












BIOS601: Notes, Clayton&Hills. Ch 6: Time. 2012.11.04.

6 Time

6.1 When do we start the clock?

Examples JH has dealt with include the analysis of longevity of

• The Titanic survivors, where the two time scales are (i) age (years elapsed
since birth) and (ii) ‘survivor-time’, the years elapsed since the April 15,
1912 sinking;

• Oscar nominees, where the two time scales are (i) age and (ii) nominee-
time’, the years elapsed since first being nominated for an Oscar;

• Nobel Prize nominees, where the two time scales are (i) age and (ii)
‘nominee-time’, the years elapsed since first being nominated for a Nobel
Prize;

• Jazz musicians, where the two time scales are (i) age and (ii) performer-
time’, the years elapsed since first becoming a jazz musician;

• Popes versus artists;

• Baseball Hall of Famers versus players who were nominated by not in-
ducted;

• Rock Stars who become famous early versus later (or not at all).

For more details on these examples, see bios601/Epidemiology2/

For more on the choice of time scale, Google “Multiple time scales in survival
analysis.” or find the articles that cite the 1979 Applied Statistics article by
Farewell and Cox “A note on multiple time scales in life testing.”

There is also the interesting article The two-way proportional hazards model
by Efron in J. R. Statist. Soc. B (2002) 64, Part 4, pp. 899-909, applied
to “patient histories in a study of heart transplant recipients treated at the
Stanford Medical Center between 1980 and 1996; some 110 of the patients
su↵ered a serious bacterial infection, their infection times ranging from a few
days after transplantation to nearly 9 years, these being the observed lifetimes
that would usually be featured in a proportional hazards analysis of the infec-
tion process. In this case, however, the investigators’ main interest centred on
calendar date: was the incidence rate of bacterial infections declining over the
course of the study? Incidence is itself a hazard rate, in the simplest situation
the number of new cases per eligible subject per unit time, and it is natural
to answer the question with a hazard rate analysis.”

6.2 Age-specific rates

“To ignore this variation [of incidence and mortality rates with age] runs the
risk that comparisons between groups will be seriously distorted, or confounded,
by di↵erences in age structure.”

It’s good to have a few handy real examples of age-confounding that
are easily understood by non-statisticians. Two immediately come to
mind (i) the overall death rate is higher in Canada than Ethiopia
(ii) the higher death rate among non-smokers in a 20-year follow-up
study of smokers and non-smokers [ Does Smoking Improve Survival?
www.whfreeman.com/statistics/ips/eesee4/eesees4.htm; this is also de-
scribed in chapter 1 of Rothman 2002, with finer age-categories]

“For longer studies it will be necessary to take account of changing age during
the study, and to treat age properly - as a time scale. This scale is then divided
into bands and a separate estimate of the rate is made within each age band
as described in Chapter 5. In this latter analysis, a subject can pass through
several age bands during the course of the study.”

Not only can a subject pass through several age bands but she can also change
from one ‘exposure’ category to another – as in the Oscars exercise.

6.3 The expected number of failures

“One reason for subdividing the total follow-up experience of a cohort into
age bands is to determine whether the observed number of failures is more or
less than we might have expected. Since mortality and incidence rates usually
increase quite sharply with age, the distribution of person years observation
between age bands is an extremely important determinant of the number of
events we would expect to observe.”

It is not clear what is the basis for the “expectation” i.e., whether it is a ‘what
if’ comparison against external rates, or an internal one against the rates in
a comparison group constructed and followed by the investigators. One can
think of the ‘expected number’ of 16.77 cases in exercise 6.3 as the number one
would expect in a scaled-down version of England and Wales (E&W), scaled
down to the same sample size (974 women) followed for the same cell-specific
numbers of person years as those shown in Table 6.4. In other words, it as as
thought one had

974 treated by HRT 974 from E&W, same age & follow-up, untreated
15 cases 16.7 cases

Of course, the fact that the 16.7 is based on observed rates in the whole of
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E&W means that it is not subject to the same degree of random variation as
is the number of cases in the actual cohort. With this solid a basis for it, the
expected number is usually taken to be a constant, so only one standard error
(SE) is involved in the 15 vs. 16.7 comparison – the one associated with the
15.

“The expected number of cases, as calculated above, is not quite the same as
the expected number in the usual statistical sense. The latter cannot depend
upon the outcome of the study, but the former does.”

C&H are saying that the numbers of Woman-years in the second column of
Table 6.4 are random variables: they would not have been known ahead of
time. For some 15 women – the 15 being a random variable – the follow-up
was terminated by the event of interest. Likewise, any terminations for other
reasons might also be unpredictable ahead of time. However, if these are not
related to the person’s probability of a future event, they don’t have a great
influence on the sampling behaviour of the estimators of interest.

6.4 Lexis diagrams

en.wikipedia.org/wiki/ Wilhelm Lexis (1837-1914) was an eminent Ger-
man statistician, economist, and social scientist and a founder of the interdis-
ciplinary study of insurance.

The “Lexis diagram”, in which lifelines are displayed as 45-degree lines on a
grid with age on the vertical axis and calendar year on the horizontal axis, is
very helpful in epidemiology, and in survival analysis with 2 time scales.

The Epi package for R has several functions that make it easy to convert the
data of the type shown in Table 6.2 into the person-year segments shown
Figure 6.3. Previously, this was a very laborious computing process.

Once we have the tabulated person years and cases in each Lexis rectangle
(the cells don’t have to be square), we can calculate the expected number of
cases if a specified set of external rates applied, or make internal rectangle-
by-rectangle comparisons, and thus a summary of these comparisons. We can
also use them to fit (Poisson) regression models for rates.

Here is the R code, and some of its output, for the data in C&H Table 6.2.

library(Epi)

id = c(1,2,3,4);
yr.birth = c(1904,1924,1914,1920);
yr.entry = c(1943,1948,1945,1948);
yr.exit = c(1952,1955,1961,1956);
fail = c(0, 1, 0, 0) );

ds=data.frame(id, yr.birth, yr.entry, yr.exit, fail); ds

id yr.birth yr.entry yr.exit fail
1 1 1904 1943 1952 0
2 2 1924 1948 1955 1
3 3 1914 1945 1961 0
4 4 1920 1948 1956 0

# Define as Lexis object with timescales calendar time and age

Lexis <- Lexis( entry = list( calendar.year = yr.entry ),
exit = list( calendar.year = yr.exit, age = yr.exit - yr.birth ),

exit.status = fail,
data = ds )

Lexis

calendar.year age lex.dur lex.Cst lex.Xst lex.id id yr.birth yr.entry yr.exit fail

1 1943 39 9 0 0 1 1 1904 1943 1952 0
2 1948 24 7 0 1 2 2 1924 1948 1955 1
3 1945 31 16 0 0 3 3 1914 1945 1961 0
4 1948 28 8 0 0 4 4 1920 1948 1956 0

# Default plot of follow-up

plot(Lexis)

# With a grid and deaths as endpoints

plot(Lexis, grid=0:5*5, col="black" )
points(Lexis, pch=c(NA,16)[Lexis$lex.Xst+1] )

# With a lot of bells and whistles: [ *** SEE PLOT NEXT PAGE *** ]

plot(Lexis, grid=0:20*5, col="black", xaxs="i", yaxs="i",
xlim=c(1940,1965), ylim=c(20,50), lwd=3, las=1 )

points(Lexis, pch=c(NA,16)[Lexis$lex.Xst+1], col="red", cex=1.5 )

# Split time along two time-axes

L2 = splitLexis(Lexis,breaks=seq(1940,1965,5),
time.scale="calendar.year")

L2 = splitLexis(L2, breaks=seq(20,50,5), time.scale="age" )
str( L2 )
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L2

lex.id calendar.year age lex.dur lex.Cst lex.Xst id yr.birth yr.entry yr.exit fail
1 1 1943 39 1 0 0 1 1904 1943 1952 0
2 1 1944 40 1 0 0 1 1904 1943 1952 0
3 1 1945 41 4 0 0 1 1904 1943 1952 0
4 1 1949 45 1 0 0 1 1904 1943 1952 0
5 1 1950 46 2 0 0 1 1904 1943 1952 0
6 2 1948 24 1 0 0 2 1924 1948 1955 1
7 2 1949 25 1 0 0 2 1924 1948 1955 1
8 2 1950 26 4 0 0 2 1924 1948 1955 1
9 2 1954 30 1 0 1 2 1924 1948 1955 1
10 3 1945 31 4 0 0 3 1914 1945 1961 0
11 3 1949 35 1 0 0 3 1914 1945 1961 0
12 3 1950 36 4 0 0 3 1914 1945 1961 0
13 3 1954 40 1 0 0 3 1914 1945 1961 0
14 3 1955 41 4 0 0 3 1914 1945 1961 0
15 3 1959 45 1 0 0 3 1914 1945 1961 0
16 3 1960 46 1 0 0 3 1914 1945 1961 0
17 4 1948 28 2 0 0 4 1920 1948 1956 0
18 4 1950 30 5 0 0 4 1920 1948 1956 0
19 4 1955 35 1 0 0 4 1920 1948 1956 0

# Tabulate the cases and the person-years

summary( L2 )

tapply( status(L2,"exit")==1, list( timeBand(L2,"age","left"),

timeBand(L2,"calendar.year","left") ), sum )

1940 1945 1950 1955 1960

20 NA 0 NA NA NA

25 NA 0 0 NA NA

30 NA 0 1 NA NA

35 0 0 0 0 NA

40 0 0 0 0 NA

45 NA 0 0 0 0

tapply( dur(L2), list( timeBand(L2,"age","left"),

timeBand(L2,"calendar.year","left") ), sum )

1940 1945 1950 1955 1960

20 NA 1 NA NA NA

25 NA 3 4 NA NA

30 NA 4 6 NA NA

35 1 1 4 1 NA

40 1 4 1 4 NA

45 NA 1 2 1 1

> summary( L2 )

Transitions:

To

From 0 1 Records: Events: Risk time:

0 18 1 19 1 40

Rates:

To

From 0 1 Total

0 0 0.02 0.02

1940 1945 1950 1955 1960 1965

20

25
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40

45

50

calendar.year

a
g
e

Figure 1: Lexis Diagram, from Epi package in R
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Supplementary Exercise 6.1. Death rates in those who survived the

sinking of the Titanic vs. in the sex-and age-matched US general

population, together with some other investigations

Under ‘For Person-Years Analyses’ in Resources for ‘Fitting Models to
Grouped Data [B & D vol II, ch4]’ in the BIOS602 website you will find
(a) the Titanic longevity data set (b) USA death rates (within 5 x 5 rectan-
gles, called ‘quinquinquennia’) from the Berkeley Mortality Database.1 You
will also find some R code that uses the Epi package to create – for each pas-
senger – the durations in and exit status from each quinquinquennium, then
aggregates these over all the persons traversing each quinquinquennium, etc.

1. Convert each survivor’s record into the experience in the (age, period)
quinquinquennia traversed, i.e the number of years spent in the rectangle,
and the status (e.g., d = 0 if alive, 1 if dead) at the end of these years.
Rather than program the calculations from scratch, two possibilities are
http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html

– which some people used last year – and the R ‘Epi’ package
http://staff.pubhealth.ku.dk/⇠bxc/Epi/ The key functions in the
latter are Lexis (and associated plotting functions) and splitLexis,
which, when applied twice, calculates the time spent, and exit status
from each quinquinquennium. The ‘bogus example’ in the documen-
tation of the splitLexis function illustrates these, while the example
on the notes for C&H chapter 6 shows the application to the 4-person
cohort used in that chapter.

2. How much higher/lower is the set of age-specific death rates for male
Titanic survivors than that for the general US population? for fe-
male survivors? Answer in two ways: first, calculate sex-specific ob-
served/expected ratios, where the numerator is the total number of deaths
observed in the sex-specific cohort, and the denominator is the sum of the
expected numbers of deaths in these cells, using the USA age-sex-period
death rates; second, calculate sex-specific Mantel-Haenszel summary in-
cidence ratios (Rothman terminology) or incidence density ratios (Mietti-
nen terminology) or mortality rate ratios (everyone’s terminology), using
age and period as ‘strata.’2 Assume that each of the USA death rates is

1.] This site, http://www.demog.berkeley.edu/⇠bmd/index.html, contains historical
lifetable and death rate data for the USA and other countries.

2As is illustrated in equation 8-5 in Rothman 2002, the formula is
P

strata(no. of cases, index category)⇥ (py, ref. category)/(py in stratum)
P

strata(no. of cases, ref. category)⇥ (py, index category)/(py in stratum)

based on a denominator of one million person years.3 Assume that the
death rates after 1995 are the same as those in 1990-95.

3. ‘On average,’ 4, for the age-span 40-90 in the period 1990-1995, how much
higher are the USA age-specific male death rates in males than females?
Answer by plotting the log of the male:female death rate ratio vs age, (or
the two separate sets of log-death-rates on the same graph), and taking
some ‘typical’ value for the ratio. Are you comfortable giving a single
ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant over
that age-span?

4. The previous question refers to cross-sectional rates, i.e., those in a speci-
fied period.5 On average, over the age-span 40-90 in the 1900 birth-cohort,
how much higher are the USA age-specific death rates in males than fe-
males? Answer by plotting the log of the male:female death rate ratio
vs age, (or the two separate sets of log-death-rates on the same graph),
and taking some ‘typical’ value for the ratio. Are you comfortable giving
a single ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant
over that age-span?

5. For the age-span 40-90, in a single number describe how much age-and
specific death rates have fallen over the 20th century (the changes may be
more subtle that this, so your answer will necessarily be a simplification).

6. For the Titanic survivors, was there a gradient in mortality rates across
the 3 passenger classes?

Supplementary Exercise 6.2. Mortality of performers while in the

‘still hoping to win’ vs in the ‘already a winner’ state

1. Divide the performer-years into those spent as Oscar nominees and as
Oscar winners and then subdivide these into quinquinquennia.

2. Compare the death rates in the performer-years spent as nominees versus
those spent as winners. Do so using both ‘adjusted’ expected numbers
and purely-internal comparisons.

3If the ratio of the amount of experience in the ref. category to that in the index category
goes to infinity, the M-H summary ratio converges to

P
strata O/

P
strata E = O/E.

4Even if the average is not representative.
5Cross-sectional rates are what are used to make ‘current’ or ‘period’ lifetables, by far

the more common type of lifetable.
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6 Time

6.1 When do we start the clock?

Examples JH has dealt with include the analysis of longevity of

• The Titanic survivors, where the two time scales are (i) age (years elapsed
since birth) and (ii) ‘survivor-time’, the years elapsed since the April 15,
1912 sinking;

• Oscar nominees, where the two time scales are (i) age and (ii) nominee-
time’, the years elapsed since first being nominated for an Oscar;

• Nobel Prize nominees, where the two time scales are (i) age and (ii)
‘nominee-time’, the years elapsed since first being nominated for a Nobel
Prize;

• Jazz musicians, where the two time scales are (i) age and (ii) performer-
time’, the years elapsed since first becoming a jazz musician;

• Popes versus artists;

• Baseball Hall of Famers versus players who were nominated by not in-
ducted;

• Rock Stars who become famous early versus later (or not at all).

For more details on these examples, see bios601/Epidemiology2/

For more on the choice of time scale, Google “Multiple time scales in survival
analysis.” or find the articles that cite the 1979 Applied Statistics article by
Farewell and Cox “A note on multiple time scales in life testing.”

There is also the interesting article The two-way proportional hazards model
by Efron in J. R. Statist. Soc. B (2002) 64, Part 4, pp. 899-909, applied
to “patient histories in a study of heart transplant recipients treated at the
Stanford Medical Center between 1980 and 1996; some 110 of the patients
su↵ered a serious bacterial infection, their infection times ranging from a few
days after transplantation to nearly 9 years, these being the observed lifetimes
that would usually be featured in a proportional hazards analysis of the infec-
tion process. In this case, however, the investigators’ main interest centred on
calendar date: was the incidence rate of bacterial infections declining over the
course of the study? Incidence is itself a hazard rate, in the simplest situation
the number of new cases per eligible subject per unit time, and it is natural
to answer the question with a hazard rate analysis.”

6.2 Age-specific rates

“To ignore this variation [of incidence and mortality rates with age] runs the
risk that comparisons between groups will be seriously distorted, or confounded,
by di↵erences in age structure.”

It’s good to have a few handy real examples of age-confounding that
are easily understood by non-statisticians. Two immediately come to
mind (i) the overall death rate is higher in Canada than Ethiopia
(ii) the higher death rate among non-smokers in a 20-year follow-up
study of smokers and non-smokers [ Does Smoking Improve Survival?
www.whfreeman.com/statistics/ips/eesee4/eesees4.htm; this is also de-
scribed in chapter 1 of Rothman 2002, with finer age-categories]

“For longer studies it will be necessary to take account of changing age during
the study, and to treat age properly - as a time scale. This scale is then divided
into bands and a separate estimate of the rate is made within each age band
as described in Chapter 5. In this latter analysis, a subject can pass through
several age bands during the course of the study.”

Not only can a subject pass through several age bands but she can also change
from one ‘exposure’ category to another – as in the Oscars exercise.

6.3 The expected number of failures

“One reason for subdividing the total follow-up experience of a cohort into
age bands is to determine whether the observed number of failures is more or
less than we might have expected. Since mortality and incidence rates usually
increase quite sharply with age, the distribution of person years observation
between age bands is an extremely important determinant of the number of
events we would expect to observe.”

It is not clear what is the basis for the “expectation” i.e., whether it is a ‘what
if’ comparison against external rates, or an internal one against the rates in
a comparison group constructed and followed by the investigators. One can
think of the ‘expected number’ of 16.77 cases in exercise 6.3 as the number one
would expect in a scaled-down version of England and Wales (E&W), scaled
down to the same sample size (974 women) followed for the same cell-specific
numbers of person years as those shown in Table 6.4. In other words, it as as
thought one had

974 treated by HRT 974 from E&W, same age & follow-up, untreated
15 cases 16.7 cases

Of course, the fact that the 16.7 is based on observed rates in the whole of
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E&W means that it is not subject to the same degree of random variation as
is the number of cases in the actual cohort. With this solid a basis for it, the
expected number is usually taken to be a constant, so only one standard error
(SE) is involved in the 15 vs. 16.7 comparison – the one associated with the
15.

“The expected number of cases, as calculated above, is not quite the same as
the expected number in the usual statistical sense. The latter cannot depend
upon the outcome of the study, but the former does.”

C&H are saying that the numbers of Woman-years in the second column of
Table 6.4 are random variables: they would not have been known ahead of
time. For some 15 women – the 15 being a random variable – the follow-up
was terminated by the event of interest. Likewise, any terminations for other
reasons might also be unpredictable ahead of time. However, if these are not
related to the person’s probability of a future event, they don’t have a great
influence on the sampling behaviour of the estimators of interest.

6.4 Lexis diagrams

en.wikipedia.org/wiki/ Wilhelm Lexis (1837-1914) was an eminent Ger-
man statistician, economist, and social scientist and a founder of the interdis-
ciplinary study of insurance.

The “Lexis diagram”, in which lifelines are displayed as 45-degree lines on a
grid with age on the vertical axis and calendar year on the horizontal axis, is
very helpful in epidemiology, and in survival analysis with 2 time scales.

The Epi package for R has several functions that make it easy to convert the
data of the type shown in Table 6.2 into the person-year segments shown
Figure 6.3. Previously, this was a very laborious computing process.

Once we have the tabulated person years and cases in each Lexis rectangle
(the cells don’t have to be square), we can calculate the expected number of
cases if a specified set of external rates applied, or make internal rectangle-
by-rectangle comparisons, and thus a summary of these comparisons. We can
also use them to fit (Poisson) regression models for rates.

Here is the R code, and some of its output, for the data in C&H Table 6.2.

library(Epi)

id = c(1,2,3,4);
yr.birth = c(1904,1924,1914,1920);
yr.entry = c(1943,1948,1945,1948);
yr.exit = c(1952,1955,1961,1956);
fail = c(0, 1, 0, 0) );

ds=data.frame(id, yr.birth, yr.entry, yr.exit, fail); ds

id yr.birth yr.entry yr.exit fail
1 1 1904 1943 1952 0
2 2 1924 1948 1955 1
3 3 1914 1945 1961 0
4 4 1920 1948 1956 0

# Define as Lexis object with timescales calendar time and age

Lexis <- Lexis( entry = list( calendar.year = yr.entry ),
exit = list( calendar.year = yr.exit, age = yr.exit - yr.birth ),

exit.status = fail,
data = ds )

Lexis

calendar.year age lex.dur lex.Cst lex.Xst lex.id id yr.birth yr.entry yr.exit fail

1 1943 39 9 0 0 1 1 1904 1943 1952 0
2 1948 24 7 0 1 2 2 1924 1948 1955 1
3 1945 31 16 0 0 3 3 1914 1945 1961 0
4 1948 28 8 0 0 4 4 1920 1948 1956 0

# Default plot of follow-up

plot(Lexis)

# With a grid and deaths as endpoints

plot(Lexis, grid=0:5*5, col="black" )
points(Lexis, pch=c(NA,16)[Lexis$lex.Xst+1] )

# With a lot of bells and whistles: [ *** SEE PLOT NEXT PAGE *** ]

plot(Lexis, grid=0:20*5, col="black", xaxs="i", yaxs="i",
xlim=c(1940,1965), ylim=c(20,50), lwd=3, las=1 )

points(Lexis, pch=c(NA,16)[Lexis$lex.Xst+1], col="red", cex=1.5 )

# Split time along two time-axes

L2 = splitLexis(Lexis,breaks=seq(1940,1965,5),
time.scale="calendar.year")

L2 = splitLexis(L2, breaks=seq(20,50,5), time.scale="age" )
str( L2 )
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L2

lex.id calendar.year age lex.dur lex.Cst lex.Xst id yr.birth yr.entry yr.exit fail
1 1 1943 39 1 0 0 1 1904 1943 1952 0
2 1 1944 40 1 0 0 1 1904 1943 1952 0
3 1 1945 41 4 0 0 1 1904 1943 1952 0
4 1 1949 45 1 0 0 1 1904 1943 1952 0
5 1 1950 46 2 0 0 1 1904 1943 1952 0
6 2 1948 24 1 0 0 2 1924 1948 1955 1
7 2 1949 25 1 0 0 2 1924 1948 1955 1
8 2 1950 26 4 0 0 2 1924 1948 1955 1
9 2 1954 30 1 0 1 2 1924 1948 1955 1
10 3 1945 31 4 0 0 3 1914 1945 1961 0
11 3 1949 35 1 0 0 3 1914 1945 1961 0
12 3 1950 36 4 0 0 3 1914 1945 1961 0
13 3 1954 40 1 0 0 3 1914 1945 1961 0
14 3 1955 41 4 0 0 3 1914 1945 1961 0
15 3 1959 45 1 0 0 3 1914 1945 1961 0
16 3 1960 46 1 0 0 3 1914 1945 1961 0
17 4 1948 28 2 0 0 4 1920 1948 1956 0
18 4 1950 30 5 0 0 4 1920 1948 1956 0
19 4 1955 35 1 0 0 4 1920 1948 1956 0

# Tabulate the cases and the person-years

summary( L2 )

tapply( status(L2,"exit")==1, list( timeBand(L2,"age","left"),

timeBand(L2,"calendar.year","left") ), sum )

1940 1945 1950 1955 1960

20 NA 0 NA NA NA

25 NA 0 0 NA NA

30 NA 0 1 NA NA

35 0 0 0 0 NA

40 0 0 0 0 NA

45 NA 0 0 0 0

tapply( dur(L2), list( timeBand(L2,"age","left"),

timeBand(L2,"calendar.year","left") ), sum )

1940 1945 1950 1955 1960

20 NA 1 NA NA NA

25 NA 3 4 NA NA

30 NA 4 6 NA NA

35 1 1 4 1 NA

40 1 4 1 4 NA

45 NA 1 2 1 1

> summary( L2 )

Transitions:

To

From 0 1 Records: Events: Risk time:

0 18 1 19 1 40

Rates:

To

From 0 1 Total

0 0 0.02 0.02

1940 1945 1950 1955 1960 1965

20

25
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40

45

50

calendar.year

a
g
e

Figure 1: Lexis Diagram, from Epi package in R
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Supplementary Exercise 6.1. Death rates in those who survived the

sinking of the Titanic vs. in the sex-and age-matched US general

population, together with some other investigations

Under ‘For Person-Years Analyses’ in Resources for ‘Fitting Models to
Grouped Data [B & D vol II, ch4]’ in the BIOS602 website you will find
(a) the Titanic longevity data set (b) USA death rates (within 5 x 5 rectan-
gles, called ‘quinquinquennia’) from the Berkeley Mortality Database.1 You
will also find some R code that uses the Epi package to create – for each pas-
senger – the durations in and exit status from each quinquinquennium, then
aggregates these over all the persons traversing each quinquinquennium, etc.

1. Convert each survivor’s record into the experience in the (age, period)
quinquinquennia traversed, i.e the number of years spent in the rectangle,
and the status (e.g., d = 0 if alive, 1 if dead) at the end of these years.
Rather than program the calculations from scratch, two possibilities are
http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html

– which some people used last year – and the R ‘Epi’ package
http://staff.pubhealth.ku.dk/⇠bxc/Epi/ The key functions in the
latter are Lexis (and associated plotting functions) and splitLexis,
which, when applied twice, calculates the time spent, and exit status
from each quinquinquennium. The ‘bogus example’ in the documen-
tation of the splitLexis function illustrates these, while the example
on the notes for C&H chapter 6 shows the application to the 4-person
cohort used in that chapter.

2. How much higher/lower is the set of age-specific death rates for male
Titanic survivors than that for the general US population? for fe-
male survivors? Answer in two ways: first, calculate sex-specific ob-
served/expected ratios, where the numerator is the total number of deaths
observed in the sex-specific cohort, and the denominator is the sum of the
expected numbers of deaths in these cells, using the USA age-sex-period
death rates; second, calculate sex-specific Mantel-Haenszel summary in-
cidence ratios (Rothman terminology) or incidence density ratios (Mietti-
nen terminology) or mortality rate ratios (everyone’s terminology), using
age and period as ‘strata.’2 Assume that each of the USA death rates is

1.] This site, http://www.demog.berkeley.edu/⇠bmd/index.html, contains historical
lifetable and death rate data for the USA and other countries.

2As is illustrated in equation 8-5 in Rothman 2002, the formula is
P

strata(no. of cases, index category)⇥ (py, ref. category)/(py in stratum)
P

strata(no. of cases, ref. category)⇥ (py, index category)/(py in stratum)

based on a denominator of one million person years.3 Assume that the
death rates after 1995 are the same as those in 1990-95.

3. ‘On average,’ 4, for the age-span 40-90 in the period 1990-1995, how much
higher are the USA age-specific male death rates in males than females?
Answer by plotting the log of the male:female death rate ratio vs age, (or
the two separate sets of log-death-rates on the same graph), and taking
some ‘typical’ value for the ratio. Are you comfortable giving a single
ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant over
that age-span?

4. The previous question refers to cross-sectional rates, i.e., those in a speci-
fied period.5 On average, over the age-span 40-90 in the 1900 birth-cohort,
how much higher are the USA age-specific death rates in males than fe-
males? Answer by plotting the log of the male:female death rate ratio
vs age, (or the two separate sets of log-death-rates on the same graph),
and taking some ‘typical’ value for the ratio. Are you comfortable giving
a single ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant
over that age-span?

5. For the age-span 40-90, in a single number describe how much age-and
specific death rates have fallen over the 20th century (the changes may be
more subtle that this, so your answer will necessarily be a simplification).

6. For the Titanic survivors, was there a gradient in mortality rates across
the 3 passenger classes?

Supplementary Exercise 6.2. Mortality of performers while in the

‘still hoping to win’ vs in the ‘already a winner’ state

1. Divide the performer-years into those spent as Oscar nominees and as
Oscar winners and then subdivide these into quinquinquennia.

2. Compare the death rates in the performer-years spent as nominees versus
those spent as winners. Do so using both ‘adjusted’ expected numbers
and purely-internal comparisons.

3If the ratio of the amount of experience in the ref. category to that in the index category
goes to infinity, the M-H summary ratio converges to

P
strata O/

P
strata E = O/E.

4Even if the average is not representative.
5Cross-sectional rates are what are used to make ‘current’ or ‘period’ lifetables, by far

the more common type of lifetable.
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