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s0 that the mortality risk is 0.436. The proportion of subjects who failed
in this period was, in fact, 14/30 = 0.467.

5.6 The estimated failure rates for the three bands are 1/13, 0/9, an
1/2 respectively. .

5.7 The approximate person-years observation in year 3 is
Y38 -05x7-05x7="79

and the estimated rate is 7/79 = 0.0886 per year.

5.8 The cumulative failure rate over the last five years is 0.173 so that
the probability that a woman survives for 10 years given that she has
survived the first 5 years is exp(—0.173) = 0.841.

5.9 The gradient of the first part of the cumulative rate curve, from 0
to 20 months, is roughly 0.28/20 = 0.014 per month, which is the rate over
this period (assumed constant). For the second period, from 20 to 60, the
gradient is roughly (0.48 —0.28)/(60 — 20) = 0.005 per month, which is the
rate over the second period (assumed constant).

6
Time

6.1 When do we start the clock?

In Chapter 5 we discussed the variation of rates with time. In that dis-
cussion, by assuming that all subjects entered the study at time zero, we
implicitly interpreted time to mean time since entry into the study. How-
ever, there are many other ways of measuring time and some of these may
be more relevant. For example, in epidemiology, it is usually important to
consider the variation of rates with age, for which the origin is the date of
birth, or with time since first exposure, for which the origin is the date of
first exposure. Similarly, in clinical follow-up studies, time since diagnosis
or start of treatment may be an important determinant of the failure rate.
In different analyses, therefore, it may be relevant to start the clock at
different points. Some possible choices for this starting point are described
in Table 6.1.

6.2 Age-specific rates

Age is an extremely important variable in epidemiology, because the in-
cidence and mortality rates of most diseases vary with age — often by
several orders of magnitude. To ignore this variation runs the risk that
comparisons between groups will be seriously distorted, or confounded, by
differences in age structure.

The assumption that rates do not vary with age can be relaxed by
dividing the age scale into bands and estimating a different age-specific
rate in each band. If the follow-up period is short, so that the age of a

Table 6.1. Some time scales

Starting point Time scale
Birth Age

Any fixed date Calendar time
First exposure Time exposed
Entry into study Time in study
Disease onset Time since onset

Start of treatment Time on treatment
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Table 6.2. Entry and exit dates for the cohort of four subjects

Subject Born Entry Exit Age at entry Outcome

1 1904 1943 1952 39 Lost

2 1924 1948 1955 24 Failure

3 1914 1945 1961 31 Study ends

4 1920 1948 1956 28 Unrelated death

subject does not change appreciably during follow-up, age-specific rates
can be estimated by classifying subjects into age groups by their age at
entry. Each subject appears in only one age group and a separate rate is
estimated for each group. For longer studies it will be necessary to take
account of changing age during the study, and to treat age properly — as
a time scale. This scale is then divided into bands and a separate estimate
of the rate is made within each age band as described in Chapter 5. In
this latter analysis, a subject can pass through several age bands during
the course of the study. ’

To see how the failures and observation time are divided between age
bands consider the cohort of four subjects, shown in Table 6.2. Subject 1
is lost to follow-up in 1952, subject 2 fails in 1955, subject 3 is still under
observation when the study period ends, and subject 4 dies from an un-
related cause in 1956. The date when a subject joins the cohort is called
the entry date and the date when observation stops, for whatever reason,
is called the exit date. The time between the entry and exit dates is the
observation time for the subject. To simplify the exercises, we give dates
ounly as years and will assume that all events take place on the first day of
the year. In practice, times would be worked out as accurately as the data
allow.

ixercise 6.1. What are the observation times for the members of this cohort?

Figure 6.1 shows the observation of the subjects in‘ calendar time, while
Figure 6.2 shows it on a scale where time is measured from each subject’s
date of birth. To estimate a rate for a particular age band the failures are
allocated to the bands in which they occurred, and the observation time is
divided according to how long the subjects spend in each of the age bands.
For example, the age band 30-34, which is from exact age 30 to just less
than exact age 35, contains one failure and 10 person-years of observation
time, so the estimated rate is 1/10 per person-year.

In this example the observation times in the different time bands have
been obtained from the figure, but in practice the total observation time
in an age band is obtained by using the dates when the subject changes
age bands. For example, subject 1 is 39 years old on entry so he starts in
the age band 35-39. He changes age band in 1944 (when he is 40}, and
again in 1949 (when he is 45), and he leaves the study in 1952 (when he
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Fig. 6.1. Follow-up of four subjects by calendar time.
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Fig. 6.2. Follow-up of four subjects by age.

emigrates). The observation time he spends in the different age bands is
shown in Table 6.3. :

As a check, the total observation time for subject 1 is from 1943 to
1952 which is 9 years, equal to the sum of the separate times spent in the
different age bands.

Exercise 6.2. Subject 5 is born in 1931, joins the cohort in 1953, and is lost
to follow-up in 1957. Divide the observation time for this subject between the
five-year age bands shown in Figure 6.2.

Table 6.3. Time in each age band for subject 1

Age band Datein Date out Time

35-39 1943 1944 1
40-44 1944 1949 5
45-49 1949 1952 3
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Table 6.4. Woman-years and reference rates for a breast cancer study

Woman- E & W rate per

Age years 100000 woman-years
4044 975 113
45-49 1079 162
50-54 2161 151
55-59 2793 .183
60-64 3096 179

6.3 The expected number of failures

One reason for subdividing the total follow-up experience of a cohort into
age bands is to determine whether the observed number of failures is more
or less than we might have expected. Since mortality and incidence rates
usually increase quite sharply with age, the distribution of person years
observation between age bands is an extremely important determinant of
the number of events we would expect to observe.

Table 6.4 shows the partition of woman-years between age bands for
a cohort study of 974 women given a hormone treatment at menopause.
During the follow-up period, 15 new cases of breast cancer occurred in the
cohort. We might ask whether this is more or less than we would expect
from national rates.

The third column of the table shows the age-specific incidence rates of
breast cancer for England and Wales at the time the study was carried out.
If the rates in the study population are the same as in the rest of England
and Wales, the number of cases we would expect in each age band is simply
the product of the woman-years observation and the rate. Thus, for the
40-44 age band, the expected number of cases is

113 ‘
fo0000 — %

975 x

ixercise 6.3. Carry out these calculations for the remaining age groups and
calculate the total expected number of cases of breast cancer.

This exercise shows that 16.77 cases are expected from national rates using
the person years in the study. This expected number of cases is quite close
to the observed 15, so that there is little suggestion that the rates in this
‘cohort are unusual.

The expected number of cases, as calculated above, is not quite the
same as the expected number in the usual statistical sense. The latter
cannot depend upon the outcome of the study, but the former does, since
the total person-time of observation in the study varies according to how
many subjects fail and when. However, for the rare events studied by
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epidemiologists, this variation is small enough to be ignored.

6.4 Lexis diagrams

More than one time scale can be important in the same study. For example,
mortality rates from cancer of the cervix depend upon age, as a result of the
age-dependence of the incidence rate, and upon calendar time as a result
of changes in treatment, population screening, and so on. The situation
is further complicated by the strong dependence of the incidence of this
disease upon sexual behaviour, which varies from one generation to the
next.

The way to separate the effects of two time scales on a rate is to di-
vide each scale into bands, usually of equal width, and to make a separate
estimate of the rate for each pairing of bands. To see how this is done in
practice it is best to show the subjects relative to the two scales simulta-
neously, in what is called a Lezis diagram.

The four subjects in Table 6.2 are shown relative to both age and calen-
dar year simultaneously in the Lexis diagram in Figure 6.3. Each rectangu-
lar region in a Lexis diagram corresponds to a combination of two bands,
one from each scale. To estimate rates for these combinations of bands
the failures are allocated to the rectangles in which they occur and the
observation time for each subject is divided between rectangles according
to how long the subjects spends in each.

For example, subject 1 joins the cohort in 1943 aged 39. He changes
age bands one year later in 1944 then 5 years later in 1949. He changes
calendar periods in 1945 and 1950. Finally, observation stops in 1952. The
subdivision of the observation time for this subject between different age
and calendar period combinations is shown in Figure 6.4. Note that the
times in the different bands add to 9 years, the total observation time for
this subject. For each combination of age band and calendar period the
rate is estimated by dividing the number of failures by the person-time of
observation.

Exercise 6.4. Trace the progress of subject 1 through the squares in Figure 6.3
and verify the results given above. Divide the observation time for subject 2
between combinations of five-year bands of age and calendar time in the same
way. :

The same procedure can be used to separate the effect of age from the
effect of time since entry, although there may not be enough data for some
combinations of age and time since entry to estimate a rate. Figure 6.5
shows the four subjects in the cohort relative to age and time since entry.
Five-year bands have again been chosen for both scales.

Exercise 6.5. Divide the observation time for subject 1 between different com-
binations of five-year bands of age and time since entry.
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Fig. 6.3. Lexis diagram showing age and calendar period.
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Fig. 6.4. TFollow-up of subject 1 by age and calendar time.

6.5 Reference rates by calendar period

Feference rates, used to calculate the expected numbers of failures, usually
come from national rates tabulated by age, sex, and calendar period. In the
UK these are calculated using an approximate figure for the person-years.
For example, the all-cause mortality rate for the age band 50-54 during
1983 is estimated by D/Y where D is the number of deaths during 1983
for which the subject’s age at death was in the range 50-54, and Y is the
person-time lived during 1983 by that part of the population whose ages
were in the range 50-54 during 1983. Since the exact value of Y is not
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Fig. 6.5. Lexis diagram showing age and time since entry.
known an approximate value is obtained from
Y = Population aged 50-54 in mid-1983 x 1 year.
For five-year calendar periods such as 1981-85,
Y ~ Population aged 50-54 in mid-1983 x 5 years.

The population in the different age bands for any year is obtained from
the census; directly for census years and indirectly for inter-census years
by updating the last census by births, deaths, and migration.

Exercise 6.6. The total number of deaths from cancer of the lung in the SW
region of England during the years 1981-88 were males: 14 751, females: 5420.
The 1984 population of the region is estimated to be males: 2154900, females:
2306300. Calculate the mortality rate per 10° person-years for males and females
separately.

When follow-up of a cohort takes place over an extended calendar pe-
riod, the national age-specific rates will usually vary over this period, mak-
ing it difficult to choose a single set of age-specific rates to use for compari-
son purposes. The solution is to compute the expected number of events by
both age and calendar period, using the appropriate national rates for each
calendar time period. To do this the person-years observation in the co-
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Table 6.5. Mortality following X-irradiation

Cause of Number of deaths Ratio
death Observed, D Expected, £ D/E
Cancers:
Leukaemia 31 6.47  4.79
Colon 28 17.30 1.62
Heavily irradiated sites 259 167.50 1.55
Lightly irradiated sites 79 65.65 1.20
All neoplasms 397 256.92 1.55
Other causes 1362 804.68 1.69
All causes 1759 1061.61 1.66

hort study must be partitioned by age and calendar period. The expected
number of failures can then be calculated for each combination of age and
calendar period, as before, by multiplying the person-years observation by
the appropriate national rate. Addition over all combinations of age and
calendar period yields an expected number of cases which takes account of
variation in national rates with both age and calendar time.

An example of this kind of calculation appears in Table 6.5, which
shows some results taken from a study of cancer mortality in a cohort of
ankylosing spondilitis patients who had been treated with a single course
of X-irradiation of the spine.* The follow-up of each patient started in
the year of treatment (1935-1954) and continued until death, migration
or 1970 (the date when this analysis was carried out). Follow-up was also
terminated by a second course of treatment because the aim was to study
the effect of a single course of X-rays and the time before this effect became
apparent. The study was carried out in Great Britain and Northern Ireland,
and the expected numbers of deaths calculated using the national rates for
England and Wales, tabulated by five-year bands for both age and calendar
time. It can be seen that mortality from all causes was higher in this cohort
than in the reference population. Although accounting for relatively few
excess deaths, the ratio of observed to expected deaths was particularly
high for leukaemia. This ratio is an important index in epidemiology and
is called the standardized mortality ratio (SMR). We shall discuss it further
in Chapter 15.

Exercise 6.7. Table 6.6 subdivides the observed and expected deaths from
leukaemia according to time since X-ray treatment. How would this table have
been calculated?

*From Smith, P.G. and Doll, R.(1982) British Medical Journal, 284, 449-460.
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Table 6.6. Leukaemia deaths by time since treatment

Time since treatment (years)
0-2 35 68 011 12-14 15-17 1820 >20

Observed 6 10 6 3 1 4 1 0
Expected 1.00 0.89 0.87 0.90 0.96 0.90 0.55 0.40
Ratio 6.00 11.24 6.90 3.33 1.04 4.44 1.82  0.00

Solutions to the exercises

6.1 The observation times for the four subjects are 9, 7, 16, and 8 years
respectively. 4

6.2 Subject 5 is 22 years of age on joining the cohort and 26 when lost
to follow-up. She contributes 3 years to the band 20-24, and 1 year to the
band 25-29.

6.3 The expected numbers of cases in the five age bands are 1.10, 1.75,
3.26, 5.11, and 5.54. The sum of these values is 16.76, but working to full

‘accuracy we obtain 16.77 for the total expected number of cases.

6.4 The AgexPeriod bands in which subject 2 was observed are as fol-
lows:

Age Calendar period Time in band

20-24 1945-49 ‘ 1
25-29 1945-49 1
25-29 1950-54 4
30-34 1950-54 1

6.5 The AgexFollow-up bands in which subject 1 was observed are as
follows:

Age Follow-up time Time in band

35-39 0-4 1
40-44 0-4 4
40-44 5-9 1
45-49 5-9 3

6.6 The estimated rate for males is

14751

— = 108 person-years
51529008 — 500 per 10° person-y
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and the estimated rate for females is

5420 6
2306300 <8 — 294 per 10° person-years.
6.7  The follow-up of each subject can be represented by a line on &
three-dimensional Lexis diagram with axes: age, period, and time since
treatment. Age and period were divided into five-year bands and time since
treatment into three-year bands. Observed deaths and person-years can be
assigned to cells in the resulting three-dimensional table. Multiplication
of person-years by national rates gives the expected number of deaths for
each cell. Table 6.6 is formed by adding this table over age and period.

7
Competing risks and selection

7.1 Censoring in follow-up studies

Up to this point we have lumped all the different reasons for censoring
together. In this chapter we look at this practice more carefully and make
a distinction between censoring due to practical difficulties in maintaining
follow-up (such as migration, refusal to participate further and so on), and
censoring due to competing causes of failure.

The first class of events causes removal of a subject from observation,
but after censoring the subject is still at risk of failure — a subject does
not cease to run the risk of a myocardial infarction simply because he or
she has ceased to participate in a follow-up study. Such observations are
censored in the sense that this later experience is removed from our view.
The second class of censoring events also causes removal of a subject from
observation, but this time the subject is no longer at risk from the failure of
interest. This is obviously true when a subject dies from a competing cause,
but onset of a non-fatal competing disease can also remove a subject from
the risk under study. For example, in a study of myocardial infarction in
previously healthy subjects, a subject who suffers the onset of lung cancer
would be considered as no longer at risk — although patients with lung
cancer suffer myocardial infarctions quite frequently, the aetiology is so
different as to be regarded as a different type of event.

7.2 Competing causes

The termination of follow-up by a competing cause is not due to imperfec-
tion of any one study, but is intrinsic to all imaginable studies. The binary
model which underlies the measurement of disease frequency by rates and
risks assumes only one type of failure. To allow for more than one type,
the model must be extended. Fig. 7.1 illustrates a model with two causes
of failure over a single study period of fixed duration. There are now three
possible outcomes, labelled F1 and F2 for the two types of failure and S
for survival. The probabilities of F1 and F2 are referred to as m and o,
so the probability of survival is 1 — 7 — 7. In incidence studies, m; and
7o Tepresent cause-specific failure probabilities or risks.

It is easy to use likelihood to estimate the parameters m; and mp. If N
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6 Time

6.1 When do we start the clock?

Examples JH has dealt with include the analysis of longevity of

e The Titanic survivors, where the two time scales are (i) age (years elapsed
since birth) and (ii) ‘survivor-time’, the years elapsed since the April 15,
1912 sinking;

e Oscar nominees, where the two time scales are (i) age and (ii) nominee-
time’, the years elapsed since first being nominated for an Oscar;

e Nobel Prize nominees, where the two time scales are (i) age and (ii)
‘nominee-time’, the years elapsed since first being nominated for a Nobel
Prize;

e Jazz musicians, where the two time scales are (i) age and (ii) performer-
time’, the years elapsed since first becoming a jazz musician;

e Popes versus artists;

e Baseball Hall of Famers versus players who were nominated by not in-
ducted;

e Rock Stars who become famous early versus later (or not at all).

For more details on these examples, see bios601/Epidemiology2/

For more on the choice of time scale, Google “Multiple time scales in survival
analysis.” or find the articles that cite the 1979 Applied Statistics article by
Farewell and Cox “A note on multiple time scales in life testing.”

There is also the interesting article The two-way proportional hazards model
by Efron in J. R. Statist. Soc. B (2002) 64, Part 4, pp. 899-909, applied
to “patient histories in a study of heart transplant recipients treated at the
Stanford Medical Center between 1980 and 1996; some 110 of the patients
suffered a serious bacterial infection, their infection times ranging from a few
days after transplantation to nearly 9 years, these being the observed lifetimes
that would usually be featured in a proportional hazards analysis of the infec-
tion process. In this case, however, the investigators’ main interest centred on
calendar date: was the incidence rate of bacterial infections declining over the
course of the study? Incidence is itself a hazard rate, in the simplest situation
the number of new cases per eligible subject per unit time, and it is natural
to answer the question with a hazard rate analysis.”

6.2 Age-specific rates

“To ignore this variation [of incidence and mortality rates with age] runs the
risk that comparisons between groups will be seriously distorted, or confounded,
by differences in age structure.”

It’s good to have a few handy real examples of age-confounding that
are easily understood by non-statisticians. Two immediately come to
mind (i) the overall death rate is higher in Canada than Ethiopia
(ii) the higher death rate among non-smokers in a 20-year follow-up
study of smokers and non-smokers | Does Smoking Improve Survival?
www.whfreeman.com/statistics/ips/eeseed/eeseesd . htm; this is also de-
scribed in chapter 1 of Rothman 2002, with finer age-categories]

“For longer studies it will be necessary to take account of changing age during
the study, and to treat age properly - as a time scale. This scale is then divided
into bands and a separate estimate of the rate is made within each age band
as described in Chapter 5. In this latter analysis, a subject can pass through
several age bands during the course of the study.”

Not only can a subject pass through several age bands but she can also change
from one ‘exposure’ category to another — as in the Oscars exercise.

6.3 The expected number of failures

“One reason for subdividing the total follow-up experience of a cohort into
age bands is to determine whether the observed number of failures is more or
less than we might have expected. Since mortality and incidence rates usually
increase quite sharply with age, the distribution of person years observation
between age bands is an extremely important determinant of the number of
events we would expect to observe.”

It is not clear what is the basis for the “expectation” i.e., whether it is a ‘what
if’ comparison against external rates, or an internal one against the rates in
a comparison group constructed and followed by the investigators. One can
think of the ‘expected number’ of 16.77 cases in exercise 6.3 as the number one
would expect in a scaled-down version of England and Wales (E&W), scaled
down to the same sample size (974 women) followed for the same cell-specific
numbers of person years as those shown in Table 6.4. In other words, it as as
thought one had

974 treated by HRT 974 from E&W, same age & follow-up, untreated
15 cases 16.7 cases

Of course, the fact that the 16.7 is based on observed rates in the whole of
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E&W means that it is not subject to the same degree of random variation as
is the number of cases in the actual cohort. With this solid a basis for it, the
expected number is usually taken to be a constant, so only one standard error
(SE) is involved in the 15 vs. 16.7 comparison — the one associated with the
15.

“The expected number of cases, as calculated above, is not quite the same as
the expected number in the usual statistical sense. The latter cannot depend
upon the outcome of the study, but the former does.”

C&H are saying that the numbers of Woman-years in the second column of
Table 6.4 are random variables: they would not have been known ahead of
time. For some 15 women — the 15 being a random variable — the follow-up
was terminated by the event of interest. Likewise, any terminations for other
reasons might also be unpredictable ahead of time. However, if these are not
related to the person’s probability of a future event, they don’t have a great
influence on the sampling behaviour of the estimators of interest.

6.4 Lexis diagrams

en.wikipedia.org/wiki/ Wilhelm Lexis (1837-1914) was an eminent Ger-
man statistician, economist, and social scientist and a founder of the interdis-
ciplinary study of insurance.

The “Lexis diagram”, in which lifelines are displayed as 45-degree lines on a
grid with age on the vertical axis and calendar year on the horizontal axis, is
very helpful in epidemiology, and in survival analysis with 2 time scales.

The Epi package for R has several functions that make it easy to convert the
data of the type shown in Table 6.2 into the person-year segments shown
Figure 6.3. Previously, this was a very laborious computing process.

Once we have the tabulated person years and cases in each Lexis rectangle
(the cells don’t have to be square), we can calculate the expected number of
cases if a specified set of external rates applied, or make internal rectangle-
by-rectangle comparisons, and thus a summary of these comparisons. We can
also use them to fit (Poisson) regression models for rates.

Here is the R code, and some of its output, for the data in C&H Table 6.2.

library(Epi)

id = c¢(1,2,3,4);

c(1904,1924,1914,1920) ;
c(1943,1948,1945,1948) ;
c(1952,1955,1961,1956) ;

yr.birth
yr.entry
yr.exit

fail = c(0, 1, 0, 0) );

ds=data.frame(id, yr.birth, yr.entry, yr.exit, fail); ds

id yr.birth yr.entry yr.exit fail
1904
1924
1914
1920

1

B wWN -

2
3
4

1943
1948
1945
1948

1952
1955
1961
1956

0

1
0
0

# Define as Lexis object with timescales calendar time and age

Lexis <- Lexis( entry

Lexis

exit

exit.status

data

calendar.year age lex

W N e

1943
1948
1945
1948

39
24
31
28

list( calendar.year
list( calendar.year

fail,
ds )

.dur lex.Cst lex.Xst

# Default plot of follow-up

plot(Lexis)
# With a grid and deaths as endpoints

plot(Lexis, grid=0:5%5, col="black" )

[ele e Ne)

O O = O

= yr.entry ),

= yr.exit, age = yr.exit - yr.birth ),

lex.id id yr.birth yr.entry yr.exit fail

11 1904
2 2 1924
3 3 1914
4 4 1920

points(Lexis, pch=c(NA,16) [Lexis$lex.Xst+1] )

# With a lot of bells and whistles:

[ **x SEE PLOT NEXT PAGE **x ]

plot(Lexis, grid=0:20%5, col="black", xaxs="i", yaxs="i",
x1im=c(1940,1965), ylim=c(20,50), 1lwd=3, las=1 )

points(Lexis, pch=c(NA,16) [Lexis$lex.Xst+1], col="red", cex=1.5 )

# Split time along two time-axes

L2 = splitLexis(Lexis,breaks=seq(1940,1965,5),
time.scale="calendar.year")
L2 = splitLexis(L2,

str( L2 )

breaks=seq(20,50,5), time.scale="age" )

1943
1948
1945
1948

1952
1955
1961
1956

O O = O
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L2
lex.id calendar.year age lex.dur lex.Cst lex.Xst id yr.birth yr.entry yr.exit fail > summary( L2 )
1 1 1943 39 1 0 0o 1 1904 1943 1952 0O
2 1 1944 40 1 0 0 1 1904 1943 1952 0O - .
3 1 1945 41 4 0 0 1 1904 1943 1952 0 Transitions:
4 1 1949 45 1 0 0 1 1904 1943 1952 0O To
5 1 1950 46 2 0 0o 1 1904 1943 1952 0O . . . Lo
. 5 1048 94 1 0 0 o 1994 1048 ppgi 1 From O 1 Records: Events: Risk time:
7 2 1949 25 1 0 0 2 1924 1948 1955 1 018 1 19 1 40
8 2 1950 26 4 0 0 2 1924 1948 1955 1
9 2 1954 30 1 0 1 2 1924 1948 1955 1
10 3 1945 31 4 0 0o 3 1914 1945 1961 0O Rates:
11 3 1949 35 1 0 0 3 1914 1945 1961 0O To
12 3 1950 36 4 0 o 3 1914 1945 1961 0
13 3 1954 40 1 0 0 3 1914 1945 1961 0 From O 1 Total
14 3 1955 41 4 0 0 3 1914 1945 1961 0O
15 3 1959 45 1 0 0 3 1914 1945 1961 0O 000.02 0.02
16 3 1960 46 1 0 0 3 1914 1945 1961 0O
17 4 1948 28 2 0 0 4 1920 1948 1956 0
18 4 1950 30 5 0 0 4 1920 1948 1956 0 50
19 4 1955 35 1 0 0 4 1920 1948 1956 0
45 —
# Tabulate the cases and the person-years
summary( L2 )
40 —
tapply( status(L2,"exit")==1, list( timeBand(L2,"age","left"),
timeBand (L2, "calendar.year","left") ), sum )
)
% 35 —
1940 1945 1950 1955 1960
20 NA 0 NA NA NA
25 NA 0 0 NA NA 30
30 NA 0 1 NA NA
35 0 0 0 0 NA
40 0 0 0 0 NA
45  NA 0 0 0 0 25
tapply( dur(L2), 1list( timeBand(L2,"age","left"),
timeBand (L2, "calendar.year","left") ), sum ) 20 I I I !
1940 1945 1950 1955 1960 1940 1945 1950 1955 1960 1965
20 NA 1 NA NA NA
25 NA 3 4 NA NA Calendar.year
30 NA 4 6 NA NA
35 1 1 4 1 NA Figure 1: Lexis Diagram, from Epi package in R
40 1 4 1 4 NA
45 NA 1 2 1 1
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Supplementary Exercise 6.1. Death rates in those who survived the
sinking of the Titanic vs. in the sex-and age-matched US general
population, together with some other investigations

Under ‘For Person-Years Analyses’ in Resources for ‘Fitting Models to
Grouped Data [B & D vol II, ch4]” in the BIOS602 website you will find
(a) the Titanic longevity data set (b) USA death rates (within 5 x 5 rectan-
gles, called ‘quinquinquennia’) from the Berkeley Mortality Database.! You
will also find some R code that uses the Epi package to create — for each pas-
senger — the durations in and exit status from each quinquinquennium, then
aggregates these over all the persons traversing each quinquinquennium, etc.

1. Convert each survivor’s record into the experience in the (age, period)
quinquinquennia traversed, i.e the number of years spent in the rectangle,
and the status (e.g., d = 0 if alive, 1 if dead) at the end of these years.
Rather than program the calculations from scratch, two possibilities are
http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html
— which some people used last year — and the R ‘Epi’ package
http://staff.pubhealth.ku.dk/~bxc/Epi/ The key functions in the
latter are Lexis (and associated plotting functions) and splitLexis,
which, when applied twice, calculates the time spent, and exit status
from each quinquinquennium. The ‘bogus example’ in the documen-
tation of the splitLexis function illustrates these, while the example
on the notes for C&H chapter 6 shows the application to the 4-person
cohort used in that chapter.

2. How much higher/lower is the set of age-specific death rates for male
Titanic survivors than that for the general US population? for fe-
male survivors? Answer in two ways: first, calculate sex-specific ob-
served /expected ratios, where the numerator is the total number of deaths
observed in the sex-specific cohort, and the denominator is the sum of the
expected numbers of deaths in these cells, using the USA age-sex-period
death rates; second, calculate sex-specific Mantel-Haenszel summary in-
cidence ratios (Rothman terminology) or incidence density ratios (Mietti-
nen terminology) or mortality rate ratios (everyone’s terminology), using
age and period as ‘strata.’? Assume that each of the USA death rates is

1] This site, http://www.demog.berkeley.edu/~bmd/index.html, contains historical
lifetable and death rate data for the USA and other countries.
2As is illustrated in equation 8-5 in Rothman 2002, the formula is

D strata(n0- Of cases, index category) X (py, ref. category)/(py in stratum)

> strata(n0- of cases, ref. category) x (py, index category)/(py in stratum)

based on a denominator of one million person years.> Assume that the
death rates after 1995 are the same as those in 1990-95.

. ‘On average,” 4, for the age-span 40-90 in the period 1990-1995, how much

higher are the USA age-specific male death rates in males than females?
Answer by plotting the log of the male:female death rate ratio vs age, (or
the two separate sets of log-death-rates on the same graph), and taking
some ‘typical’ value for the ratio. Are you comfortable giving a single
ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant over
that age-span?

. The previous question refers to cross-sectional rates, i.e., those in a speci-

fied period.®> On average, over the age-span 40-90 in the 1900 birth-cohort,
how much higher are the USA age-specific death rates in males than fe-
males? Answer by plotting the log of the male:female death rate ratio
vs age, (or the two separate sets of log-death-rates on the same graph),
and taking some ‘typical’ value for the ratio. Are you comfortable giving
a single ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant
over that age-span?

. For the age-span 40-90, in a single number describe how much age-and

specific death rates have fallen over the 20th century (the changes may be
more subtle that this, so your answer will necessarily be a simplification).

. For the Titanic survivors, was there a gradient in mortality rates across

the 3 passenger classes?

Supplementary Exercise 6.2. Mortality of performers while in the
‘still hoping to win’ vs in the ‘already a winner’ state

1. Divide the performer-years into those spent as Oscar nominees and as

Oscar winners and then subdivide these into quinquinquennia.

2. Compare the death rates in the performer-years spent as nominees versus

those spent as winners. Do so using both ‘adjusted’ expected numbers
and purely-internal comparisons.

3If the ratio of the amount of experience in the ref. category to that in the index category
goes to infinity, the M-H summary ratio converges to >, .01a O/ > strata £ = O/E.

4Even if the average is not representative.

5Cross-sectional rates are what are used to make ‘current’ or ‘period’ lifetables, by far
the more common type of lifetable.
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6 Time

6.1 When do we start the clock?

Examples JH has dealt with include the analysis of longevity of

e The Titanic survivors, where the two time scales are (i) age (years elapsed
since birth) and (ii) ‘survivor-time’, the years elapsed since the April 15,
1912 sinking;

e Oscar nominees, where the two time scales are (i) age and (ii) nominee-
time’, the years elapsed since first being nominated for an Oscar;

e Nobel Prize nominees, where the two time scales are (i) age and (ii)
‘nominee-time’, the years elapsed since first being nominated for a Nobel
Prize;

e Jazz musicians, where the two time scales are (i) age and (ii) performer-
time’, the years elapsed since first becoming a jazz musician;

e Popes versus artists;

e Baseball Hall of Famers versus players who were nominated by not in-
ducted;

e Rock Stars who become famous early versus later (or not at all).

For more details on these examples, see bios601/Epidemiology2/

For more on the choice of time scale, Google “Multiple time scales in survival
analysis.” or find the articles that cite the 1979 Applied Statistics article by
Farewell and Cox “A note on multiple time scales in life testing.”

There is also the interesting article The two-way proportional hazards model
by Efron in J. R. Statist. Soc. B (2002) 64, Part 4, pp. 899-909, applied
to “patient histories in a study of heart transplant recipients treated at the
Stanford Medical Center between 1980 and 1996; some 110 of the patients
suffered a serious bacterial infection, their infection times ranging from a few
days after transplantation to nearly 9 years, these being the observed lifetimes
that would usually be featured in a proportional hazards analysis of the infec-
tion process. In this case, however, the investigators’ main interest centred on
calendar date: was the incidence rate of bacterial infections declining over the
course of the study? Incidence is itself a hazard rate, in the simplest situation
the number of new cases per eligible subject per unit time, and it is natural
to answer the question with a hazard rate analysis.”

6.2 Age-specific rates

“To ignore this variation [of incidence and mortality rates with age] runs the
risk that comparisons between groups will be seriously distorted, or confounded,
by differences in age structure.”

It’s good to have a few handy real examples of age-confounding that
are easily understood by non-statisticians. Two immediately come to
mind (i) the overall death rate is higher in Canada than Ethiopia
(ii) the higher death rate among non-smokers in a 20-year follow-up
study of smokers and non-smokers | Does Smoking Improve Survival?
www.whfreeman.com/statistics/ips/eeseed/eeseesd . htm; this is also de-
scribed in chapter 1 of Rothman 2002, with finer age-categories]

“For longer studies it will be necessary to take account of changing age during
the study, and to treat age properly - as a time scale. This scale is then divided
into bands and a separate estimate of the rate is made within each age band
as described in Chapter 5. In this latter analysis, a subject can pass through
several age bands during the course of the study.”

Not only can a subject pass through several age bands but she can also change
from one ‘exposure’ category to another — as in the Oscars exercise.

6.3 The expected number of failures

“One reason for subdividing the total follow-up experience of a cohort into
age bands is to determine whether the observed number of failures is more or
less than we might have expected. Since mortality and incidence rates usually
increase quite sharply with age, the distribution of person years observation
between age bands is an extremely important determinant of the number of
events we would expect to observe.”

It is not clear what is the basis for the “expectation” i.e., whether it is a ‘what
if’ comparison against external rates, or an internal one against the rates in
a comparison group constructed and followed by the investigators. One can
think of the ‘expected number’ of 16.77 cases in exercise 6.3 as the number one
would expect in a scaled-down version of England and Wales (E&W), scaled
down to the same sample size (974 women) followed for the same cell-specific
numbers of person years as those shown in Table 6.4. In other words, it as as
thought one had

974 treated by HRT 974 from E&W, same age & follow-up, untreated
15 cases 16.7 cases

Of course, the fact that the 16.7 is based on observed rates in the whole of
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E&W means that it is not subject to the same degree of random variation as
is the number of cases in the actual cohort. With this solid a basis for it, the
expected number is usually taken to be a constant, so only one standard error
(SE) is involved in the 15 vs. 16.7 comparison — the one associated with the
15.

“The expected number of cases, as calculated above, is not quite the same as
the expected number in the usual statistical sense. The latter cannot depend
upon the outcome of the study, but the former does.”

C&H are saying that the numbers of Woman-years in the second column of
Table 6.4 are random variables: they would not have been known ahead of
time. For some 15 women — the 15 being a random variable — the follow-up
was terminated by the event of interest. Likewise, any terminations for other
reasons might also be unpredictable ahead of time. However, if these are not
related to the person’s probability of a future event, they don’t have a great
influence on the sampling behaviour of the estimators of interest.

6.4 Lexis diagrams

en.wikipedia.org/wiki/ Wilhelm Lexis (1837-1914) was an eminent Ger-
man statistician, economist, and social scientist and a founder of the interdis-
ciplinary study of insurance.

The “Lexis diagram”, in which lifelines are displayed as 45-degree lines on a
grid with age on the vertical axis and calendar year on the horizontal axis, is
very helpful in epidemiology, and in survival analysis with 2 time scales.

The Epi package for R has several functions that make it easy to convert the
data of the type shown in Table 6.2 into the person-year segments shown
Figure 6.3. Previously, this was a very laborious computing process.

Once we have the tabulated person years and cases in each Lexis rectangle
(the cells don’t have to be square), we can calculate the expected number of
cases if a specified set of external rates applied, or make internal rectangle-
by-rectangle comparisons, and thus a summary of these comparisons. We can
also use them to fit (Poisson) regression models for rates.

Here is the R code, and some of its output, for the data in C&H Table 6.2.

library(Epi)

id = c¢(1,2,3,4);

c(1904,1924,1914,1920) ;
c(1943,1948,1945,1948) ;
c(1952,1955,1961,1956) ;

yr.birth
yr.entry
yr.exit

fail = c(0, 1, 0, 0) );

ds=data.frame(id, yr.birth, yr.entry, yr.exit, fail); ds

id yr.birth yr.entry yr.exit fail
1904
1924
1914
1920

1

B wWN -

2
3
4

1943
1948
1945
1948

1952
1955
1961
1956

0

1
0
0

# Define as Lexis object with timescales calendar time and age

Lexis <- Lexis( entry

Lexis

exit

exit.status

data

calendar.year age lex

W N e

1943
1948
1945
1948

39
24
31
28

list( calendar.year
list( calendar.year

fail,
ds )

.dur lex.Cst lex.Xst

# Default plot of follow-up

plot(Lexis)
# With a grid and deaths as endpoints

plot(Lexis, grid=0:5%5, col="black" )

[ele e Ne)

O O = O

= yr.entry ),

= yr.exit, age = yr.exit - yr.birth ),

lex.id id yr.birth yr.entry yr.exit fail

11 1904
2 2 1924
3 3 1914
4 4 1920

points(Lexis, pch=c(NA,16) [Lexis$lex.Xst+1] )

# With a lot of bells and whistles:

[ **x SEE PLOT NEXT PAGE **x ]

plot(Lexis, grid=0:20%5, col="black", xaxs="i", yaxs="i",
x1im=c(1940,1965), ylim=c(20,50), 1lwd=3, las=1 )

points(Lexis, pch=c(NA,16) [Lexis$lex.Xst+1], col="red", cex=1.5 )

# Split time along two time-axes

L2 = splitLexis(Lexis,breaks=seq(1940,1965,5),
time.scale="calendar.year")
L2 = splitLexis(L2,

str( L2 )

breaks=seq(20,50,5), time.scale="age" )

1943
1948
1945
1948

1952
1955
1961
1956

O O = O
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L2
lex.id calendar.year age lex.dur lex.Cst lex.Xst id yr.birth yr.entry yr.exit fail > summary( L2 )
1 1 1943 39 1 0 0o 1 1904 1943 1952 0O
2 1 1944 40 1 0 0 1 1904 1943 1952 0O - .
3 1 1945 41 4 0 0 1 1904 1943 1952 0 Transitions:
4 1 1949 45 1 0 0 1 1904 1943 1952 0O To
5 1 1950 46 2 0 0o 1 1904 1943 1952 0O . . . Lo
. 5 1048 94 1 0 0 o 1994 1048 ppgi 1 From O 1 Records: Events: Risk time:
7 2 1949 25 1 0 0 2 1924 1948 1955 1 018 1 19 1 40
8 2 1950 26 4 0 0 2 1924 1948 1955 1
9 2 1954 30 1 0 1 2 1924 1948 1955 1
10 3 1945 31 4 0 0o 3 1914 1945 1961 0O Rates:
11 3 1949 35 1 0 0 3 1914 1945 1961 0O To
12 3 1950 36 4 0 o 3 1914 1945 1961 0
13 3 1954 40 1 0 0 3 1914 1945 1961 0 From O 1 Total
14 3 1955 41 4 0 0 3 1914 1945 1961 0O
15 3 1959 45 1 0 0 3 1914 1945 1961 0O 000.02 0.02
16 3 1960 46 1 0 0 3 1914 1945 1961 0O
17 4 1948 28 2 0 0 4 1920 1948 1956 0
18 4 1950 30 5 0 0 4 1920 1948 1956 0 50
19 4 1955 35 1 0 0 4 1920 1948 1956 0
45 —
# Tabulate the cases and the person-years
summary( L2 )
40 —
tapply( status(L2,"exit")==1, list( timeBand(L2,"age","left"),
timeBand (L2, "calendar.year","left") ), sum )
)
% 35 —
1940 1945 1950 1955 1960
20 NA 0 NA NA NA
25 NA 0 0 NA NA 30
30 NA 0 1 NA NA
35 0 0 0 0 NA
40 0 0 0 0 NA
45  NA 0 0 0 0 25
tapply( dur(L2), 1list( timeBand(L2,"age","left"),
timeBand (L2, "calendar.year","left") ), sum ) 20 I I I !
1940 1945 1950 1955 1960 1940 1945 1950 1955 1960 1965
20 NA 1 NA NA NA
25 NA 3 4 NA NA Calendar.year
30 NA 4 6 NA NA
35 1 1 4 1 NA Figure 1: Lexis Diagram, from Epi package in R
40 1 4 1 4 NA
45 NA 1 2 1 1
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Supplementary Exercise 6.1. Death rates in those who survived the
sinking of the Titanic vs. in the sex-and age-matched US general
population, together with some other investigations

Under ‘For Person-Years Analyses’ in Resources for ‘Fitting Models to
Grouped Data [B & D vol II, ch4]” in the BIOS602 website you will find
(a) the Titanic longevity data set (b) USA death rates (within 5 x 5 rectan-
gles, called ‘quinquinquennia’) from the Berkeley Mortality Database.! You
will also find some R code that uses the Epi package to create — for each pas-
senger — the durations in and exit status from each quinquinquennium, then
aggregates these over all the persons traversing each quinquinquennium, etc.

1. Convert each survivor’s record into the experience in the (age, period)
quinquinquennia traversed, i.e the number of years spent in the rectangle,
and the status (e.g., d = 0 if alive, 1 if dead) at the end of these years.
Rather than program the calculations from scratch, two possibilities are
http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html
— which some people used last year — and the R ‘Epi’ package
http://staff.pubhealth.ku.dk/~bxc/Epi/ The key functions in the
latter are Lexis (and associated plotting functions) and splitLexis,
which, when applied twice, calculates the time spent, and exit status
from each quinquinquennium. The ‘bogus example’ in the documen-
tation of the splitLexis function illustrates these, while the example
on the notes for C&H chapter 6 shows the application to the 4-person
cohort used in that chapter.

2. How much higher/lower is the set of age-specific death rates for male
Titanic survivors than that for the general US population? for fe-
male survivors? Answer in two ways: first, calculate sex-specific ob-
served /expected ratios, where the numerator is the total number of deaths
observed in the sex-specific cohort, and the denominator is the sum of the
expected numbers of deaths in these cells, using the USA age-sex-period
death rates; second, calculate sex-specific Mantel-Haenszel summary in-
cidence ratios (Rothman terminology) or incidence density ratios (Mietti-
nen terminology) or mortality rate ratios (everyone’s terminology), using
age and period as ‘strata.’? Assume that each of the USA death rates is

1] This site, http://www.demog.berkeley.edu/~bmd/index.html, contains historical
lifetable and death rate data for the USA and other countries.
2As is illustrated in equation 8-5 in Rothman 2002, the formula is

D strata(n0- Of cases, index category) X (py, ref. category)/(py in stratum)

> strata(n0- of cases, ref. category) x (py, index category)/(py in stratum)

based on a denominator of one million person years.> Assume that the
death rates after 1995 are the same as those in 1990-95.

. ‘On average,” 4, for the age-span 40-90 in the period 1990-1995, how much

higher are the USA age-specific male death rates in males than females?
Answer by plotting the log of the male:female death rate ratio vs age, (or
the two separate sets of log-death-rates on the same graph), and taking
some ‘typical’ value for the ratio. Are you comfortable giving a single
ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant over
that age-span?

. The previous question refers to cross-sectional rates, i.e., those in a speci-

fied period.®> On average, over the age-span 40-90 in the 1900 birth-cohort,
how much higher are the USA age-specific death rates in males than fe-
males? Answer by plotting the log of the male:female death rate ratio
vs age, (or the two separate sets of log-death-rates on the same graph),
and taking some ‘typical’ value for the ratio. Are you comfortable giving
a single ratio? i.e., is the mortality-rate-ratio (M:F) reasonably constant
over that age-span?

. For the age-span 40-90, in a single number describe how much age-and

specific death rates have fallen over the 20th century (the changes may be
more subtle that this, so your answer will necessarily be a simplification).

. For the Titanic survivors, was there a gradient in mortality rates across

the 3 passenger classes?

Supplementary Exercise 6.2. Mortality of performers while in the
‘still hoping to win’ vs in the ‘already a winner’ state

1. Divide the performer-years into those spent as Oscar nominees and as

Oscar winners and then subdivide these into quinquinquennia.

2. Compare the death rates in the performer-years spent as nominees versus

those spent as winners. Do so using both ‘adjusted’ expected numbers
and purely-internal comparisons.

3If the ratio of the amount of experience in the ref. category to that in the index category
goes to infinity, the M-H summary ratio converges to >, .01a O/ > strata £ = O/E.

4Even if the average is not representative.

5Cross-sectional rates are what are used to make ‘current’ or ‘period’ lifetables, by far
the more common type of lifetable.
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