 device reported step counts more than 20%
lower than observed. Step counts are often used to derive other
measures of physical activity, such as distance or calories

Figure 1. Device Outcomes for the 500 Step Trials

300 600200 500400
Mean No. of Steps

Device
No. of

Observations
Galaxy S4 Moves App 27
iPhone 5s Moves App 28
iPhone 5s Health Mate App 28
iPhone 5s Fitbit App 28
Nike Fuelband 28
Jawbone UP24 28
Fitbit Flex 28
Fitbit One 27
Fitbit Zip 27
Digi-Walker SW-200 28

The vertical dotted line depicts the observed step count. The error bars
indicate ±1 SD.

Figure 2. Device Outcomes for the 1500 Step Trials

2000500 15001000
Mean No. of Steps

Device
No. of

Observations
Galaxy S4 Moves App 28
iPhone 5s Moves App 28
iPhone 5s Health Mate App 27
iPhone 5s Fitbit App 27
Nike Fuelband 28
Jawbone UP24 28
Fitbit Flex 28
Fitbit One 26
Fitbit Zip 27
Digi-Walker SW-200 28

The vertical dotted line depicts the observed step count. The error bars
indicate ±1 SD.
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Figure 1 shows the results for the 500 step trials by device and
Figure 2 shows the results for the 1500 step trials. Compared with direct
observation, the relative difference in mean step count ranged from -
0.3% to 1.0% for the pedometer and accelerometers, -22.7% to -1.5% for
the wearable devices, and -6.7% to 6.2% for smartphone applications.
Findings were mostly consistent between the 500 and 1500 step trials.

(a) Rewrite the authors findings using the words ‘under-’ and ‘over-
counted.’

(b) For which instruments is there evidence that this ‘bias’ is non-zero?
You can use your eye to determine the means and SDs, or use the
ones in the .pdf file shared by senior author (‘I’m attaching the
raw data that we have to share’) and available on the course website.

(c) The data summaries were in response to an email from JH to the
author, asking if there was ‘any chance you would be able to share
the Excel file of raw data, so we should see if the deviations from the
target were all over the place, or peculiar to a few people or a few de-
vices. I can imagine the pockets on some people being a bit deep and
wide.. and that the machines in them slosh around – I sometimes
keep my $20 dollar step counter in my pocket instead of on my belt.’

Imagine that the author had shared these data as 552 separate lines,
each one containing a step count, a participant ID (1-14), the target
(500 or 1500), the occasion (1st or 2nd) and the name of the devise.18

Write out a plan for analyzing them, including the model you would
use, the meaning of each component (parameter) in the statistical
model, how you would estimate each component, a table of results
(use made up, but realistic numbers), and a sketch of one or more
graphs that would quickly tell the same story.

(d) In the Fall of 2016, the EPIB601 class carried out its own inves-
tigations. The Epidemiology teacher tested an app called Pacer -
Pedometer plus Weight Loss and BMI Tracker By Pacer Health, Inc
that is available for free for both the iPhone and Android devices.
Dr Patel (senior author of the letter) ‘particularly like[d] Withings
HealthMate because it has a good user interface and works with

18At the end of each trial, step counts from each device were recorded. In rare instances
that a device was not properly set to record steps (8 of 560 observations), these data were
not included. The mean step count and standard deviation for each device was estimated
using Excel (Microsoft). Across all devices, 552 step count observations were recorded from
14 participants in 56 walking trials.
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both iPhones and Androids. Fitbit is also good but works with a
limited set of Androids.’

For the BIOS601 of 2016, students were asked to prepared to par-
ticipate in a planning session, where together they would design
(and subsequently carry out) their our investigation into the repro-
ducibility and validity of a few smartphone apps with respect to
steps, distance, calories, etc

18. Reaction times

The orientational material below is from the sleepstudy data
re-analyzed in Ch. 3 of the excellent (online) book ‘lme4:
Mixed-effects modeling with R, dated June 25 2010, by Dou-
glas M. Bates. The data are included in the lme4 package –
and were used again in the 2017 Epidemiology (teaching) article
Sample Size Estimation for Random-effects Models: Balancing Precision
and Feasibility in Panel Studies by Weichenthal, Baumgartner and Han-
ley.

Belenky et al. [2003] report on a study of the effects of sleep
deprivation on reaction time for a number of subjects chosen
from a population of long- distance truck drivers. These sub-
jects were divided into groups that were allowed only a limited
amount of sleep each night. We consider here the group of 18
subjects who were restricted to three hours of sleep per night
for the first ten days of the trial. Each subject’s reaction time
was measured several times on each day of the trial.
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‘Average reaction time versus number of days of sleep deprivation by subject

for the sleepstudy data. Each subject’s data are shown in a separate panel,

along with a simple linear regression line fit to the data in that panel. The

panels are ordered, from left to right along rows starting at the bottom row,

by increasing intercept of these per-subject linear regression lines. The subject

number is given in the strip above the panel.’

The 2003 article [European Sleep Research Society, J. Sleep Res., 12,
1-12] that Bates cites is more specific about the Psychomotor vigilance
test (PVT), and the number of trials (JH estimates 100 or so) that went
into each datapoint shown in the graph [note that Bates used the average
response latency whereas Belenky used its reciprocal.]

The PVT measures simple reaction time to a visual stimulus,
presented approximately 10 times/minute (interstimulus inter-
val varied from 2 to 10 s in 2-s increments) for 10 min and
implemented in a thumb-operated, hand-held device (Dinges
and Powell 1985). Subjects attended to the LED timer display
on the device and pressed the response button with the pre-
ferred thumb as quickly as possible after the appearance of the
visual stimulus. The visual stimulus was the LED timer turn-
ing on and incrementing from 0 at 1-ms intervals. In response
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to the subject’s button press, the LED timer display stopped
incrementing and displayed the subject’s response latency for
0.5 s, providing trial-by-trial performance feedback. At the
end of this 0.5-s interval the display turned off for the remain-
der of the foreperiod preceding the next stimulus. Foreperiods
varied randomly from 2 to 10 s. Dependent measures, aver-
aged or summed across the 10-min PVT session, included mean
speed (reciprocal of average response latency), number of lapses
(lapse = response latency exceeding 500 ms), and mean speed
for the fastest 10% of all responses.

In bios601, each of you will make some rough (‘amateur’)
reaction time measurements, so as to learn what your reac-
tion times are like, and to plan a study into whether they
are faster when using your dominant rather than your non-
dominant hand.

The 2003 measurements relied on a thumb-operated, hand-held device
and a microcomputer program described in 1985.

To make your own measurements, you can choose this quite in-
tuitive web tool https://faculty.washington.edu/chudler/java/

redgreen.html – and use either the keyboard or the mouse/trackpad.
It only performs and shows the results of 5 trials at a time. So – since
you will need to calculate the mean and SD of 10 individual times – you
will need to copy the individual times into R, 5 at a time.

[To get around this, JH wrote a simple R program that may not be as
accurate or fancy but that stores the individual times from however many
you do into a vector. Links to web-based tools, and to some scholarly and
newspaper articles on reaction times) are available under Online Tools on
the webpage for the Resources for measurement.]

The main objective is to gain experience with ‘hands on’ data, and with
sample size planning, so try both tools and choose between them.

[If you have energy to spare, you can try to empirically determine how
closely this R-based instrument and the web-based instrument agree.]

Before running the measurements, be sure to practice first.

(a) Run 10 trials using your dominant hand, and calculate the mean
reaction time, the SD, and the SE of the mean (SEM).

Convert the SEM into a coefficient of variation (CV19). How does
this CV (which measures the ‘instability’ of the mean) relate to the

19When reporting a CV, it is customary to do it so as a percentage

CV for individual measurements?

Use the SEM to calculate a 95% confidence interval to accompany
your point estimate of the true mean. Why use a larger-than-1.96
multiplier to calculate the margin of error?

(b) Suppose you wished to perform enough trials that the margin of
error would to be less than 5% of the mean. Using the SD (or
SEM, or CV) you already obtained20, calculate how many trials
you would need.

Guidance on such sample size considerations (JH prefers this term
over sample size requirements) can be found in section 4 of his
bios601 Notes on Mean/quartile of a quantitative variable:- models
/ inference / planning

(c) Suppose you wished to (i) test whether, or (ii) measure how much,
the mean of reaction times (r.t.) obtained with your dominant hand
(D) differs from the mean of reaction times obtained with your
non-dominant hand (ND).

You will make n measurements with each hand. Assume that there
is no ‘fatigue factor’ or ‘order-of-testing’ effect, so that it doesn’t
matter whether you first do the n with one hand and then the
n with the other. [If there were a fatigue factor, or order effect,
then we would want to think of other designs, possibly involving
pairing/blocking].

The 2 n’s may be large enough that the relevant sampling distribu-
tion of the difference of two independent sample means (Student’s
t) is close to a Z distribution; otherwise, use trial and error. Also
assume that the variability is about the same in both r.t. series.

For (i) you will use a 95% confidence interval for the difference of
two unknown means, µD − µND.

For (ii) you will use the test statistic r.t.D − r.t.ND

SE of this difference , and

α = 0.05 (2-sided).

20Of course, if you were to run that many trials, there is no guarantee that the SD would
be the same as the SD you got for the 10 – it could be higher or it could be lower. But use
the SD of the 10 as the best guess for planning purposes
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For the estimated difference determine the n per hand that would
yield a margin of error of at most: 10 milliseconds; 5 milliseconds.

For the statistical test determine the n per hand that would give
you an 80% chance of obtaining a ‘statistically significant’ test
result if the true difference in milliseconds were: 5, 10, 25.

For the statistical test, also determine the chance of obtaining a
‘statistically significant’ test result (the statistical ‘power’, or 1-β)
if each n is fixed at 25, but the true difference in milliseconds was:
1, 5, 10, 25.

What if the SD you used for planning was too large? too large?

(d) Do a few trials using the tool
https://www.justpark.com/creative/reaction-time-test/

that was featured in the newspaper story
‘Brain test judges how old you are based on your reaction time.’

Consider their reaction-time vs. age curve, and how it was fitted.
The website don’t say (i) how they selected the 2,000 people aged
18 and above that they surveyed, or (ii) how many trials they asked
each of them to do.

As for (i), describe one scenario where the curve they obtained
would be ‘flatter’ than the one that would be obtained if represen-
tative population-based samples were recruited at each age.

Suppose21 that each of the very large number of subjects in each
1-year-wide age-bin was tested a very large number of times.
Suppose then that within each age-bin we sorted the persons from
slowest to fastest and selected the ‘median’ (middlemost) person.
Suppose further22 that from age 25 to age 64, these medians made
an almost perfect straight line with slope 2 ms per year of age, or
0.5 years of age per ms of response latency if we plot age on the
vertical (y) axis and response latency on the horizontal (x) axis.

21This ideal universe where subjects are easily recruited, and have lots of patience and
can maintain their attention over a very large number of trials, is just for didactic purposes.

22Now we are really dreaming! While we are at it, we will assume symmetric age-specific
distributions.

For now, we will retain these 40 people from this ‘ideal’ world.
As for (ii), we will ask them to make just 1 trial each, and (like
the website) use these 40 values to fit the LS line of age(y) upon
latency(x).

Assuming within-person variation of the same magnitude as
in your own set of measurements, what is your best estimate of
what the fitted slope will be? Hint : remember some earlier exercises.

The above scenario selected the median person in each bin. If
you picked one random person from each bin, what is your best
estimate of what the fitted slope will be? (State your assumptions).

Write a few sentences summarizing why (even if their sample of
subjects is representative) the age-latency graph in the website may
be inaccurate, and in what respect.

(e) What if each median-person’s latency was measured perfectly (large
n), but ages were in bins (intervals) 5 years wide (so that, e.g., the
persons aged 25, 26, 27, 28 and 29 are put at age 27), and we fitted
the LS line of latency(y) upon the midpoint (x) of each age bin?

Note re terminology:

In the situation where x = latency, the errors in measuring the true
X values are uncorrelated with these true values of X. This is called
the classical ‘errors in X’ situation. It is the nastier case.

X = true value; x = X + εX ,with εX ⊥ X

In the situation where x = the mid-age of the bin, the errors in
measuring the true X values (ages) are correlated with the true
values of X, but uncorrelated with the observed x’s. This is called
the Berkson ‘errors in X’ situation. It is less nasty, but it does
increase the (sampling) variability of the estimated slope.

X = true value; x = X + εX ,with εX ⊥ x

JH’s favourite example of Berkson error (one he adapted for the
earlier exercise on F v.s C temperatures) is one that may have come
from Berkson himself: An investigator wished to measure tempera-
tures in an oven at various times.
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• An unreliable thermometer, i.e., one that gives readings that fall
equally on both sides of the truth, would generate classical errors.

• The temperatures shown on the thermostat are as likely to be
above/below the true temperature at any given moment of interest;
as you can check, these would be Berkson errors.

For more on these topics, you might consult JH’s
Ch. 4 notes, Applied Linear Models, course 679, or the books
or presentation by the (measurement-expert) statistician Raymond
Carroll https://www.stat.tamu.edu/~carroll/talks/NCI_MEM_Call.pdf

19. Instead of measuring heights with a tape, how about using a
smartphone app? Q. prompted in 2019 by revisiting Pearson’s protocol, and by

this piece, https://lifehacker.com/which-ar-measuring-app-is-more-accurate-1827242756,

found when searching ’measuring heights smartphone’. As of 2020, one can find
this for the iPhone, iPad, or iPod touch. Think about ways to test its
validity and reproducibility.

20. Who seems to age faster? The following are the reported ages of the
40 students in JH’s course 513-607 (Inferential Statistics) in 1986.

AGE.1986 = c( rep(22,4), 23, 25, rep(26,3), rep(27,4), rep(28,3),

rep(29,2), rep(30,5), rep(31,4), rep(32,2),

rep(33,2), rep(34,2), 35, 36, 37, rep(38,2), 39,42 )

(a) Make a new variate AGE.1999 from the AGE.1986 variate.

(b) use the lm function to estimate, from the regression of AGE.1999

on AGE.1986, how much these students aged in the intervening 13
years.

(c) Notice the use of uppercase AGE to denote the true age. What if
these 40 students had reported their 1986 ages as their true 1986
ages ± 5 years (with the - or + determined at random, without re-
gard to the person’s true age)? i.e. as (say) age.1986 = AGE.1986

+ 5*sample(c(-1,1), 40, replace=TRUE). Note the use of lower-
case age to denote the ‘error-containing’ value [In the measurement
error literature, and in JH”s notes, it is common to use X and Y
for the true values and X∗ and Y ∗, or X ′ and Y ′, for the error-
containing values.]

Now, again, use the lm function to estimate, from the regression
of AGE.1999 on age.1986, how much these students aged in the
intervening 13 years, and who aged the most and who the least.

Comment on your findings, and give a non-technical explanation
that your engineer-sibling would understand.

You might want to simulate several age.1986 vectors to convince
yourself that the effects are reproducible. Or – if keen on algebra –
work out how much, on average, the attenuation is.

(d) Apply the lm function again, but this time with AGE.1999 -

age.1986 as the ‘y’ variate, and age.1986 as the ‘x’ variate. Com-
ment.

21. Some ‘big-ticket’ epidemiology examples. Refer to the 1997 arti-
cle The INTERSALT study: background, methods, findings, and im-
plications. Am. J. Clin. Nutr. 65, 626S?642S. by J Stamler23 It
is available here: http://www.biostat.mcgill.ca/hanley/bios601/

Surveys/interSALT.pdf

The last 2 columns of Table 2 on p630S are entitled ‘Observed coefficient
as percentage of true coefficient’ when there is one measurement and when
there are four. The footnote explains how it is calculated from the ratio of
the intra- to inter-individual variance and the number of measurements.

(a) Verify the calculations for 24-h Urinary Na excretion.

(b) Suppose you had the ICC (rather than the Intra- to inter- variance)
as the column header. Alter the wording of the footnote accordingly.

(c) What is the relation between these and the ‘stepped-ip reliability’
measures addressed in question 7?

(d) Show how the numbers in row 2 of Table 3 were derived from those
in row 1.

(e) Use JH’s daily daily steps in 2010 (see Q. 15) to work out an ‘intra-’
variance. We will assume JH’s intra- is typical of the ‘intra-’ variance
of other people of JH’s age.

(f) We don’t have average steps per day for that year for many other
people his age, but assume we did have it for a large number of in-
dividuals, and that the mean of this large number of person-specific
yearly averages is 6,000 steps/day, and the (inter-individual) SD is
2,000 steps/day. Using this SD, and the results from (c), to add a
row, entitled say ‘activity, measured as steps/day,’ to Table 2.

23cited on p. 72. of Chapter 4 (Principles of measurement) of Cox and
Donnelly’s 2011 book Principles of Applied Statistics, available as an eBook
from McGill. https://www-cambridge-org.proxy3.library.mcgill.ca/core/books/

principles-of-applied-statistics/E7225E64F86B2C8193CA3C57621B6338.
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(g) Comment on the slope for the leftmost portions of the relation-
ship in the top left panel (Total physical activity (cpm)) of Fig-
ure 2 of the article “Dose-response associations between accelerom-
etry measured physical activity and sedentary time and all cause
mortality: systematic review and harmonised meta-analysis.” The
file is here: http://www.biostat.mcgill.ca/hanley/bios601/

Surveys/PhysActivityAllCauseMortality.pdf Since the y axis
is on a log scale, it shows log(Hazard ratio) v.s physical activity as
being approximately linear for the early part.

Try to de-attenuate the slope, by assuming (a bit unrealistically)
that the measurements shown on the X axis are based on 7 random
days over a year, and that the intra- to inter- variance ratio you
calculated in part (d) applies to the Total physical activity (cpm)
measurements in this study.

(h) Refer to the article “Association of Office and Ambulatory Blood
Pressure With Mortality and Cardiovascular Outcomes.” The file is
here http://www.biostat.mcgill.ca/hanley/bios601/Surveys/
BP-1-time-24-hr.pdf Which blood pressure index would you ex-
pect to have the strongest relationship with mortality rates, and
why? Are your expectations borne out?

22. Measuring COVID-19 Antibody Seroprevalence in Santa Clara
County, California in early April 2020:

The following is adapted from the full report of April 11.

Methods: In early April, 2020, California investigators tested Santa
Clara county residents for antibodies to SARS-CoV-2 using an immunoas-
say. Participants were recruited using Facebook ads targeting a represen-
tative sample of the county by demographic and geographic character-
istics. They reported the prevalence of antibodies to SARS-CoV-2 in a
sample of 3,330 people [2,718 adults and 612 children], adjusting for zip
code, sex, and race/ethnicity. They also adjusted for test performance
characteristics using 3 different estimates: (i) the test manufacturer’s
data, (ii) a sample of 37 positive and 30 negative controls tested at Stan-
ford University, and (iii) a combination of both.
Results: The unadjusted (crude) prevalence of antibodies to SARS-CoV-
2 in Santa Clara County was [50/3,330 =] 1.50% (exact binomial 95CI
1.11-1.97%) [A], and the population-weighted prevalence was 2.81% (95CI
2.24-3.37%) [B]. Under the three scenarios for test performance character-
istics, the population prevalence of COVID-19 in Santa Clara ranged from
2.49% (95CI 1.80-3.17%) to 4.16% (2.58-5.70%) [C]. These prevalence es-
timates represent a range between 48,000 and 81,000 people infected in

Santa Clara County by early April, 50- 85-fold more than the number of
confirmed cases. [taken from April 11 report]

The questions below are taken directly from the Part A (bios700) exam
of August 4, 2020.

For questions a-f, ignore the misleading wording in A and B, which refer
to the proportion of positive tests (there were 50 positive tests), not the
prevalence of antibodies. (In the statistical analyses section, they use the
term ‘frequencies of positive tests as a proportion of the sample size.’)

(a) Explain how the exact binomial CI in [A] is calculated. How different
is it in this instance from the usual ‘non-exact’ test?

(b) Give a reason why neither the ‘exact’ nor the ‘inexact’ CI around
the 1.5% is relevant. (You might delay answering until you have
been through the remaining questions)

(c) Explain in more detail how you think they arrived at [B], i.e., the
prevalence of 2.81% and the 95% CI 2.24-3.37.

(d) Given that there are 57 zip codes, do you see any issues in calculating
a SE? Explain.

(e) Suggest one other way of arriving at a point and interval es-
timate of the county percentage [incidentally, besides the non-
representativeness of the sample with respect to zip code, sex, and
race/ethnicity mismatches, the age distribution of the sample did
not match that of the county either.]

(f) They say in the main text that their 2.24-3.37 CI around the 2.81%
was computed ‘without clustering the standard errors for members
of the same household’ and that it was 1.45-4.16 when this clustering
was taken into account. Explain why the CI that takes account of
the household clustering is the more appropriate of the two, why it
is wider, and one way you would calculate it.

(g) In A and B, by using the terms ‘test positivity’ and ‘prevalence’
interchangeably, the authors are implicitly assuming that the test
is perfect, i.e., always positive when antibodies are present (100%
sensitive), and always negative when antibodies are absent (100%
specific). In C, they “adjusted the prevalence for test sensitivity
and specificity. Because the SARS-CoV-2 assays are new, [they]
applied three scenarios of test kit sensitivity and specificity.” The
first scenario used the manufacturer’s validation data (sensitivity
91.8%; specificity 99.5%).’

i. (Unrealistically) for now, take the given se and sp values as
having negligible sampling error, and ignore the fact that the
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sample of 3,330 is not representative of the county. Derive the
estimating equation whose solution gives the Maximum Likeli-
hood estimate of the population prevalence, θ. (You don’t need
to solve the estimating equation.)

ii. You can get to the same estimating equation faster by the
method of moments, so what is the advantage of going the ML
route?

iii. In fact, the manufacturer’s 91.8% sensitivity was the proportion
78/85, and the 99.5% specificity was 369/371. The smaller pilot
dataset from Stanford gave se = 25/37 = 67.6% and sp = 30/30
= 100%. How would you incorporate the inherent sampling
error in se and sp into the CIs for θ.

(h) The concepts of sensitivity and specificity are typically taught in the
context of positive and negative predictive values of diagnostic tests.
In this SARS-CoV-2 immunoassay context, what would predictive
values refer to? And how does this focus differ from the focus of the
Santa Clara study?

The first version of the report was the subject of a
very extensive statistical blog (as well as many many politically-based)
ones.

These resulted in a second version, that prompted another round of sta-
tistical attention, and even a full paper. This topic is an old one, and
just-now-retired McGill biostatistics professor Lawrence Joseph played a
pioneering role – well before prevalence estimation became so important.
Interestingly, the references in the full paper don’t go back many years.

For a newer [as of July 28, but this topic is moving fast!] report covering
more space and time, see this JAMA article Seroprevalence of Antibodies
to SARS-CoV-2 in 10 Sites in the United States, March 23-May 12, 2020.

You will see that a key driver remains the specificity of the test, and its
critical presence in both the numerator and denominator of the prevalence
estimator.

As you will find by Googling say ‘dashboard seroprevalence covid’ there
are now several dashboards, of variable quality, some showing interna-
tional comparisons. Here is one. It is not always clear if all of the re-
ported prevalences make the correction for the operating characteristics
of the tests used, or how estimates are combined, or how calendar time
is taken into account.

23. A 165-year rewind: John Snow’s data on cholera deaths in cus-
tomers of two Water Companies, South London, Fall 1854, and
his additional 1856 report:

Of the internet ‘shrines’ to John Snow and his work elucidating the mode
of transmission of cholera, the foremost, and the earliest is the UCLA site.
Others are the one at Michigan State University, maintained by
authors of the definitive biography of Snow, and the John Snow Society
at the London School of Hygiene and Tropical Medicine.

On JH’s site that he prepared for his lecture in the
EBOH 2014 lecture series for the public, you will find further ma-
terial and links.

While the full John Snow story is quite extensive, most courses limit
their coverage to the Broad Street Pump episode. Interestingly, in his
1855 book, Snow gave this fewer pages (and less weight?) to this than he
gave to the South London data, which arose from what he thought of as
‘The Grand Experiment.’ The account of this begins in what the UCLA
site calls part 3 of the (now online) recreation of the book. Snow’s own
observations began in 1832 in the coal mines in northeastern England
1849, and it was during the 1949 epidemic that he published his short
pamphlet. So you might want to start in 1849, and his section Influence
of the water supply on the epidemic of 1849, in London, and how he
exploited the fact of the ‘New water supply of the Lambeth Company,’
and the ‘ Intimate mixture of the water supply of the Lambeth
with that of the Southwark and Vauxhall Company’.

For this exercise, focus on the ‘Result of the inquiry as regards the first
four weeks of the epidemic in 1854’ – an inquiry he carried out by per-
sonally visiting the houses of the first 334 who died. The purpose was to
learn which water company (or other source) they received their water
from. The results are summarized in his Table VII. He went on to say:

According to a return which was made to Parliament, the
Southwark and Vauxhall Company supplied 40,046 houses from
January 1st to December 31st, 1853, and the Lambeth Com-
pany supplied 26,107 houses during the same period; conse-
quently, as 286 fatal attacks of cholera took place, in
the first four weeks of the epidemic, in houses supplied
by the former Company, and only 14 in houses supplied
by the latter, the proportion of fatal attacks to each 10,000
houses was as follows. Southwark and Vauxhall 71. Lambeth
5. The cholera was therefore fourteen times as fatal at
this period, amongst persons having the impure water
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of the Southwark and Vauxhall Company, as amongst
those having the purer water from Thames Ditton.

The additional tables extend the study to the end of the year, but he
considers the data from the first 4 weeks as the most trustworthy, and
also as the ones that gave the sharpest contrast (the least diluted by
information quality, and other factors: indeed the morality rate ratios
declined as larger time windows are considered).

He returns to this data quality issue in his J Public Health, Oct. 1856
article. The main purpose of his article was to use newer and more fine-
grained (district level) number-of-persons denominators than the overall
number-of-houses denominators available to him when he completed the
book at the end of 1854.

The main result was in Table V, which covered the entire 1854 epidemic,

In his discussion, he shows a keen insight – It is just as relevant today, in
the era of ‘Big Data’ – concerning the consequences of errors in data,
in this case the addresses of the persons in the Registrar General’s list
of deaths from cholera.24

[Big Data] ‘can bear no comparison in point of accuracy
to a personal inquiry, made on the spot, at the time of
the epidemic.’

It concerns the quality of the numerators, ie. how the cholera deaths
might have been (mis)classified into the (wrong) water companies, espe-
cially as the addresses were collected by people who might have realized
how critical they would be in the clolera story.

24Samantha.

As we recount in this recent item “The 25-page appendix to his 1855 book
provided a detailed record of the 334 deaths from cholera that occurred
in South London between 8 July and 5 August 1854. According to Snow,
this information was included ‘as a guarantee that the water supply was
inquired into, and to afford any person who wishes it an opportunity of
verifying the results (p. 80)’. 6 The information that John Snow recorded
included the address at which each cholera-related death occurred, the
date of death, the occupation and the age of the deceased, the duration
of symptoms before death and the water source ( Figure 1 ).”

In that item, we recount another little-known fact: when the members of
the house could not supply evidence as to which was the water supplier,
he used a ‘high-tech’ method to determine it (1st column, p. 1795).

But, even though it is difficult to imagine that this would be a big isue to-
day, his 1856 article is quite concerned with the numbers of wrong
addresses.

.
11 IN THE SOUTH DISTRICTS OF LONDON. 

the spot, at the time of the epidemic. In the first place, 
throughout the greater part of Lambeth, Newington, and 
the Borough, the houses are either without numbers, or 
numbered very irregularly, and the numbers are liable to 
frequent change, as new houses are built,or older ones re-
painted; there are also frequently repetitions of the same 
number in the same street, and although, in some instances, 
the companies have returned the names of the occupiers, that 
can be of no assistance in the case of the poor, who occupy 
but one or two rooms, and form the greater bulk of the 
population. In the next place, the poor often furnish, unin-
tentionally, a wrong number to the registrar, even when the 
houses are regularly numbered. They know their own 
homes perfectly, but, having no occasion to refer to the 
number, they partially forget it;and, in the greater num-
ber of my personal inquiries, Ihad to call at two or three 
houses before Ifound the one in which the death occurred. 
For these reasons it follows that, in comparing the lists of the 
water supply with the lists of deaths, many errors must have 
occurred ; and as the deaths were six times as numerous in 
the houses supplied by the Southwark and Vauxhall Com-
pany as in those supplied by the Lambeth Company, the 
evident result would be that out of every six mistakes five 
would transfer a death from the former company to the latter, 
and only one would transfer a death from the latter com-
pany to the former. Another source of error, but operating 
to a less extent, is, that a number of persons who were at-
tacked with cholera in houses supplied by the Southwark 
Company died in the workhouses of St. Saviour's, Lambeth, 
and Newington, which were supplied by the Lambeth Corn-
pan. Itneed excite no surprise, therefore, that the supple-
mental inquiry, embodied in the recent Report, instead of 
showing a mortality of 160 and 27 for the population supplied 
by the two water companies, or a difference of 6 to 1, showed 
a mortality of 125 and 37 per 10,000, or a difference of only 
3| to 1. Itmust be obvious, however, independently of the 
above facts, that a difference of three and a-half to one would 
not explain the great difference in the mortality of the various 
districts and subdistricts. The epidemic of 1853 is included 
with that of 1854 in Mr.Simon's Report ;but as there were 
but few deaths in 1853, and those chiefly amongst the popu-
lation supplied by the Southwark Company, this circum-
stance would not much affect his results. 

It is probable that, when the facts brought to light by
this inquiry are sufficientiy known, no one will deny the in-

and with the consequences for the rate difference and the rate ratio:
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showing a mortality of 160 and 27 for the population supplied 
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a mortality of 125 and 37 per 10,000, or a difference of only 
3| to 1. Itmust be obvious, however, independently of the 
above facts, that a difference of three and a-half to one would 
not explain the great difference in the mortality of the various 
districts and subdistricts. The epidemic of 1853 is included 
with that of 1854 in Mr.Simon's Report ;but as there were 
but few deaths in 1853, and those chiefly amongst the popu-
lation supplied by the Southwark Company, this circum-
stance would not much affect his results. 

It is probable that, when the facts brought to light by
this inquiry are sufficientiy known, no one will deny the in-

Exercise for bios601

(a) Assume the numbers of deaths (4,267 and 473) in the columns of
Table V are correct. Let P be the probability that the address of a
diseased person is recorded correctly. Let it vary from perfect (1),
to ‘almost‘ (say 0.99), to 0.9 to 0.4. Assume also that the ‘mixing’ is
so intimate that there is no ‘clustering’ of water supplier by street.
Snow tells us that it was close to random:

In the sub-districts enumerated in the above table as being supplied by
both Companies, the mixing of the supply is of the most intimate kind.
The pipes of each Company go down all the streets, and into nearly all
the courts and alleys. A few houses are supplied by one Company and
a few by the other, according to the decision of the owner or occupier
at that time when the Water Companies were in active competition. In
many cases a single house has a supply different from that on either side.
Each company supplies both rich and poor, both large houses and small;
there is no difference either in the condition or occupation of the persons
receiving the water of the different Companies.
The experiment, too, was on the grandest scale. No fewer than three
hundred thousand people of both sexes, of every age and occupation, and
of every rank and station, from gentlefolks down to the very poor, were
divided into two groups without their choice, and, in most cases, with-
out their knowledge; one group being supplied with water containing the
sewage of London, and, amongst it, whatever might have come from the
cholera patients, the other group having water quite free from such impu-
rity.
To turn this grand experiment to account, all that was required was to
learn the supply of water to each individual house where a fatal attack of
cholera might occur. I regret that, in the short days at the latter part of
last year, I could not spare the time to make the inquiry; and, indeed, I
was not fully aware, at that time, of the very intimate mixture of the sup-
ply of the two Water Companies, and the consequently important nature
of the desired inquiry.

Show what the ratio of the expected mortality rates would be if
the quality of the address reporting was as low as Snow suggested.
Since it is difficult to convert ‘in the greater number of my personal
inquiries, I had to call at two or three houses before I found the
one in which the death occurred ’ into an exact probability, compute
and plot/tabulate the ratio against the P =c(1, 0.99, (9:4)/10)

values suggested above. Some might call this a sensitivity analysis.

(b) Assume the split of the numbers of deaths is incorrect, i.e., that they
are already distorted by the errors in the addresses. Thus, your job is
to reverse-engineer what the correct split of the 4740 is. Repeat part
(a) but with the ‘truth’ starting at more extreme splits of the 4740
deaths than the 4,267:473 observed. If (say) P=0.9, what would the
true split (and thus the mortality ratio) have to be to produce the
‘observed’ ratio?

(c) What principles can you draw from this assignment, and how well
does the lesson fit with the ‘regression dilution’ examples earlier?

(d) Are these errors in the addresses ‘differential ’ or ‘non-differential ’?
Be careful with online definitions: the issues are subtle.

——

Snow mentions one other source of error – one he himself did not make
in his ‘shoe-leather’ epidemiology. He made sure to enquire about the
water supply in the house the person lived in before getting sick.
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the spot, at the time of the epidemic. In the first place, 
throughout the greater part of Lambeth, Newington, and 
the Borough, the houses are either without numbers, or 
numbered very irregularly, and the numbers are liable to 
frequent change, as new houses are built,or older ones re-
painted; there are also frequently repetitions of the same 
number in the same street, and although, in some instances, 
the companies have returned the names of the occupiers, that 
can be of no assistance in the case of the poor, who occupy 
but one or two rooms, and form the greater bulk of the 
population. In the next place, the poor often furnish, unin-
tentionally, a wrong number to the registrar, even when the 
houses are regularly numbered. They know their own 
homes perfectly, but, having no occasion to refer to the 
number, they partially forget it;and, in the greater num-
ber of my personal inquiries, Ihad to call at two or three 
houses before Ifound the one in which the death occurred. 
For these reasons it follows that, in comparing the lists of the 
water supply with the lists of deaths, many errors must have 
occurred ; and as the deaths were six times as numerous in 
the houses supplied by the Southwark and Vauxhall Com-
pany as in those supplied by the Lambeth Company, the 
evident result would be that out of every six mistakes five 
would transfer a death from the former company to the latter, 
and only one would transfer a death from the latter com-
pany to the former. Another source of error, but operating 
to a less extent, is, that a number of persons who were at-
tacked with cholera in houses supplied by the Southwark 
Company died in the workhouses of St. Saviour's, Lambeth, 
and Newington, which were supplied by the Lambeth Corn-
pan. Itneed excite no surprise, therefore, that the supple-
mental inquiry, embodied in the recent Report, instead of 
showing a mortality of 160 and 27 for the population supplied 
by the two water companies, or a difference of 6 to 1, showed 
a mortality of 125 and 37 per 10,000, or a difference of only 
3| to 1. Itmust be obvious, however, independently of the 
above facts, that a difference of three and a-half to one would 
not explain the great difference in the mortality of the various 
districts and subdistricts. The epidemic of 1853 is included 
with that of 1854 in Mr.Simon's Report ;but as there were 
but few deaths in 1853, and those chiefly amongst the popu-
lation supplied by the Southwark Company, this circum-
stance would not much affect his results. 

It is probable that, when the facts brought to light by
this inquiry are sufficientiy known, no one will deny the in-
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24. A more modern (but ? similar type of) example:

Suppose you were asked to calculate the difference in the mean
ages of death of the males and males in this dataset of
1,000 persons who died of Covid-19.

The 1000 ages were easy to extract, and had this distribution. But the
extraction of the names proved more difficult, and then (electronically
– or even manually) converting them to male and female posed added
some uncertainty. This link led JH to the gender package for R. Based
just on the first name, it can produce a probability of being male for each
person listed (of course, one could modify/override these based on any
additional information contained in each ‘blurb’).

How would you suggest these probabilities, p1 to p1000, (some of which
are near/at zero and 1, and some are intermediate) to calculate a point
and interval estimate of the difference in mean age at death?

25. Mixing of the ‘real’ and the ‘noise’

Refer to Fig 12.5 in the ‘online book’, section 12.7.2 (Measurement error),
link here for a colour-based depiction of the mixing of ‘true’ and ‘error’
distributions.

There, E has a ‘2-point distribution, namely -0.5 and +0.5, with equal
probabilities.’

Extend the diagram, and the VAR and ICC calculations, for the following
E distributions:

(a) 3-point distribution, namely -0.5, 0, and +0.5, with probabilities
1/4, 1/2, 1/4.

(b) 5-point distribution, namely -1, -0.5, 0, +0.5 and +1, with proba-
bilities 1/10, 2/10, 4/10, 2/10 and 1/10.

26. ‘Berkson’ error model

In your own words, explain why Berkson error in X does not flatten the
regression slope. Also, show it by algebra.

27. What was the point of each of the assignments?

For each of the assigned questions, use one sentence to describe what
you think the learning objective was; use another to describe in what
situations the concepts and techniques will be of use to you and to those
you will work with.

Endpieces

• Type IV error

http://en.wikipedia.org/wiki/Cavendish_experiment: in 1798 Cavendish found that the Earth’s

density was 5.448 ± 0.033 times that of water (due to a simple arithmetic error, found in

1821, the erroneous value 5.48 ± 0.038 appears in his paper).

• Scientific Method, Statistical Method and the Speed of Light

−−−−− Link

• Determinations of the parallax of the sun, the mean density of
the earth, and the speed of light

−−−−−Link

•A Historical View of Statistical Concepts in Psychology and Edu-
cational Research

−−−−− Stigler — Edgeworth (cited) — Peirce (cited)
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