CHAPTER 2

Some Key Assumptions

2.1 INTRODUCTION

|
In many experiments several types of observation’ are made on each
experimental unit. For example in comparing varieties of sugar beet,
yield of roots, yield of tops, yield of sugar, and poss1b1y plant number
would be measured, as well as perhaps observations:on the incidence of
disease, the frequency of bolting, and the chemical analysis of the sugar.
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In comparing methods of spinning wool yarn, it would be.common to

measure the yarn irregularity, the yarn strength, anh the end-breakage
tate in spinning, as well as possibly making tests on' fabric woven from
the yarns. In a preliminary account it is, however, convenient to suppose
that only one observation is made on ‘each experimental unit. This
observation may be derived by calculation from a number of experimental
readings. For example, measures of yarn irregularity are often obtained
by computing a so-called coefficient of variation from a trace showing
‘the changes in thickness along the length of the yarn. Again, in learning
experiments in experimental psychology, one observation for analysis is
usually a measure of the rate of learning. This is derived from the raw
data which consist, for example, of a record of success or failure at each
attempt at the experimental task.

The following assumption, or some simple modlﬁcatlon of it, underhes
the use of most of the designs described in this book. The observation
obtained when a particular treatment is applied to ,a particular experi-
mental unit is assumed to be

a quantity depending a quantity de‘pending

only on the + on the treatment )

particular unit used‘
and to be unaffected by the particular assignment Qf treatments to the
other units. This can be put more vividly as follows. Denote the
alternative treatments by the letters 7y, .. ., T}; then it is assumed that
the observation obtained on any unit when, say, 7} is‘r applied differs from
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the observation that would have been obtained had, say, T, been applied
by a constant, @, — a;. There are constants 4, ..., a;, one for each
treatment, and the object of the experiment is to estimate differences such
as a; — ap; we call such differences the true treatment effects.

The essential points about this assumption are that

(a) the treatment term in (1) adds on to the unit term rather than for
example, multiplying;

(b) the treatment effects are constant;

(c) the observation on one unit is unaffected by the treatment applied
to other units,
and these three points will be discussed separately in the subsequent
sections.

The assumption is particularly 1mportant if a full statistical analysis is
to be made of the observations. Tt is, however, still requlred even if the
experiment is analyzed just by calculating simple averages, in the sense
that a gross departure from the assumption will affect the whole qualita-
tive interpretation of the results. It is usually possible to check the
assumptions to a certain extent from the data, but never possible to avoid
completely making some assumption or other. Too much attention
should not be paid to the details of the following sections at a first reading.

2.2 ADDITIVITY

The first consequence of the additive law (1) is that the difference be-
tween two treatments, say 7; and Ty, is usually* appropriately estimated by

@

If the treatment effects and uncontrolled variations are relatively small
any functional law for combining unit and treatment terms would be
equivalent to the additive law (1) to a first approximation. In other
cases, however, it may be worth considering whether some other form
may not be more appropriate. The most important alternative form is
multiplicative, replacing expression (1) by

mean of all observations __ [mean of all observations
on T; on T, )

a quantity depending a quantity depending
only on the X on the treatment . 3)
particular unit used

If this is the appropriate form, we ' work with the logarithms of the original
observations. Since log (xy) = log x 4 log y, equation (3) is thereby
converted into form (1).

* The exceptions are incomplete block designs (Chapter 11) and certain types of
confounded design (Chapter 12).
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Example 2.1. In Example 1.4 we discussed briefly a simi)le comparative assay

for measuring the potency of a drug by comparison with a standard. A natural
working hypothesis is that any dose « of the experimental drug is equivalent in
all relevant respects to a dose pz of the standard, where p lis the potency of the
drug with respect to the standard and is constant. Or equivalently the tolerance
of an animal (say in mg) for the experimental drug is 1 /,d“ times what it would
have been with the standard. This is of the form (3) and is reduced to (1) by
working with log tolerances rather than with tolerances. ! N

Example 2.2. Consider a field trial comparing the eéfect of a number of
alternative treatments on the incidence of a certain disease. The treatments are
applied one to each plot and after a suitable time the disease is measured, say

" by counting the number of diseased plants out of one hundred on each plot.
It is reasonable to expect that if the proportion diseased varies appreciably over
the whole experiment, the difference between proportion diseased for two
treatments will be rather greater when the level of disease is fairly high than
when it is low, However if the level of disease is very high, it may be that all
treatments are ineffective so that differences between treatments decrease again.

At any rate there seems to be no general reason for expecting a constant
additive effect for one treatment as compared with another. There are several
ways of proceeding. If the experiment is divided into sq’ctions within each of
which the natural level of disease is fairly constant, it would be reasonable to
estimate treatment differences separately for each section. : Then by comparing
the estimates with the overall level of disease for the section, the change, if any,
of treatment effects with level of disease could be assessed. This is probably
the best procedure, if it can be used; it amounts to allowingithe data to determine
the appropriate scale of measurement. Alternatively, if the proportion diseased
varied, say from 5 to 50 per cent, it might be reasonabl‘g to assume constant
proportional differences, and therefore to take logarithms. Or, occasionally,
more complicated assumptions might seem justifiable, such jas that the treatments
have a constant effect on the probit of the proportion diseased. [The probit is
a quantity derived by a particular mathematical transformation of a proportion
(Goulden, 1952, p. 395).]

Example 2.3. A rather similar example concerns fee“ding or management
trials on pigs. Suppose that two treatments 4 and B are under comparison
and that at the end of the experiment the pigs are examined by a judge and a
total score out of 100 assigned to each pig. Then, because of the upper limit
to the scale, the following might happen: a pig which would have scored 50
with treatment 4 would score 70 with treatment B, but a very good pig, which
would have scored 85 with treatment 4, would score 90 ;if given B. That is,
we are measuring on a scale on which the treatment effects are not additive.
A conventional way of attempting to deal with this is to work not with the total
score = but with log[(z + £)/(100} — 2)], which should often nullify the
restriction at the upper and lower ends of the scale. For two values a certain
distance apart and near the top, or bottom, of the scale differ much more after
transformation than do two values initially the same distance apart but near the
center of the scale. ! :

In all these examples the comparison of treatments by the mean differ-
ence (2) is valid in the narrow sense that this will estimate the average
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treatment difference over the units used in the experiment, i.e., the mean
observation that would have been obtained if 7; had been applied to all
units minus the corresponding mean for T,. But if the assumption (1)
does not hold, this difference is rather an artificial quantity. Thus in
Example 2.1 the difference in mean tolerances depends on the particular
animals, and if these vary appreciably in tolerance from laboratory to
laboratory a comparison of mean tolerances would not be independent of
laboratories. Moreover the mean difference, even if it was reproducible,
would not have the simple physical interpretation of the difference in
mean log tolerance, which estimates log p.

Again, to take an extreme case, suppose that the experiment in Example
2.2 happened to fall into two roughly equal parts:

(@) with an average proportion diseased of 10 per cent, T; giving 8 per
cent and T, 12 per cent on the average;

() with an average proportion diseased of 50 per cent, T; giving 40 per
cent and T3 60 per cent on the average.

Then an averaging of the proportions diseased would give a difference
between T, and Ty of 36 — 24 = 12 per cent. But this is clearly an
artificial figure that depends on the particular incidence of disease en-
countered in the experiment; it is in this case much more revealing to
say that T; gives a proportion £ of that corresponding to T,.

Of course this is an extreme and oversimplified example, but it has
been discussed to emphasize that the importance of the additive assumption
is not essentially connected with details of statistical technique. However
it would often happen that, if the experiment falls into sections with
different treatment effects, the amount and distribution of the uncontrolled
variation would be different in the different sections. A full statistical
analysis will involve differential weighting of the sections; this will not
be considered here.

Fortunately the complications that we have been considering are
frequently unimportant because, as remarked above, if the variations
involved are relatively small, the additive law (1), the multiplicative law
(3), and other similar laws are nearly equivalent. In many applications it
is probably enough to consider which of (3) and (1) is likely to be the more
appropriate and to take or not take logarithms accordingly.

2.3 CONSTANCY OF TREATMENT EFFECTS

In the previous section we discussed the assumption that the observa-
tions are measured on a scale on which the effect of treatments is repre-
sented by the addition of appropriate quantities rather than by some other
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functional law, such as multiplication, In this section we in effect
continue that discussion by considering other ways in which the treatment
effects can fail to be constant. ‘

First note that an additional completely random component added to
the treatment term in formula (1) is indistinguishable from a random
component added to the first, or unit, term and so can be disregarded,
provided that the distribution of the random component is the same for
all treatments. This possibility will not be discussed further. We shall

deal in detail with what happens when the treatmer‘lt effects depend on
the value of some supplementary measurement that can be made on each

unit.

Example 2.4.  Suppose that it is required to compare two alternative processes
A and B for extracting a product P from a raw material containing P in small
quantities. The experimental units are different batches of raw material and
the observation is the yield y of product. A supplementary observation z is
also made by obtaining for each batch before processing, an estimate of the
percentage of P in the batch, Then it might happen that the difference between
the processes depends on the amount of P, e.g., 4 may work relatively much
better when the raw material is rich in P. Information that this was so might
not only be important in deciding what practical action to take, but also might
throw some light on the fundamental reasons for process}“ differences. Further
the information might help to link the results with previous work in which,
perhaps, the content of P in the raw material was systematically different.

A comparison of the mean value of y for those units rec(‘L,eiving process 4 with
the corresponding mean for process B would, with correct design, always
estimate the mean process difference over the raw material used in the experiment.
Although this would usually be of some interest, it is clear from the previous
paragraph that such an overall difference may be only a ipartial description of
the difference between the processes. Unless there is good prior reason for
expecting the process difference to be constant, the data would therefore be
analyzed by plotting v against x, distinguishing between the results for the two
processes. This graphical analysis would be supplemented, if necessary, by
appropriate statistical calculations, such as the fitting of regression lines.
Attention would be paid to any change with « in the ranpom variation of y.

Another way of dealing with the results of this experiment would be to work
with y/x, which is proportional to the fraction of P in the raw material that is
extracted in processing; if the difference between treatments in the ratio were
expected to be constant, this would be the natural thing to do. However the
general remarks on the constancy of treatment effects would still be relevant.

This example illustrates the use of a supplementary observation to examine
whether a treatment difference is constant. A further use of supplementary
observations is to increase. precision, and this will be considered in detail in
Chapter 4. ‘

Example 2.5. Jellinek (1946) has described an experiment to compare three
drugs A, B, C for the relief of headaches, with a pharmacologically inactive
control D. Each subject used each drug for two weeks a‘Tnd one of the observa-

. tions was the success rate, i.e., the number of headaches-relieved divided by the
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number of headaches treated in the two-week period. Precautions, which need
not be gone into here, were taken to remove any effect of the order in which the
drugs were used. The first line of the table shows the mean success rates
averaged over all subjects. They suggest that 4, B, C are not appreciably
different and all have appreciably higher success rates than D.

TABLE 2.1
MEAN SUCCESS RATES
A B c D
All subjects 0.84 0.80 . 0.80 0.52
Subjects not responding to D 0.88 0.67 0.77 0
Subjects responding to D 0.82 0.87 0.82 0.86

"However the subjects fell quite sharply into two groups, those on whom D
had no effect and those who did respond to D. The second and third lines
of the table show the corresponding mean success rates. For subjects that do
respond to D, the four drugs have practically the same success rates, whereas
for those who do not respond to D, A4 has a higher success rate than C and a
much higher rate than B. Comparisons based on averages for all subjects are

. thus quite misleading. The difference between the two groups in the response

to the drugs is possibly due to a difference in type of headache.

. In this example the response to D is used to divide the experimental units
in a way similar to that in which the supplementary observations were used
in Example 2.4.

The general conclusion to be drawn from these examples is the desira-
bility of being able to detect variations in the treatment effects if these
are likely to be important. This means making supplementary observa-
tions where appropriate and, in other cases, assigning the treatments to
the units in such a way that the variations may be detected. Methods for
doing this will be discussed later. In most of the book it will, however,
be assumed, in accordance with (1), that the treatment effects are constant.

2.4 INTERFERENCE BETWEEN DIFFERENT UNITS

The last aspect of the assumption (1) to need discussion is the require-
ment that the observation on one unit should be unaffected by the
particular assignment of treatments to the other units, i.e., that there is no
“interference’’ between different units. In many experiments the different
units are physically distinct and the assumption is automatically satisfied.

- If, however, the same object is used as a unit several times, or if different

units are in physical contact, difficulties can arise and these will now be
illustrated by some examples.

Example 2.6. In the textile process called carding, an entangled mass of
fibers is passed over rotating cylinders carrying teeth, which straighten the fibers.
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Consider an expeériment to investigate the effect of various amounts of oil
applied to the raw material. The treatments are, say, four percentages of oil
and the experimental units are batches of raw material.. Now when a batch
with a high oil content is carded, some of the oil remains on the teeth, so that
the Tollowing batch, or at any rate the part of it carded first, receives in effect a
larger amount of oil than its nominal treatment implies; In other words the
observation on any unit is likely to depend not only on ithe treatment applied
to that unit but also on the treatment applied to the preceding unit and even,
in certain cases, on the unit two before. ! ’

One way of avoiding this difficulty is to follow each experimental batch by a
control batch sufficiently large to restore the amount of oil to a standard value or,
alternatively, to use large experimental batches and to make observations only
on the latter part of each batch, which is unlikely to be affected by the preceding
treatment. However, both these procedures, and particularly the first, would
very often not be economical ways of arranging the experi“ment. Instead it may
be preferable to accept the overlap of the treatment effects and to deal with it
in the design and analysis of the experiment. This is possible provided that it is
reasonabile to introduce a simple modification of (1), such é.s that the observation
on any unit is ‘

a quantity depending a quantity depending a ?:?ﬁg{rg:{);giltng
only on the +{ onthetreatment |+ a pplied to the .(4)
unit used ‘ . .
_preceding unit

This is plausible in the present example, provided that the oil contents investigated
do not vary over too wide a range. If (4) is accepted it is natural to arrange
that each treatment follows each other treatment (orf each treatment) the
same number of times. Then the systematic change caused by following the
highest oil content affects all treatments equally. Such designs are discussed in
Chapter 13. ‘

Example 2.7. Similar problems arise in investigating' the effect of different
diets on the milk yield of cattle. If each animal is fed on a constant diet there
is no difficulty, but it would often be preferable to change over the diets in the
course of the experiment and, if possible, to use each die"g once on each animal.
This would eliminate the effect of systematic differences between animals.

Thus, with three diets, one animal might receive diet 4 for the first two weeks,
diet B for the second two weeks, and diet C for the third. | The main observation
to be analyzed would be the milk yield determined as the average of two or
three days’ yield at the end of each two-week period. By thus taking observa-
tions at the end of each experimental period it would be hoped that a value
would be obtained characteristic only of the treatment applied during the period;
however, the overlap of the treatment effects might still occur and then difficulties
like those of the preceding example would arise and in paiticular the assumption
(4) might again be reasonable. It would also be necessary to ensure that for a
group of animals each treatment occurred equally frequently in each period.

The interference between different units in the above examples can be
coped with because it is of a simple form. Often, however, it is better
to go to some trouble to arrange that the diﬁ'ererflt units are isolated,
rather than to allow interference and to attempt to c}eal with it by a more
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subtle design. For example, in agricultural field trials, guard rows are
left between the different plots. Again, in an experiment in which some
plots are inoculated with virus-carrying aphids, while other plots are
untreated, it would be essential not only to leave substantial space between
treated and untreated plots but also, as far as is possible, to check that
there is no direct transmission of disease from one plot to another.

Competition may arise within an experimental unit, but this causes no
difficulty provided that it is representative of the conditions under investi-
gation. For example, in a poultry feeding trial, each unit might consist
of a number of birds kept together and feeding in common. If the food
islimited, large healthy birds may gain at the expense of others. However,
this will not invalidate the assumption of no interference between different
groups of birds, which is involved in (1).

In experimental psychology it is frequently required to use the same
subject as an experimental unit several times. In this field, however,
it often happens that the effect of one treatment on the subsequent
observations is not represented by anything as simple as the addition of
single constants as in equation (4). Babington Smith (1951) has described
experiments on the “Muller-Lyer’ illusion, which suggest that responses
are dependent in a rather complicated way on the whole sequence of
situations that have preceded them. Welford et al. (1950), in some
experiments on fatigue in aircrew, noted that subjects who first met a
task when tired continued to do it badly when fresh, whereas those who
first met it fresh went on doing it well when tired. Other similar effects
have been reported in the literature. In such cases either a special
hypothesis to replace (4) must be set up appropriate to the problem, or
the treatments must be taken as whole sequences of stimuli. These
experiments are mentioned here to emphasize that the simple law (4) may
not be adequate.

In the remainder of the book it will be assumed, unless explicitly stated
otherwise, that interference between different units is absent. If it is
suspected that such interference may arise, as when the same object is
used as an experimental unit more than once, or when different units are
in physical contact, either experimental precautions should be taken to
prevent the interference or special allowances should be made in the design
and analysis of the experiment.

SUMMARY

In most cases we estimate treatment differences by averaging observa-

" tions over the whole experiment. There are three points to be watched

if this is done, namely
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(a) that the observations should be analyzed on a scale on which the
treatment differences are relevant;

(b) that either only average treatment effects are ﬂeqmred or that the
treatment effects are constant. Special precautions! should be taken if
the treatment effects are expected to depend in an important way on the
value of some supplementary observation, or to be d’lﬁ'erent for different
groups of units;

(c) that the observation obtained on one unit should not be affected
by the treatment applied to other units.

In the ordinary way the second and third complications are assumed
absent, but if it is suspected that they may arise, they should be allowed
for both in the design and in the analysis of the experiment.
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