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3 Likelihood

In addition to C&H, see Edwards AWF. Likelihood: Expanded Edition. Cam-
bridge University Press. 1972 and 1992.

“We need a way of choosing a value of the parameter(s) of the model” (1st
paragraph): It is clear from the later text that C&H do not mean to give the
impression that one is only interest in a single value or point-estimate. For
any method to be worthwhile, it needs to be able to provides some measure
of uncertainty, i.e. an interval or range of parameter values.

“In simple statistical analyses, these stages of model building and estimation
may seem to be absent, the analysis just being an intuitively sensible way
of summarizing the data.” Part of the reason is that (as an example) a
sample mean may simply seem like a natural quantity to calculate, and it
does not seem to require an explicit statistical model. Indeed, Miettinen, in
his Mini-Dictionary (of Science, Medicine, Statistics and Epidemiological Re-
search – see Resources under Orientation), has defined a descriptive statistic
as a statistic derived without any statistical model. The mean can also be
seen as the least squares estimate, in the sense that the sum of the squared
deviations of the sample values from any other value than the sample mean
would be larger than the sum of the squared deviations about the mean itself,
i.e., the sample mean is a least squares estimate. But that purely arithmetic
procedure still does not require any assumptions about the true value of the
parameter value µ, or about the shape of the distribution of the possible val-
ues on both sides of µ. For the grade 6 exercise about the mean number of
errors per page, it seemed to make sense to divide the total number of errors
by the total number of pages; but what if the task was to estimate the mean
weight of the pages? We discussed in class at least two di↵erent statistical
models – that would lead to di↵erent estimates.

“In modern statistics the concept which is central to the process of parameter
estimation is likelihood.” Older and less sophisticated methods include the
method of moments, and the method of minimum chi-square for count data.
These estimators are not always e�cient, and their sampling distributions
are often mathematically intractable. For some types of data, the method
of weighted least squares is a reasonable approach, and we will also see that
iteratively-reweighed least squares is a way to obtain ML estimates without
formally calculating likelihoods.

Likelihood is central not just to obtain frequentist-type estimators per se,
but also to allow Bayesian analyses to combine prior beliefs about parameter
values to be updated with the data at hand, and arrive at what one’s post-data
beliefs should be.

Likelihood provides a very flexible approach to combining data, provided one
has a probability model for them. As a simple example, consider the chal-
lenge of estimating the mean µ from several independent observations for a
N(µ,�) process, but where each observation is recorded to a di↵erent degree
of numerical ‘rounding’ or ‘binning.’ For example, imagine that because of
the di↵erences with which the data were recorded, the n = 4 observations are
y1 2 [4, 6), y2 2 [3, 4), y3 2 [5,1), y4 2 [�1, 3.6). Even if we were told the
true value of �, the least squares method cannot handle this uni-parameter
estimation task.

“The main idea is simply that parameter values which make the data more
probable are better supported than values which make the data less probable.”
Before going on to their first example, with a parameter than in principle
could take any values in the unit interval, consider a simpler example where
there are just two values of ⇡. We have sample of candies from one of two
sources: American, where the expected distribution of colours is 30%:70%
and the other Canadian where it is 50%:50%. In our sample of n = 5, the
observed distribution is 2:3. Do the data provide more support for the one
source than the other?

3.1 Likelihood in the binary model

Notice the level of detail at which the observed data are reported in Figure 3.1:
not just the numbers of each (4 and 6) but the actual sequence in which they
were observed. The Likelihood function uses the probability of the observed
data. Even if we did not know the sequence, the probability of observing 4
and 6 would be 10C4 = 210 times larger; however since we assume there is no
order e↵ect, i.e., that ⇡ is constant over trials, the actual sequence does not
contain any information about ⇡, and we would not include this multiplier
in the Likelihood. In any case, we think of the likelihood as a function of ⇡
rather than of the observed numbers of each of the two types.: these data
are considered fixed, and ⇡ is varied.. contrast this with the tail area in a
frequentist p-values, which includes other non-observed values more extreme
than that observed. Likelihood and Bayesian methods do not do this.

“⇡ = 0.5 is more likely than ⇡ = 0.1” Please realize that this statement by
itself could be taken to mean that we should put more money on the 0.5 than
the 0.1. It does not mean this. in the candy source example, knowing where
the candies were purchased, or what they tasked like, would be additional
information that might in and of itself make one source more likely than the
other. The point here is not to use terms that imply a prior or posterior
probability distribution on ⇡. The likelihood function is based just on the
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data, and in real life any extra prior information about ⇡ would be combined
with the information provided by the data. It would have been better if the
authors had simply said “the data provide more support for “⇡ = 0.5 than
⇡ = 0.1.” Indeed, I don’t think “⇡ = 0.5 is more likely than ⇡ = 0.1”
is standard terminology. The terminology “0.4 is the ML estimate of ⇡” is
simpler and less ambiguous.

SOME HISTORY

Warning: JH does not pretend to be a professional historian, and it is only in
the last decade or so that he has started to take an interest in these matters.
So the reader is warned that the items and interpretations and accounts given
here may not be 100% accurate.

There is some dispute as to who first used the principle of ML for the choice
of parameter value. The names of Laplace and Gauss are often mentioned;
Daniel Bernoulli deserves mention too.1 The seldom mentioned 1912 paper by
Fisher, while still a student, is a nice clean example, and shows how Likelihood
(he did not use the word likelihood in the paper) is flexible and allows for the
di↵erent bins sizes with which observations might be recorded, etc. It is
worth reading that original paper, but don’t spend too much time on section
5, where he deals with the ML estimation of the parameters µ and � of a
Normal distribution: the ML estimate of �2 involves a divisor of n rather
than n�1, and embarrassment for Fisher, who was from early on, insisted on
the correct degrees of freedom when assessing variation. His 1912 paper can
be found in the digital archives in Adelaide, Australia (he spent his last years
there) but JH has put a copy in the Resources folder.

The usual reference is to papers by Fisher in the early 1920’s, where he worked
of many of the properties of ML estimators.

One interesting feature of the 1912 paper is that Fisher never defined the
likelihood as a product of probabilities; instead he defined the log-likelihood
as a sum of log-probabilities. This is very much in keeping with his summa-
tion of information over observations. Indeed, there is a lot in his writings
about choosing the most informative configurations at which to observe the
experimental or study units.

Stephen Stigler, an eminent and very readable historian of Statistics, has writ-
ten extensively on Laplace. Indeed, Stigler considers Laplace to be one of the
founders not just of mathematical statistics but of inference in general. The

1see ‘Studies in the history of probability and statistics XI. Daniel Bernoulli on maximum
likelihood’ BY M. G. Kendall in Biometrika (1961), 48, 1 and 2, p. 1. See also ‘A list of
writings relating to the method of least squares’ by Mansfield Merriman in Transactions of
the Connecticut Academy of Arts and Sciences 1874-78, pp151-232.

Resources page on web includes the 1774 paper (part 5 of which deals with fit-
ting of a location parameter to 3 data points, when the dispersion is (a) known
and (b) not. That paper (now translated by Stigler, and accompanied on the
website by a Stigler commentary) was written when Laplace was just 25, and it
includes what this website ( http://www.bayesian-inference.com/laplace
) calls Laplace’s FIrst Law of Error or the Laplace Distribution. It is an
open-ended double-sided exponential, centred at zero, where the parameter µ
represents the average absolute error, and thus the dispersion, i.e.,

pdf(x) =
µ

2
exp[�µ|x| ].

see http://en.wikipedia.org/wiki/Laplace distribution

The just cited website continues, telling us that “In 1778, Laplace pub-
lished his second law of errors, noting that the frequency of an error was
proportional to the exponential of the square of its magnitude. This was sub-
sequently rediscovered by Gauss (possibly in 1795) and became known as the
normal or Gaussian distribution.” This is the familiar Normal Error curve,
with its smoother and less peaked centre, and thinner tails.

The Laplace website continues that “Laplace published a Bayesian precursor
of the Central Limit Theorem (CLT) in 1785, establishing the asymptotic
normality of posterior distributions. In 1810, however, Laplace introduced
the CLT as it applies to frequentist inference, and as it is mostly known
today. Laplace created large-sample theory for both modes of probability
(Hald, 2004, p. 30).

The frequentist version of the CLT states that the mean is approximately
normally distributed in large samples when the variance is finite, regardless of
the shape of the error distribution (Hald, 2004, p. 4). This allowed Laplace to
work with almost any kind of data, rather than being restricted to binomial
problems. Working with larger data sets, the CLT led Laplace to frequentist
inference (Laplace, 1811).”

Part 5 of Laplace’s 1774 paper used (like Daniel Bernoulli below) just 3 data
points to illustrate his approach to obtaining a posterior distribution for the
location parameter when the dispersion is/is not known. To do so, he pro-
poses, and then integrates out, a prior for the dispersion, and arrives at a
posterior distribution for the location parameter. Then, he uses the median
of that distribution as his estimate of the location parameter (he has previ-
ously shown that the median minimizes the average absolute error).

Here is a summary, from a well known late 19th century author of a widely
used textbook on Least Squares (Merriman), on part V of that same 1774
paper (also 1774). It is part of a long listing of, and commentary on, writings
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up to then on Least Squares and related topics. Laplace’s treatment of the 3 data-points problem focuses more on the posterior
distribution than on the likelihood implicit in it; thus his approach does not
maximize the likelihood per se (see Edwards p. 221-223 where he distinguishes
between the method of Maximum Likelihood and the Method of Maximum
Probability). And so, given we are in a chapter dealing only with likelihood.
we will not replicate his worked examples. Instead we will use another lesser
known worked example (by Daniel Bernoulli – it is di�cult to keep track of
the various Bernoulli’s - there were so many of them) that has the likelihood
as the ultimate target, even if it does not call it by that name.

Whereas you might be tempted to call the product �(x1)�(x2)�(x3) a Likeli-
hood and to just go ahead and maximize it, that is not how Laplace saw it.
Rather, because he assumed a flat prior for the unknown dispersion parame-
ter µ, it integrates out when he forms the posterior distribution for x, and so
he has a probability density function for the posterior distribution of x that
(apart from any normalizing constants) is the same as the likelihood function
for x.

The distinction between this example and the one by Daniel Bernoulli is very
clear: Bernoulli maximizes his �(x1)�(x2)�(x3) directly, and he never invokes
a posterior distribution for x. To him, it is simply ‘the x value that has the
highest probability ’.

The following, one of the first attempts to use ML directly, albeit with a
very rudimentary (semicircular) error distribution, is fromDaniel Bernoulli,
written somewhere  1778, when, Kendall tells us, he was 78. Indeed, it
seems that in his 1774 piece, Laplace is aware that both Lagrange and Daniel
Bernoulli had ‘considered the same problem in manuscript memoirs that I have
not seen’, He added that “This announcement both added to the usefulness of
the material and reminded me of my ideas on this topic. I have no doubt that
these two illustrious geometers have treated the subject more successfully than
I; however, I shall present my reflections here, persuaded as I am that through
the consideration of di↵erent approaches, we may produce a less hypothetical
and more certain method for determining the mean that one should take
among many observations.”

Even though we would all now agree that Laplace had the much more com-
prehensive approach (and ultimately even derived a di↵erent and more justi-
fiable error distribution), it is worth starting with the simpler idea in Daniel
Bernoulli’s paper, which appeared in 1778. So here are some extracts from
it, as well as an exercise on his Example 1. The entire piece is on the course
webpage.

10. First of all, I would have every observer ponder thoroughly in his own
mind and judge what is the greatest error which he is morally certain (though
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he should call down the wrath of heaven) he will never exceed however often he
repeats the observation. He must be his own judge of his dexterity and not err
on the side of severity or indulgence. Not that it matters very much whether
the judgement he passes in this matter is fitting or somewhat flighty. Then
let him make the radius of the controlling circle equal to the aforementioned
greatest error; let this radius be r and hence the width of the whole doubtful
field = 2r.
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Studies in the history of probability and Btati8tics 7 
If you desire a rule on this matter common to all observers, I recommend you to suit your 
judgement to the actual observations that you have made: if you double the distance 
between the two extreme observations, you can use it, I think, safely enough as the diameter 
of the controlling circle, or, what comes to the same thing, if you make the radius equal to 
the difference. between the two extreme observations. Indeed, it will be sufficient to increase 
this difference by half to form the diameter of the circle if several observations have been 
made; my own practice is to double it for three or four observations, and .to increase it by 
half for more. Lest this uncertainty offend any one, it is as well to note that if we were to 
make our controlling semicircle infinite we should then coincide with the generally accepted 
rule of the arithmetical mean; but if we were to diminish the circle as much as possible 
without contradiction, we should obtain the mean between the two extreme observations, 
which as a rule for several observations I have found to be less often wrong than I thought 
before I investigated the matter. 

11. After all these preliminaries it remains to determine the position of the controlling 
circle, since it is at the centre of this circle that the several observations should be deemed 
to be, as it were, concentrated. The aforesaid position is deduced from the fact that the whole 
complex of observations would occur more easily, and therefore more probably, for this 
location than for any other position of the circle. We shall have the true degree of probability 
for the whole complex of observations if we note the probability corresponding to the 
several observations that have been carried out and multiply all the probabilities by each 
other, just as we did in§ 9. Then the product of the multiplication is to be differentiated and 
the differential put = 0. In this way we shall obtain an equation whose root will give the 
distance of the centre from any given point. 

Put the radius of the controlling circle = r; the smallest observation = A; the second 
A +a; the third A + b; the fourth A + c, and so on; the distance of the centre of the controlling 
semicircle from the smallest observation = x, so that A + x will denote the quantity which 
is most probably' to be assumed on the basis of all the observations. By our hypothesis 
the probability for the first observation alone is to be expressed by .J{r2- x2}; for the 
second observation by .J{r2 - (x-a)2}; for the third by .J{r2 - (x-b)2}; for the fourth by 
.J{r2- (x- c)2} and so on. Then I would have the several probabilities multiplied together 
according to the rules of the theory of probability, which gives 

.J{r2-x2} x .J{r2- (x-a)2} x .J{r2- (x-b)2} x .J{r2- (x-c)2} x .... 

Finally, if the differential of this product is put= 0, the equation, by virtue of our hypo-
theses, gives the required value x as having the highest probability. As, however, the afore-
said· quantity is to be brought to its maximum value, it is obvious that its square will 
simultaneously be brought to the same state. So we can use, for ease of calculation, a 
formula which is composed entirely of rational terms, viz. 

(r2-x2) x {r2-(x-a)2} x {r2- (x-b)2} x {r2-(x-c)2} x ... 

and the differential is once more put = 0. For the rest, as many factors are to be taken as 
there were observations. 

12. If a single observation was made, we must accept the observation as true. Now this 
is shown by our hypothesis. If only the first factor r2 - x2 is taken, we shall have - 2xdx = 0 
or x = 0 and consequently A+ x = A. So in this ca.se our hypothesis agrees with the common 
one. 

(...)

8 M. G. KENDALL

If two observations have been made, A and A + a, two factors are to be taken, namely

{r2-x2}x{r2-(x-a)2} or ri-2r2x2 + x* + 2ar2x-a2r2 + 2ax3xa2x2,

the differential of which

= - 4r2xdx + to?dx + 2ar2dx - 6ax2dx + 2a2xdx = 0 or 2x? - 3ax2 - 2r2x + a2x + ar2 = 0.
The only useful root which this equation gives is x = \a, and A + x = A + \a. This also is
the teaching of the common hypothesis. This agreement holds whatever be the radius of
the controlling circle, a fact which shows clearly enough, in the case of several observations,
that the size of our controlling circle in an enterprise of this sort need not be strictly exact,
and one should not expect it to be. What is awkward—and I do not conceal it—is that for
several observations a very long calculation is required, and so I hardly dare propose more
than general discussions of these cases. Let me at least expound the theory of three observa-
tions, which is of the highest importance.

13. When we have three observations to deal with, viz. A; A+a and A+b, we shall
have three factors

{r2 - x2} x {r2 - (x - a)2} x {r2 - (x - b)2},

for which we have to find the maximum value. If now these factors are actually multiplied
together we shall obtain

r6 + 2ar*x - 3r*x2 - 4ar2x* + 3r2x* + 2axb - x6

- a2r* - 2ab2r2x + 2b2r2x2 + 2ab2x3 - b2x* + 2bxs

- b2r* + 2br*x - a2b2x2 - AbrW - 4abx*
+ a2b2r2 - 2a2br2x + 4abr2x2 + 2a2bx3 - a2x*

+ 2a2r2x2.

If this expression is differentiated, and then after division by dx is put = 0 to obtain the
maximum value, the following general equation for any three observations whatsoever will
result

2ar* - 6r*x - 12ar2x2 + 12r2x* + 1 Oax* - Qx?
- 2ab2r2 + 4b2r2x + 6ab2x2 - ibV + lObx*

+ 2br* - 2a2b2x- 12br2x2 -
- 2a2br2 + 8abr2x + 6a2bx2 -

+ 4a2r2x = 0.
The root of this equation, which is indeed of the fifth degree and consists of twenty terms,
gives the distance of the centre of the controlling circle from the first observation, and the
quantity A + x gives the value which is most probably to be deduced from the three obser-
vations which have been made.

14. Unless the force of our fundamental arguments has been most attentively weighed
there will be few perhaps who will see any relation whatever between the enormous equation
and what seems to be a very simple question; for the common answer is a; = §(a + b). Never-
theless, our equation corresponds well enough to notions which crop up elsewhere, some of
which I will now expound.

(a) If the radius of the controlling circle is supposed to be infinite compared with a and b,
all terms are to be rejected except those in which r rises to the highest power, in which case
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Example 1 {wording from Bernoulli}
Let us assume three observations A; A + 0.2 and A + 1, so that a = 0.2
and b = 1 and let the value to be assumed as most likely from these three
observations be A+x. The common rule gives x = 0.4. Let us see the new one
which to my mind is more probable, and let us put r = 1 (cf. paragraph 10,
where he invokes a semi-circular probability density function). The following
purely numerical equation results

1.92� 0.32x� 12.96x2 + 4.64x3 + 12x4 � 6x4 = 0,

the solution of which is approximately x = 0.44xx, which exceeds the com-
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monly accepted value by more than a tenth.

Supplementary Exercise 3.1

1. Plot the log-likelihood for Example 1 above, and visually obtain an ap-
proximate xML value. Then use the optim or optimize function in R (or
its equivalent in your favourite package) to find the xML value. Compare
it with Bernoulli’s solution of the quintic equation.

2. If, as does Bernoulli, we take r = 1, what variance does Bernoulli’s
‘distribution with a semi-circular pdf’ have?

3. What value of the dispersion parameter in the Laplace Distribution2

would lead to the same variance as is obtained with r = 1 in Bernoulli’s
distribution?

4. Using the Laplace Distribution with that same variance (i.e. matching
the variances of the two error distributions), what is the ML value cor-
responding to the data in Bernoulli’s Example 1?

For continuation of section 10 of Bernoulli, on the choice of r, see footnote3

{ (For those interested) Continuing with Bernoulli’s words... }
This marked excess is due to the fact that the middle observation is much
nearer to the first than to the third. From this it is easily deduced that the
excess will be changed to a defect if the middle observation is nearer to the
third than to the first, and that the nearer the middle observation is to the
mean between the two extreme observations, the smaller will be this defect.
To test this conjecture I retain the other values and change only the middle
observation, as follows.

2In the version described in Wikipedia, the dispersion parameter (what JH calls µ) is
replaced by a ‘precision’ parameter b)

3 If you desire a rule on this matter common to all observers, I recommend you to
suit your judgement to the actual observations that you have made: if you double
the distance between the two extreme observations, you can use it, I think, safely
enough as the diameter of the controlling circle, or, what comes to the same thing, if
you make the radius equal to the di↵erence between the two extreme observations.
Indeed, it will be su�cient to increase this di↵erence by half to form the diameter of
the circle if several observations have been made; my own practice is to double it for
three or four observations, and .to increase it by half for more. Lest this uncertainty
o↵end any one, it is as well to note that if we were to make our controlling semicircle
infinite we should then coincide with the generally accepted rule of the arithmetical
mean; but if we were to diminish the circle as much as possible without contradiction,
we should obtain the mean between the two extreme observations, which as a rule
for several observations I have found to be less often wrong than I thought before I
investigated the matter. Note by JH: today, with enough data, we would estimate
both the dispersion parameter r and the location parameter of primary interest.

Example 2

Let a now = 0.56, and as before r = b = 1. By the commonly accepted rule
we shall have x = 0.52. Let us see what happens with ours. The equation of
section 13 gives the following numerical equation

1.3728 + 3.1072x� 13.4784x2 � 2.1244x3 + 15.6x4 � 6x5 = 0.

which is approximately satisfied by x = 0.51xx. In accordance with our
principles, the value of x is less than the arithmetical mean which is usually
accepted, but the di↵erence between the two is now quite small, viz. 0.00yy,
exactly as I had anticipated would be the case. Hence it can also be seen that
the greatest di↵erence between the two estimates occurs when it so happens
that two observations exactly coincide and only the third diverges. There are
two cases, viz. when a = 0 and when a = b. I will expound the result in each
case.

10 M. G. KENDALL

which is approximately satisfied by x = 0-5128. In accordance with our principles, the
value of x is less than the arithmetical mean which is usually accepted, but the difference
between the two is now quite small, viz. 0-0072, exactly as I had anticipated would be the
case. Hence it can also be seen that the greatest difference between the two estimates occurs
when it so happens that two observations exactly coincide and only the third diverges.
There are two cases, viz. when a = 0 and when a = b. I will expound the result in each case.

Example 3. Put a = 0, leaving the remaining denominations unaltered. Dividing by
26 — 2x we have the following numerical equation

which is approximately satisfied by x = 0-3977, whereas the value of x obtained from the
common rule is x = 0-3333. The former exceeds the latter by 0-0644. If, however, we put
a = b and divide by 2x, the following equation results

3x* = 0.
This is approximately satisfied by x = 0-6022, while the common value is 0-6666. So the
difference between the two is once more 0-0644, but this time our new value is less than the
common one, whereas previously it was greater. It is clear from this that our method takes
better aim at a certain intermediate point than does the common method. Evidence of this
sort does much to commend the method that I propose, and I will go a little more closely
into this consideration, if so be that an argumentum ad hominem may be accepted in a matter
which does not admit of mathematical demonstration.

16. If we combine the two cases in example 3, and suppose that six observations have
been made, viz. A, A, A + b and A + b,A + b, A,itis obvious that three observations support
the value A and the same number the value A + b. We see by § 12 that in this case both
methods give the required mean value as A + \b, or for example 3, A + 0-5; or, omitting
the constant quantity A, simply 0-5. This value, derived from the six observations combined,
will not be doubted by anyone. Now let us divide these six observations into two other
triads, namely A, A, A +1 and A + l, A + 1,A. In this case, rejecting once more the quan-
tity A, the commonly accepted rule gives for the first triad 0-3 and for the second 0-6, both
differing, the first by defect and the second by excess, by 0-l6 from the mean 0-5. So for
either triad of observations taken separately the common theory involves an error of 0-16,
while ours involves an error of 0-1022, which is notably smaller. A great deal more evidence
of this kind could be adduced to give further support to our fundamental argument; but
I am afraid I should appear immoderate if I went on extending something which cannot be
settled with certainty and absolute perfection. We have no higher aim than to be able to
distinguish what is more probable from what is less.

17. Such further perfection as we may reasonably expect will consist in a stricter and more
accurate determination of the controlling scale and its width. I will add a few further com-
ments on this topic. It is obvious from the foregoing considerations that our estimates are
not so very different from the commonly accepted rule: so it is a question of a certain correc-
tion which this rule appears to allow. This correction is provided by the actual divergences
of the observations from the required true point, since they can be so arranged, for any given
width of the controlling scale, as to make the most probable fit with this point. But for my
part I can see no way of strictly determining the width of the aforesaid scale except that which
I mentioned in § 10. If an observer, through undue mistrust of his own powers, enlarges the
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3.2 Supported range

The choice of critical value is much less standardized or conventional than
say the one for a significance test, or confidence level, or a highest posterior
density.

Fig 3.4 (based on 20/50) vs. Fig 3.3 (based on 4/10): the authors don’t say
it explicitly, but the sharpness of the likelihood function is measured formally
by the second derivative at the point where it is a maximum.

3.3 The log likelihood

The (log-)likelihood is invariant to alternative monotonic transformations of
the parameter, so one often chooses a parameter scale on which the function
is more symmetric.

3.4 Censoring in follow-up studies

See applications below. These will be more relevant after we consider all of
the fitting options, and the benefits/flexibility of a Likelihood approach.

3.5 Other fitting methods

We mentioned earlier that the method of least squares does not make an
explicit assumption about the distribution of the deviations from or even
that the observed data are a sample from a larger universe. Another older
method, that does not make explicit assumptions about the variations about
the postulated means, is the method of minimum chi-square. It was used
for fitting simpler models for dose response data involving count data. This
minimum chi-square criterion does not lead to simple methods of estimation,
or to estimators with easily derived sampling distributions. Nevertheless, it is
one of the thee methods (the others are ML – which requires a fully specified
model for the variations, and LS, that does not) used in the java applet
http://www.biostat.mcgill.ca/hanley/MaxLik3D.swf. The applet allows
you to fit a linear model to the above-described 2-point data, and to monitor
how the log-likelihood, the sum of squared deviations, and the chi-square
goodness of fit statistics vary as a function of the entertained values of �.

The applet shows that the LS method which measures lack of fit on the same
scale that the y’s are measured on (cf the two red lines). The min-X2 method –
applied to y’s that represent counts or frequencies, is similar, in that the “loss

function” is
P

(y� ŷ)/ŷ2. The criterion for the ML fitting of a Poisson model
is very di↵erent, in that it is measured on the probability or log-probability
scale, a scale that is shown in blue, and projecting out from the x� y plane.

Under some Normal models with homoscedastic variation, the LS and ML
methods give the same estimates for the parameter(s) that make up the mean.
If y|x ⇠ Normal(µx,�2), then Lik =

Q
(1/�) exp[�{(yi��xi)2/2�2}]. This is

maximized when the exponentiated quantity is minimized. The minimization
is the same one involved in the LS estimation.

Supplementary Exercise 3.2.

Grouped Normal data (from section 12.2 of Fisher’s paper4).Three hundred
observed measurement errors (✏’s) from a N(0,�) distribution are grouped
(binned) in nine classes, positive and negative values being thrown together
as shown in the following table:-

Bin 0-1 1-2 2-3 3-4 4-5 5-6 6-7 7-8 8-9 All
Frequency (f) 114 84 53 24 14 6 3 1 1 300

Estimate �2 ...

1. as (1/300)
P

f⇥✏2mid. Note that we estimate it using a divisor of n rather
than n� 1, since we do not have to estimate µ : the errors are deviations
from known values, so µ = 0 (structurally).

2. Using Sheppard’s correction for the grouping, i.e, by subtracting w2/12,
where w is the width of each bin, in this case 1. Incidentally, can you
figure out why Sheppard subtracts this amount? Shouldn’t grouping add
rather than subtract noise?

3. Using the method of Minimum �2.

4. By directly maximizing the (log) Likelihood, either by plotting or tabulat-
ing it and zooming in on the maximum, or by supplying the log-likelihood
to a function such as optim or optimize, or by using a root-finding ap-
proach, such as that of Newton-Raphson, to obtain the root of the equa-
tion dLogL(�)/d� = 0, or dLogL(✓)/d✓ = 0, where ✓ = �2 or log(�) or
log(�2) or some other transform of �.

5. Using the method of Maximum Likelihood, but using the ‘EM’ algorithm.
For a compact description of the EM algorithm, see section 2.2 in the
paper ‘A statistician plays darts’ by Tibshirani (Jr), Price and Taylor.

4On the Mathematical Foundations of Theoretical Statistics, Philosophical Transactions
of the Royal Society of London. Series A, Containing Papers of a Mathematical or Physical
Character, Vol. 222 (1922), pp. 309-368
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Hint : be careful when you iteratively re-estimate the expected values:
since we are focused on �2, at issue is the expected values of the squares
of the values inside each bin, not the values themselves.

Supplementary Exercise 3.3.

Frequency data, the subject of Galton’s 1894 correspondence with the Homing
News and Pigeon Fanciers’ Journal.5

Significance magazine (http://www.significancemagazine.org/) has spe-
cial Galton coverage in 2011, the 100th anniversary of his death – Galton
was born in 1822, the same year, he noted himself, as the geneticist Gregor
Mendel. In the article “Sir Francis Galton and the homing pigeon”, Fanshawe
writes...

”The results for the 3,207 “old birds” are shown in the table. The
table shows the proportion of birds in each category. Galton suggests
summarising the figures by their mean and “variability”, which he
estimates as 976 and 124 yards per minute respectively. It is not clear
which quantity Galton calls the “variability” – his figure appears too
small to be a standard deviation.

The second row of figures are Galton’s, and arise from the propor-
tions that would be expected by approximating the original data by
a Normal distribution. The fit appears extremely good.”

Using these frequencies and bin-boundaries6 from the journal article, and the
Normal distribution assumed by the journal and by Galton,

Bin -5 5-6 6-7 7-8 8-9 9-10 10-11 11-12 12-13 13-14 14+ All
Freq 22 43 164 284 598 645 683 396 132 120 120 3207

estimate µ and �, and, where possible, using SE(µ̂) and SE(�̂), 7 form sym-
metric (frequentist) confidence intervals for µ and �,

1. by concentrating the frequencies at the midpoints, and at suitably chosen
values for the two open-ended categories

5Material (3p of journal, Fanshawe’s article, and R code) avialable under Resources.
65-6 means 500-600 yards per minute, etc.
7Since s2 ⇠ (1/⌫) ⇥ �2 ⇥ ChiSq(d.f. = ⌫), then Var[s2] = (1/⌫2) ⇥ �4 ⇥ 2⌫. By Delta

method,

Var[s] ⇡ Var[s2]⇥
n

ds
ds2

o

2

= (1/⌫2)⇥ �4 ⇥ 2⌫
| {z }

⇥ (1/4)⇥ {1/�2}�1

| {z }

= (1/⌫2)⇥ �2,

so SE[s] ⇡ (1/⌫2)�1/2 ⇥ �.

2. via the method of Minimum �2, and

3. via the method of Maximum Likelihood. Then

4. determine whether Fanshawe is correct: i.e., is the “124 yards” measure
of “variability” indeed too small to be a standard deviation (SD)?

5. Galton rarely used the SD.8 Instead he – as Gosset often did – used the
Probable Error (PE), i.e., 1/2 the IQR.9

In a Gaussian distribution, how much smaller/larger is the PE than the
SD?

Does this factor explain how Galton arrived at the 124 yards per minute?

The sample size is so large here that the symmetric (z-based) CI for � is
quite accurate. By what if the sample size were quite small? In this case you
could use the tails of the (non-symmetric) distribution of the distribution of
s2 to derive an asymmetric first-principles frequentist confidence interval for
�2, and by transformation, for �.10

3.6 Other Applications: exercises

3.6.1 2 datapoints and a model

One has 2 independent observations from the (no-intercept) model

E[y|x] = µy|x = � ⇥ x.

The y’s might represent the total numbers of typographical errors on x ran-
domly sampled pages of a large document, and the data might be y = 2 errors
in total in a sample of x = 1 page, and y = 8 errors in total in a separate
sample of x = 2 pages. The � in the model represents the mean number of
errors per page of the document. Or the y’s might represent the total weight
of x randomly sample pages of a document, and the data might be y = 2 units
of weight in total for a sample of x = 1 page, and y = 8 units for a separate

8Karl Pearson was the one who promoted the SD.
9Thus, it is equally probable (50:50) for an observation to be more/less than this amount

from the middle (truth).
10Hint: (taking some semantic liberties) a first-principles 100(1-↵)% frequentist CI, (L,U)

for ✓ is the pair of statistics (L,U), such that Prob(✓̂ � ✓̂
observed

| ✓ = L) = ↵/2 and

Prob(✓̂  ✓̂
observed

| ✓ = U) = ↵/2.
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sample of x = 2 pages. The � in the model represents the mean weight per
page of the document.

We gave this ‘estimation of �’ problem { (x, y) = (1, 2) & (2, 8)} to several
statisticians and epidemiologists, and to several grade 6 students, and they
gave us a variety of estimates, such as �̂ = 3.6/page, 3.33/page, and 3.45!

Supplementary Exercise 3.4

How can this be? The di↵erences have to do with (i) what model they (im-
plicitly or explicitly) used for the variation of each y | x around the mean µy|x
and (ii) the method of fitting.

1. From 1st principles derive both the LS and (if possible the) ML estimators
of � when

(a) y | x ⇠ ???(µy|x)

(b) y | x ⇠ Poisson(µy|x)

(c) y | x ⇠ N(µy|x,�) [assume � is known]

(d) y | x ⇠ N(µy|x,�
2 = x⇥ �2

0) [assume �2
0 is known]

2. Where possible, match the estimators with the various numerical esti-
mates above.

3. One of the numerical estimates came from another fitting method, namely
the (now seldom-used) method of Minimum Chi-square, which seeks the

value of � that minimizes
P (O�E)2

E =
P (y��x)2

�x in this example. Verify
that the one remaining estimate of unknown origin is in fact obtained
using this estimator.

See the (Flash) applet on http://www.biostat.mcgill.ca/hanley/software/

One of the messages of this exercise is that for one to use a likelihood approach,
one must have a fully-specified probability model so that one can write the
probability of each observed observation.

And, with di↵erent distributions of the y’s around the mean µy|x = E(y|x) =
� ⇥ x, the probabilities (and thus the overall likelihood, and its maximum,
would be di↵erent.

3.6.2 Application: Estimation of parameters of gamma distribu-
tion fitted to tumbler mortality data [interval-censored and
right-censored data].

The important but seldom-visited article “Tumbler Mortality” by Brown and
Flood in JASA in 1947 shows the “survival” of tumblers (Free Online Dic-
tionary: a. A drinking glass, originally with a rounded bottom. b. A flat-
bottomed glass having no handle, foot, or stem.) in a cafeteria. The article is
available under Resources for Epidemiology and for Statistical Models. Note
that whereas the authors used the word truncation for the observations on
tumblers that were still in service at the end of the test, we would use the
word ‘right-censored ’ today. Since inspections were only once a week, the
lengths of service of the items that did fail are also censored, but within [in
most instances] a 1-week interval. This type of censoring is called ‘interval-
censoring ’.

Supplementary Exercise 3.5

Using the data in Table 1 for the article [contained in the various versions
of the R code in the same link] , determine the MLEs of the two parameters
of the gamma distribution, and compare them with those obtained by the
original authors [they use a slightly approx. ML method]. Do so in two ways
(they should give the same likelihood function, and thus the same MLEs):

1. using an unconditional approach, based on 549 contributions – one per
tumbler, with each tumbler considered in isolation from the other 548
– so that each failure (unconditional) contributes one term and each
(ULTIMATELY) censored observation (also unconditional) contributes
another. [of course, there are ‘multiplicities’; thus, instead of a sum of
549 log-likelihhods, you can use the multiplicities (and multiplication of
a 1-item log-likelihood by the multiplicity) to reduce the computation].

2. using the binomial structure created by the authors: a row that has n
exposed tumblers that week (and that only considers whether the tumbler
that began that week survived that week) makes n Bernoulli-based log-
likelihoods, (or 1 Binomial-based log-likelihood) for that week.

This exercise shows that there is more than 1 way to set up the likelihood.
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3.6.3 Application: Estimation of parameters of a parametric dis-
tribution fitted to avalanche mortality data [all observations
are censored – either left-censored or right-censored. Such
data are often referred to as “current-status” data].

One example of status-quo data is data from a cross-sectional survey of menar-
che status in girls, or the prevalence of decayed-missing-or-filled (DMF) teeth
(or say permanent dentition) in dental public health, or HIV prevalence in the
general population or in specific sub-populations, such as partners of persons
who contracted HIV though blood donations.

Another is the data from the Avalanche Survival Chances by Falk et al. in
the journal Nature in 1994. The article and the data are available under
Resources.

The authors fitted a non-parametric model. We will discuss in class which
parametric models (or mixtures of di↵erent parametric models) might make
sense. But, just to get some practice with this type of data, we will start with
a very simply one, even if we know a priori it is too simplistic.

Supplementary Exercise 3.6

Using the raw data, and (for now) the simplistic parametric model we agreed
on in class, determine the MLEs of the two parameters of this gamma distri-
bution, and compare the fit with the fit of the smooth and non-parametric
curves shown in the authors’ article.

3.6.4 Application: Genetics of Blood Groups

[Premiminary] Questions 1-6 below were set by Olli Saarela for course
EBIB607. See (on the BIOS601 website, under Resources for Likelihood)
the relevant pages from section 3.7 of Edwards’ book, where his main purpose
is to illustrate the Likelihood ratio

Prob(data | single tri-allelic locus)

Prob(data | two bi-allelic loci)
,

and section 6.8 where he addresses the parameter fitting.

The example is from the book “Likelihood” by Edwards (1972) and originates
from Bernstein (1924), who discovered the inheritance pattern of ABO blood
groups. Formerly, it was thought that the ABO bloodgroup phenotype was
determined by two biallelic loci with alleles {A, a} and {B, b}, respectively.
Under this model, the individual has a bloodgroup phenotype ‘AB’ when both
alleles A and B are present, bloodgroup ‘A’ when allele A is present and allele

B is not present, bloodgroup ‘B’ when allele B is present and allele A is not
present, and finally, bloodgroup ‘O’ when neither A or B is present. The 6
sub-questions Saarela posed were the following [JH would immediately turn
to trees to see what was going on]

1. List the possible genotypes under the two loci model (there are 9 in total).

2. In a population of 502 individuals, 42.2% had the observed bloodgroup
phenotype ‘A’, 20.6% had the bloodgroup ‘B’, 7.8% had the bloodgroup
‘AB’, and the remaining 29.4% had the bloodgroup ‘O’. Let us denote
by P (A = 1) the (marginal) probability that the allele A is present,
and P (B = 1) the (marginal) probability that the allele B is present.
Recall from the lecture notes that the probabilities of mutually exlusive
alternatives are additive, so that

P (A = 1) = P (A = 1 and B = 1) + P (A = 1 and B = 0)

and

P (B = 1) = P (B = 1 and A = 1) + P (B = 1 and A = 0).

Using the observed data, and estimating the probabilities by the cor-
responding empirical proportions, calculate the probabilities P (A = 1),
P (A = 0), P (B = 1) and P (B = 0).

3. Under the two loci model, and assuming the loci to be independent (not
in linkage disequilibrium), we can calculate the probability of each blood-
group phenotype from the above four marginal probabilities; for instance
the probability of the ‘AB’ phenotype is given by

P (‘AB’) = P (A = 1 and B = 1) = P (A = 1)P (B = 1).

Using the observed data, calculate the probabilities of the four blood-
group phenotypes under this model.

4. An alternative model is that the ABO bloodgroup is in fact determined
by a single triallelic locus with the alleles {A,B,O}. List the possible
genotypes under this model (there are 6 in total), and the bloodgroup
phenotype related to each of these.

5. Suppose that from the observed data, the allele frequencies (that is, the
probabilities that a copy of the particular allele is inherited from a given
parent) under the single locus model were estimated as P (A = 1) =
0.2945, P (B = 1) = 0.1547 and P (O = 1) = 0.5508. Using these esti-
mates, calculate the four phenotype probabilities P (‘AB’), P (‘A’), P (‘B’)
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and P (‘O’) under the single locus model. (Hint: add the probabilities
of di↵erent possible genotypes corresponding to a particular phenotype
and assume that the maternal and paternal alleles are inherited indepen-
dently).

6. Which model fits better to the observed phenotype proportions?

The 607 exercise illustrates the competing hypotheses (probability models) as
to how the ABO bloodgroup phenotypes are determined.

Edwards used the Likelihood ratio to show the far greater support for the sin-
gle tri-allelic locus hypothesis (H1) over than the two bi-allelic loci hypothesis
(H2)

Part (5) of the 607 exercise gives, without the technical details, the (data-
based) estimates of P (A = 1), P (B = 1), & P (O = 1) = 1 � {P (A =
1) + P (B = 1)}. The 607 students are then asked to calculate the 4 expected
frequencies under this model, and to compare these fitted frequencies with
those calculated under the other model.

When he uses p̂, q̂ & r̂ to calculate the Likelihood ratio, in section 3.7 of
his book, Edwards simply says that p = P (A = 1), q = P (B = 1), & r =
P (O = 1) ‘must be (were) obtained by iteration’. In his section 6.8 (ML with
a constraint among parameters) he gives several suggestions for estimation:
one is to plot the log-Likelihood ‘surface’ as contours on a ‘Streng diagram’
(a triangle used for 3-nomial probabilities) and zoom in numerically; another
is what he calls ‘Fisher’s method’; another is to use the Lagrangian multi-
plier method; and the last is the ‘counting method’, which he works through,
starting on p139.

Nowadays, the simplest way is to simply write down the log-likelihood and
directly maximize it. It is a 4-nomial, (e↵ectively) 2-parameter log-likelihood,
and thus easily maximized. Ignore the slightly ‘non-integer’ observed frequen-
cies.11

11⇤Edwards tells us that ‘the data are for Japanese in Korea, and are due to Kirihara. I
cannot find and set of frequencies adding to 502 which would lead to the given proportions,
so I have made the ensuing calculations in terms of the proportions themselves’. But for
precision purposes, the 502 does matter, so JH suggests using the ‘slightly non-integer’
frequencies. Some software, expecting binomial or multinomial frequencies, would object,
but you do not need to tell the optim function that the supplied frequencies in the log-
likelihood are non-integer.

Phenotype Genotype(s) Theoretical Proportion Observed Frequency⇤

‘A’ AA, AO p(p+ 2r) 502 ⇥ 0.422
‘B’ BB, BO q(q + 2r) 502 ⇥ 0.206
‘AB’ AB 2pq 502 ⇥ 0.078
‘O’ OO r2 502 ⇥ 0.294

Supplementary Exercise 3.7

1. Find p̂ML and q̂ML (and thus r̂ML ) directly.

Hint : To avoid inadmissible parameter regions (< 0 or > 1), you could
re-express the 3 parameters as

p =
exp[↵]

exp[↵] + exp[�] + 1
; q =

exp[�]

exp[↵] + exp[�] + 1
; r =

1

exp[↵] + exp[�] + 1
,

and maximize over ↵ and �.

2. Read through Edwards’ description of the ‘counting method’, and com-
ment on whether it qualifies as an application of what (in 1977) became
known as the ‘EM algorithm.’

3.6.5 Application: Distribution of Observations in a Dilution Se-
ries.

(Again, text from (section 12.3 of) Fisher’s 1922 paper). An important type
of discontinuous distribution occurs in the application of the dilution method
to the estimation of the number of micro-organisms in a sample of water or
of soil.12 [note from JH: for simplicity, we replace some of Fisher’s notation,

by letting the expected or average concentration of micro-organisms be µ per cubic

centimetre – Fisher had n per cubic centimetre.] The method here presented was
originally developed in connection with Mr. Cutler’s extensive counts of soil
protozoa carried out in the protozoological laboratory at Rothamsted, and
although the method is of very wide application, this particular investigation
a↵ords an admirable example of the statistical principles involved.

In principle the method consists in making a series of dilutions of the soil
sample, and determining the presence or absence of each type of protozoa in a
cubic centimetre of the dilution, after incubation in a nutrient medium. The
series in use proceeds by powers of 2, so that the frequency of protozoa in
each dilution is one-half that in the last. The frequency at any stage of the
process may then be represented by

µx =
µ

2x
,

12See related article, from Significance Magazine, on Petri Dishes – under Resources.
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when x indicates the number of dilutions. Under conditions of random sam-
pling, the chance of any plate made from the xth dilution receiving 0, 1, 2, 3
protozoa of a given species is given by the Poisson series

e�µ
x

✓
1, µx,

µ2
x

2!
,
µ3
x

3!
, . . .

◆
,

and in consequence the (expected) proportion of sterile plates at dilution x is

px = e�µ
x ,

and of fertile plates
qx = 1� e�µ

x .

In general we may consider a dilution series with dilution factor a so that

log pa = � µ

ax
,

and assume that na plates are poured from each dilution. The object of the
method is to estimate µ from a record of the sterile and fertile plates. We can
do so by treating the observed number of fertile plates at dilution x, say n+

x ,
out of the nx poured from dilution x, as a realization of a binomial random
variable, and thus writing the overall log likelihood as

logLik =
X

x

n+
x ⇥ log px + (nx � n+

x )⇥ log(1� px),

when the summation is over the di↵erent dilutions.

Supplementary Exercise 3.8

Estimate µ from the following dilution series data [a=0.25, 0.5 denote 4 and
2 times the original concentration(a=1), and a=2, 3, . . . denote 1/4, 1/8
. . . times the original concentration(a=1)]:

Dilution (a): 0.25 0.5 1 2 4 8 16 32 64 128
No. of plates (na) : 5 5 5 5 5 5 5 5 5 5

No. of fertile plates (n+
a ): 5 5 5 5 4 3 2 2 0 0

3.6.6 Application: Pooled testing:- old and new uses

The following excerpts are from a 1976 article “Group testing with a new goal,
estimation”, in Biometrika, 62, 1, p. 181 by authors Sobel and Elasho↵. They
begin by referring to Dorfman, whose article, in the Annals of Mathematical
Statistics, 1943, first used the ideas of group testing, with a binomial model,
to reduce the number of medical tests necessary to find all members of a group
of size N that have the syphilis antigen. They continued...

Another aspect of the group-testing problem arises when one is in-
terested not in the classification of all the individuals but in the
estimation of the frequency of a disease, or of some property, when
group-testing methods can be used. Given a random sample of size
N, say, from a binomial population, the best estimate of the preva-
lence rate p, in the sense of minimizing the mean square error, will be
obtained by testing each unit separately. However, if N is large and
the tests are costly, then a di↵erent criterion, that includes testing
costs, may indicate that group-testing designs should be used. We
might expect benefits from group testing to increase as p decreases.

[....] Example: Rodents are collected from the harbour of a large
city, and, after being killed, dissected, etc., their liver is to be care-
fully examined under a microscope for the presence or absence of a
specific type of bacterium. The goal of the study is to estimate the
proportion p of rodents that carry this bacterium using an economi-
cal experimental design. In this application the cost of obtaining the
animals is negligible compared to the cost of testing, i.e. the micro-
scopic search. It was proposed that an economical design to estimate
p should be possible by combining in a single sample a small por-
tion of the liver from each of several test animals and then carrying
out a microscopic search on a homogeneous mixture of these liver
portions. The problem is to find the best number, say A, of liver
portions to combine and how to estimate the prevalence rate p from
such a design. In addition, if this bacterial type is present in some
particular tests, then the pathologists want to know whether they
should carry out another test on a subset of these same animals or
go on to test a new group of A animals.

[...] Thompson (1962) estimated the proportion of insect vectors
capable of transmitting asteryellows virus in a natural population of
the six-spotted leafhopper, an aphid. Instead of putting one insect
with a previously unexposed aster test plant, he puts several insects
with one test plant, for economic reasons, and waits to see if the plant
develops the symptoms of this virus. If it does, then at least one of
these insects carried the virus; otherwise it is assumed that none
carried it. The statistical problem is to choose an optimal number
A of insects to be put with one test plant.

Contemporary uses: (can also Google Minipool testing)

The following text is an excerpt from Canadian Blood Services : Customer
Letter #2005-18, 2005-05-17, entitled “Planned Measures to Protect the
Blood Supply from West Nile Virus (WNV) - 2005 Season.”
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Dear Colleague:

West Nile season is approaching once again and this letter is to in-
form you about enhanced measures Canadian Blood Services has put
in place to further protect the safety of the blood supply during the
2005 season.

For the summer of 2005, Canadian Blood Services will again use
single-unit testing (SUT) to enhance the sensitivity of the West Nile
Virus nucleic acid test. Minipool testing (6 samples/pool) is used
throughout the year.

• In the summer of 2005, a ‘trigger’ will be used to initiate SUT.
SUT will be initiated in a health region when a presumptive
positive blood donor is detected using minipool testing, OR the
prevalence of recent confirmed human cases in the preceding two
weeks exceeds 1/1,000 population in rural areas, or 1/2,500 in
urban areas.

• SUT will cease in a health region when there have been no
positive donors for two weeks or the occurrence of WNV cases
in the population falls below the aforementioned population
triggers.

Supplementary Exercise 3.9

Suppose that in order to estimate the prevalence (⇡) of a characteristic in
a population, one tests N randomly sampled objects by pooling them into
nb batches of size k (so that N = nb ⇥ k) and determining, for each batch,
i.e. collectively, if at least one of its members is positive. Suppose that nb+

batches are found to be positive. Develop estimators of ⇡ using the method
of moments, and using minimum �2 and Maximum Likelihood criteria.

3.6.7 Application: Measuring one’s accuracy at darts

In 2011, Tibshirani (junior!) et al.13 published a very instructive essay. In
addition to its innovative use of a personalized heatmap to show the optimal
strategy for throwing darts, it provides an engaging example for teaching
several statistical concepts and techniques, such as fast Fourier transforms,
the EM algorithm, Monte Carlo integration, importance sampling, and the
Metropolis Hastings algorithm. It is a delightful blend of the applied and the
theoretical, the algebraic and the graphical.

It also continues the tradition of statisticians’ fascination with the imagery
of marksmen (Turner, 2010). In her chapter on metaphor and reality of
target practice, Klein (1997) writes of ‘men reasoning on the likes of target
practice’ and describes how this imagery has pervaded the thinking and
work of natural philosophers and statisticians. Klein shows a frequency
curve, by Yule, for 1,000 shots from an artillery gun in American target
practice. Pearson used it in his 1894 lectures on evolution; he decomposed
the frequency curve into two chance distributions centered slightly to
the right and left of the target, gave reasons why this might occur, and
used it to illustrate the interplay between random variation and natural
selection. He also used it in his 1900 paper in one of the illustrations of his
test of goodness of fit. Incidentally, Klein also reminds us of the origin of
the term ‘stochastic.’ In Liddell and Scott (1920) we find the following entries:

�⌧o�o& an aim, shot. a guess, conjecture.
�⌧o�a�µ↵ a missile aimed at a mark; an arrow, javelin.
�⌧o�a�⌧◆o& able to hit: able to guess, shrewd, sagacious.

Since the optimal aiming spot in darts – and thus the heatmap provided by
the online applet – depends strongly on one’s accuracy, much of the Tibshi-
rani et al. article is devoted to the challenge of estimating the (co)variance
parameter(s) that describes this accuracy. All of the estimators rely on the
data generated by throwing n darts, aiming each time at the centre of the
board, i.e., the double-bulls-eye, and recording the result for each throw.

13 Tibshirani, R.J., Price, A, and Taylor, J. A statistician plays darts. J. R. Statist. Soc.
A (2011) 174, Part 1, 213-226. [See also the follow-up letter from S. Sadhukhan, Z Liu,
and J Hanley, along with the references • Klein, J.L. (1997). Statistical Visions in Time: A
History of Time Series Analysis 1662- 1938. pp. 3-11. Cambridge. Cambridge University
Press. • Liddell, H.G. and Scott R. (1920). A Lexicon, abridged from Liddell and Scott’s
Greek-English Lexicon. p. 653. London. Oxford at the Clarendon Press. • Tibshirani,
R.J., Price, A, and Taylor, J. A statistician plays darts. J. R. Statist. Soc. A (2011) 174,
Part 1, 213-226. • Turner, E.L. and Hanley, J.A. (2010) Cultural imagery and statistical
models of the force of mortality: Addison, Gompertz and Pearson. J. R. Statist. Soc. A,
173, Part 3, 483-499.
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The authors noted that they would lose considerable information by not mea-
suring the actual locations where the darts land but considered this to be too
time-consuming and error-prone. Instead, they chose the individual scores
produced by the throws (the 44 possible scores are 0:22, 24:28, 30, 32:34, 36,
38:40, 42, 45, 48, 50, 51, 54, 57, 60). Based on n = 100 throws by authors
1 and 2, assuming the simplest variance model (equal, uncorrelated vertical
and horizontal Gaussian errors), their standard deviations were estimated to
be �̂ = 64.6 and 26.9 respectively (the applet gives �̂ to 2 decimal places)

Our follow-up letter provides a measure of the statistical precision of these ac-
curacy estimates (for example, we calculate that the 95% limits to accompany
the reported point estimate 64.6 derived from 100 scores are approximately
56 and 75). More importantly, we show that more precise estimates of � can
often be achieved with the same number of throws (or the same precision with
fewer throws) if one uses a simpler yet more informative version of the result
from each throw.

Here, as in the letter, we focus on the simplest variance model, where horizon-
tal and vertical errors, ex and ey, are Gaussian, centered on (0,0), independent
of each other and of the same amplitude, i.e., �e

x

= �e
y

= �; ⇢e
x

,e
y

= 0.

We first consider the most mathematically tractable, but least practical,
method of estimating �, namely to measure the exact (x, y) locations where
the n darts land. We then consider the almost as mathematically tractable,
but much more practical – and almost as statistically e�cient – method of
estimating �, namely to merely record in which ‘ring’ each dart lands. We
leave to later the the authors’ more complex – but sometimes less e�cient –
method based on actual 0-60 scoring system used in darts games.

Denote by ec,i the error in the c-th co-ordinate (1=‘x’, 2=‘y’) of the i-th dart.

Supplementary Exercise 3.10

1. Show that (1/2n)
P

c{
P

i e
2
c,i} is an unbiased estimator of �2 and that

it is the method-of-moments, the LS, and the ML estimator.

What sampling statistical distribution does this estimator follow?

Use the two separate ↵/2 tails of this (slightly non-symmetric)
distribution to derive an asymmetric first-principles frequentist confi-
dence interval for �2.14

14Hint: (taking some semantic liberties) a first-principles 100(1-↵)% frequentist CI, (L,U)

for ✓ is the pair of statistics (L,U), such that Prob(✓̂ � ✓̂
observed

| ✓ = L) = ↵/2 and

Prob(✓̂  ✓̂
observed

| ✓ = U) = ↵/2.

Suppose that for each dart thrown, one calculates the squared
distance from the center, ie d2i = e21,i + e22,i. Show that (1/n)

P
i d

2
i is

an unbiased estimator of 2�2. What sampling statistical distribution
does each d2i follow? What is a common name for the distribution of the
square root of this random variable?

2. Suppose we simply divide the dartboard into 7 ‘rings’ 15 and record which
one the dart lands in: 1. the double-bulls-eye; 2. the single-bulls-eye; the
ones formed by the: 3. single-bulls-eye and inner triple; 4. inner and
outer triple; 5. outer triple and inner double; and 6. inner and outer
double, wires respectively; and 7. beyond the outer double wire (i.e., the
throw misses the board). In other words, we divide the dartboard into
just 7 regions. Suppose that the distribution of the results of n = 100
throws is as follows:

ring: 1 2 3 4 5 6 7 all
frequency: 0 6 77 5 12 0 0 100

Calculate (and plot) the logLik(�2) function and find the MLE of �2.

3.7 An application of the EM algorithm: rounding (and
thus ‘heaping’ of the frequencies) of values

Just like having to code one’s own Newton-Raphson algorithm is being re-
placed by the availability of functions such as optim, and as the use of MCMC
methods is growing, it is also the case that the EM algorithm – which used
to be seem as a derivative-free approach to parameter estimation in a large
class of problems – may be becoming less common.

But it is still the simplest way for a large number of situations, not all of which
are immediately of the ’missing’ or ’incomplete’ data type. The original 1977
paper by Dempster, Laird and Rubin has examples in contexts where its
applicability not have been immediately obvious.

As motivation for why it is an important item in the biostatistician’s repertoire
(‘toolbox’), consider the following example of ‘heaped’ frequencies resulting
from the rounding of values.

Digit preference bias in the recording of emergency depart-

ment times

15 In fact, the innermost region is a circle, the next 5 are rings, and the outermost one is
all of the remaining area.

13
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Objective Digit preference bias has previously been described in
a number of di↵erent clinical settings. The paper aimed to assess
whether digit preference bias a↵ects the recording of the time pa-
tients arrive and leave emergency departments.

Method An observational study of 137 emergency departments in
England and Wales was conducted. Each department was asked to
submit details of the time of arrival and time of departure from the
emergency department for each patient attending during April 2004.
In addition, interviews with the lead clinician were undertaken to
determine the method used to record the time of departure. The
degree of digit preference bias was assessed using a modification of
Whipple’s index.

Results One hundred and twenty-three (86.9%) departments sub-
mitted data detailing 648 203 emergency department episodes.
114875 (18.0%) episodes had a recorded minute of departure of ‘0’
or ‘30’, with a further 2 81 890 (44.1%) having other values with
a terminal digit of ‘0’ or ‘5’. The mean modified Whipple’s index
for time of departure was 316.9 (range 70.9484.4). Linear regression
demonstrates a small but significant inverse relationship between the
modified Whipple’s index and the mean total time in department (b
= -0.05, 95% CIs -0.09 to -0.0004, P = 0.048).

Conclusion Some departments show considerable digit preference
bias in the recording of time of departure from the emergency de-
partment. Such bias may cause di�culty in assessing changes in the
performance of departments.

Thomas E. Locker and Suzanne M. Mason. European Journal of
Emergency Medicine 13:99101

Supplementary Exercise 3.11

Refer to the graph below, and to the (.csv) file containing the 60 minute-
specific arrival and departure frequencies, which JH has extracted from it.

the ED were collected. In addition, interviews were
conducted with the lead clinician in each department
to determine the methods used to record a patent’s time
of departure. The methods used to record the time of
departure were classified as ‘computerized’ if this was
undertaken using a computerized system at the time the
patient left the ED and ‘manual’ when the time was
recorded by hand in the patient’s ED notes and
transcribed to a computerized system at a later stage.

From these data, the minute of a patients’ time of arrival
and time of departure from the ED was determined for
each patient episode. The frequency of each value was
determined for each department. The degree of digit
preference bias for values ending in ‘0’ or ‘5’ was
determined using a modification of Whipple’s index.
The degree of bias was calculated according to the
following formula:

Modified Whipples index ðMWIÞ

¼
P
ðn0 þ n5 þ n10 . . . n55Þ

1=5%
P
ðn1 þ n2 þ n3 . . . n59Þ

% 100:

This method assumes an even distribution of values from
‘0’ to ‘59’. The MWI may range from zero, when no values
end in ‘0’ or ‘5’, to 500 indicating that all recorded times
end in these values. A value of 100 indicates there is no
digit preference bias. The MWI was calculated for each
department.

The total time patients spent in the ED was defined as
the difference between the time of arrival and time of
departure, the mean of these times being determined for
each department. Linear regression was used to examine
the relationship between the mean total time in

department and the degree of digit preference bias,
assessed by the MWI.

Results
One hundred and thirty-seven departments consented to
take part in the UWAIT study. Of these, five (3.7%) were
unable to abstract the data from their information
technology systems and nine (6.6%) did not provide
data. One hundred and twenty-three (86.9%) depart-
ments submitted the required data detailing 648 203 ED
episodes. Of these, 9018 (1.4%) episodes had incomplete
data for either the time of arrival or time of departure and
were therefore excluded from further analysis.

Graph 1 shows the distribution of recorded minute of
arrival and departure. It can be seen that there is little
digit preference bias in the recording of time of arrival
with a mean MWI of 108.6 (range 66.1–279.4). The
recorded minute of departure shows considerable cluster-
ing around values with a terminal digit of ‘0’ or ‘5’.
114875 (18.0%) episodes had a recorded minute of
departure of ‘0’ or ‘30’, with a further 281 890 (44.1%)
having other values with a terminal digit of ‘0’ or ‘5’.
The mean MWI for time of departure was 316.9
(range 70.9–484.4).

The method of recording time of departure was known in
105 (85.4%) departments, of which 42 (40%) recorded
the time of departure using computerized systems and 63
(60%) recorded the time manually. Departments in the
latter group had a significantly higher mean MWI (375.7
vs. 213.7, t(103) = 6.312, P < 0.001).

Graph 2 shows the relationship between each depart-
ment’s MWI and the mean total time patients spent in

Graph 1
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Distribution of the recorded minute of arrival and departure.

1. The authors reported that (from their Graph 1 – above) “it can be seen
that there is little digit preference bias in the recording of time of arrival
with a mean MWI of 108.6 (range 66.1279.4)”.

The digit preference seems to be limited to the rounding of a certain
proportion (we will call it ⇡5) of all arrival times to the nearest 5 and
recording the remaining proportion (1�⇡5) using the exact arrival minute.

For now, take this to be a reasonable working model, and estimate the
model parameters, i.e., the probabilities ⇡1(= 1 � ⇡5) and ⇡5, and the
‘mean number of arrivals per bin,’ µ.16 Do so (i) using grade 6 arithmetic,
and (ii) by setting it up in, and fitting, a linear model.

2. The authors reported that “Some departments show considerable digit
preference bias in the recording of time of departure from the emergency
department.’

Suggest a reasonable working model, and outline how you mighty esti-
mate the model parameters by setting up, and fitting, a linear model.

16You might think of µ as superfluous and irrelevant, but in the more complex case we
are leading up to (numbers of car crashes in each 1-minute bin from 8pm to 10pm, before
and after cell phone calls switch over to being ‘free’ after 9pm) µ will not be constant, but
will decline over the 2 hour period.

14



BIOS602: Notes, Clayton&Hills. Ch 3 (Likelihood) v 2014.09.27.

3.8 Bayesian approach to parameter estimation

Given that the Bayesian approach is a very important and conceptually dif-
ferent way of making inference about the parameters of a model, and even
though they mentioned Bayes rule in Chapter 2, it is surprising that Clayton
and Hills do not make a statement about the Bayesian approach until Chapter
10; and even then, they do not give it much space. Maybe it’s because they
wanted the reader to become quite comfortable with Likelihood (which pro-
vides the Bridge between the prior and posterior distributions) before doing
so.
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