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14 Confounding and Standardization

14.1 Confounding

Experimental vs. non-experimental

JH prefers this implied distinction to the ‘experimental’ vs. ‘observational’
that many authors use. After all, all studies (even randomized trials) make
observations. The word ‘observational’ might also be confused with the term
‘observed only’ for those in the ‘no treatment’ arm of a treated vs. not
treated comparison – even if that comparison is formed experimentally. The

word experiment (check any dictionary) refers to ‘a distortion deliberately
introduced in order to learn about its e↵ects’

Miettinen glossary: experiment : a study in which a determinant is inten-
tionally perturbed for reasons none other than the goals of the study itself.”

C&H’s depiction of the epidemiologist as a ‘passive observer’ also focuses on
this key ‘intentional vs not’ distinction.

In 2021 , a new and helpful distinction came to the fore: experimental (RCT)
versus ‘real-world ’. If you Google ‘real-world vaccine e�cacy’ or other terms
involving these two words, you will get several hits. In the real world, those
who get vaccinated (or get to get vaccinated) are di↵erent in many relevant
aspects from those who don’t. As soon as the COVID-19 vaccines were rolled
out, we had to be on the lookout for, and deal with, these di↵erences.

EXTREME EXAMPLES OF CONFOUNDING – FROM ‘BC’
1

Rather that rely on made-up examples, it is also good to have real ones, and
even extreme ones, to make the point. JH likes the two given in the very 1st
chapter of Rothman’s 2002 introductory text2

:::::::::
Rothman’s

:::::
first

::::::::
example

::
... [verbatim]

Common sense tells us that residents of Sweden, where the standard
of living is generally high, should have lower death rates than resi-
dents of Panama, where poverty and more limited health care take
their toll. Surprisingly, however, a greater proportion of Swedish
residents than Panamanian residents die each year. This fact belies
common sense. The explanation lies in the age distributions of the
populations of Sweden and Panama. Figure 1-1 shows the population
pyramids of the two countries. A population pyramid displays the
age distribution of a population graphically. The population pyramid
for Panama tapers dramatically from younger to older age groups,

1Before COVID
2Epidemiology: An introduction. Kenneth J Rothman. Oxford University Press.

reflecting the fact that most Panamanians are in the younger age
categories. In contrast, the population pyramid of Sweden is more
rectangular, with roughly the same number of people in each of the
age categories up to about age 60 and some tapering above that age.
As these graphs make clear, Swedes tend to be older than Panama-
nians. For people of the same age in the two countries, the death
rate among Swedes is indeed lower than that of Panamanians, but in
both places older people die at a greater rate than younger people.
Because Sweden has a population that is on the average older than
that of Panama, a greater proportion of all Swedes die in a given
year, despite the lower death rates within age categories in Sweden
compared with Panama.

This situation illustrates what epidemiologists call confounding. In
this example, age di↵erences between the countries are confounding
the di↵erences in death rates.

Confounding occurs commonly in epidemiologic comparisons.
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:::::::::
Rothman’s

::::::::
second

::::::::
example

::
... [verbatim]

Consider the following mortality data, summarized from a study that looked at
smoking habits of residents of Whickham, England, in the period 1972-1974 and
then tracked the survival over the next 20 years of those who were interviewed?
Among 1314 women in the survey, nearly half were smokers. Oddly, proportion-
ately fewer of the smokers died during the ensuing 20 years than nonsmokers.
The data are reproduced in Table 1-1.

Table 1-1. Risk of death in a 20-year period among women in Whickham, Eng-
land, according to their smoking status at the beginning of the period*

Vital Status Smoker Nonsmoker Total
Dead 139 230 369
Alive 443 502 945
Total 582 732 1314
Risk (dead/total) 0.24 0.31 0.28
*Data from Vanderpump et al.

Only 24% of the women who were smokers at the time of the initial survey
died during the 20-year follow-up period. In contrast, 31% of those who were
nonsmokers died during the follow-up period. Does this di↵erence indicate that
women who were smokers fared better than women who were not smokers?

Not necessarily. One di�culty that many readers quickly spot is that the smoking
information was obtained only once, at the start of the follow-up period. Smoking
habits for some women will have changed during the follow-up. Could those
changes explain the results that appear to confer an advantage on the smokers? It
is theoretically possible that all or many of the smokers quit soon after the survey
and that many of the nonsmokers started smoking. While possible, this scenario
is implausible, and without evidence for these changes in smoking behavior, this
implausible scenario is not a reason- able criticism of the study findings.

A more realistic explanation for the unusual finding becomes clear if we examine
the data within age categories, as shown in Table 1-2 (the risks for each age
group were calculated by dividing the number who died in each smoking group
by the total of those dead or alive).

Table 1-1 combines all of the age categories listed in Table 1-2 into a single table,
which is called the crude data. The more detailed display of the same data in
Table 1-2 is called an age-specific display, or a display stratified by age. The age-
specific data show that in the youngest and oldest age categories there was little
di↵erence between smokers and nonsmokers in risk of death. Few died among
those in the younger age categories, regardless of whether they were smokers
or not, whereas among the oldest women, nearly everyone died during the 20
years of follow-up. For women in the middle age categories, however, there was
a consistently greater risk of death among smokers than nonsmokers, a pattern
contrary to the impression gained from the crude data in Table 1-1.

Why did the nonsmokers have a higher risk of death in the study population as
a whole? The reason is evident in Table 1-2: a much greater proportion of the
nonsmoking women were in the highest age categories, the age categories that
contributed a proportionately greater number of deaths. The di↵erence in the
age distributions between smokers and nonsmokers reflects the fact that, for most
people, lifelong smoking habits are determined early in life. During the decades
preceding the study in Whickham, there was a trend for increasing proportions
of young women to become smokers. The oldest women in the Whickham study
grew up during a period when few women became smokers, and they tended to
remain nonsmokers for the duration of their lives. As time went by, a greater

proportion of women who were passing through their teenage or young adult
years became smokers. The result is a strikingly di↵erent age distribution for
the female smokers and non- smokers of Whickham. Were this di↵erence in the
age distribution ignored, one might conclude erroneously that smoking was not
related to a higher risk of death. In fact, smoking is related to a higher risk of
death, but confounding by age has obscured this relation in the crude data of
Table 1-1. In Chapter 8, we return to these data and show how to calculate the
e↵ect of smoking on the risk of death after removing the age confounding.

. a c a t e  e  a v-yeal pei luo among women in VVtuckham,
England, according to their smoking status at the beginning of the period,
by age*

Age (years) Vital Status S m o k e r  N o n s m o k e r  T o t a l

18-24

25-34

35-44

45-54

55-64

65-74

75+

Dead
Alive
Risk
Dead
Alive
Risk
Dead
Alive
Risk
Dead
Alive
Risk
Dead
Alive
Risk
Dead
Alive
Risk
Dead
Alive
Risk

2 1
53 6 1
0.04 0 . 0 2
3 5

121 1 5 2
0.02 0 . 0 3

14 7
95 1 1 4
0.13 0 . 0 6

27 1 2
103 6 6

0.21 0 . 1 5
51 4 0
64 8 1
0.44 0 . 3 3

29 1 0 1
7
0.81

13

3
114

0.03
8

273
0.03

21
209

0.09
39

169
0.19

91
145

0.39
130

28 3 5
0.78 0 . 7 9

64 7 7
0 0  0
1.00 1 . 0 0  1 . 0 0

Data from Vanderpump et al.'

ing the study in Whicicham, there was a trend for increasing proportions
of young women to become smokers. The oldest women in the Whick-
ham study grew up during a period when few women became smokers,
and they tended to remain nonsmokers for the duration of their lives. As
time went by, a greater proportion of women who were passing through
their teenage or young adult years became smokers. The result is a
strikingly different age distribution for the female smokers and non-
smokers of Whickham. Were this difference in the age distribution ig-
nored, one might conclude erroneously that smoking was not related to
a higher risk of death. In fact, smoking is related to a higher risk of
death, but confounding by age has obscured this relation in the crude
data of Table 1-1. In Chapter 8, we return to these data and show how
to calculate the effect of smoking on the risk of death after removing the
age confounding.

Confounding is a problem that pervades many epidemiologic studies,
but it is by no means the only issue that bedevils epidemiologic infer-

ences. One day, readers of the Boston Utobe, a local newspaper, opened
the paper to find a feature story about orchestra conductors. The point
of the article was that conducting an orchestra was salubrious, as
evinced by the fact that so many well-known orchestra conductors lived
to be extremely old. Common sense suggests that i f  the people in an
occupation tend to live long lives, the occupation must be good for
health. Unfortunately, what appeared to be common sense for the author
of the article is not very sensible from an epidemiologic point of view.
The long-lived conductors cited in the article were mentioned because
they lived to be old. Citing selected examples in this way constitutes
anecdotal information, which can be extremely misleading. For all we
know, the reporter searched specifically for examples of elderly conduc-
tors and overlooked other conductors who might have died at an earlier
age. Most epidemiologists would not classify anecdotal information as
epidemiologic data at all.

Furthermore, the reporter's observation has problems that go beyond
the reliance on anecdotes instead of a formal evaluation. Suppose that
the reporter had identified all orchestra conductors who worked in the
United States during the past 100 years and studied their longevity. This
approach would avoid relying on hand-picked examples, but it still suf-
fers from an important problem that would lead to an incorrect answer.
The problem is that orchestra conductors are not born as orchestra con-
ductors. They become conductors at a point in their careers when they
may have already attained a respectable age. If we start with a group of
people who are 40 years old, on the average they are likely to survive to
an older age than the typical person who was just born. Why? Because
they have a 40-year head start; if they died before age 40, they could not
be part of a group in which everyone is 40 years old. To find out i f
conducting an orchestra is beneficial to health, we should compare the
risk of death among orchestra conductors with the risk of death among
other people who have attained the same age as the conductors. Simply
noting the average age at death of the conductors will give the wrong
answer, even if all orchestra conductors were to be studied.

Here is another example that makes this point clearly. Suppose that
we study two groups of people and look at the average age at death
among those who die. In group A, the average age at death is 4 years; in
group B, it is 28 years. Can we say that being a member of group A is
riskier than being a member of group B? We cannot, for the same reason
that the age at death of orchestra conductors was misleading. Suppose
that group A comprises nursery school students and group B comprises
military commandos. I t  would be no surprise that the average age at
death of people who are currently military commandos is 28 years or
that the average age at death of people who are currently nursery school
students is 4 years. Still, we suspect that being a military commando is
riskier than being a nursery school student and that these data on the
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Made by JH using histbackback

function in Hmisc package, with data
in mosaicData package in R.

The Whickham story is also told in
DR Appleton, JM French, MPJ Van-
derpump. Ignoring a covariate: an ex-
ample of Simpson’s paradox. (1996)
American Statistician, 50(4):340-341.
Indeed, the individualized R data are
‘synthesized’ from the table given in
that article.
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A memorable [not involving age] example of [extreme] confounding

Apparent gender-bias in admissions to the Berkeley graduate schools3

(Most confounding is less extreme than in these ‘classic’ examples.)

Berkeley Data: M:F Comparative parameters Odds Ratio (OR), Risk Ratio (RR) and Risk Difference (R )
              E      E– (Using KKM table 17.16 notation)
     D        a      b  |   m1
     D–        c      d  |   m0
              n1     n0 |   n        for R                 for OR               for RR              for R

Faculty                           a/n1  b/n0   R∆    
a•d
b•c    

a•d
n   b•cn           

a•n0
b•n1   

a•n0
n   

b•n1
n        var(R∆)*  w = 1/var  w•R∆

  Admitted?  Men    Women   All
A    Y       512     89 |   601  0.62  0.82  –0.20   0.35  10.4  29.9         0.75   59.3   78.7       1.63E-3    614      –125
     N       313     19 |   332
    All      825    108 |   933

B    Y       353     17 |   370  0.63  0.68  –0.05   0.80   4.8   6.0         0.93   15.1   16.3       9.12E-3    110        –5
     N       207      8 |   215
    All      560     25 |   585

C    Y       120    202 |   322  0.37  0.34  +0.03   1.13  51.1  45.1         1.08   77.5   71.5       1.10E-3    913        26
     N       205    391 |   596
    All      325    593 |   918

D    Y       138    131 |   269  0.33  0.35  –0.02   0.92  42.5  46.1         0.95   65.3   69.0       1.14E-3    879       –16
     N       279    244 |   523
    All      417    375 |   792

E    Y        53     94 |   147  0.28  0.24  +0.04   1.22  27.1  22.2         1.16   35.7   30.7       1.51E-3    661        25
     N       138    299 |   437
    All      191    393 |   584

F    Y        22     24 |   101  0.06  0.07  –0.01   0.83   9.8  11.8         0.84   10.5   12.5       3.41E-4   2935       -33
     N       351    317 |   668
    All      373    341 |   769

All  Y      1198    557 |  1755  0.44 0.30  +0.14    1.84                    1.47
     N      1493   1278 |  2771
    All      373    341 |  4526
                                                          ----- -----               -----  -----                 ----      ----
                                                       ∑: 145.8 161.1               263.4  278.7                 6113      –129

                                                                ORMH = 145.8161.1  = 0.91          RRMH = 263.4278.7 = 0.94                        R∆w = ∑w•R∆∑w   = –1296113  = –0.02

    * var(R∆) = Sum of 2 binomial variances

Confounding by age (Fig 14.1)

The key is that the crude comparison is distorted by age: the ‘exposed vs.
unexposed’ comparison is really a comparison of ‘somewhat younger exposed’
vs. ‘somewhat older exposed’. The diagram below explains confounding with
fewer numbers: the comparison of the more- (‘A’) vs. less- (‘a’) exposed is
distorted or confounded: the ‘pan’ that supports A is – by itself – heavier (by
an amount C � c) than the one that supports a.

Although this dual relationship [“a third variable can distort a re-

lationship between an exposure and failure provided it is related to

both exposure and failure”] is often taken as a
:::::::::
necessary

::::::::::
condition

:::
for

::
a
:::::::::
variable

::
to

:::
be

::
a
::::::::::::
confounder,

:
it
:::
is

::::
not

::::::::::
su�cient.

C&H give an example involving the variable birthweight as the third variable.
Because it is one of the factors that is improved by proper antenatal care and
that reduces risk, it is often referred to as an ‘intermediate’ variable, or the

3Sex Bias in Graduate Admissions: Data from Berkeley. Bickel PJ et al., Science 7
February 1975: Vol. 187. no. 4175, pp. 398 - 404.

-2 -1 0 1 2

-1
.0

-0
.5

0
.0

0
.5

1
.0

1
.5

2
.0

c(-2, 2)

c
(-

1
, 

2
)

a+20

c

A

C

A - a =/  20

A - a =  20 -         (C - c)

The 'A vs. a' comparison

is confounded by

the 'C vs. c' difference

variable that mediates [is a mechanism for] the e↵ect of proper antenatal
care on perinantal risk.

2021 EXAMPLES: EXTREME CONFOUNDING

2021 has brought a large number of confounded contrasts of the e�cacy of
COVID-19 vaccines, naive contrasts which give the appearance that the vac-
cines are not as good as they were in the RCTs; some really extreme ones
can even make the vaccinated look like they have worse outcomes than the
unvaccinated.

By Googling “Simpson’s paradox vaccinations” you will find several examples
of such distorted (unfair) comparisons.

This Washington Post article points us to a helpful blog: “The University of
Pennsylvania biostatistician Je↵rey Morris wrote an especially thorough and
widely shared blog post making this point”.

Nor surprisingly, the earliest examples are found in the ‘real-world’ Israeli
data, but examples of Simpsons’ paradox 4 also showed up in data from the
UK, the home of ‘The Simpson the paradox is named for’. [He is not to be

4Other links re. Simpson’s paradox: here, here, HERE!, here* and here(corrl’n.). *The

newer causation video is here. *The older Against All Odds Video series is here.

3

https://www.science.org/doi/10.1126/science.187.4175.398
https://www.washingtonpost.com/outlook/2021/08/31/covid-israel-hospitalization-rates-simpsons-paradox/
https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated
https://en.wikipedia.org/wiki/Edward_H._Simpson
https://en.wikipedia.org/wiki/Simpson%27s_paradox
https://towardsdatascience.com/simpsons-paradox-how-to-prove-two-opposite-arguments-using-one-dataset-1c9c917f5ff9
https://www.significancemagazine.com/14-the-statistics-dictionary/106-simpson-s-paradox-a-cautionary-tale-in-advanced-analytics
https://www.youtube.com/watch?v=ebEkn-BiW5k
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/AGAINSTALLODDS/p11_causation.mov
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/AGAINSTALLODDS/p09_correlation.mov
https://www.learner.org/series/against-all-odds-inside-statistics/the-question-of-causation/
https://www.learner.org/series/against-all-odds-inside-statistics/the-question-of-causation/
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confused with ‘OJ’ Simpson, whose name will forever be connected withe type
of crime that was the topic here.]

As Olli Saarela (the one who alerted JH to these data) noted “The vac-
cine e�cacy has two components, against infection, and against hospital-
ization or death if infected. The former has been waning in Israel for the
early vaccinated, but the latter component is still very much there. In the
media the numbers are often misinterpreted by ignoring the denominators
and focusing on the numerators only (e.g. x% of the hospitalized are vacci-
nated/unvaccinated)”

Here are links to the
:::
UK

::::
data from a report on 6 August 2021. The Simpson’s

paradox Olli was talking about is in comparing hospital admissions or deaths
between vaccinated (2 doses) and unvaccinated — among positive delta cases
– in the North-East and South-East corners of Table 5, page 18.

Important : since this year it has been easy to find real examples of Simpson’s
paradox, you

:::::
might

:::::
think that confounding only refers to contexts where the

true
::::::::
direction (slope, ratio, ... ) is

:::::::
reversed when you fail to dis-aggregate the

data by the confounding variable.
::::
This

:
is
::::
not

::::
true. The term confounding

:::
also

::::::
applies to contexts where failure to dis-aggregate just

:::::::
weakens

:
–
:::
or

::::::::::
exaggerates

– the association measure, but maintains the same direction seem in the
confounder-specific strata. A good example is the recent data from Scotland,
where the fully-Pfizer-vaccinated vs. unvaccinated case-fatality comparison
suggests a VE of just 40%, even though it is above 80% in each age-stratum.
In other words, Simpson’s paradox is just a very extreme case of confounding.

14.2 Correction for confounding

C&H o↵er two options for minimizing confounding. The first is the ‘classical’
one of holding constant all factors except the one of interest. If one has the
option, one can do this by ‘blocking’, or matching, on these extraneous factors
ahead of time (if one has that option; in the analysis one then combines the
results of the within-statum (within-block) contrasts, under the assumption
that each of these is an estimate of the same (common) parameter value. The
second is the use – when possible – of randomization to make the compared
groups more equal from the outset, and not just on measured, but also on
unmeasured confounders.

C&H present direct standardization as though it were an alternative way of
combining the results of the within-statum (within-block) contrasts. But in
fact, as is described in the next section of these notes, it can sometimes be
regarded as a weighted average of these stratum-specific contrasts.

14.3 Standardized Rates

The key is the use of the same set of weights W1, . . . ,WK to form the weighted
average (w.a.) �̂0,w.a. =

P
k Wk�̂0,k of the K stratum-specific rates observed

in the unexposed (0), and �̂1,w.a. =
P

k Wk�̂1,k of the stratum-specific rates
observed in the exposed(1).

One can also see the di↵erence of these two standardized (weighted averages
of the stratum-specific) rates as a weighted average of the stratum-specific
rate di↵erences, since

�̂1,w.a. � �̂0,w.a. =
X

k

Wk{�̂1,k � �̂0,k}.

Although JH does not advocate calculating a weighted average of ratios (pre-
ferring, as Mantel does to take a single ratio of sums), one can – provided
all of the ratios are finite – also write the ratio of these two standardized
(weighted average of the) rates as a (di↵erent) weighted average of the K
stratum-specific rate ratios [�̂1,k/�̂0,k]:

�̂1,w.a.

�̂0,w.a.

=

P
k Wk�̂1,kP
k Wk�̂0,k

=

P
k[Wk�̂0,k]⇥ [�̂1,k/�̂0,k]P

k Wk�̂0,k

=

P
k W

0
k ⇥ [�̂1,k/�̂0,k]P

k W
0
k

.

In this re-expression, the ratio of the two standardized rates is a weighted av-
erage of the observed stratum-specific rate ratios, with weights W 0

k = Wk�̂0,k.

Correction via ‘regression-models’ vs. ‘standardization’ (JH)

Increasingly, corrections for confounding are carried out using generalized
linear model versions of what in the simplest case is classically called ‘analysis
of covariance’. These glm’s (and others such as Cox regression) are described
in C&H chapters 22 and beyond. However, before we get there, it is good to
appreciate the basic di↵erence between the type of standardization described
in section 14.3, and these regression models.

One way to think of the di↵erence is via an example where we would like to
create an unbiased (i.e., a fair) comparison between two groups of students,
one that had experienced experimental condition “1” (e.g., distance learning)
and the other under experimental condition “0’ (e.g., face-to-face in class
contact with the teacher on-site). Let’s denote the two conditions by the
subscripts 1 and 0. Suppose that it was unavoidable that one of the classes
was on average older than (and thus at an advantage relative to) the other.

4

https://en.wikipedia.org/wiki/O._J._Simpson
http://www.medicine.mcgill.ca/epidemiology/hanley/c607/mm_ch2.pdf#page=5
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1009243/Technical_Briefing_20.pdf
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Correction by standardization

We could think of two ways to reduce (eliminate) the age-di↵erence, and arrive
at an unbiased estimate of the true di↵erence (�) in the means – assumed to be
constant across ages. The first is to stratify the students intoK age-bands and
take (the same) weighed average of the within-age-band mean scores for each
group, to arrive at ȳ1,w.a. =

P
k Wkȳ1,k and ȳ0,w.a. =

P
k Wkȳ0,k respectively.

As discussed above, the di↵erence of these two standardized means is also a
weighed average of the within-age-band di↵erences in the mean scores, i.e.,

X

k

Wk{ȳ1,k � ȳ0,k}.

One can think of this as the numerical equivalent of artificially ‘evening up’
the two teams/classes: it is as though one forced some of the distance students
to take the face-to-face version, and vice versa, so that the two classes had
the same age-composition (W1, . . . ,WK).

Say that the age distributions in those who had intended to take the course
were:

age-band: 20-25 25-30 30-35

no. who applied to be ‘distance’ students: 20 33 46
no. who applied to be ‘on-site’ students: 50 35 14

Then one possibility would be to – if it were possible – ‘transfer some students
from one to the other format’ so that the age distributions in the classes were:

age-band: 20-25 25-30 30-35

no. of ‘distance’ students: 35 34 30
no. of ‘on-site’ students: 35 34 30

If actual transfers were not possible, one could still ‘mathematically ’ move
some students from one to the other format. In other words, one would leave
the students in the class they applied for, and use the observed results to
create results for two synthetic classes with the same age-distribution in each.
Suppose the actual results in the 20, 33 and 46 who took the distance class,
and the 50, 35 and 14 who took the on-site class were:

age-band: 20-25 25-30 30-35

means for actual ‘distance’ students: ȳd,1 ȳd,2 ȳd,3
means for actual ‘on-site’ students: ȳo,1 ȳo,2 ȳo,3

From these we could create results for two synthetic or hypothetical classes,
with the same age-distribution, say {35, 34, 30} in each, just as above:

mean for ‘synthetic’ class

‘distance’: (35⇥ ȳd,1 + 34⇥ ȳd,2 + 30⇥ ȳd,3)/99
‘on-site’: (35⇥ ȳo,1 + 34⇥ ȳo,2 + 30⇥ ȳo,3)/99,

and compare these two weighted averages.

Since these 2 ‘classes’ are synthetic or hypothetical, the choice of weights is
not restricted by the same constraints we had in the situation we we actually
transferred students from one to the other class. Thus, we could just as well
have, say {33, 33, 33} – or {43, 33, 23} – in each of the two synthetic classes.

Correction by a regression model

The other way out of this confounding by age is via a regression model. It
requires a somewhat stronger assumption than a ‘constant (or common) across
ages �’: its also requires that we use a model that links the mean response
at each age to age. The most commonly used model is a basic analysis-of-
covariance model, with parallel lines for the distance (d=1) and on-site (d=0)
classes:

E[y|age, d] = µy|age,d = �0 + �age ⇥ age+ �d ⇥ d.

In our example, the average ages in the distance and on-site classes are 28.8
and 25.7 respectively, a di↵erence of 3.1 years, and so we can obtain an ad-
justed di↵erence by subtracting a correction factor from the crude di↵erence.
This correction is the product of the d�age and the 3.1 years. The crude and
adjusted di↵erence are therefore:

mean of: y age

actual ‘distance’ students: yd aged
actual ‘on-site’ students: yo ageo
(crude) di↵erence: yd - yo 3.1 years

adjusted di↵erence: (yd - yo)� d�age ⇥ 3.1

One can see from this that the magnitude of the correction is a function of
how strong the e↵ect of age is and how di↵erent the average age is in the
compared groups.

In the (synthetic) standardization approach, conceptually one alters the com-
position of the two compared groups – it is as though one adds distance
subjects to, or takes away some distance subjects from, the 3 age-strata of
the distance arm, and likewise adds on-site subjects to, or takes away some
on-site subjects from, the age-strata of the on-site arm. This way one cre-
ates two ‘pseudo-samples’, to use a term used by Robins in causal inference
to describe the samples formed by inverse probability of treatment weighting

5
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(IPTW). One can also think of the adding and taking away of students as giv-
ing di↵erent weights to the contributions of students in di↵erent age-bands.
For example, in the distance class, the result of each student in the youngest
age-band is up-weighted and given a weight of 35/20; likewise the results of
each student in the middle age-band is slightly up-weighted and given a weight
of 34/33, while the result of those in the oldest age-band is down-weighted
and given a weight of 30/46. the corresponding up/down-weightings for the
results of each student in the on-site class are 35/50, 35/34 and 30/14 in the
youngest, middle and oldest age-bands respectively.

To see why Robins calls it IPTW, consider the first age-band, where of the
70 students, 20 took the distance course and 50 the on-line one. So the
probability that a student in this band took the distance course is 20/70 and
that (s)he took the on-line one is 50/70. The inverses of these probabilities
are 70/20 and 70/50, double the 35/20 and 35/50 used above, and the same if
we scale the IPTW’s so that our pseudo-sample is the same size as our actual
sample.

In the regression approach, conceptually one takes the group means of the two
entire samples of subjects and then adjusts their scores to those of persons of
the mean age.

Exposure to Scientific Theories
Affects Women’s Math Performance
Ilan Dar-Nimrod and Steven J. Heine*

O
n 14 January 2005, Lawrence Summers,
then president of Harvard University,
speculated that one reason why women

are underrepresented in science and engineer-
ing professions is because of a Bdifferent
availability of aptitude at the high end[ (1).
These remarks were met with much outcry
by some critics of President Summers, and
social scientists were divided in their re-
action to his comments. The question of sex
differences in math in the
context of the nature-versus-
nurture debate is not new and
remains contentious. For this
paper, we did not explore
whether such innate sex dif-
ferences exist. Instead, we
investigated how women_s
math performance is affected
by whether they are consid-
ering genetic or experiential
accounts for the stereotype of
women_s underachievement
in math. Such a question is
relevant to how people re-
spond to scientific arguments
and science education more
generally.

Stereotype threat is a phenomenon in which
the activation of a self-relevant stereotype leads
people to show stereotype-consistent behav-
ior, thereby perpetuating the stereotypes (2).
For example, African Americans perform worse
on intelligence tests when their race is high-
lighted (2), and women_s math performances
decrease when their gender is made salient
(3). Stereotype threat can be reduced when peo-
ple focus on the malleability of the traits at
hand (4).

Past research reveals that people respond
differently to genetic and experiential accounts of
behaviors. Undesirable behaviors with experiential
causes are seen asmore voluntary andblameworthy
than behaviors with genetic causes (5). Experiential
causes, in contrast to genetic ones, appear to be
viewed as less impactful and more controllable.
We reasoned that stereotypes about one_s groups
are often perceived as inescapable, because many
stereotypes are viewed in essentialized terms (6).
That is, people may view the origin of some
stereotypes as resting on the perceived genetic
basis that distinguishes these groups. If individuals
share the same genetic foundation at the base of
the stereotype, they might feel that the stereotype

applies to them and hence are vulnerable to
stereotype threat. In contrast, we propose that
people might react differently if the origins of the
group differences were perceived to rest on the
specific experiences that people_s groups have
had. People may reason that their own experi-
ences are different or that they can resist the
effects of their experiences.

Our studies manipulated participants_ beliefs
regarding the source of gender differences in math

and measured their subsequent math performance
(Fig. 1). In study 1 (7), women undertook a
Graduate Record Exam–like test in which they
completed two math sections separated by a
verbal section. The verbal section contained the
manipulation in the form of reading comprehen-
sion essays. Each test condition used a different
essay. Two of the essays argued that math-related
sex differences were due to either genetic (G) or
experiential causes (E). Both essays claimed that
there are sex differences in math performance of
the same magnitude. Two additional essays served
as a traditional test of stereotype threat. One essay,
designed to eliminate underperformance, argued
that there are no math-related gender differences
(ND). The other essay, designed as a standard
stereotype-threat manipulation (S), primed sex
without addressing the math stereotype. Control-
ling for performance on the first math section, we
used analyses of covariance to demonstrate that
women in the G and the S conditions exhibited
similar performances on the second math test
(F G 1). Women in the E and the ND conditions,
although not different from each other (F G 1),
significantly outperformed women in G and S
conditions (all P values e 0.01).

These findings were replicated in a second
study (7) that used a different experimental
design. An analysis of variance identified signif-
icant performance differences between the
conditions EF(3,88) 0 4.15, P G 0.01^. Fisher
probable least-squares difference (PLSD) com-
parisons revealed that women in G and S
conditions performed comparably (P 9 0.50)
but significantly worse than women in E and ND
conditions (all P values G 0.02), which did not
differ (P 9 0.50).

These studies demonstrate that stereotype threat
in women_s math performance can be reduced, if
not eliminated, when women are presented with
experiential accounts of the origins of stereotypes.
People appear to habitually think of some sex
differences in genetic terms unless they are
explicitly provided with experiential arguments. It
remains to be seen whether the results generalize to
stereotypes about other groups and abilities.

Whether there are innate sex dif-
ferences inmathperformance remains
a contentious question. However,
merely considering the role of genes
in math performance can have some
deleterious consequences. These find-
ings raise discomforting questions
regarding the effects that scientific
theories can have on those who learn
about them and the obligation that
scientists have to be mindful of how
their work is interpreted. What Presi-
dent Summers perhaps intended to
be a provocative call for more em-
pirical research on biological bases
of achievement may inadvertently
exacerbate the gender gap in science
through stereotype threat.
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after hearing manipulation.
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Page 1 of 5math_output.txt

Printed: Thursday, November 2, 2006 3:46:46 PM

Math / Gender Data..
(Ilan Dar-Nimrod and Steven Heine, Science 4314 20 Oct 2006, p 435)

proc format ;
value codes 1="G" 2="E" 3="ND" 4="S";
run;
data a; * 1=G 2=E 3=ND 4=S ;
array ic(4) G E ND S;
*infile "unix:mathdata.txt";
infile "Macintosh HD:Users:jameshanley:Documents:Courses:626:MathGender:mathdata.txt";
input c math1 math2;
do i = 1 to 4; ic(i)=(c=i); end;
math1c = math1 - 4.9099099;
run;

proc means n min mean max; format c codes. ; var math1 math1c math2; run;

The SAS System 11:20 Tuesday, October 24, 2006

Variable N Minimum Mean Maximum
-------------------------------------------------------
MATH1 111 1.0000000 4.9099099 13.0000000
MATH1C 111 -3.9099099 9.9099106E-9 8.0900901
MATH2 111 0 4.4414414 10.0000000
-------------------------------------------------------

proc means n min mean max; format c codes.; class c; var math1c math2;

C N Obs Variable N Minimum Mean Maximum
------------------------------------------------------------------
G 28 MATH1C 28 -2.9099099 -0.4456242 5.0900901

MATH2 28 1.0000000 3.5714286 9.0000000

E 27 MATH1C 27 -2.9099099 0.3123123 3.0900901
MATH2 27 2.0000000 5.2222222 9.0000000

ND 27 MATH1C 27 -3.9099099 -0.3913914 4.0900901
MATH2 27 2.0000000 4.8888889 10.0000000

S 29 MATH1C 29 -3.9099099 0.5038832 8.0900901
MATH2 29 0 4.1379310 8.0000000

------------------------------------------------------------------

proc reg data=a; model math2 = S G E ;

Dependent Variable: MATH2

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 3 45.73062 15.24354 3.473 0.0187
Error 107 469.63875 4.38915
C Total 110 515.36937

Page 2 of 5math_output.txt

Printed: Thursday, November 2, 2006 3:46:46 PM

Root MSE 2.09503 R-square 0.0887
Dep Mean 4.44144 Adj R-sq 0.0632
C.V. 47.17003

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 4.888889 0.40318855 12.126 0.0001
S 1 -0.750958* 0.56027753 -1.340 0.1830
G 1 -1.317460 0.56508076 -2.331 0.0216
E 1 0.333333 0.57019472 0.585 0.5601

proc reg data=a; model math2 = S G E math1c;

Dependent Variable: MATH2

Analysis of Variance

Sum of Mean
Source DF Squares Square F Value Prob>F

Model 4 185.10374 46.27594 14.852 0.0001
Error 106 330.26563 3.11571
C Total 110 515.36937

Root MSE 1.76514 R-square 0.3592
Dep Mean 4.44144 Adj R-sq 0.3350
C.V. 39.74247

Parameter Estimates

Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|

INTERCEP 1 5.103533 0.34121364 14.957 0.0001
S 1 -1.241939** 0.47772816 -2.600 0.0107
G 1 -1.287718 0.47612189 -2.705 0.0080
E 1 -0.052588 0.48386265 -0.109 0.9137
MATH1C 1 0.548414 0.08199698 6.688 0.0001

**Example of adjusted difference... (see class notes on confounding by jh)

S vs ND(ref) ..

unadjusted difference = ( 4.1379310 - 4.8888889 ) = -0.750979*

adjusted difference = -0.750979 - 0.548414 * (0.5038832 - (-0.3913914) )

= -0.750979 - 0.548414 * 0.8952746

= -0.750979 - 0.490981

= 1.2419**
7
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===== raw data (courtesy of 1st author) ========

i group math1 math2 G E ND S

1 2 8 6 0 1 0 0

2 3 9 8 0 0 1 0

3 3 4 4 0 0 1 0

4 1 3 1 1 0 0 0

5 1 5 2 1 0 0 0

6 1 5 4 1 0 0 0

7 1 6 5 1 0 0 0

...

...

...

103 3 6 3 0 0 1 0

104 4 5 4 0 0 0 1

105 4 3 3 0 0 0 1

106 4 3 6 0 0 0 1

107 3 5 3 0 0 1 0

108 4 4 2 0 0 0 1

109 3 6 6 0 0 1 0

110 4 5 4 0 0 0 1

111 3 3 3 0 0 1 0

Full dataset available on website

Confounding: Reducing it by Regression
(page 1)

Preamble

 - Don’t overlook classical, “non-regression” methods
 - Regression methods are more “synthetic” (i.e. “artificial”)
 - Cf chapter 3 by Anderson et al. (c622; readings from aahovw)

Definitions ... / synonyms

Original (statistical, in design of experiments)

- inability to estimate higher order interactions
  (so typically assume they are zero)

- “mixed up with other effects” or “inextricable”

Epidemiological

 - (osm)

Other terms

-  “Lurking” (i.e. “hidden”) variable

-  “Simpson’s Paradox” is the most extreme form

(see collection of Simpson's paradox examples under Other
Resources on c626 )

Examples...

• Does using a Macintosh lead to sloppier writing? a

• Better Service from Canada Post after “Major Restructuring”a

• Salaries of Master’s and PhD’s a

• Outcomes of Pregnancy during Residency  for women and
wives of their male classmates• Admissions of Males &
Females to Berkeley Graduate Schools  b

• Percentage of White & Black Convicts Receiving Death
Penalty  a

• Intelligence Quotient (IQ) - Mother's Milk; Other Variables  a

• Lung Function of Vanadium Factory Workers Other resources, c697

- vs. reference group (matched for smoking and age) that was 3.4 cm different

in ave. height

• Blood Pressure and Altitude - age; height; weight; country b

• Longevity - Sexual Activity; thorax size c622

• Fatalities & Speed Limit Change - Time a

• NEURODEVELOPMENT OF CHILDREN EXPOSED IN
UTERO TO ANTIDEPRESSANT DRUGS b

• What Does It Take to Heat a New Room? dataset,  c697

a notes on Ch 2, c607 b resources this course (678), session 5

Confounding: Reducing it by Regression
(page 2)

Adjustment via regression ...
  - “Outcome”  Y

  - Contrast with respect to X ("Exposure" variable)

     (for now, say X is binary  X=1 and X=0 )

  - Confounder C

  CRUDE CONTRAST:

via  E [Y | X ]   =  b0  +  bX  X

    bX = crude difference =  Y
–

X=1 –  Y
–

X=0

  ADJUSTED CONTRAST:

  E [ Y | X C   ]  =  b0
*  +  bX

*  X  +  bC C

   bX
* = adjusted difference

= Y
–

X=1 –  Y
–

X=0    (CRUDE )

    minus

   bC (  C
–

X=1  –   C
–

X=0 )   (ADJUSTMENT)

In Pictures... (cf Anderson et al.  chapter)

C

Y

Bias X = 1

X = 0

 C

Net 

CCrude 
Y

X=1Y

X=0Y

C  =  C     –    C
X=1 X=0

"CRUDE" Y  =  Y     –     Y
X=1 X=0

C C

Bias =         CC ×

×"Net" Y  =  Y     –     Y        –
X=1 X=0 C

X=1C

X=0C

cf Notes re "First Visit to Mars" (G&S Ch 1+) on c678 page
8
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Confounding: Reducing it by Regression
(page 3)

Anatomy of the “Adjustment”

        bC (   C– X=1  –  C– X=0  )

            

X Y

C

bC

- for a NON-ZERO ADJUSTMENT...

   bC  NON ZERO

AND

   (   C– X=1  –  C– X=0 )  NON ZERO

Special issues
1.
     - Adjustment uses a LINEAR relation Y <--> C

       If Y <--> C  relationship not linear, using a
       linear relation will not produce correct adjustment

          e.g. Y= birthweight and C = Age in residents’ study

2.
     - If Y <--> C  relationship not same at different
       levels of X

(ie if C is a modifier of X<->Y rel’n,
       or X is a modifier of C<->Y rel’n
       i.e. if X<-->C “interaction”)

       then cannot make a unique “adjustment”
      (adjustment different at different levels of C)

         e.g. gender D’s in salary (C = # years experience)
         c.f. Miettinen diagram (covariate as a modifier, confounder, or both)

3.
   - Inappropriate Adjustment...

       X   ---> C ---> Y

       X   ---> Y ---> C

Supplementary Exercise 14.1a

Refer to the data on the Berkeley graduate school admissions shown on p.
3 and to the Science article ‘Sex Bias in Graduate Admissions: Data from
Berkeley’ by P. J. Bickel, E. A. Hammel, and J. W. O’Connell.

i. In 1 paragraph, summarize the article in words that would be understood
by a professional (e.g. a lawyer) who has little knowledge of statistics or
epidemiology.

ii. Imagine that 933, 585, . . . 769 applicants applied to the six Faculties
A-F respectively but that all 4,526 were women. If they had the same
success rates as the women actually achieved, what proportion of the
4,526 women would have been admitted? Calculate the variance of this
proportion.
Imagine that 933, 585, . . . 769 applicants applied to the six Faculties
A-F (i.e., 4,526 in all) but that all 4,526 were men. If they had the same
success rates as the men actually achieved, what proportion of them
would have been admitted? Calculate the variance of this proportion.

iii. What would C&H call these two proportions?

iv. Calculate (a) the female-male di↵erence between these two proportions,
and a CI for it (b) the ratio of the proportions, and a CI for it (Hint:
do your calculations in the log(ratio) scale, and convert back. (c) the
ratio of the proportions that were not admitted, and a CI for it. (d) the
ratio of the odds of being admitted, and a CI for it. Comment on your
findings, and give reasons for which of the four metrics you prefer.

Supplementary Exercise 14.1b

Refer again the data on the Berkeley graduate school admissions shown on p.
3 (‘MH’ stands for ‘Mantel-Haenszel’).

i. The three summary measures (OR, RR and RD) at the bottom of the
Table lack accompanying confidence intervals. Find and cite (but do not
implement) the appropriate formulae you could use to calculate them.

Supplementary Exercise 14.1c

Refer again the data on the Berkeley graduate school admissions shown on p.
3 (‘MH’ stands for ‘Mantel-Haenszel’).

i. Fit the four measures via binomial regression (glm) with the logit, log
and identity links, using ‘men’ as the reference category, and ‘women’ as

9
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the index category, and using ‘faculty’ as a categorical variable. Use the
relevant fitted coe�cient and its SE to obtain a CI.

Supplementary Exercise 14.2a

Refer to the Science article on women and math. The article, the supplemen-
tary material, and the data are available on the website.

i. In 1 paragraph, summarize the article in words that would be understood
by a professional (e.g. an educator) who has little knowledge of statistics
or epidemiology.

ii. For now, limit your analysis to the S (index) vs. ND (reference) contrast,
involving 56 women.

How ‘(im)balanced’ were these groups with respect to math1? What are
the implications of this?

iii. Categorize the Math1 scores into 4 bins, so that 13 obtained a score of
1-3, 13 obtained a 4, 20 obtained a score of 5-6 and 10 had a score of
7-13.

Imagine that these 13, 13, 20 and 10 women (56 in all) were all in the ND
group. If they had the same mean math2 scores as the ND women in these
4 math1-bins actually achieved, what would the overall math2 mean of
the 56 women have been? Calculate the variance of this weighted mean.

Imagine that these 13, 13, 20 and 10 women (56 in all) were all in the S
group. If they had the same mean math2 scores as the S women in these
4 math1-bins actually achieved, what would the overall math2 mean of
the 56 women have been? Calculate the variance of this weighted mean.

iv. Calculate the di↵erence of these two weighted means, along with the
variance of this di↵erence. Compare them with the results from the
proc reg data=a; model math2 = S G E math1c; fitting given on the
right hand side of p7. Comment on any di↵erences.

Supplementary Exercise 14.2b

i. Estimate the between-group di↵erences in math2 using a linear model
with an intercept (for a suitable reference group) and 3 indicator vari-
ables. [For interest, run it as a traditional ‘anova’ as well].

ii. How ‘(im)balanced’ were the groups with respect to math1
5 and how

5To make the group di↵erences easier to interpret, use a centered version of it – i.e.
derive a version that has an overall mean of 0.

serious is this in terms of the ‘fairness’ of the comparison you have made
in i. ?

iii. Use the (centered) math1 variable as a covariate in the linear model, and
report the (adjusted) estimates of the between group di↵erences in math2.

iv. Some investigators would have adjusted for baseline scores by subtracting
math1 from math2 and using this di↵erence in the linear model. How
di↵erent is this from the approach in iv. ? Hint : rewrite the fitted model
in iii. so that the left hand side of the regression equation involves both
math2 and math1. Why approach do you prefer?

Supplementary Exercise 14.3

Sharper and Fairer Comparisons: E↵ect of sexual activity on the longevity
of male fruitflies [Limit analysis to the 50 fruitflies with 1 partner/2 days ..
the e↵ect is obvious in those with 8]

Aside: When we first analyzed this dataset, student PE, now on McGill
faculty, argued that thorax size cannot be used as a predictor or explanatory
variable since fruitflies who die young may not be fully grown, i.e., it is also an
“intermediate” variable. Later, student NK (now on faculty elsewhere) had
studied entomology and assured us that fruitflies do not grow longer after
birth; i.e., thorax length is not time- (age)-dependent!

i. Use lm in R to calculate the di↵erence in mean longevity (mean days lived)
of sexually active flies (index cat.) relative to sexually inactive flies (ref-
erence cat.), ignoring other covariates. Is this di↵erence (i) substantial?
(ii) statistically significant at the conventional ↵ = 0.05 level?

ii. Again ignoring other covariates, calculate the overall mortality rate (no.
deaths / 100 fruitfly-days lived – e↵ectively, apart from the scaling by 100,
the reciprocal of mean longevity) for each of the two compared categories.

iii. How di↵erent are the mean thorax lengths of the active and inactive flies?
Is this di↵erence “statistically” significant? Is it substantial? Is statistical
significance a non-issue here anyway? Explain.

iv. (Independently of which flies were subsequently assigned to an ac-
tive/inactive partner) divide the thorax range into 3 (roughly equal-sized)
strata: S, M and L. Compute the mortality rates (no. deaths / fruitfly-
days) for the resulting 6 cells. Then, using the overall proportions of flies
in each stratum as the same 3 weights for both, compute standardized
mortality rates for the active and inactive groups.

10
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v. Using these strata, compute the mean longevity for each of the 6 cells.
Then, using the overall proportions of flies in each stratum as the 3
weights, compute a mean longevity for each of the two compared groups.

vi. If – other things being equal – flies 0.01 mm larger live on average 1 day
longer, how much of a longevity “advantage” would the active flies have
from the outset as a result of their larger average thorax size? On this
basis, how much lower would the mean longevity of active than inactive
flies be if it were “adjusted” for the di↵erence in thorax size?

vii. Instead of using the “out of the air” value of 1day/0.01mm, use multiple
regression to simultaneously estimate the additional mean days/mm and
the decrease in days associated with (due to) activity i.e., fit the model:

E[longevity | thorax, activity] = �0+�thorax⇥thorax+�active⇥ active.

viii. Verify that if you correct/adjust the comparison as in (vi) but using the
fitted �thorax from (vii) instead of the ‘out of the air‘ 0.01, and using the
the thorax di↵erence in (iii), you arrive at the �active obtained in (vii).
Hint: cf schematic diagram in JH notes on confounding.

ix. Use the correction for confounding in the Women and Math study
(see below for link) to explain – in just a few sentence, and in English
rather than in ‘Statistical-ese’ – to your father-in-law how ‘adjustment
by regression’ works.

x. In themother’s-milk and IQ study (see below), Lucas et al use multiple
regression to correct for several IQ determinants that are ‘imbalanced’
between the ‘Mother’s milk’ and ‘No-mothers-milk’ groups. To under-
stand how it works, extend the ‘Adjusted Contrast’ equation on page 2
of JH’s Notes on Confounding: Reducing it by Regression (the same ones
at the end of the Women and Math article) so that it accommodates im-
balances in several variables (hint: think of X as a vector rather than a
scalar). This time, using Tables I, II and IV, explain the (now multivari-
able) correction/adjustment to your grandparents – who strongly believe
that the mother’s milk - IQ link is causal. Use Tables I, II and IV.

xi. {A ‘sharper ’ comparison} The p-value for the activity contrast in (vii)
is smaller (and the associated CI narrower) than the corresponding one
in (i). One reason is that the larger adjusted estimate of the e↵ect (the
numerator of the t-test on adjusted di↵erence); another is the smaller SE
of the estimated e↵ect (the denominator of t-test).
Why is the SE of the estimated longevity di↵erence from analysis (vii)
smaller?

Notes: JH introduced the ‘shaper and fairer’ terminology in “Appropri-
ate uses of multivariate analysis” in the Annual Review of Public Health.
1983;4:155-80 (available under REPRINTS/TALKS on his home page). The
same issues are illustrated in notes he appended to the article ‘Exposure to
Scientific Theories A↵ects Women’s Math Performance’ and in excerpts
from ‘Breast Milk and Subsequent IQ in Children Born Preterm’ article,
under the ETIO-gnosis heading on course website Material for Academic 1/2
day: Regression and Multivariable Analysis Sept. 26, 2013.
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Supplementary Exercise 14.4
T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med   nejm.org 2

Table 1. Vaccine Effectiveness in Preventing Death from Covid-19, Stratified According to Age Group, Vaccination Status, and Vaccine  
(All Community Cases from April 1 to August 16, 2021, with Follow-up Conducted until September 27, 2021).*

Age Group, Vaccination Status, and Vaccine
Person-Years 
 of Follow-up

No. of 
Persons

No. of 
Deaths

Rate per 
100,000 

Person-Years
Adjusted Hazard 
Ratio (95% CI)†

16 to 39 Years of Age

Unvaccinated 8669.5 35,449 17 0.20 —

One vaccine dose 0–27 days before test

ChAdOx1 nCoV-19 56.6 150 0 0.00 —

BNT162b2 2338.4 10,535 1 0.04 —

One vaccine dose ≥28 days before test or two doses with 
second dose 0–13 days before test

ChAdOx1 nCoV-19 463.0 1,793 0 0.00 —

BNT162b2 1706.3 10,167 1 0.06 —

Two vaccine doses with second dose ≥14 days before test

ChAdOx1 nCoV-19 767.7 4,140 0 0.00 —

BNT162b2 567.3 3,040 0 0.00 —

40 to 59 Years of Age

Unvaccinated 1230.3 4,803 33 2.68 Reference

One vaccine dose 0–27 days before test

ChAdOx1 nCoV-19 453.8 1,497 2 0.44 0.24 (0.06–1.01)

BNT162b2 86.9 286 0 0.00 0.00 (0.00–∞)

One vaccine dose ≥28 days before test or two doses with 
second dose 0–13 days before test

ChAdOx1 nCoV-19 1865.2 7,945 2 0.11 0.04 (0.01–0.15)

BNT162b2 477.9 2,022 0 0.00 0.00 (0.00–∞)

Two vaccine doses with second dose ≥14 days before test

ChAdOx1 nCoV-19 1707.4 9,587 16 0.94 0.12 (0.07–0.24)

BNT162b2 629.8 3,318 2 0.32 0.05 (0.01–0.21)

≥60 Years of Age

Unvaccinated 81.4 380 24 29.49 Reference

One vaccine dose 0–27 days before test

ChAdOx1 nCoV-19 19.1 46 0 0.00 0.00 (0.00–∞)

BNT162b2 0.2 1 0 0.00 0.00 (0.00–∞)

One vaccine dose ≥28 days before test or two doses with 
second dose 0–13 days before test

ChAdOx1 nCoV-19 213.9 692 2 0.93 0.03 (0.01–0.14)

BNT162b2 69.8 190 4 5.73 0.25 (0.09–0.74)

Two vaccine doses with second dose ≥14 days before test

ChAdOx1 nCoV-19 973.8 5,262 73 7.50 0.10 (0.06–0.16)

BNT162b2 351.0 1,952 24 6.84 0.13 (0.07–0.23)

*  Vaccine effectiveness was estimated as 1 minus the hazard ratio. Some adults had received the mRNA-1273 vaccine (Moderna) at the time 
of their positive test (4135 persons, contributing 379 person-years of follow-up). No deaths from coronavirus disease 2019 (Covid-19) occurred 
among the persons who received the mRNA-1273 vaccine, and estimates and numbers are not provided in the table.

†  Hazard ratios are not provided for the 16-to-39-year age group because only two deaths occurred among vaccinated persons in this group and 
no deaths occurred among those who were fully vaccinated (i.e., those who had received two doses with the second dose received ≥14 days 
before testing).

The New England Journal of Medicine 
Downloaded from nejm.org by James HANLEY on October 20, 2021. For personal use only. No other uses without permission. 

 Copyright © 2021 Massachusetts Medical Society. All rights reserved. 

The following data were extracted from Table 1 of ‘BNT162b2 and ChAdOx1
nCoV-19 Vaccine E↵ectiveness against Death from the Delta Variant ’ based
on a Scotland-wide surveillance platform (Early Pandemic Evaluation and
Enhanced Surveillance of COVID-19 [EAVE II] that includes individual-level
linked data on vaccination, testing, viral sequencing, primary care, hospital
admissions, and mortality among 5.4 million people (approximately 99% of
the Scottish population). The New England Journal of Medicine, October 20,
2021.

Age P-Y P D D/100,000PY† VE

16-39
Unvaccinated 8669.5 35449 17 0.20
Vaccinated* 567.3 3040 0 0.00 vv.v

9236.8
40-59

Unvaccinated 1230.3 4803 33 2.68
Vaccinated* 629.8 3318 2 0.32 vv.v

1860.1
� 60

Unvaccinated 81.4 380 24 29.49
Vaccinated* 351.0 1952 24 6.84 vv.v

432.4
=== === === == ===
ALL

Unvaccinated 9981.2 40632 74 xx.xx
Vaccinated* 1548.1 8310 26 yy.yy VV.V

11529.3
——

P-Y: Person-Years of Follow-up; P: No. of Persons ; D: No. of Deaths: VE:
Vaccine E�cacy; *With BNT162b2; Second dose � 14 days before test.

i. Correct the Column Heading† (copied from the NEJM table).

ii. Using the data in the 2 ‘ALL’ rows at the bottom, calculate the missing
rates, xx.xx and yy.yy – and from them a point estimate of the VE against
death, and associated CI.

iii. Explain to a lay person why these rates, and the resulting VE, are mis-
leading, and why you should have refused to calculate the CI!

iv. Consider a total of 11529.3 person years of follow-up, with 9236.8, 1860.1
and 432.4 of them contributed by the 3 age groups shown. If the mortality
rates in these 3 segments of follow-up time were the same as in the 3
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unvaccinated segments, how many deaths would you expect? 6 Convert
this number into a death rate, and compute its variance.

Consider the same total of 11529.3 person years of follow-up, with again
the same 9236.8, 1860.1 and 432.4 of them contributed by the 3 age
groups shown. If the mortality rates in these 3 segments of follow-up
time were the same as in the vaccinated segments, how many deaths
would you expect? Convert this number into a death rate, and compute
its variance. Mention any reservations you have about your variance
calculation.

v. Calculate the di↵erence of these two weighted rates, along with the
SE of this di↵erence. Compare them with the results from a GLM fit
of a Poisson model with the identity link.7 Comment on any di↵er-
ences/di�culties.

You can do this by putting the D’s, P-Y’s and ‘Vaccinated’ indicator into
vectors of length 6,

D = c( 17, 0, 33, 2, 24, 24)

PY = c(8669.5, 567.3 , 1230.3, 629.8, 81.4, 351.0)

Vaccinated = rep( c(0,1),3)

Stratum = rep( 1:3,each=2)

# additive (rate difference)

V.PY = Vaccinated * PY

#crude

summary(glm(D~ -1+PY+V.PY,

family=poisson(link="identity") ) )

# as fn. of age band

S.1 = (Stratum==1); S.1.PY = S.1 * PY

S.2 = (Stratum==2); S.2.PY = S.2 * PY

S.3 = (Stratum==3); S.3.PY = S.3 * PY

summary(glm(D~ -1+ S.1.PY + S.2.PY + S.3.PY ,

family=poisson(link="identity") ) )

6You can follow the same calculations as C&H, but do not use the 1/3, 1/3, 1/3 weights
that they did; instead, use the observed distribution of the person-years of follow-up.

7See here and here.

# not easy to fit!

summary(glm(D~ -1+ S.1.PY + S.2.PY + S.3.PY + V.PY ,

family=poisson(link="identity") ) )

vi. Calculate the ratio of these two weighted rates, and an associated CI.

vii. Compare them with the results from a GLM Poisson model with (canon-
ical) log link (if need be, see previous link). Comment on any di↵erences.

# multiplicative (rate ratio)

#crude

fit = glm(D~ Vaccinated + offset(log(PY)),

family=poisson)

summary(fit)

round(exp(fit$coefficients),3)

# incl. age

fit = glm(D~ as.factor(Stratum) + Vaccinated +

offset(log(PY)), family=poisson)

summary(fit)

round(exp(fit$coefficients),3)

viii. Summarize the new elements learned during this exercise.

ix. Indicate which approaches were not quite as satisfactory as you might
like. (This might be a commercial for Chapter 15!)

Supplementary Exercise 14.5

Have a quick look at the UK and Israeli studies, and tell us

i. whether the focus in each one is on e�cacy against infection, or against
hospitalization or death if infected.

ii. whether the measures they used were rates (with PT denominators) or
risks (with persons as denominators),

iii. whether there is a good case, when the target is case-hospitalization or
case-fatality rates, to go with the ‘risk’ measure. [Hint: if, in the Scotland
study, the follow-up were extended to 6, 12, 24 months post-Dx, what
would happen to the rates? the risks? and their di↵erences and ratios]

iv. which of the three studies has the most data/information as for the fully
vaccinated vs. unvaccinated contrasts.
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http://www.epi.mcgill.ca/hanley/c634/rates/RateRegression.pdf
http://www.epi.mcgill.ca//hanley/c634/rates/inference%20models-rates.pdf
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1009243/Technical_Briefing_20.pdf
https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated
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