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analysis. If survival is analyzed by time in study there are no late entries,
but in an analysis of the same study by age, or by time since entering an
occupation, there will be late entries.

Solutions to the exercises ~— N

7.1  The estimated 5-year risk of myocardial infarction is 27/1000 while
that for stroke is 8/1000. The risk of a cardiovascular event is 35/1000.

7.2  The outcomes and their probabilities are listed below.

Outcome Probability
Band 1
F1 0.1
EF2 0.2
Band 2
F1 ' 0.7 x 0.1 = 0.07
F2 i 0.7x02=0.14
Band 3

F1 0.7 x 0.7 x 0.1 = 0.049
F2 0.7 x 0.7 x 0.2 = 0.098
S 0.7x0.7x0.7=0.343

8
The Gaussian probability model

Until now we have been concerned only with the binary probability model.
In this model there are two possible outcomes and the total probability of
1 is shared -between them. It is an appropriate model when studying the
occurrence of events, but not when studying a response for which there are
many possible outcomes, such as blood pressure. For this the Gaussian or
normal probability mode] is most commonly used.

In the Gaussian model the total probability of 1 is shared between many
values. This is illustrated in the left panel of Fig. 8.1. When measurements
are recorded to a fixed number of decimal places, there is a finite number
of possible outcomes but, in principle, such measurements have infinitely
many possible outcomes, so the probability attached to any one is effec-
tively zero. For this reason it is the probability density per unit value which
is specified by the model, not the probability of a given value. This is illus-
trated in the right panel of the figure. If 7 is the probability shared between
values in a very narrow range, width h units, the probability density is 7 /h.

8.1 The standard Gaussian distribution

The standard Gaussian distribution has probability density centred at 0.
The probability density at any value z (positive or negative) is given by

0.3989 exp [—%(z)z] .

A graph of this probability density for different values of z is shown in
Fig. 8.2. There is very little probability outside the range £3.

Tables of the standard Gaussian distribution are widely available, and
these readily allow calculation of the probability associated with specified
ranges of z. For our purposes it is necessary only to record that the proba-
bility corresponding to the range (—1.645,+1.645) is 0.90 and that for the
range (—1.960, +1.960) is 0.95.

If the probability model for z is a standard Gaussian distribution then
the probability model for (2)? is called the chi-squared distribution on one
degree of freedom. Tables of chi-squared distributions can be used to find
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the probabilities of exceeding specified values of (2)? in the same way as
t tables of the standard Gaussian distribution are used to find probabilities

Blood pressure of exceeding specified values of z.

200 Exercise 8.1. Use the tables in Appendix D to find the probability of exceeding

L the value 2.706 in a chi-squared distribution on one degree of freedom.

L 180 i ' : Note that, for (2)? to exceed 2.706, z must lie outside the range +1.645 of
h the standard normal distribution.

L 160 8.2 The general Gaussian model

It would be remarkable if the data we are analysing fell into the range
—3 to +3, so for modelling the variability of real data, it is necessary to
140 generalize the model to incorporate two parameters, one for the central
value or location, and one for the spread or scale of the distribution. These
: are called the mean parameter and standard deviation parameter and are
120 usually denoted by 1 and o respectively. A variable with such a distribution
is derived by multiplying z by the scale factor and adding the location
parameter. Thus

-100 ’ z=p+oz.

Fig. 8.1. Probability shared between many outcomes. » has a distribution of the same general shape as the standard Gaussian
distribution but centred around p with most of its probability between
#— 30 and p + 30.

Exercise 8.2. If the mean and standard deviation of a general Gaussian distribu-
tion are 100 and 20 respectively, what ranges of values correspond to probabilities
) of 0.90 and 0.95 respectively?

Similarly, when z has a Gaussian distribution with mean p and standard

deviation ¢ then
zZ =
ol

will have a standard Gaussian distribution. This fact can be used get the
probability for a range of values of z using tables of 2.

{ The probability density per unit of z when z has a Gaussian distribution
with mean p and standard deviation o is

' 03989 | 1(z—p 2
4 ; o P 2 4 ’

This expression is obtained by substituting (z — p)/o for z in the proba-
bility density of a standard Gaussian distribution to obtain the probability
- density per ¢ units of z, and then dividing by ¢ to obtain the probability
Fig. 8.2. The standard Gaussian distribution. : density per unit of z. Sometimes the distribution is described in terms of

the square of o, which is called the variance.
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Fig. 8.3. The log likelihood ratio for the Gaussian mean, u.

8.3 The Gaussian likelihood

Suppose a single value of z, say £ = 125 is observed. Using the probability
mode] that this is an observation from a Gaussian distribution with pa-
rameters p and o, the log likelihood for i and o is given by the log of the
corresponding Gaussian probability density:

2

1 /125 —
log(0.3989) — log(o) — = ( #> .

2 g
This log likelihood depends on two unknown paralneteré, but to keep things
simple we shall assume that one of them, ¢, is known from past experience
to have the value 10. Omitting constant terms, the log likelihood for p is

then ,

1125 -p\?
2\ 10 ‘

The most likely value of u is 125 and, since the above expression is zero at
this point, this expression also gives the log likelihood ratio for g. This is
plotted in Fig. 8.3; curves with this shape are called quadratic.

We saw in Chapter 3 that we take the extremes of the supported range
for a parameter to correspond to the value—1.353 for the log likelihood
ratio. To find the limits of the supported range for i we must therefore
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solve the simple equation

2
1 (125 - ”) — _1.353.

2 10

This takes only a few lines:

125 — p\?
( - ) = 2.706,

125 —p
10

L

+1.645,

125 + 1.645 x 10,

so that supported values of y are those between 108.6 and 141.5. In general,
the log likelihood ratio for y is

RYCLTAY
2 o ’
the most likely value of p is the observation z, and the supported range for
L is

z + 1.6450,

where ¢ is the standard deviation (which we assume to be known).

We saw in Exercise 8.1 that the probability of exceeding 2.706 in a
chi-squared distribution is-0.10, and the probability corresponding to the
range +1.645 in the standard Gaussian distribution is 0.90. The fact that
these numbers turn up in the above calculation is no accident and suggests
that the log likelihood ratio criterion of —1.353 leads to supported ranges
which have something to do with a probability of 0.90. This is indeed the
case, but the relationship is not altogether straightforward and we shall
defer this discussion to Chapter 10.

8.4 The likelihood with N observations

When there are N observations
Z1,Z2,..-,TN,

the log likelihood for p is obtained by adding the separate log likelihoods
for each observation giving

Z‘% (mi;uy
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Let M refer to the mean of the observations,

T+ 22+ TN
< .

It can be shown that the log likelihood can be rearranged as
1/ M—pu 2 1 (x;— M 2
3 (52) 2 (53
where § = 0/v/N, sometimes called the standard error of the mean. This
rearrangement involves only elementary algebra and the details are omitted.

The second part of this new expression for the log likelihood does not
depend on g and cancels in the log likelihood ratio for p which is

L (Mo’
2 S !
The most likely value of u is M, and setting the log likélihood ratio equal
to —1.353 to obtain a supported range for u gives

M =

=M £ 1.6458S.
As we would expect, with larger N, the value of S becomes smaller and
the supported range narrower.
Exercise 8.3. The following measurements of systolic blood pressure were ob-

tained from a sample of 20 men.

98 160 136 128 130 114 123 134 128 107
123 125 129 132 154 115 126 132 136 130

What is the most likely value for 4? Assuming that o = 14, calculate the range
of supported values for u.

This exercise continues to make the unrealistic assumption, made through-
out this chapter, that o is known. In practice it must almost invariably be
estimated from the data. We shall defer discussion of this until Chapter 34.

Solutions to the exercises

8.1 The probability of exceeding 2.706 in the chi-squared distribution
with one degree of freedom is 0.10.

8.2 The range corresponding to a probability of 0.9 is

100 + 1.645 x 20 = (67.1,132.9)

SOLUTIONS 77

and, for a probability of 0.95,

100 £ 1.96 x 20 = (60.8,139.2).

8.3 The mean of the 20 measurements is 128.00 and this is the most
likely value of p. To calculate the supported range for p, we first calculate

14

S = =3.13

g
8]

so that the range lies between
= 128.00 + 1.645 x 3.13

that is from 122.9 to 133.1 .
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8 The Gaussian probability model
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ZEHN DEUTSCHE MARK

The above photograph is of the front of the 10 (zehn) Deutsche Mark ban-
knote, before Germany and the other EC countries adopted the Euro.

You can find other images by Googling ‘Gauss 10dm image.’

For biographies of and historical notes on Gauss, see specialized sites such
as http://www.mathunion.org/general/prizes/gauss/details/ or gen-
eral ones such as http://en.wikipedia.org/wiki/Carl_Gauss. The story of
the discovery of Ceres http://www.keplersdiscovery.com/Asteroid.html
is interesting as it mentions the Method of Least Squares. There is a debate
as to who first used the principle of Least Squares. It seems from this website
that Gauss did, but it also seems he did not publish the method, so we cannot
tell if he did in fact used it in the re-discovery of Ceres.

Legendre! published his method in 1806, and described the procedure very
much the way it is taught today. Gauss seems to get the credit in this website
http://en.wikipedia.org/wiki/Least_squares.

There is a chapter on ‘Least Squares and the Combination of Observations’ in
Stephen Stigler’s most readable and interesting book “The History of Statis-
tics: The Measurement of Uncertainty before 1900.”

Even though we generally credit Fisher with the development of Maximum
Likelihood methods, it seems that Gauss used the principle.

Ihttp://en.wikipedia.org/wiki/Adrien-Marie Legendre
http://wuw.nndb.com/people/891/000093612/
http://www.nndb.com/people/891/000093612/
http://www.britannica.com/EBchecked/topic/334063/least-squares-approximation
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Note that although C&H say “in the Gaussian model, the total probability

of 1 is shared among many values,” this statement applies to any model for a
‘continuous’ random variable.

‘ Probability density per unit value’: this is a good description. This is how we
should label the vertical axis of a pdf graph.

It is also why we can write likelihood contribution of an ‘observed’ y value,
e.g., blood pressure of 90, as pdf (Ymid, 0) h, where y,,;q is the midpoint of the
interval (of width h) that is reported as a ‘90’. Technically, we should use as
CDF (Yupper, ) — CDF (Yiower, 0) but usually h is sufficiently narrow that the
rectangular area pdf (Ymid, 0) x h is a good approximation. Of course, since h
is a constant, and does not involve 6, it is usually omitted from the likelihood
contribution.

8.1 Standard Gaussian distribution

Because the pdf tends to be written with 1/v/27 in front, then, unless we
evaluate this expression, we don’t get to see that it is indeed very close to 0.4.

Another point that gets overlooked is where (i.e., how far up the vertical axis)
the ‘point of inflection’ is to be found: i.e., imagine one were to rub one’s
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finger upwards along the curve: where does it change from concave upwards
to convex upwards?

Supplementary Exercise 8.1. Determine, analytically /numerically, where
on the z scale the point of inflexion is located, and at what height (express
its vertical location as a fraction of the max. height of 1/v/2m = 0.3989). The
point of inflection helps one to draw a reasonably accurate pdf curve ‘frechand.’

The diagram on the next page shows how one could use a ‘spinner’ or ‘roulette
wheel” to generate random numbers that follow a Gaussian distribu-
tion, while the one on the page thereafter shows how to do so using the reverse
CDF. In fact, both use the same idea. Francis Galton? proposed a method
that used 6 dice.

Supplementary Exercise 8.2.

(i) Derive the 24 ordinate values used by Galton for his Die I3 Do so in R
(or Excel), by dividing up the (0, 00) scale into 24 bins each containing equal
1/48ths of the total probability mass, and finding (as Galton did) the ordinate
at the mid point of (the base of) each bin.

(ii) Out of curiosity, how many would change if he were to use the centres of
gravity (mass) rather than the midpoints? Would the ‘o’ be closer to 17

(iii) Then, use R (or Excel) to simulate 12 throws of Die I, and the reg-
uisite number of throws of Dies II and III, to produce 12 values from a
N(p =100, o = 15) distribution.

(iv) In the study carried out at the University of Canterbury [cf Resources],
the investigators say that “To determine the success of this experiment, we
formulate the following question as a statistical hypothesis test: Are our sam-
pled values taken independently and identically from an appropriate discrete
distribution which approximates Galton’s normal distribution?” To answer
it, they used the data reported in their Appendix A.

If they had approached you about how to address their question, how would
you have answered them? Would you have advised them to collect results of
actual throws of the dice? Would you have calculate the optimal number of
trials needed for the test in the same way that they did?

?Dice for Statistical Experiments. Nature(1890) 42 13-14 - in Resources, with related material.

3Note that whereas today we use the Standard Deviation (SD) as a measure of the
spread of a Normal distribution [and use the ‘68-95-99.7 rule’ for 1, 2 and 3 SD’s — see
http://en.wikipedia.org/wiki/68-95-99.7_rule| — Galton used the smaller ‘ Probable Er-
ror’ or ‘PE’. The PE is approximately 2/3rds (0.6745) times the SD. The Probable Error
gets its name from the fact that a deviate from the mean is just as likely (50%, ‘as prob-
able as not’), to be bigger than as smaller than the Probable Error: the interval u F 1PE
contains the middle 50% of the N(u, PE) distribution, whereas the the interval p F 15D
contains the middle 68%. Notice also that by a using a smaller measure of spread, Galton’s
grades or ‘degrees’ of ‘extremeness’ ran from -5° to +5°, where we might speak or write of
7 values or Z scores from say -3 to +3.

8.2 General Gaussian Model

Shouldn’t textbooks use y rather than x when dealing with random variables?
This notation is important when we come to regression: most applied work in-
volves y’s, each of which is the realization from a conditional-on-x distribution
whose parameters are governed by a linear combination of a (possibly-vector-
valued) 0 and a (possibly-vector-valued) x, with x treated as fixed-by-design.
JH notes that the designers of the German 10DM banknote to honour Gauss
also used z rather than y.

The square of sigma is called the variance: In the very interesting website on
Earliest Known Uses of Some of the Words of Mathematics* we find: MOD-
ULUS (in the Theory of Errors). In his first theory of least squares based
on the normal distribution and presented in Gausss Theoria Motus Corpo-
rum Coelestium in Sectionibus Conicis Solem Ambientum (1809) Gauss used
a measure of precision (“mensura praecisionis observationum” (p. 245) which
he denoted by h: the reciprocal of h is \/(2)0, where o is the standard devia-
tion. Both h and its reciprocal have been called the modulus: the reciprocal
in G. B Airy’s On the Algebraical and Numerical Theory of Errors of Ob-
servation and the Combination of Observations (1861, p. 15) and h in E. T.
Whittaker & G. Robinson’s Calculus of Observations (1924, p. 175).

This website could keep one occupied for many hours, as on the same
page of ‘M’ alone, there are entries for MARGIN OF ERROR, MARKOV
CHAIN, MONTE CARLO, MARKOV CHAIN MONTE CARLO, MARTIN-
GALE, MAXIMUM LIKELIHOOD, MEAN, MEDIAN, META-ANALYSIS,
MINIMUM CHI-SQUARED, MODE, MOMENT, Moment generating func-
tion, MONTY HALL PROBLEM, MORAL EXPECTATION, MOVING AV-
ERAGE, MULTICOLLINEARITY, MULTINOMIAL DISTRIBUTION, and
MULTIVARIATE.

In the ‘S’ page (also full of other interesting terms) we can read that ‘The
term STANDARD DEVIATION was introduced by Karl Pearson (1857-1936)
in 1893, “although the idea was by then nearly a century old” (Abbott; Stigler,
page 328). According to the DSB: The term “standard deviation” was intro-
duced in a lecture of 31 January 1893, as a convenient substitute for the
cumbersome “root mean square error’ and the older expressions “error of
mean square” and “mean error.”

8.3 The Gaussian Likelihood

C&H finally explain why they adopted a cutoff on 1.353 back in chapter 3.

4http://jeff560.tripod.com/m.html
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Generating random numbers from a Gaussian Distribution / Connections with the Normal (Gaussian) Tables

Imagine a disk or "Spinner" with 2 concentric
circles, and a spindle through the centre.
Suppose that when spun it is equally likely to
come to rest at any point on the outer
circumference. This is reflected in markings
of 0 to 1 (or, if you prefer, % to 100%)
uniformly on the circumference of the outer
circle.

Q: How should we mark the circumference of
the inner circle so that repeated spins produce
values with a Gaussian N(0,1) distribution?

[see "spinner" in fig 4.9 page 317 of M&M]

A: Use the z values corresponding to the
percentiles of the Gaussian Distribution!

Then, the spinner shown will produce Z
values from minus to plus infinity..

IMPLICATIONS FOR MONTE CARLO
(SIMULATION) WORK

1 Generate numbers with a Uniform
Distribution on (0,1)

e.g. in Excel use the RAND() function
i.e. generate P=RAND()

2 Calculate percentile corresponding to P

i.e. z =7 value such that Prob(Z <z) =P
in Excel, use NORMINYV function,

ie.
calculate z= NORMINV(P,u=00=1)
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Generating random numbers from a Gaussian Distribution / Connections with the Normal (Gaussian) Tables
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The above nomograms illustrate the same idea: the function links the shaded area under
the Gaussian curve with the corresponding z value. I t is shown , first with area or Percent
or Pr(Z<z) as a function of z, and then vice-versa (as is done in Table A of M&M). Table A
tabulates Prob[Z<z] as a function of z, but one can travel in either direction.

Al -3 -2 -1 0 1 2

Another way of visualizing the Table is given below. To generate
arandom Z, enter randomly at the vertical axis and find
corresponding Z value!

Cumulative Distribution Function of Gaussian
Distribution
1 —
1
0.8 -
E 0.6
o 0.4
0.2
O L+
-3 -2 -1 0 1 2 3
z




BIOS602: Notes, Clayton&Hills. Ch. 8 (Normal probability model) and Ch9 (Approximate likelihoods) 2012.10.21

8.4 The Likelihood with N observations

JH prefers n over N. To him, N refers to the size of some universe of
units, not to the size of a sample of units from it. In the social sciences,
and particularly in the Publication Manual of the American Psychological
Association®, its JH’s understanding that if the overall sample is N = 20
people, 9 men and 11 women, the sub-sample sizes of 9 and 11 would be
referred to as n = 9 and n = 11. I understand from a reliable source that
Clayton pursued a PhD in psychology, so that might explain his notation.

Likewise, JH is unsure why C&H use the letter M where we would normally
write Z [or g ! ]

Supplementary Exercise 8.3. C&H say it requires only elementary algebra
to rearrange the log likelihood. Do the algebra, and verify that that is indeed
true.

Shttp://www.apastyle.org/manual/index.aspx
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Approximate likelihoods

Because the Gaussian log likelihood for the mean parameter, y, takes the
simple form
_L(M-py
2 S

the supported range for y also takes a simple form, namely

M +1.6458.

For log likelihoods_such as the Bernouilli and Poisson there is no simple
algebraic expression for the supported range, and the values of the pa-
rameters at which the log likelihood is exactly —1.353 must be found by
systematic trial and error. However, the shapes of these log likelihoods
are approzximately quadratic, and this fact can be used to derive simple
formulae for approximate supported ranges. Methods based on quadratic
approximation of the log likelihood are particularly important because the
quadratic approximation becomes closer to the true log likelihood as the
amount of data increases.

9.1 Approximating the log likelihood

Consider a general likelihood for the parameter, 8, of a probability model
and let M be the most likely value of 6. Since the quadratic expression

1/ M—-06\°

(%57
has a maximum value of zero when § = M it can be used to to approximate
the true log likelihood ratio, after an appropriate value of S has been
chosen. Small values of S give quadratic curves with sharp peaks and
large values of S give quadratic curves with broad peaks. We shall refer

to S as the standard deviation of the estimate of §. Alternatively, it is
sometimes called the standard error of the estimate.

A
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Once M has been found and S chosen, an approximate supported range
for 6 is found by solving the equation

1/M-6\2
-3 (T) = —1.353,

to give
0 =M £+1.64585.

Full details of how S is chosen are given later in the chapter, but for the
moment we shall give formulae for S, without justification, and concentrate
on how to use these in practice.

THE RISK PARAMETER

The log likelihood for 7, the probability of failure, based on D failures and
N — D survivors is

Dlog(r) + (N — D) log(1 — 7).

The most likely value of 7 is D/N. To link with tradition we shall also
refer to the most likely value of 7 as P (for proportion). The value of S
which gives the best approximation to the log likelihood ratio is

5=y 2020

For the example we worked through in Chapter 3, D =4 and N = 10 so
that the value of P is 0.4 and

10.4x0.6
S = 0 - 0.1549.

An approximate supported range for 7 is given by
0.4+ 1.645 x 0.1549

which is from 0.15 to 0.65, while the supported range obtained from the
true curve lies from 0.17 to 0.65. The true and approximate log likelihood
curves are shown in Fig. 9.1. The curve shown as a solid line is the true
log likelihood ratio curve, while the broken line indicates the Gaussian
approximation.

THE RATE PARAMETER
The log likelihood for a rate A based on D cases and Y pérson years is

Dlog()) — \Y.
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Fig. 9.1. True and approximate Bernouilli log likelihoods.

The most likely value of A is D/Y and the value of S which gives the best
approximation to the log likelihood ratio is

For the example in Chapter 5, D =7 and Y = 500. The most likely value
of A is 0.014 and .
8 = +/7/500 = 0.00529.

An approximate supported range for A is therefore
0.014 + 1.645 x 0.00529

which is from 5.3/1000 to 22.7/1000. The true (solid line) and approximate
(broken line) log likelihood ratio curves are shown in Fig. 9.2. The range
of support obtained from the true curve spans from 7.0 to 24.6 per 1000.

Exercise 9.1. Find the approximate supported range for w, the probability of
failure, based 7 failures and 93 survivors. Find also the approximate supported
range for A, the rate of failure, based on 30 failures over 1018 person-years.

9.2 Transforming the parameter

The Gaussian log likelihood curve for p is symmetric about M and extends
indefinitely to either side. However, the parameters of some probability

~—
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Fig. 9.2. True and approximate Poisson log likelihoods.

models are not free to vary in this manner. For example, the rate parameter
A can take only positive values, and the risk parameter must lie between 0
and 1. Approximate supported ranges for such parameters calculated from
the Gaussian approximation can, therefore, include impossible values.
The solution to this problem is to find some function (or transformation)
of the parameter which is unrestricted and to first find an approximate
supported range for the transformed parameter. '

THE LOG RATE PARAMETER

The rate parameter A can take only positive values, but its logarithm is
unrestricted. To calculate an approximate supported range for A it is bet-
ter, therefore, to first calculate a range for log(\), and then to convert this
back to a range for A. Note that the range for log(\) will always convert
back to positive values for A. To find the approximate range for log(A) we
need a new value of S — that which gives the best Gaussian approximation
to the log likelihood ratio curve when plotted against log(A). When a rate
A is estimated from D failures over Y person-years, this value of S is given

by

S =+/1/D.
Fig. 9.3 illustrates this new approximation for our example in which D =7
and Y = 500 person-years. Here,

S =+/1/7 = 0.3780,



82 APPROXIMATE LIKELIHOODS
< ]
IS

L2 o

g T

=

[=]

o

£ i

°©

=

= <

[«] o ]

9 h
< 2
@

-5.0 -4.5 -4.0 -3.5
Log rate parameter
Fig. 9.3. Approximating the log likelihood for log(}).
and an approximate supported range for log()) is

log(7/500) & 1.645 x /1/7,

which is from —4.890 to —8.647. The range for ) is therefore from exp(—4.890)

to exp(—3.647) which spans from 7.5/1000 to 26.1/1000.
A more convenient way of carrying out this calculation is suggested by
noting that the limits of the range for A are given by

7 x 1 x
Lz 1.6454/= ) = 0.014 = 1.862.
500 ~ P < \/;>

The range is then from 0.014/1.862 = 7.5/1000 to 0.014 x1.862 = 26.1/1000,
as before. We shall refer to the quantity

exp (1.6455)

as an error factor.

'THE LOG ODDS PARAMETER

The same thing can be done when calculating a supported range for the risk
parameter 7 based on D failures in N subjects. The value of 7 is restricted
on both sides, by 0 on the left and by 1 on the right. The value of log(~) is

TRANSFORMING THE PARAMETER 83

still restricted on the right by zero because log(1) = 0, but log(f2), where
(1 is the odds corresponding to , is not restricted at all. Hence we first
find a range for log(Q2) and then convert this back to a range for 7. The
most likely value of log(Q) is

M=log(Nl_)D)

and the value of S for approximating the log likelihood for log(f) is

1 1
§= 5+'N—D'

For the example where D =4 and N -D =6

S = + % = 0.6455,

PN

and an approximate supported range for log({2) is given by
4
log g +1.645 x 0.6455,

that is, from —1.4673 to 0.6564. This is a range for log((?) and it is equiv-
alent to a range for  from exp(—1.4673) = 0.231 to exp(0.6564) = 1.928.
This can be calculated more easily by first calculating the error factor

exp (1.645 x 0.6455) = 2.892.
The most likely value of 2 is 4/6 = 0.667, so that the supported range for
Qis
X
0.667 + 2.892

that is, from 0.231 to 1.928 as before. Finally, remembering that = =
Q/(1 + ), the range for 7 is given by

0.231 1.928

— o ——

1.231 2.928

which is from 0.19 to 0.66.
Some of the more commonly used values of S obtained by approximating
the log likelihood are gathered together in Table 9.1.

Exercise 9.2. Repeat Exercise 9.1 by first finding 90% intervals for log(Q2) and
log()) respectively, and then converting these to intervals for 7 and A.

Exercise 9.3. Repeat the above exercise using error factors.



84 APPROXIMATE LIKELIHOODS

Table 9.1. Some important Gaussian approximations

Parameter M S

T D/N=P v/ P(1-P)/N

A D/Y vD/Y
log(2) loglD/(N - D)] +/1/D+1/(N-D)
log()\) log(D/Y) £/1/D

9.3 Finding the best quadratic approximation

We now return to the problem of how to determine the values for M and
S. To do this we need some elementary ideas of calculus summarized
in Appendix B. In particular, we need to be able to find the gradient
(or slope) of the log-likelihood curve together with its curvature, which is
defined as the rate of change of the gradient. The mathematical terms for
these quantities are the first and second derivatives of the log likelihood
function. '

The value of M can be found by a direct search for that value of of 6
which maximizes the log likelihood, but it is often easier to find the value
of 8 for which the gradient of the log likelihood is zero; this occurs when
f=M. '

The value of S is chosen to make the curvature of the quadratic approx-
imation equal to that of the true log likelihood curve at M, thus ensuring
that the true and approximate log likelihoods are very close to each other
near § = M. The quadratic approximation to the log likelihood ratio is

1(/M-6\°

2 S ’
and the rules summarized in Appendix B show that the curvature of this
is constant and takes the value

[GR

We therefore choose the value of S to make —1/ (5)? equal to the curvature
of the true log likelihood curve at its peak.

THE RATE PARAMETER
The log likelihood for a rate A is

Dlog()) — AY.

FINDING THE BEST QUADRATIC APPROXIMATION 85

Using the rules of calculus given in Appendix B the gradient of log(}) is
1/X and the gradient of X is 1. Hence the gradient of the log likelihood is

D
X_Y'

The maximum value of the log likelihood occurs when the gradient is zero,
that is, when A = D/Y’, so the most likely value of A\ is D/Y. The curvature
of a graph at a point is defined as the rate of change of the gradient of the
curve at that point. The rules of calculus show this to be '

D
—W'

The peak of the log likelihood occurs at A = D/Y so the curvature at the
peak is found by replacing A by D/Y in this expression to obtain

)
D

Setting this equal to —1/(5)? gives
s =+D/Y,
which is the formula quoted earlier.

THE RISK PARAMETER

The log likelihood for the probability 7= based on D positive subjects out
of a total of N is

Dlog(r) + (N — D) log(1 — ).
The gradient of the log likelihood is

B_N—D
T l—nm

which is zero at # = D/N, also referred to as P. The gradient of the
gradient is

_D _N-D
(m? (1-m*
so the curvature at # = P is
D —D
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Replacing D by NP and N — D by N(1 — P), this reduces to

N
" P(1-P)

5=y 2B

9.4 Approximate likelihoods for transformed parameters

SO

When the log likelihood for a parameter is plotted against the log of the
parameter rather than the parameter itself, the curvature at the peak will
be different. For example, the log likelihood for a rate parameter A is

Dlog()) — \Y.

Plotting this against log()) is the same as expressing the log likelihood as
a function of log(A). To do this we introduce a new symbol 3 to stand for
log(A), so

B=log(}), A=exp(f).

In terms of § the log likelihood is
D3 — Y exp(0).
The gradient of this with respect to 3 is

D —Y exp(B)

and the curvature is
—Y exp(f).

The most likely value of exp(8) (which equals A) is D/Y’, so the curvature

at the peak is
-Y x (D/Y) = -D.

It follows that

S =+/1/D.

In general, derivations such as that above can be simplified considerably
by using some further elementary calculus which provides a general rule for

" the relationship between the values of S on the two scales. In the case of

the log transformation, this rule states that multiplying the value of S on
the scale of A by the gradient of log(\) at A = M gives the value of S on the
scale of log(A). The rules of calculus tell us that, at A = M, the gradient

SOLUTIONS o

of the graph of log()\) against ) is 1/M. Since, on the X scale, M = D)y
and S =+/D/Y, the rule tells us that the value of S for log()) is

VD ¥ _ [T
vy "D VD
This agrees with the expression obtained by the longer method.

. A similar calculation shows that the curvature of the Bernouilli log
likelihood, when plotted against log(©2), the log odds, is given by

Solutions to the exercises

9.1  An approximate supported range for 7 is given by

\

0.07 + 1.6458

where S = 1/0.07 x 0.93/100. This-gives a range from 0.028 to 0.112.
An approximate supported range for ) is given by

30/1018 +1.64585

where § = +/30/1018. This gives a range from 21/1000 to 38/1000.

9.2 The approximate supported range for log(f?) is given by

log(7/93) + 1.6455

S—,/5+ 1 =0.3919
V7 Tog T T

This gives a range from —3.231 to —1.942. The range for Q is from 0.040
to 0.143, and the range for = is from 0.038 to 0.125.
The approximate supported range for log()) is given by

where

log(30/1018) + 1.6455

where :
S =+/1/30 = 0.1826.

This gives a range from —3.825 to —3.224. The range for A is from 22/1000
to 40/1000.
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9.3  The error factor for Q is

exp(1.645 x 0.3919) = 1.905.

The most likely value for Q is 7/93 = 0.075 and the range for Q is from . .

0.075/1.905 = 0.040 to 0.075 x 1.905 = 0.143. The range for 7 is from
0.038 to 0.125.
The error factor for the rate is

exp(1.645 x 0.1826) = 1.350.

The most likely value of the rate is 29/1000 with range from 29/1.350 = 22
per 1000 to 29 x 1.350 = 40 per 1000.

10

Likelihood, probability, and
confidence

The supported range for a parameter has so far been defined in terms of
the cut-point —1.353 for the log likelihood ratio. Some have argued that
the scientific community should accept the use of the log likelihood ratio
to measure support as aziomatic, and that supported ranges should be re-
ported as 1.353 unit supported ranges, or 2 unit supported ranges, with the
choice of how many units of support left to the investigator. This notion
has not met with widespread acceptance because of the lack of any intu-
itive feeling for the log likelihood ratio scale — it seems hard to justify the
suggestion that a log likelihood ratio of —1 indicates that a value is sup-
ported while a log likelihood ratio of —2 indicates lack of support. Instead
it is more generally felt that the reported plausible range of parameter val-
ues should be associated in some way with a probability. In this chapter
we shall attempt to do this, and in the process we shall finally show why
—1.353 was chosen as the cut-point in terms of the log likelihood ratio.

There are two radically different approaches to associating a probability
with a range of parameter values, reflecting a deep philosophical division
amongst mathematicians and scientists about the nature of probability. We
shall start with the more orthodox view within biomedical science.

10.1 Coverage probability and confidence intervals

Our first argument is based on the frequentist interpretation of probability
in terms of relative frequency of different outcomes in a very large number
of repeated “experiments”. With this viewpoint the statement that there
is a probability of 0.9 that the parameter lies in a stated range does not
make sense; there can only be one correct value of the parameter and
it will either lie within the stated range or not, as the case my be. To
associate a probability with the supported range we must imagine a very
large number of repetitions of the study, and assume that the scientist
would calculate the supported range in exactly the same way each time.
Some of these ranges will include the true parameter value and some will
not. The relative frequency with which the ranges include the true value
is called the coverage probability for the range, although strictly speaking
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9 Approximate Likelihoods

This is a central chapter; you will use the Normal Approx-
imation to the (sampling) distribution of ML parameter esti-
mates throughout your career. The key is to work in the
most appropriate parameter scale, the one where the sampling dis-
tribution is ‘closest to Gaussian.’

Even though the title says approximate likelihoods, in fact the chapter is
entirely about approximate log likelihoods. Indeed, just as R. A. Fisher did in
his very first paper on this topic, exactly 100 years ago, we should always focus
on the log likelihood. In that 1912 paper, Fisher never defined the likelihood,
only its log. (In fact he did not call it the log likelihood ... that term came
later. He just called it an absolute ‘criterion’).

C&H write of there being no simple algebraic expression (or closed form) for
the supported range for the parameters of the Binomial and Poisson models.
In fact, the same is true much more broadly: this was also the case in just
about all of the ML estimation problems we have dealt with so far (e.g. o in
Fisher’s binned errors data, and in Tibshirani et al’s ‘accuracy of dart throws’
data; 1 and o in Galton’s data on the speeds of homing pigeons; the shape
and rate/scale parameters of the gamma model for tumbler longevity; the HIV
infection rate parameter X in the circumcision studies; the proportion (7) of
persons infected by West Nile virus; the parameters in the mutation rate
function behind the genetic data from Iceland, etc. etc.. And this absence
of a closed form will also be the norm for the parameters in many many
regression models. Indeed, in most parameter-fitting applications, we do not
even have a closed form algebraic expression for the point estimates, let alone
their standard errors. So, it is important that we learn how to use a more
general approach.

“The quadratic approximation becomes closer to the true log likelihood as the
amount of data increases”: The authors are referring to the role of the Central
Limit Theorem, and to the near-Gaussian sampling distribution of 05,15

9.1 Approximating the log likelihood

“Consider a general likelihood for the parameter, 8, of a probability model and
let M be the most likely value of 6. Since the quadratic expression

LMoy
2 S

has a maximum value of zero when 8 = M, it can be used to approzimate the
true log likelihood ratio.”

If JH were writing this, he would have said

“Constder a general likelihood for the parameter, 0, of a probability
model and let 0,5, be the most likely value of 0. Since the quadratic

expression
YOI
2 S

has a mazximum value of zero when 0 = 9Mb it can be used to
approximate the true log likelihood ratio.”

“We shall refer to S as the standard deviation of the estimate of 0. Alterna-
tively, it is sometimes called the standard error of the estimate”

Again, JH would have written:

“We shall refer to SE[éML] as the standard deviation of the estimate
of 6. Alternatively, it is sometimes called the standard error of the
estimate”

and (dropping the awkward ML subscript in the SE) that

“Since the quadratic expression

1 (éML - 9) ?

2\ SE[]
has a mazximum value of zero when 0 = éIVIL, it can be wused to
approximate the true log likelihood ratio.”
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Formulae for S [for now, without justification].

THE RISK [i.e., the PROPORTION, = | PARAMETER

As C&H illustrate in the next section, it is better to work in the logit|n] scale,
unless the Normal approximation to the binomial itself is adequately accurate.
Had the data been 40+ and 60—, rather than 44 and 6—, the log-likelihood
in the original, untransformed, (i.e., ) scale would have looked a lot closer
to quadratic, i.e., the sampling distribution of a sample proportion would be
close-enough-to-Normal for much more of the 7 range.

A common problem with using the Normal approximation in the case of
limited-range parameters is that it works well enough at the less extreme
limit (in this case, for values near the middle of the range) but poorly for
parameter values near the more extreme limit (in this case, for values near
the bottom of the 0-1 range). JH likes to say that there isn’t enough room
for a Gaussian distribution if we are at the lower end (0/10, 1/10, 2/10, ...)
of the Binomial(10, ) distribution, particularly if we entertain 7 values <
0.5 (which case we would ‘expect’ to have n x 7 < 5 in the sample with the
characteristic/event of interest.

THE RATE [i.e., the INTENSITY, X\ | PARAMETER®

“The value of S (i.e., the value of SE[X]) which gives the best approximation
to the log likelihood ratio is S = /D/PT "

The reason for this form is because A w1 has the form A mr = D/PT, where
D is the realization of a Poisson r.v., and PT is a known constant.

The lower limit of 5.3/1000 is the result of using the Normal approximation
to a Poisson distribution. But a rate of 5.3/1000 means that with PT=500
person-time units, we would expect p = (5.3/1000) x 500 = 2.65 ‘events’,
and we know that the Poisson[y = 2.65] distribution is quite skewed, with
a lot of probability mass on its lower tail values of 0, 1 and 2, so it is not
possible to approximate it by a Normal distribution — the lower tail of a
N[p = 2.65,0 = +/2.65] distribution has an embarrassingly large amount its
mass below 0!

Imagine what the lower limit would be if the observed count was D = 2: then
the lower limit for the rate, based on the Normal approximation, would be
(2—1.645x1/2) /500, a negative rate! Using the form (DF1.645x+/D)/500 (i.e.
dealing first with the statistical uncertainty in the numerator, then dividing

6JH has changed the possibly confusing Y (for the Years of observation denominator)
to PT (for amount of Population-Timd in which the events occurred). He left the ‘morbid’
term D (for Deaths’) as is, even though he prefers to use C for ‘number of Cases (instances)
of’, a neutral term that covers both ‘bad’ and ‘good’ types of events/characteristics.

by the ‘constant’, 500) makes it much clearer where the ‘weak link’ is —it’s the
numerator!

Again, a parameter-transformation would help (although, with a p this low, it
is difficult to come up with any parameter scale on which the Normal distribu-
tion would be a good approximation — there just isn’t enough ‘granularity’).

9.2 Transforming the parameter

As was emphasized at the beginning, this is the key to more accurate approx-
imations.

“The solution to this problem is to find some function (or transformation) of
the parameter which is unrestricted and to first find an approzimate supported
range for the transformed parameter.”

Indeed! And it is often possible to use the range of the parameter to determine
which transformation is likely to lead to a scale on which the log-likelihood
is more Gaussian. For a parameter 6, such as a proportion, that takes values
in the (0,1) range, the ‘canonical’ transformation is the logit, i.e., log [%],
which takes on values all the way from —oco to +oc.

For a parameter 6, such as a rate, that takes values in the (0,00) range,
the canonical transformation is the log, i.e., log[f]. Indeed, for many of the
examples to be considered from now on, JH may well use 6 for the parameter
measured on the full (—oo, +00) scale.

THE LOG RATE PARAMETER [with some editing by JH]

“The rate parameter A can take only positive values, but its logarithm is
unrestricted. To calculate an approximate supported range for A, it is better,
therefore, to first calculate a range for log[A], and then to convert this back
to a range for A\. (...) To find the approximate range for log[A], we need a
new value of S that which gives the best Gaussian approximation to the log
likelihood ratio curve when plotted against log[A]. When a rate A is estimated
from D failures over PY person-years, i.e., as

A= D/PY,

this value of S = SE[\] = { Var[\] }'/2 is given by

S=SE=SE[\= %.

(By ignoring the possibility of a Poisson count of zero, and using a Taylor series
approximation often referred to as “the Delta Method” ), at the beginning
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of the course, when dealing with Poisson variation, we derived the square
root of the variance of the log of a Poisson r.v., Y, finding it to be

(approximately)
/1
py’

where py is the expected value, E[Y]. And by using the observed value (D in
C&H notation, y or ¢ in JH’s) as an estimate of its expectation, and plugging
it into the square root of the expression for the variance, we have a good
example of a standard error — the estimated standard deviation of a statistic
or parameter-estimate.

“A more convenient way of carrying out this calculation — using a
(multiplicative) ‘error factor.’ ”

JH encourages this Multiplicative Margin of Error (MME) i.c., using 8 x
~MME, rather than exp[log[é + ZQ/QSE[log[é]] approach; think of it as
expressing the uncertainty as X-fold (or, en frangais, ‘X-fois’): the upper
limit is X times larger than the point estimate; and the lower limit is X times
smaller than the point estimate.

THE LOG ODDS PARAMETER [editing and notation-changes by JH]
Here we use the logit, or the log-odds, i.e., 6 = log[Q] = log [{%=], so that
6 = log [ﬁ]

“When an odds, €2, is estimated from y+ ‘positives’ and y— 'negatives’, i.e.,
as

Q=72 orf=1log[] =log

= ]
y— )
the value of § = SE[f] = {Var[f]}'/? is given by
S=SE=SE[] =/~ + .
y+ Y-

(By ignoring the possibility of a Binomial count of 0 or n, and using a Taylor
series approximation often referred to as “the Delta Method”), at the be-
ginning of the course, when dealing with Binomial variation, we derived the
square root of the variance of the log of the ratio of Binomial r.v.,
Y+, to its complement Y —, finding it to be (approximately)

1 1

By + py —’

where py is the expected value. And by using the observed value (D in C&H
notation, y+ in JH’s) as an estimate of the one expectation, and the observed

value of its complement (N — D in C&H notation, y— in JH’s) and plugging
it into the square root of the expression for the variance, we have a good
example of a standard error — the estimated standard deviation of a statistic
or parameter-estimate.

Epidemiologists are (overly) fond of 2 x 2 tables, with E (‘Exposed’) and E
(not) and with D (‘Diseased’) and D (not) as the rows / columns and with
a, b, ¢, d as frequencies

E FE
D| a b | np
D| c¢ d |np
ng Mg | n

JH prefers this more neutral and more general notation (with X on x-axis,
and going from 0 to 1):

X=0 X=1
Y=1| u4 Yt
Y =0 Yy_ Y_

nx=0 MNx=1

and looking ahead to regression, with traditional X and Y axes, where the
values need not be restricted to 0’s and 1’s, he would argue for this layout:

L ys Yt
Y
0 y_ Y
0 1
X

In any event, at this stage, where all subjects have the same X (say X=0),
our only interest is in the left (X=0) column of the table, and in the y; to y_
ratio. So, for the logit, when we substitute observed for expected values, we
have the biostatistician’s expression

SE[ logitr] | = SE| log[] | = SE[0] = i 4 y%

or the epidemiologist’s expression, with a and ¢ as the focus for now (or a and
b if they happened to — or were taught to — exchange the row and columns
labels) :

SE| logit | = SE[ log[a/b] | = v/1/a + 1/b.
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Supplementary Exercise 9.1. Suppose we measured the sex ratio in a
sample of n = 20, obtaining the ratio & : ¢ = 14:6. Calculate a 90% CI for
the true & : @ ratio, , by first calculating a CI for log[Q].

9.3 Finding the best quadratic approximation

“To do this we need some elementary ideas of calculus summarized in Ap-
pendiz B. In particular, we need to be able to find the gradient (or slope) of
the log-likelihood curve together with its curvature, which is defined as the rate
of change of the gradient. The mathematical terms for these quantities are
the first and second derivatives of the log likelihood function.”

JH would add that “the statistical terms for these quantities are the Score
and (with the sign changed to have a positive value) the Information.”

“The value ofé can be found by a direct search for that value of 6 which
mazimizes the log likelihood, but it is often easier to find the value of 6 for
which the gradient of the log likelihood is zero; this occurs when 6 = 0. The
value of S is chosen to make the curvature of the quadratic approzimation
equal to that of the true log likelihood curve at M, thus ensuring that the true
and approximate log likelihoods are very close to each other near 6 = 6.

We therefore choose the value of S to make —1/(S)? equal to the
curvature of the true log likelihood curve at its peak.
THE RATE [i.e., \] PARAMETER (estimated as ‘event count’/PT = y/PT)

Lik[A] = exp[—p] ¥, where p =X x PT

LogLik[\] = —p + ylog[u] = =X x PT + ylog[\] — ylog[PT)

_d LogLik[A] y

Score[A] = . PT
d? LogLik[)] y Ax PT PT
IN=-E|——=——|=FE|5| = =—
A dA? A2 A2 A

Substituting A = y/PT for X yields

and using {I[A]} 7! = 5% as SE[N? yields

o\
EN=-2=
SEP = 57,

just as we had established (directly!) at the beginning of the course, treating

_ oy Poisson(u)
A=pp~ PT -

The point of this long exercise is that we can check in simple cases that the
two approaches lead to the same SE [5\], but that there are many instances
where there is no closed form, and where the ‘curvature’ approach is the only
way to calculate a SE.

THE RISK () PARAMETER

C&H go through the same curvature exercise for this parameter, and arrive

at the familiar ‘binomial’ SE of 4/ w

9.4 Approximate likelihoods for transformed parameters

First, JH applauds C&H for ‘transforming’ the parameter before transforming
the random variable. See the American Statistician article “The PDF of
a Function of a Random Variable: Teaching its Structure by Transforming
Formalism into Intuition” by JH and D Teltsch — it is under Reprints/Talks
on JH’s website. Its more about a change of scale than the ‘change of variable’
that is usually taught. After all, the entity called ‘Montreal temperatures’ is
the same (and temperatures in January are equally cold), whether we choose
to measure them in °F or °C'!

Supplementary Exercise 9.2. C&H repeat the above SE calculations, but
for the parameter = log[A] rather than A. Fill in the steps they don’t show.
[And note their wise choice of the letter 8 — they are thinking ahead to linear
predictors in multiple regression. In this simple 1-sample example, think of it
as a By !

“In general, derivations such as that above can be simplified considerably by
using some further elementary calculus which provides a general rule for the
relationship between the values of S (the SE) on the two scales. In the case
of the log transformation, this rule states that multiplying the value of S on
the scale of A by the gradient of log(\) at A = M gives the value of S on the
scale of log(\). The rules of calculus tell us that, at A = M, the gradient of
the graph of log(\) against X is 1/M. (... )”

Supplementary Exercise 9.3 Show that the ‘simplification’ that C&H de-
scribe is none other than the Delta Method, with its use of Jacobians to go



BIOS602: Notes, Clayton&Hills. Ch. 8 (Normal probability model) and Ch9 (Approximate likelihoods) 2012.10.21

from one scale to another. The answer you obtained by applying the ‘Delta
Method’ to the transformed r.v. log[y/PT)] is a check on their algebra.

“This agrees with the expression obtained by the longer method.”

By the longer method, they mean the use of the curvature/information (and
its reciprocal) at 6 = 6. And the ‘this’ refers to the Delta Method. To JH,
the difference is that the curvature/information approach emphasizes the pa-
rameter scale, while the Delta Method emphasizes the random variable scale.
The ‘change-the-parameter-scale’ is more general, and avoids having to worry
about realizations of random variables (e.g., a count of zero) that do not map
nicely to another (e.g., the log[count] or log[y]) scale.

9.5 Déja vu: supp. exercises in Ch. 3 (Likelihood)

There was no simple algebraic expression (or closed form) for the supported
range for the parameters of the models involving ¢ in Fisher’s binned errors
data, and in Tibshirani et al’s ‘accuracy of dart throws’ data; g and o in
Galton’s data on the speeds of homing pigeons; the shape and rate/scale
parameters of the gamma model for tumbler longevity; the HIV infection rate
parameter A in the circumcision studies; the proportion () of persons infected
by (the sero-prevalence of) West Nile virus; the parameters in the mutation
rate function behind the genetic data from Iceland, etc. etc.. So, ...

Supplementary Exercise 9.4 Revisit each these examples, and decide
which, if any, parameter transformation might lead to a ‘closer-to-Gaussian’
i.e., ‘closer-to-quadratic’ log-likelihood. Then re-run the graphs on these new
scales”, and see if your intuition was borne out. Can you come up with any
‘rule-of-thumb’ to decide whether the extra work involved will be worth it?

7Once you have set up the LogLik function on one scale, it is usually easy to plot it on
another. Or you can change the argument and insert the transformation at the beginning
of the old function.

10
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