CHAPTERG®

Adjustments in Analysis

6.1 INTRODUCTION

When the principal confounding x variables have been noted, Fhe main
alternative to matching, as discussed in Section 5.1, is to make adjustments
in the course of the statistical analysis. The objectives remain the same—to
protect against bias and to increase the precision of the comparision
between treatment means or proportions.

In some situations an adjustment method is the only possibility because
matching is not feasible or is obviously unattractive. The economics of the
study may require that the x’s and y be mcasured simultaneously, after th_e
samples have been chosen, so that advance creation of matched samples is -
ruled out. As mentioned, matching is confined mainly to smaller-sample
and simpler studies, often two-group comparisons. Matching becomes
troublesome with large samples, when subjects enter the study only over an
extended time period, and also as the number of treatments to be compared
or the number of variables to be matched increases. ~

This chapter describes the principal methods of adjustment in the simp}er
situations. Where possible, comparisons of the performance of matc.hmg
and adjustment methods will be noted, since many studies could use either
method. Once again, the details of the adjustment method depend on thes
scales in which y and the x’s are measured.

6.2 y CONTINUOUS: x’s CLASSIFIED

With two populations we assume that the adjustment method starts with
independent random samples. Having selected the classified x variables for
which adjustment is to be made, we first arrange the data from the two
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samples into the cells created by this classification. Let the sample numbers
in the ith cell of the classification be n,; and n,,. The response means are y,,
and j,;, and the proportions (if y is 0 and 1) are p,; and p,,. The only
difference between this situation and within-class matching is that in the
latter, n,; = n,; = n, in every cell. , '

If d; = 3,; — 7,;, the estimates of the overall treatment difference for the
two methods are

- n;
d=7 _f2=27di

_ {matched samples)

and .
Ja = flé - }72a = Z u/;dx

The matched-sample weights, n,/n, weight each class mean by its class size, -
resulting in simply the difference between two means; the weights W, with
LW, =1, are chosen by the investigator; and the subscript a denotes
adjustment. In both methods any remaining bias arises from the fact that
E(d;) = 0 when the underlying confounding x variables have different
distributions in the two populations. If E(d;) were constant from cell to cell,
matching and adjustment would be equally effective in reducing bias for
any choice of weights W;. In fact, in the presence of bias, E(d,) varies from
cell to cell and is usually greater at the high and low extremes of the x
distributions than near the medians. However, for the weights likely to be
used in practice, within-class matching and adjustment may be regarded as
roughly equally effective in reducing bias. Matching, though, has the
advantage of a simpler estimate 7, — j, that avoids weighting,.

We now consider the choice of weights. Suppose first that the mean
difference 8 = 1, — 7, between the effects of the two treatments is the same
in every cell. It follows that in random samples any weighted mean XW.d, is
an estimate of 8, apart from within-cell bias in d,. If this situation holds, the
choice of weights may be determined by considering convenience or statisti-
cal precision. If, however, 1, — 7, = 8, varies from cell to cell, XWd;
becomes an estimate of XW,§;, a quantity whose value now depends on the
choice of weights. It may be clear on inspection of the data, particularly
with large samples, that there are real differences between the effects of the
treatments and that these differences vary from cell to cell. Section 6.4
discusses this further. For now, we assume § constant and discuss the
estimation and testing of 8. ,

If 62 and o2 are the two population variances within the ith cell,

(random samples)

1i 2i

v(d,) = V(X wd,) =ZW,-2(:—'2"+%22L)' (6:2.1)
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This variance is minimized by taking W, proportional to
1
W=
l olzi/nli + 05/ny;

Of course, W, = w,/Zw;,. The resultant minimum varianf:e is 1/Zw,. .

These general formulas are needed when assumptions of equah.ty of
within-class variances cannot be made. If all n,; and n,, exceed 30, choice of
w; inversely proportional to the estimated variance

b = 1 : (622)
" st/my; + 31/ M

. should do almost as well, where V(3,, — #,,) = 1/2W, [Meier (1953)].
Various particular cases arise when assumptions can be made zzlbout the
within-cell variances. In the formulas below, s?, s, s7, and s> are the

- 2 .
appropriate pooled estimates of o7, 0, 07, and o respectively

Mo
P . 629
1= %2 i s i ,
! (ny; + ny;)si
nn,;
2 =002 =0} H=—FH— (6.2.4)
0y = 015 0y 29 i 2+n's2
ny;8q 152
and
LNy
2, o= — 2 6.2.5
o =on=0% W (6.2.5)

- 2
(’{1: + ny)s .
In this case [(6.2.5)] it is customary to take w; = Wis? = nyngy/(ny + ny)

as relative weights. The variance of Xw/d,/Zw] is

52 52

f‘-"’? B Z[nlin2i/(nli + ”2i)]

Formula (6.2.5) is often used when the o? are thought not to vary much.
When the o2 vary little and the two total sample sizes are equal, the
simpler weights, w; proportional to n;; + n,; = n;, the combmed sample size
in cell i, seldom do much worse than the optimum weights nlz,-nz,./n,- in
(6.2.5) for this case. With weights proportional to n; and with o,; constant,
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for instance,

322(”?/”11'”2.') _

f}ya—ya' =
(=20 = H LS

(6.2.6)
In general, no simple statement can be made about the relative precision
of the comparison 7, — y, for matched samples and F1a — oo for adjusted
random samples both of total size n, because this depends on the way in
which the 62’s vary from cell to cell and-éh the choice of weights. However,
this comparison is of interest when any underlying x has the same distribu-
tion in the two populations. In this situation the purpose of matching or
adjustment is to increase precision, because there is no danger of bias. Any
difference in variances of 7, — 7, and 7,,, — J24 1s likely to be minor because
differences between n,, and n,, in any cell will arise only from random-sam-
pling variation. If n), = n,; = n,/2, then the variance of (6:2.6) becomes
4s%/¥n; as does the variance derived from the conditions of (6.2.5).

6.3 y BINOMIAL: x’s CLASSIFIED

The adjusted mean difference with two random samples is of the form
Lwi(P\; = Py;), where the p,; are the observed proportions of “ones” (suc-
cesses) in cell i. As with y continuous, the difference in effectiveness of
matching and adjustment depends on the within-cell biases and the choice
of the w,. The difference should be small for most choices of the w; in
practice.

In choosing the w; for an initial test of significance or estimation of an-
overall difference (ignoring within-cell bias), some theoretical issues have to -
be considered. As indicated in Section 5.10, the assumption of an additive.
model of the form

Py=ptm+y; Py=pt+tnty

is unreasonable on logical grounds, since the D,; must lie between 0 and
1. Most recent work on the analysis of proportions in multiple classifi-
cations has assumed an additive model in the scale of log(p,/q,;); where
4; = 1 — p,;. In this situation the investigator may still wish to estimate an
overall difference p, — p,, particularly if it is not clear that there is a real
differericé in treatment effects, so that a test of significance is desired.
Under an additive model in the logit scale, Cochran (1954) has shown
that an effective choice is to take w; proportional to nyn,,/n;, where
n; = ny; + ny,. An approximate test of significance of the null hypothesis,
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Py = py; (for all i), is made as follows. [This test does not fully address the
null hypothesis stated, but uses its assumptions. The test is directed to the
more-general null hypothesis Xw;( p;; — p,;) = 0, which includes the stated
null hypothesis.] With w;, = n;;n,,/n;, the weighted difference Xw,( p,; — p,;)
has approximate estimated variance

Zwipiq:'

where p; is the overall proportion of successes in cell i. The test is made by
treating

Ewi(ﬁli - 132.-)
(2Wiﬁi‘?i)l/2

as a normal deviate.

Two refinements by Mantel and Haenszel (1959), who also developed
this test from a different viewpoint, are worth using when some #n,; are
small, as often occurs. One technique involves inserting a correction for
continuity; the other uses a slightly different variance formula. In this form
the normal deviate for a test of significance is taken as

Izwx‘(ﬁli - 1521')' -3
[aninZiﬁiQi/(nli + ny; — 1)]1/2

If we conclude that there is a real overall difference, the null hypothesis
being rejected, and if we wish to attach a standard error to the weighted
mean difference w;( p,; — P,;)/2w;, then we can no longer regard p,; = p,;.
The estimated standard error of the weighted mean difference is

.. . 1/2
2 Prdu D2i42:
[ZW,- (”u = My — 1)] /EWi

6.4 TREATMENT DIFFERENCE VARYING FROM CELL TO CELL

In this situation the choice of weights should not be dictated by considera-
tions of precision, particularly in large-sample studies in which any reasona-
ble weighting gives adequate precision. Several situations in choosing weights
may arise. The investigator may find that on trying several likely sets of
weights, the estimates Xw,(7); — ;) or Xw,(p,; ~ p,;), while differing from
set to set, agree sufficiently well that any conclusions to be drawn, or any
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action to be taken, would be the same. If the' estimates disagree more

widely, the choice of weights is more critical. This problem is old and

familiar in vital statistics, for example, in the international comparision of

overall death rates. One device used there is to take the weights from some -
standard population that is regarded as a target population. The process of

adjustment is called standardization. To illustrate, Keyfitz (1966) reports

that the mortality rate for French females in 1962 exceeded the rate for

American females in 1963 by 14, 16, or, 51%, according to the different

standard populations used for weighting.

In the face of substantial differences between estimates based on differ-
ent sets of weights, any overall estimate 4 may be, to some extent, arbitrary
and liable to misinterpretation unless there is a specific target population
with known weights for which an éstimate of 8 is clearly relevant. Otherwise;
the most useful report on the data may be to summarize and try to interpret
how d; varies from cell to cell.

In both matched and independent samples, rough tests of the null
hypothesis that the 8, are the same in each cell are possible, and sometimes
helpful. The simplest case is one in which y is continuous and the within-cell
variance can be assumed constant. This is unlikely to be strictly true in
observational studies, but might not be seriously wrong. Let s denote the
pooled within-cell variance and

’
s Mta, g o o 5 _Ewd
W = n, i=Yu " s = Ty

Calculate the weighted sum of squares

(Zwild i )2

Q= Zwi’(di - ‘;a)z = Zwi’diz - W

(6.4.1)

With ¢ classes, assuming normality, the quantity Q/(c — 1)s? is distributed
on the null hypothesis as F with (¢ — 1) and (n, + n, — 2¢) d.f. (degrees of
freedom). Large values of F cause rejection of the null hypothesis.

With y binomial, and with y continuous, when within-cell variances vary,
a method is available which leads to a large-sample x? test. Let d; = 7,; — ;,
or py; — p,;- Compute an unbiased estimate of the variance of d; according
to the assumptions that seem reasonable. In the general case,

2

2
V(d,) = ;—'l’ + %22—' ( y continuous)
]

I
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and

V(d ) Plnqltl + D2 (y bmormal)
ny; ny—1

Assume Ww; = 1 / f’(d )- Then on the null hypothesis, ¥w;(d;, — d,,)? is ap-

prox1mate1y x? with (¢ — 1) d.f. where d,, = T#,d,. [Sometimes assumptions

such as those given in Egs. (6.2.3), (6.2. 4), and (6.2.5) seem natural and lead

to slightly different formulas.]

The large-sample x? test may be directed at more-specific alternatives by
breaking x2, or the numerator Q of F in (6.4.1), into components. For
instance, the ¢ cells might subdivide into three sets, with reason to expect d,
to be constant within each set, but to vary from set to set. Then x2is broken
down into four components—one for “between sets” and one for “within
each set.” Similarly, if the cells represent an ordered classification, with
scores z; assigned to the cells, the test of the linear regression of d; on z; may
be of interest. (Remember to take the different weights into account) Thus
in the linear-regression test for x? with 1 d.f., we calculate

R w (Zw,d,) (T2,
N =Y wdz, T,
' Tz, )?
D = s 2_ ( i
szzx ™,
and ‘
N2
Xi=p

When the cells or classes represent a single x variable, interpretation of I

the finding of significant variation in 8, by the preceding methods is
straightforward. With two x’s, rejection of the null hypothesis does not
reveal whether the variation in §; is associated primarily with x,, with x,, or

partly with both. Further, if §; varies moderately with one of the x’s but not -

with the other, the F test may lack the power to reject the null hypothes1s
however, a test directed at x; and x, separately may reveal the correct state
of affairs. ‘ :

6.5 y AND x’s QUANTITATIVE: ADJUSTMENTS BY REGRESSION
(COVARIANCE)

When y and the x’s are quantitative, an approach that avoids matching first
constructs a mathematical model for the regression of y on the x’s, usually
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assumed of the same form in each population. This regression is then
estimated from the sample data and used to adjust y; — 7, in the unmatched
samples for differences between the x distributions in the two populations.

In practice, linear regression is the most-frequent form. With k x varia-
bles, where x;,, and x;,, denote sample members of the jth x variate in
populations 1 and 2, the linear model is

k

3
Yu=m+ L BXjiut s  Ypp=Tt )» Bixpo + €2 (65.1)
-j=1 ’ Jj=1 '

This assumes a constant effect § = 7, — =, of the difference between the two
treatments. Assuming that e, and e,, have the same variance, the sums of
squares and products X(yx;), X(x;x;) and X(x;x,,) in the normal equations
are the pooled within- treatment values The notation X(yx;) i is shorthand,;
in a notation used earlier it means (yx,), + (yx;), and each of these terms
is a sum of products of deviation scores for the treatment group indicated
by the trailing subscript. The adjusted mean difference is

k
Fia = Paa =P = P — L 0% — %) (6.5.2)
j=1

where the b; are the estimated regression coefficients. With random-samples
from each population and a correct mathematical model, the adjusted mean
difference is an unbiased estimate of § under this model.

For the standard error of 7,, — j,, we need s2, the pooled mean-square
deviation from the multiple regression, with (n, + n, — k — 2) d.f. and the
inverse C = ||¢;,[| of the matrix |(x;x,)|| in the normal equations. The
standard error of 7,, — 7,, equals.

] 1 k k 1/2
SNy T, Z ¢df +2 L X ¢nd;d, (6:5.3)
1 2 j=1

j=1 m>j

where d; = (X, — X5).

Two precautions are worth noting. Although linear-regression adjust-
ments are the most widely used and are often assumed to hold without
checking, we can examine and test for the simpler types of curvature in the
regression of y on any x; by adding a variate x| =-xj2 to the model. With
large samples and a good computer program, the practice of adding a term
in x is worthwhile when there are reasons to expect curvature or indica-
t10ns of it. Sometimes a linear regression on a simple transform of x such as

“log x or e~ is a satisfactory alternative.
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by

Another precaution in a two-sample regression is to estimate the regres-
sion separately in each sample and compare the regression coefficients. The
method of adjustment in this section assumes that the regression is the same
in the two populations. Possible alternatives when the regression is linear,
but differs in the two populations, are outlined in Section 6.7.

Comparison of the regressions in the two samples might reveal that
although the regressions appeared to have the same shape, the residual
mean squares s? and s7 are substantially different. In this event, more-pre-
cise estimates of the b, would probably be obtained by weighting the
contribution from each sample by 1/s? when forming ¥'( yx ;) and X(x;x,,),
instead of simply adding. The gain in precision as it affects the estimated
treatment effect is, however, usually small. '

6.6 REGRESSION ADJUSTMENTS WITH SOME x’s CLASSIFIED

The regression method applies most naturally when y and all the x’s are
quantitative. If one or more of the x’s are classified while the others are
quantitative, there are two almost-equivalent methods of making the adjust-
ments. To take the simplest case, suppose that one of the x’s is a two-class
variate. The subscripts 7 = 1,2 denote the populations or treatments, i = 1,2
the classes, and j = 1,2,..., k the quantitative x variates. The linear model
is assumed to be

k
Yiw=Tt v+ Z Bjxjn'u + e,y (u =1,2,...,n,) (6-6-1)
j=1

1. The first method is the analysis of covariance. For the quantitative
x’s, calculate the quantities X(yx;) and X(x;x,,) from the pooled sums
of squares or products within classes and treatments. These will have
(n; + n, — 4) d.f. with two classes and two treatments. Having computed
the b;, take the adjusted y d.ifferepce, the estimate of (7, — 7,) as

k
Yia = V20—, > bi(Xj10 = Xj2a)
=1

Here y,,, 7,45 X14> and X, are adjusted means over the two classes, with
weights proportional to ny;n,;/n; in class i.

2. 'Instead, the adjustments can be performed by an ordinary one-sam-
ple multiple regression. The primary advantage of this method is that, at
present, computer programs for one-sample multiple regressions are more
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widely available than those for the combination of analysis of variance and
multiple regression. Construct two dummy x variables: Xg+1, zu Which has
the value +1 for all observations from treatment 1 and the value 0 for all
observations from treatment 2, and Xj+2, riy Which has the value +1 for all
observations in class 1 and the value 0 for all observations in class 2. Fit th
multiple-regression model ‘

k+2
ytiu = l"‘ + Z bfjxj”'u + etiu . (6.6.2)
Jj=1

Then b, , is the adjusted estimate of 7, — 7,. In fact, many computer
programs perform the calculations by constructing a third dummy variable,
say Xo,;,,» Which takes the value + 1 for all observations, so that pin (6.6.2)
is replaced by B,x,,,,- It is easily verified that models (6.6.1) and (6.6.2) are
identical. The computations in methods 1 and 2, as presented here, are not
exactly identical. In method 1, the quantities X( yx ;) and ¥(x;x,,) for the
quantitative x’s are based on (n; + n, ~ 4) d.f., while in method 2 they are,
in effect, based on (n, + n, — 3) d.f.—the extra d.f. being that for the
treatments-by-classes interaction. Any difference in results should be very
minor in practice. :

With three classes, two dummy x variables are needed for the classifica-
tion: The first can take the value 1 in class 1 and the value 0 elsewhere; the
second takes the value 1 in class 2 and the value 0 elsewhere. Cohen (1968),
in describing this technique, has illustrated five equivalent sets of three
dummy x variables when there are four classes. Any two sets that are linear
transforms of one another are equivalent.

If x is an ordered classification with c classes, a possible alternative is to
assign a score x, . ; to the ith class, creating a single x instead of (¢ — 1)
dummy x’s to describe class effects, as suggested by Billewicz (1965). The
success of this method depends, of course, on how well the assigned scores
are linearly related to y.

Suppose now that there are two classified x’s—one with four classes and
one with three classes—creating 12 individual cells. Thé possibilities are to
have 11 dummy x’s for the effects of the 12 cells, to assume that the effects
of the two classifications on y are additive, creating 3 + 2 = 5 dummy x’s
for the individual effects of each classification, or, with ordered classifica-
tions, to create two sets of scores defining two x variables. Billewicz (1965)
reports that the score method did well in removing between-cell bias in a
constructed example in which the effects of the two x’s were not strictly
additive. :
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6.7 EFFECT OF REGRESSION ADJUSTMENTS ON BIAS IN Ji—n

With y and the x’s quantitative, the conditions necessary for fully.effective

performance of the regression adjustments in removing bias in 7, — 7, are

_ (1) the regression of y on the x’s is the same in both populations (apart from
any difference in the level of the means due to the difference in treatments),
(2) the correct mathematical form of the regression has been fitted, and (3)
the x’s have been measured with negligible error (see Section 6.10).

If these conditions hold, the regression adjustmeént Temoves all initial
bias. Its performance in this respect is superior to matching and to adjust-
ment by subclassification.

We now consider the failure of condition (1) for linear regressions with
different slopes in the two populations. This case was discussed briefly in
Section 5.7 with respect to matching, where the conclusion was reached that
matching is not appropriate. Regression adjustments are capable of treating,

[ this case, but require a judgment as to whether the difference between the

regressions in the two populations actually represents confounding effects in
. treatment. To take the simplest illustration, suppose that the model is

Ju=m" + lelu + €w V=T + B2x2u + €24 (671)
1t follows that
E(7; —=R)=m—m+ BX — BX,

Unbiased estimates of 8, and 8, can be obtained and substituted to give an
unbiased estimate of 7, — 7,. The extension to multivariate linear regression
is straightforward.

However, an alternative interpretation of (6.7.1), as mentioned previ-
ously, is that the effect of the difference in treatments depends on the level
of x. Suppose that the regression of y on x is 8, in each population.
Treatment 2 is a control treatment with effect m,, while the effect of
treatment 1 is 7, + 8x when applied to a subject whose level is x. The model
is then

Y=+ +B)x+ e yu=nm+Bhx+e, (6.72)
Belson (1956) has suggested that in making regression adjustments, the
estimate b, of the regression coefficient from the control sample be used.

That is, his adjusted mean difference is

Ve = Va= (7 —7) —by(% — %,)
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From (6.7.1) we find .

E(Jiu=Pa) =1 —m+ 8% + By (%) — %,) — B, (%, — X,)

=mn — % + 0%,

~ Thus Belson’s method estimates the average effect of treatment 1 (as

.compared'with the control) on the persons in sample 1. In some studies this
Is a quantity of interest to report [see Cochran (1969)]

6.8 EFFECT OF CURVATURE ON LINEAR-REGRESSION
ADJUSTMENTS :

The effect of linear-regression adjustment on the bias in 71 — 7, when the
_relationship between y and x is monotone and moderately curved has been
investigated by Rubin (1973). He dealt with the functions y = e **/2 and
y = e**, with y monotone and quadratic in x, assuming the same form of
regression in both populations.

In such cases linear-regression adjustments are still highly effective in
removing an initial bias in y; — j,, provided that x has the same variance in
the two populations and that the distribution of x is symmetric or nearly
symmetric. However, as with matching, the condition o2, = 07, is im-
portant..

The situation when y is quadratic provides insight on these results.
Assume the model ' '

.Vnz =7 + clx;u + c2x12u + etu (681)
wheret = 1,2 and u = 1,2,..., 'n._Followin‘g' Rubin we consider the bias in

1 — ¥, conditional on the set of x’s that arose in the two samples. For
random samples the initial conditional bias is

ICZ_E(XIZH - x%‘u)

E(7=%)— (7~ "2) =¢(% - %,) + p

It is convenient to use the notation 52 = X(x,, — %)%/n, and
k3, = X(x,, — %,)*/n. Then

E(5 -%)~(n— n) =c,(% — %,) + CZ:(flz - 5‘-%)'*' cz(s,z_ —'S%)

(6.8.2)
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For the regression adjustment we assume that the pooled within-samples
regression coefficient is used, that is,

_ z:ylu(xlu - fl) + Zy2u(x2u - EZ)
’ Z(xy, — %) + Z(x,, — %)’

By substitution for y from the model (6.8.1),._bp is found in large samples to

be a consistent estimate of

%57 + fzs%) + cz(ksn + ksz)

¢ + 2c > y
! 2( st 452 st + 53

Consequently, the remaining conditional bias in j, — J, after adjustment by
—b,(X, — X,) approximates

2 ; |kt kn
R g 52_522)_62(3?1—3‘2)( 7. 2 )
—cy (%, %,) (s,2+522) 2( 1 2+ 52
(6.8.3)

Suppose now that x.\zhas differing means but tl_le same variance in the two
populations. From (6.8.2) the initial bias approximates

(% — %,) + 02(9712 - f%)
From (6.8.3) the bias after adjustment approximates

_ofx - fz)(_ksl + k3)
(s?+ s3)

which is small of negligible if the distribution of x .is symmgtric or nearly
symmetric. Thus linear adjustments are highly eff.ectlve in ﬂ;_:—?sf;sif 682)
i dratic regression, comp 8.
In more-general cases with a qua egres arison of (652
indi lative sizes of the initial an
6.8.3) indicates that the average relativ al .
;Iilie(s depind on the sizes and signs of the linear- and quadrau(;: rigrisilcz)n
coefficients, ¢, and c,, on the sizes and signs of Z_[llx - oy alia;st:tgmemzf;
’ imple overall summ.
the amounts of skewness. No simp! ‘ /
a‘ncslsi(l);;e With e**/> Rubin found that linear-regression adJustmentdwas
51(1)'ccessfi11 if o2 = o2, but that the adjustment either overcorn}f:tet 11;);
x x? .
undercorrectedlwhen these variances were unequal, as shown in the firs

of Table 6.8.1.
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Table 6.8.1. Percent Bias Removed by (1) Linear-
Samples, (2) “Nearest Available” Matching,
Matched Samples [Both Samples of Size 50;

Regression (LR) Adjustment on Random
and (3) Linear-Regression Adjustment on
B = By — B2, = '_zlox’ where oxz = %(afx + a22x)]

o Bias oh=oh=1  oh=foh=f oi-tel-}
- by(l), (2), a.nd (3) e.x/Z e—.x/Z . ex/2 e—x/2 ex/2 e—x/2
() LR® 101 101 146 80 80 146
(2) Matching?: .

N/n=2 74 94 9% 99 45 81

N/n=3 87 98 98 100 60 89

N/n=4 92 99 99 100 65 94
(3) Both’:

N/n=2 102 100- 101 100 100 111

N/n=3 100 100 « 100 100 100 108

N/n=4 100 100 100 100 100 107

“With LR on random samples, results are for the pooled within-sample regression; on matched samples,
results are for the regression from differences between members of a pair.

bN is the size of the reservoir supplying matches to the n members of the target sample.

Table 6.8.1, taken from Rubin (1970), compares “nearest available
matching,” linear regression applied to random samples, and linear regres-
sion applied to the matched samples for E (¥) = e**/2, The results shown
are for a bias in x equal to half the average o,—a fairly substantial bias.
When o, = o, linear regression is superior. When o2, = ¢ both methods
are erratic and neither method is consistently superior. However, linear
regression applied to matched samples was superior to either method and
was highly effective. The regression adjustments on matched samples usu-
ally performed best when the regression coefficients were estimated from the
differences between members of each matched pair. This is the method that

would normally be used in matched samples from the viewpoint of analysis
of variance..

6.9 EFFECTIVENESS OF REGRESSION ADJUSTMENTS ON
PRECISION

As with matching, regression adjustments on random samples may be made
in order to increase precision in studies in which the investigator is not
_concerned with the danger of bias. We assume first a linear regression of y
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on a single x, the same in both population_s. We suppose t_hat there is 1an
initial bias Bo, in x, since regression adjustments on random samp ;.s
completely remove this bias. Therefore, there is interest in notullgg_t Oe
precision of regression adjustments when B = 0 as well as when B = 0.
Using the model, we find that

Hh—h=n—n+B(% -5)+ (6 ~¢&) (6.9.1)
the adjusted estimate is
Via = V2a=N ~ P~ b(% — %) = (1, — 1) + (8, — &)
(- B)(F - %) (69.2)
Hence the conditional variance for two samples of size n is

— \2
_ 2 (%, - %) , »
Voo = Paa) =500 + e (6.9.3)

(4

p . . . =2
where ¥, is the denominator of b, the pooled w1th1.n-san_1p1es ):(x' ~X)"
The ave;;ge value of (6.9.3) in random samples of size n is approximately

SN_2 2)_o 694
V(y_la—yZa)=;022+ (B2+' n)Z(n -2) ( )

The expression is correct when x is normal. ‘ ‘

In tiEe “no bias” situation (B = 0) the leading term in 6.9.4) f01: large: n
is V(7,, — $ga) = 262/n = 202(1 — p*)/n. For within-class matching with
the moléel, V(a ¥1 — $,)is 267(1 — fo?)/n, ds given in Section 5.8, where f is
the fractional reduction in V(X, — X,) due to matc'hl'ng. Thus .reg'ressllon
adjustments on large random samples give higher precision than within-class
matching in the “no bias™ case under a linear model. The)f shongd per_fqrm
about as well as tight caliper matching and.“nearest available” matching

ed on a large reservoir for which f is near 1. o '
baiNhen there%s initial bias, B = 0, the leading term in (6.9.4) for large n is

V(F1a— Faa) # éoﬁ(l = 0?)(1 +1B?)/n

In this case, regression applied to pair-matched s_amples' would; t3e expected
to be more precise than regression on random samples, since pairing reduces
E(%, — %,)? in (6.9.3). 7 . _

E(ﬁndefzz lmezf.r mo)del, the conclusions are little altered whg:n rcgfe§sxon
adjustments are made on X x variables from random san;ples. If all x’s have
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the same means in the two populations,

202
(5, — 5 VY= —2 (1 _ p2 k
(F1a = 72a) —(1-R )(1 t T 3) (6.9.5)

where R? is the squared multiple correlation coefficient between Y and the
x’s. If k/2n is negligible, this variance is practically 262(1 — R?)/n.
Within-class matching with the same number of classes per variable gives
207(1 — fR?)/n, which is a larger value,

When there is initial bias, (6.9.5) also contains a quadratic expression in
the - biases B, of the variables xjj this term is of the same order as
202(1 - R*)/n. As before, regression applied to pair-matched samples
should perform better than regression on random samples.

Using experimental sampling .on a computer, Billewicz (1965) made
comparisons of the precisions of within-class matching, regression on ran-
dom samples, and regression applied to matched samples under a variety of
situations. He uses two groups—treated and control. His results, reported
here, concern relative precision in the “no bias” situation.

1. For a linear-regression model with y and x quantitative, regression
Was more precise than within-class matchi g with three or four groups, by
amounts that agreed well with those given here,

2. Billewicz also made this comparison, with n = 40 in each sample,
for three different nonlinear regression models, y = 0.4x — 0.1x2

-y =0.8x — 0.14x%, and y = tanh x, with x following N(0, 1) in both popu-

lations. These amounts of nonlinearity were detectable in 12.3, 20.3, and
19.8% of his samples. Despite the use of an incorrect model, linear-regres-

sion adjustments were superior in precision to matching with three or four
classes. -

3. When linear regressions have different slopes in the two populations,
Billewicz indicates the importance of detecting this situation and the diffi-
culties of interpretation to which we have referred. Matched pairs, regres-
sion analysis of random samples, and regression analysis applied to
frequency matched samples were about equally effective in detecting the

 difference in slopes. He concludes that the average user of matched samples

would be unlikely to examine his sample in this respect, since the concept of
matching is directed. toward finding a single overall effect of treatment.

6.10 EFFECT OF ERRORS IN THE MEASUREMENT OF X

Sometimes confounded x variables are difficult to measure and henc_e are
measured with substantial errors. In large-sample studies a crude measuring
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device may be used for reasons of expense or because accurate measurement
requires trained personnel who are in short supply. As noted by Lord (1960)
and other investigators, regression adjustments fail to remove all the initial
bias when the x’s are measured with error. Their effectiveness in increasing
precision is also reduced. :

The symbol x denotes the fallible measurement actually made, while X
denotes the correct value, and e, the error. The simplest model with two
populations is

Yiu =T +:BXlu+elu; y2u=72+:BX2u+e2u
xlu = Xlu + hlu; x2u = X2u + h2u

where &, and 4, are the errors of measurement. The errors & are assumed
independent of e, but #,, and X,, may be correlated.

- Lindley (1947) has shown that even if 2 and X are independent, the
regression of y on the fallible x is not linear unless the distributions of # and
X belong, in a certain sense, to the same type (e.g., both x? or normal).
However, there is some evidence (Cochran, 1970a) that the linear compo-
nent is dominating, and in this discussion, nonlinearity will be ignored. The
slope B’ of the linear component is

B’ = B(o% + ax,) /(0% + 205, + of) (6.10.1)

here oy, is the population covariance of X and A. If b’ is the estimated
regression coefficient of y on x, then for given X;, — X,,

Ec(yla “)72a) = E(fl —)72) - ﬂ'(fl - fz)
=T -7+t (.B - .B’)(fl - fz)

Thus, conditionally, a fraction (8 — B”)/B of the initial bias remains after
adjustment. .

If 4 and X are uncorrelated, 8’ = BoZ/02 = GB, where G is a quantity
often called the “reliability” of the measurement. Thus 100G is the per-
centage of the initial bias that is removed and 100(1 — G) is the percentage
remaining. One method attempt$ to remove all the initial bias by regression
adjustments. It estimates 2 and ¢ and hence G by an auxiliary study, and
thus obtains a consistent estimate of 8 which is used instead of b’ in making
the regression adjustment. Lord (1960) addresses this problem.

Such errors of measurement also affect the performance of within-class
matching and adjustment by weighted means when a fallible quantitative x
is replaced by a classification in order to use these methods. These methods
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still produce a fractional reduction of amount fin the initial biasof X, — %
as discussed in Sections 5.4 and 6.2, but because of the errors of m::asurezz-’
ment, this creates a fractional reduction of only fG in the initial bias of
X, — X, and hence of 7, — 7, under the linear-regression model. The
relative performance of regression on random samples and within-class
matching is, therefore, unaffected by such errors of measurement in x.

_ The gain in precision due to regression adjustments in the “no bias” case
is also affected by errors of measurement in x. With # and X uncorrelated
the population correlation p’ between y and x is ,

" .
o = Ox _ B(of + ax) _ Ppox _ G
0,0, 0,9, o,

I-Izence the residual variance from the regression is 62(1 — Gp?), instead
of (1 ~ p?). For a given reliability of measurement G, the relative loss of

precision is greatest when p? is high, that is, when X is a very good predictor
of y.

6.11 MATCHING AND ADJUSTMENT COMPARED: IN
EXPERIMENTS

We start with 2n subjects, presumed drawn at random from the sampled
population. In this population the linear-regression model is

y=a+B(x—p)+e
where the residual e is assumed to have mean 0 and variance o2 for any

fixed x. If n subjects are assigned at random to each of two treatments, T,
and T,

Fi—h=m—n+B(X—X,)+e —¢g
Hence
E(yl "}72) =TT 7 (no bias)
and

_ _ 2 2 '
1467 - )= 7

_('Bzoxz + 022) — ;[pzayz + (1 _ pz)ayz]

since Ba, = po,. The penalty for failure to control x is loss of preciéion,
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since V(y, — 7,) is inflated by the term 28%2/n, or by a factor of
1/(1 - p).

Matching on x

The 2n values of x are ranked in decreasing order. Of the two highest x’s,

one x is assigned at random to 7 and the other x to 7,, and so forth for -

succeeding pairs. This gives
(Fi=R)m=mi—m+ B(X, — X,),, + & — &.

The quantity (X, — X,),, will not be exactly zero in this method of match-
ing, but will have a variance that can be calculated from the variances and
covariances of the order statistics. For n exceeding 50 it appears that this
- variance is negligible with x approximately normal, so

L 2
V(Zi =)= ;"yz(l - P2)
Regression Adjustment

When matching is not used, each treatment is assigned at random to n
subjects. The pooled sample estimate b of 8 is

=21}’(x—f1)+22}’(x_5‘—2) — +21e(x_fl)+229(x_f2)
Li(x - %) + 5,(x - %,)° Ti(x — %)+ Ly(x — 5,)°
as is found when we substitute y = a« + B(x — p,) + e in the formula for b.
For fixed x’s the quantity » — B is a random variable ¢, in the e’s with
mean 0 and variance o2/(Z, + L,), where £, = L,(x — X,)?, and so forth.
Hence the adjusted estimate
(R=-R)-b(F-%)=n—n+(B-b)(% - %)+& - ¢
=7 -5+ (8- &) (% - X%)e,
The variance of the regression-adjusted estimate is, therefore, for fixed x’s
because ¢, is uncorrelated with ¢¢ and &,,

= =1\2 2 - = \2
2 , (B1=-%)0 2, 2 n(% — %)
Zo24 0L 727 e Z52(1 — )| 1 4+ =24
n’e T+, 2% (1= #) 2(E, + 5,)

For x normal the second term in the large parentheses may be shown to
have mean 1/2(n — 2), which is only about 0.01 when 7 is 50.
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Thus in expetiments with n = 50 or more and a linear model, matching
‘and regression adjustment are about equally effective. Their purpose is to
increase the precision of the estimate of r, — , and their effect is to reduce
the term o in V(#, — 4,) to 02(1 — p?).

6.12 MATCHING AND ADJUSTMENT COMPARED: IN
OBSERVATIONAL STUDIES

In an observational comparison of two treatments, the investigator begins
with two populations—one for each treatment. The investigator has chosen
to study these two populations but did not create them. The investigator
must suppose that, in general, the two populations will have different means
(1, #2,) and (py,, fy,). In their simplest form the regression models in
the two populations become, for subject j in sample 1 and subject k in
sample 2, -

Y=, t+m +B(x1j_p'lx)+elj (6.12.1)

and
Yok = By + T+ B(Xgp — 1a,) + €y | (6.12.2)

(For this illustration it is assumed that uncontrolled variables whose effects
on y are summed in the terms e, ; and e, ; behave as random variables.)

Suppose first that random samples are drawn from the respective sam-
pled populations making no attempt to control for x. Then

Fi=ty, +1 +B(X, — ) + 8 (6.12.3)
and

Po =gy + 1 + B(X, — py,) +2, (6.12.4)
In repeated sampling, E(X,) = p,, and E(&) =0 (i = 1,2). Hence

E(}_’l _5’-2) =TT +(P'1y - l"zy)
The estimate y, — 7, is now biased by the amount y,, = p, , with the bias
favoring the treatment given to the population with the #igher mean of y. As
Campbell and Erlebacher (1970) and Campbell and Boruch (1975) have
stressed, this bias produces an underestimate in the beneficial effect of a
program given to a sample j, from a disadvantaged population.
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With random samples from the two populations the standard error (SE)
of y, — j, is ‘/ofy + o.}y/\/r?.
The ratio of the bias p, — p,, to this SE is

\/;(Ply = sz)
Vofy + 022y

This increases indefinitely as n grows. Tests of significance of the null
hypothesis (NH) 7, — 7, are likely to reject the NH even when it is actually
true, so that no clear interpretation can be given to rejection of the NH by
the test. The interpretation of a nonsignificant result is also obscured by the
possibility that 7, — 7, and p,, — p,, have similar magnitudes.and opposite
signs. The relative sizes of the bias p;, — p,, to the true treatment dif-
ference T, — T, obviously affects any conclusions drawn about the relative
merits of the treatments.
. Thus in observational studies, matching and regression have two objec-
tives: to remove or reduce bias and to increase precision by reducing the SE
of y;, — 5. Of these, it is reasonable to regard reduction of bias as the
more-important objective. A highly precise estimate of the wrong quantity is
of limited use.

Under this model of parallel linear regressions, the complete removal of
bias by either matching or regression adjustment requires that the following
condition hold:

B = (p1y = p2y)/(Brx — Pay) (6.12.5)
This condition, in turn, is equivalent to each of the following;:

1. Both populations (in the absence of treatment) have the same regres-
sion line.

2, The regression of y on x within the populations is equal to the
regression between populations.

If (6.12.5) does not hold, the bias in estimating 7, — =, is, after adjustment,
equal to

(1) = B2y) = B(Biy — Bay)

- (The appendix to this section gives the justification for these statements.)
Without evidence that the regression lines are the same in the two
populations, the attitude of the investigator may have to be that matching
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and regression adjustment leave some residual bias. The imvestigator hopes
that this bias is only a small fraction of the original bias p,, — p,
—sufficiently small in relation to 7, — =, so that conclusions draWIyl abouyt
the treatments are little affected.

As Bartlett (1936) and Lord (1960) have stated, both matching and
regression in this situation involve an element of unverifiable extrapolation.
To take an extreme case, suppose Byx < My, the difference being so large
that no member of sample 1 has a value as high as X,. We can still apply the
regression adjustment. Formally, this adjusts ¥ to its predicted value when
the mean of the accompanying x’s is X, so that the adjusted y, becomes
comparable with 7,. But this adjusted value is purely hypothetical when we
have no y, ; value with an accompanying x as high as X,. In less-extreme
cases the extrapolation is more moderate.

-

APPENDIX TO SECTION 6.12

Matching on x

We try to find matched pairs of subjects from the two populations such that
X1j ~ X,; is small in the jth pair (j = 1,2,..., n). Incidentally, if g, and
I, differ substantially, matching is often a slow process, requiring large
reservoirs of subjects. This may require, for instance, finding subjects with

-unusually high x’s from population 1 to pair with low x’s from popula-

tion 2.
Successful matching will make X, — X, negligible. In this event, from
(6.12.3) and (6.12.4),

E(F = P)m=m—m+ Biy = B2y — BBy, — pay)
Hence, all the bias is removed by matching if
By = Bay = B(pix Hax) (6.12.5)

This condition can be described in two equivalent ways:

1. From (6.12.1) the regression lines in the two populations may be
written (in the absence of any treatment effect) '

E(yljlxlj) = Hyy - Br, + .Bxlj
and

E()’zﬂxzj): Koy — Bu,, + .szj
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The condition p;, — p,, = B(p,, — R,,) then means that these two lines
have the same intercepts and slopes, that is, they are identical.

From the results of the study we can test whether the slopes are the same.
If they are y;; — y,, should have no regression on x,,. Since x, ; and x,;
often differ slightly in matched pairs, an approximation is to compute and
test the regression of y,; — y,; on (x; ; + X2;)/2. But given only y,; (after
treatment) and x;;, we cannot check from the data whether the intercepts

~would be identical in the absence of treatment éffects. If we fit separate -

parallel lines to the samples from the two populations, the intercepts on the
fitted lines will be estimates of

By = Bpi + 75 By — Buyt

They will thus differ by an estimate of the treatment difference 7, — 7,, if
condition (6.12.5) holds.

In the type of study called the pretest—posttest study, y is measured both
before treatiments are applied as well as after a period of application. With
such data, coincidence of the regression lines in the absence of treatment
can be tested from the pretest data.

2, The condition for the removal of bias
B = (F’ly - F’Zy)/(p’lx - F’Zx)

can also be described as meaning that the between-population regression of
y on x must equal the within-population regression. If we were given the
pairs of means p,, and p,, for a number of populations, the regression of .,
on u; might appropriately be called the “between population” regression
of y on x. With only-two populations the slope of this regression is
(M’ly - ”'Zy)/(""lx - ""2):-)'

Regression Adjustment

Here we assume random samples from the two populations, with no attempt
at matching. The adjusted estimate of 7, — 7, is

(31 = P)ag =51 = 52— b(%, - %,)

With random samples and the linear model, E(b) = B for any set of x.
Further, E(X,) = p,, and E(X,) = p,,. Hence

E(p - fz)adj =1 — Tk Py~ Py — B(p, ~ I‘zx)
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The expression p;, — 5, — B(iy, — B,,) is the bias that remains after
regression adjustment; it vanishes when condition (6.12.5) holds. Thus
under the linear model both the residual bias and the condition for its
complete removal are the same for adjustment by linear regression as for
matching,

6.13 A PRELIMINARY TEST OF COMPARABILITY

In deciding whether to match or adjust for an x variable, it has been
recommended that consideration be given first to x’s in which it is sus-
pected that there will be a bias arising from a difference p,, — p,, in the
means of x. If uncertain whether there is a danger of bias, we might first
make a ¢ test of significance of X; — X, from two random samples of size 7.
If 2 is nonsignificant, we judge that the risk of major bias is small and decide

- mnot to match or adjust for this x. Tests of significance are often employed as

decision rules in this way.

This procedure has been examined [Cochran (1970b)] assuming a linear
regression of y on x. If # is significant at some chosen level, a linear-regres-
sion adjustment on random samples is made. If ¢ is not significant, the
unadjusted estimate y; — 7, is used.

Under the standard linear-regression model the conditional mean of the
adjusted y difference given X, and %, is

Ec(yla _-}72a) =TT T T (-x-l - '-X-Z)Ec(b - B)

Now b~ B =1ZXe(x — X)/L(x — X)?, where the I’s are the pooled
within-sample sums of squares or products. Consider samples selected so
that 1 = Vn|%, — %,|/ V2 s, is significant. Since this selection is based solely
on the values of x and since ¢ and x are independent, E.(b — 8) = 0 in
samples selected in this way. (The conditional variance of b is. affected, but
not the conditional mean). It follows that the adjusted 7,, — 7, is free from
bias when ¢ is significant. -

The remaining bias from this process is, therefore,

Pt} < 1) EL(5, — 7) = P(t] < 1,)BE(%, — %,)

‘where 7, is the critical value of  and the conditional mean is for 1] < ¢,.

The intuitive idea behind the method is, of course, that if u,, — u,  is large
there should be little remaining bias because ¢ is almost certain to
be significant. If u,, — u,, is small, 7 may be nonsignificant frequently,
but the final bias should be small because the initial bias is small.
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At some intermediate point we obtain the maximum final bias. Since
B(X, — X;) = BV2s,t/ Vn the final bias is of order 1/ Vn.

The maximum final bias occurs when the probability of a nonsignificant ¢
is around 0.70 for 5% tests, 0.65 for 10% tests, and 0.60 for 20% tests.
Expressed for convenience as a fraction f of the quantity v2 8o,/ Vn, the
values of f vary between 0.72 (20 d.f. for ¢ tests) and 0.66 (co d.f.) for 5%
tests, 0.49 and 0.45 for 10% tests, and 0.26 and 0.25 for 20% tests. As
expected, a larger, that is, less stringent, significance level of ¢ gives a
smaller final bias at the expense of more-frequent adjustments.

Is the procedure adequate? Suppose an investigator uses standard ele-
mentary formulas for tests of significance of y; — 7, or confidence levels of
I1y — R, after using this test. That is, the investigator assigns to y, — 7, a
standard error y2's,/ Vn, if ¢ is nonsignificant, and to (,, — 7,,) a stan-
dard error 7
[1 + (fl - 372)2/):]1/2
Vn

if ¢ is significant. (In the preceding expression, s, ., is the root of the residual
varianice about the regression line based on pooled within-group sums of
squares and cross-products. Also L is the pooled within-group sum of
squares of x.) Even with 5% tests, it is found that type-I errors and
confidence probabilities are only slightly disturbed.

Alternatively, we might ask whether the maximum Temaining bias is
negligible with respect to the size of difference 6, that we are trying to
measure; or in other words, whether the ratio v2. foo,/ Vn 6, is negligible.
The answer here is less certain, since it depends on n, p, and the ratio 8,/0,.
For instance, in some. applications an improvement of a new method of
treatment over a standard method might be important in practice if §, /0, =
0.2. Taking the maximum f as about 0.7 for 5% tests and p = 0.4, the ratio
* of the maximum bias to this 8, is y2(0.7)(0.4)/0.2/n = 198/ Vn. If we
want the ratio to be less than 10%, we need n = (19.8)2 = 392 in each
sample. Unless we have samples at least this large, the ratio will not be
negligible (less than 10%).

V2s,.,

6.14 SUMMARY «

In comparing the means 7, — ¥, or proportions p, — p, from two popula-
tions, an alternative to matching is to draw random samples from the two
populations and make adjustments in the statistical analysis to y; — j, or
Py — P, in order to reduce bias or increase precision. The method of
adjustment depends on the scales in which the variables are measured.
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If the y’s are quantitative and the x’s are classified (or have been made
classified), let y,; and #,; be the sample means of y in the ith cell of this
classification. If the effect 7, — 7, of the difference in treatments is the same
in every cell, any weighted mean Tw,(7,; — 7,,) = w,d,, with Xw,=1,
controls bias to precisely the same extent as does within-class matching, so
that there is little difference between the methods in this respect. The
choices of weights that minimize the variance of Yw,d, are given in Section
6.2. In particular, optimum weights are proportional to nyny/(ny + ny;)if
the within-cell and treatment variances are constant. Under this assumption,
two matched samples of size n give a smaller variance than two weighted

- random samples of size n, but the difference is likely to be minor in the “no

bias” case in which the comparision is of most interest.

If y is a (0, 1) variate, many workers have assumed a model in which the
effect of the difference between treatments is constant from cell to cell
on the scale of logit p,; = log(p,;/q,;). Under this model it may still be
desirable to estimate and test a weighted mean difference of the form
Zw,(Py — Pp)/Ew,. For this purpose, a good choice for testing signifi- .
cance is w; = n;n,,/(n,; + ny). :

If the treatment effect §; = 7, — =,, differs from cell to cell, the choice of
weights determines the quantity Yw,§; that is being estimated. In the
analysis, possibilities are (1) to use weights-derived from a target population
that is of interest; (2) to note that the values of Tw;8; agree well enough for
different weighting systems so that the same conclusion or action is sug-
gested; and (3) to decide against estimation of an overall mean and to
summarize instead the way in which §; varies from cell to cell. A method of
testing whether ; varies from cell to cell is given, but the interpretation of
the test is simple only when a single x variable is involved.

When y and the x’s are all quantitative, adjustments for bias may be
made on random samples by means of the regression of y on the x’s. This
method can also include a classified x by the creation of dummy variables to
represent class effects or (with ordered classifications) by assigning scores to

-the classes. In practice, a linear regression with the same slopes in both

populations is most commonly assumed, but the method provides tests for -
differences in slopes and for nonlinearity which help to make the assumed
model more nearly correct. Linear-regression adjustments can be used when
there are differences in slopes, if these differences are due to the confound-
ing x variables. However, another possible interpretation is that the dif-
ferences may represent a relation between the effects of the treatments and
the level of x. :

With regard to the control of bias, the regression method removes all the
initial bias, provided that the fitted model is correct in form and the x’s are
not subject to errors of measurement. In this situation, regréssion is superior
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to pair or within-class matching and to adjustment by weighted class means.
If adjustment by linear regression is used when the true regression of y on x
is monotone and moderately curved [e.g., a quadratic or E(y) = e **/2], the
available evidence suggests that linear adjustment still removes almost all
the bias, provided that o, = 0,, and that the distribution of x is symmetri-
cal. If 0,, = o,, the performance of linear-regression adjustmenis on e * */2
is erratic. However, linear-regression adjustments on matched- samples were
highly successful in this situation. .

With regard to the precision of y, — 7, in the “no-bias” situation,
linear-regression adjustments on random samples were superior under a
linear-regression model to within-class matching and almost as good as
mean matching and tight caliper matching. With three monotone nonlinear
population regressions (two quadratic and one y = tanh x) Billewicz found
linear-regression adjustments superior in precision to ‘within-class matching
with three or four classes.

By way of an overall comparison, the comparisons made indicate that,
with y and the x’s quantitative, regression adjustments based on random
samples should be superior to within-class matching and probably also
superior to a fairly tight caliper matching and “nearest available” pair
matching based on a large reservoir, provided that care is. taken to fit
approximately the correct shape of regression. Even if linear adjustments
are routinely applied, they appear to perform ‘about as well as “nearest
available” pair matching in the presence of monotone curved regressions. In
such cases, however, linear-regression adjustments applied to pair-matched
samples are consistently better in removing bias.

If the true regression of y on X is linear, but the measured x is subject to
an independent error of measurement, the percentage of bias removed by
regression adjustment is reduced, dropping to 100G, where G = 0%/02. The
performance of within-class matching is affected similarly.

Finally, one possibility is to adjust for the regression on x as a precaution
against bias only if X, — X, is statistically significant. Under a linear model,
this decision rule operates well enough so that type-I errors and confidence
probabilities relating to 7, — j, calculated by standard techniques are not
much affected.
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