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13 Likelihoods for the rate ratio

13.1 Two Rates and a Rate Ratio

• The article referred to in the footnote had Clayton as co-author.1

• “This (the one shown ) is the likelihood for any specified pair of values for the two

parameters �0 and �1.’ [...] Its maximum value is achieved when these parameters

take values equal to the corresponding observed rates (

c�0 and

c�1)”

This begs the question as to whether the MLE of ✓ = �1/�1 is c�1/
c
�0. It is in

this case, but is it always the case?

• “The 90% confidence intervals for the two rates do not overlap and it might

seem that the data support the proposition that the two rates are di↵erent. In

general, however, the degree of overlap of confidence intervals is a poor criterion for

comparing rates. If the interval in the high intake group had stretched from, say, 3.0

to 12.0 then it could be argued that, since values of the rate parameter in the range

from 11.1 to 12.0 are included in both intervals, the data do not support the idea

that the rates are di↵erent. The flaw in this argument is that this range is at the

extreme of both ranges; the support for the proposition that the rates are similar

requires two rather poorly supported propositions to hold simulta,neously.”

This flaw is often missed; see Wolfe R, Hanley J If we’re so di↵erent, why
do we keep overlapping? When 1 plus 1 doesn’t make 2. Canadian Medical
Association Journal. 2002 Jan 8;166(1):65-6. [under r e p r i n t s in
JH’s main page].

• “The way to approach such problems [estimation of ✓] is to reparametrize the

model...”

1Morris JN, Marr JW, Clayton DG. Diet and heart: a postscript. Br Med J. 1977 Nov
19;2(6098):1307-14. During 1956-66, 337 healthy middle-aged men in London and south-
east England participated in a seven-day individual weighed dietary survey. By the end of
1976, 45 of them had developed clinical coronary heart disease (CHD) which showed two
main relationships with diet. Men with a high energy intake had a lower rate of disease
than the rest, and, independently of this, so did men with a high intake of dietary fibre
from cereals. Energy intake reflects physical activity, but the advantage of a diet high in
cereal fibre cannot be explained; there was no evidence that the disease was associated with
consumption of refined carbohydrates. Fewer cases of CHD developed among men with
a relatively high ratio of polyunsaturated to saturated fatty acids in their diet, but the
di↵erence was not statistically significant.

Morris, who died in 2009, was an influential epidemiologist: see for example,
http://www.ft.com/cms/s/2/e6ff90ea-9da2-11de-9f4a-00144feabdc0.html

http://en.wikipedia.org/wiki/Jerry Morris (physician)

http://ije.oxfordjournals.org/cgi/content/full/36/6/1184

One could also first draw the iso-log-Likelihood (LL) contours of

LL(�0,�1) = D0 log(�0)� �0Y0 +D1 log(�1)� �1Y1,

over a grid of (�0,�1) values, then draw the lines �1 = ✓ ⇥ �0 as rays across
this grid for various values of ✓, say ✓ = {2�2

, 2�1
, . . . , 23}, say, and finally

to find the maximum L over each line, and finally to plot these maxima as a
function of ✓.

13.2 Profile Likelihood

• “In most situations [the profile log likelihood] behaves in exactly the same way

as a log likelihood”.

Please check out the situations where it does not.

• “In the case of the the rate ratio, this process is simplified since the derivation of

the profile log likelihood can be carried out algebraically, leading to a mathematical

equation for the curve. The value of �0 which maximizes the log likelihood for any

given value of ✓ may be shown to be...”

The full log-likelihood for (✓,�0) is

LL(✓,�0) = D log(�0) +D1 log(✓)� �0Y0 � ✓�0Y1.

So, with ✓ fixed, its derivative with respect to �0 is

dLL(✓,�0)/d�0 = D/�0 � Y0 � ✓Y1,

with its root at
�0 = D/(Y0 + ✓Y1).

[Incidentally, this solution makes intuitive sense, since we can think of Y0+✓Y1

as the number of ‘reference-category-equivalent’ person years: Y1 person years
at a (relative) rate of ✓ should produce as many events as ✓Y1 persons years
would at a (reference) rate of 1. So, together, the combined Y0 and Y1 person
years, in the reference and index categories respectively, can be expected to
produce in total as many total cases as Y0+✓Y1 persons years in the reference
category would.]

Upon substituting this expression for �0 into LL(✓,�0), and discarding terms
that do not involve ✓, we get, as C&H do, the Binomial-looking likelihood

LL

profile

(✓) = D1 log(✓)�D log(Y0 + ✓Y1).
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This can be rewritten2 as

LL

profile

(✓) = D1 log

✓
✓ ⇥ Y1

Y0

Y0

Y1

◆
�D log

✓
Y0 + ✓Y1

Y0
Y0

◆
,

and the part that involves ✓ can be written as

LL

profile

(✓) = D1 log

✓
✓

Y1

Y0

◆
�D log

✓
1 + ✓

Y1

Y0

◆
,

or as the binomial likelihood for the odds parameter ⌦,

LL

profile

(⌦) = D1 log(⌦)�D log(1 + ⌦),

with

⌦ = ✓

Y1

Y0
.

• “From the Bernoulli likelihood, the most likely value of ⌦ is D1/D0.”

This is their way of saying ⌦̂
ML

= D1/D0.

• “The standard deviation of log(⌦) is ... ”.

Again, they mean the standard deviation of log⌦̂
ML

. We know from earlier
in 601 – and the use of the two applications of the Delta method (first for
⇡̂

1�⇡̂

and then for the log – that the variance of a logit, i.e. of a log-odds, is

V ar


log

�
⇡̂

1� ⇡̂

��
= V ar[log ⌦̂] = V ar[⇡̂] ⇥

✓
d log⌦

d⌦

◆2

⇥
✓
d⌦

d⇡

◆2

• “It follows that the most likely value of ✓ is ... ”

✓̂

Y1

Y0
=

D1

D0
! ✓̂ =

D1

D0
÷ Y1

Y0
=

D1

Y1
÷ D1

Y0
=

c
�1

c
�0

“... which is the ratio of the most likely values of the two rates.”

Supplementary Exercise 13.1 Score, score variance, and score test

Derive the expressions for the score and score variance, given at the bottom
of C&H page 127. If you need to, consult C&H chapter 11.4, pp 102-104.

2JH thinks that there may be a typo (a minus instead of a plus) in C&Hs’ addition.

13.3 Conditional Likelihood

• This follows directly from deciding to condition on the sum D of 2 indepen-
dent Poisson random variables D1 and D0:

D1 ⇠ Poisson(µ1); D0 ⇠ Poisson(µ0) ! (D1 |D) ⇠ Binomial

✓
D, ⇡ =

µ1

µ1 + µ0

◆

In our case, µ1 = �1Y1 and µ0 = �0Y0, so

(D1 | D) ⇠ Binomial

✓
D, ⇡ =

�1Y1

�0Y0 + �1Y1
=

✓Y1

Y0 + ✓Y1

◆
.

Clearly, then,

D1

D0
=

⇡̂

1� ⇡̂

=
✓̂Y1

Y0
! ✓̂ =

D1

D0
÷ Y1

Y0
=

D1

Y1
÷ D0

Y0
=

c
�1

c
�0

.

So, in this instance, the conditional likelihood is exactly the same

as the profile likelihood. And the ML estimators and the variances

(approx. and exact) derived from curvature of the log-likelihood,

also coincide.

• Extra: towards fitting ✓ via a generalized linear model.

The above formulation of the odds ⌦ = ✓ ⇥ Y1
Y)

in both the profile and condi-

tional likelihoods lends itself to a regression approach to the fitting of ✓. We
have that

D1|D ⇠ Binomial

✓
D, ⇡ =

✓Y1

Y0 + ✓Y1

◆
⇠ Binomial

✓
D, ⌦ = ✓

Y1

Y0

◆
.

We can write this as
E[D1]

D � E[D1]
= ✓

✓
Y1

Y0

◆
,

or as

log

✓
E[D1]

D � E[D1]

◆
= log(✓) + log

✓
Y1

Y0

◆
= � ⇥X + 1⇥K.

where � = log(✓) is a regression parameter to be estimated, X = 1, and
K = log(Y1/Y0) is a known constant. In the language of generalized models,
having log(µ1/[D � µ1]) on the left hand side means that we are modeling
the logit of µ

Y |X , i.e., using the ‘logit link ’, and we already have established
that D1|D ⇠ Binomial(D, ⇡), i.e., the ‘distribution’ or the ‘error structure’
or ‘family ’ is Binomial. Lastly, even though we represented the ‘regression

2
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equation’ as having two terms, the � ⇥ X and the 1 ⇥ K, the regression
coe�cient associated with K is known to be unity (1). In the GLM language,
K is an ‘o↵set ’, i.e., it is a variate whose coe�cient is known to be 1: we force
this coe�cient value to be 1, and we don’t allow the software to estimate it.3

Technically, it is part of the regression equation, but it is put in a separate
part in the syntax of the sodtware. For example, in R, one would fit the above
logistic model as follows:

D1=c(28); D=c(45); X=c(1); K=c(log(1857.5/2768.9));

fit=glm(cbind(D1,D-D1)~-1+X,family=binomial,offset=K)

# format for grouped (Binomial) data

# for Bernoulli (ie y=0/1) data, use y ~ -1+X etc

summary(fit) [ Number of Fisher Scoring iterations: 3 ]

Deviance Residuals: [1] 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

X 0.8982 0.3075 2.921 0.00349 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.889 on 1 degrees of freedom

Residual deviance: 0.000 on 0 degrees of freedom

AIC: 6.2087

beta.hat=log.theta.hat=fit$coefficients

theta.hat=exp(log.theta.hat)

Var.beta.hat = summary(fit)$cov.unscaled[1,1]

c(beta.hat,theta.hat,Var.beta.hat)

0.898 2.455 0.094538

(28/1857.5)/(17/2768.9) = 2.455 #C&Hs’ 2.48 slightly in error

3In this very simple example, with just one observation, K may look like an ordinary
intercept, but remember that it is one whose value we know. Moreover, if there are several
di↵erent observations, as there will be in Chapter 15, then K will vary from observation to
observation, each time with a coe�cient of 1.

1/28 + 1/17 = 0.09453782; sqrt(1/28 + 1/17) = 0.30747

The glm routine produces the same statistics as the hand fitting used in ex-
ercise 13.1.

We would have obtained the same output had we used the statement:

glm(cbind(D1, D - D1) ⇠ 1, family = binomial, offset = K)

3
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Supplementary Exercise 13.1 The 1954 Field Trial of the Salk Poliomyeli-
tis Vaccine4

Summary of Study Cases by Diagnostic Class and Vaccination Status (Rates
per 100,000): Placebo control areas: All Reported Cases

⇤

Gp. SP Ac Ar Tc Tr PPc PPr NPc NPr FPc FPr

V 200,745 82 41 57 28 33 16 24 12 - -
P l 201,229 162 81 142 71 115 57 27 13 4 2
NI 338,778 182 54 157 46 121 36 36 11 - -
IV 8,484 2 24 2 24 1 12 1 12 - -
All 749,236 428 57 358 48 270 36 88 12 4 1

⇤
V, P l, NI, IV : V accinated, Placebo, N ot Inoculated, and Incomplete

V accinations groups.

SP: Study population (number of children);
A

c

and A

r

: All reported cases and rate;
T

c

and T

r

: Total poliomyelitis cases and rate;
PP

c

and PP

c

: Paralytic Poliomyelitis cases and rate;
NP

c

and NP

r

: N on-Paralytic poliomyelitis cases and rate;
FP

c

and FP

r

Fatal poliomyelitis cases and rate.
Some 70 reported cases were deemed to be “Not Polio” (25 in V , 20 in Pl,
and 25 in the NI, are shown in Meier’s table, but omitted here because of
space constraints. Meier’s Source: Adapted from Francis (1955), Tables 2 and
3.

The data are based on followup from the children (in grades 1 2 and 3),
randomized and vaccinated in the months before the 1954 summer vacation,
and followed to the end of December 1954; i.e. over one ‘polio season’.

i. Repeat C&H’s exercises 13.1 and 13.3 using the data of paralytic polio
(PP ) instead of those in C&H Table 13.1, i.e., compute point and interval
estimates of the di↵erence in, and ratio of, the rates of paralytic polio
with the Salk vaccine and Placebo [first 2 rows].

Francis (1955) also used a conditional approach when computing their
confidence intervals. See (on the top right corner of the BIO601 website,
under Applications) the chapter on Statistical Methods. This chapter
says...

With M =number of vaccinated persons; N = number of per-
sons in corresponding control group; m = number of cases
among vaccinated persons [treated as the realization of a Pois-
son random variable]; n =number of cases among persons in

4Paul Meier. Chapter 2 The Biggest Public Health Experiment Ever: in Tanur JM et
al. (Editors) Statistics: A Guide to the Unknown. Holden-Day San Francisco 1972.

corresponding control group [also treated as the realization
of a Poisson random variable]; T =total number of persons
(T = M + N); t = total number of cases (t = m + n), and
� = RateRatio, ...

the probability of m vaccinated cases, given a total of t cases,
may be expressed as:

t

C

m

⇥
⇢

M�

M�+ n

�
m

⇥
⇢

N

M�+ n

�
t�m

This is the binomial distribution with probability parameter

M�

M�+N

.

ii. In this example, how similar would the CI have been if they had used an
unconditional approach to the RateRatio? Is this similarity because of
the large numbers of events, or because of something else?

iii. As is clear from the headline,5 journalists, and the public, are more inter-
ested in the percent e�cacy, 100⇥(1�RateRatio), than in the RateRatio.
Therefore, convert the CI for the RateRatio into a CI for the percent ef-
ficacy.

5There are 3 virus strains; results above are not strain-specific

4
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Supplementary Exercise 13.2 Women are Safer Pilots

LONDON- Initial results of a study by Britain’s Civil Aviation Au-
thority shows that women behind the controls of a plane might be
safer than men. The study shows that male pilots in general avi-
ation are more likely to have accidents than female pilots. Only 6
per cent of Britain’s general aviation pilots are women. According
to the aviation magazine Flight International, there have been 138
fatal accidents in general aviation in the last 10 years, and only two
involved women - less than 1.5 per cent of the total.

Woman News, page F1 The Montreal Gazette, August 21st, 1995

In this example, since we do not know the absolute sizes of the 2 person-time
denominators, and thus cannot compute absolute rates, or the di↵erence in
rates, we are limited to an analysis of the Rate Ratio.

The large-sample unconditional methods for obtaining a CI for a rate ratio
are both tractable and accurate when there are enough events in each of the
compared categories. But in this example, and in supp. exercise 13.3, the
small number of events in one of the categories (2 in this example, 0 in the
next example) renders large-sample methods inaccurate or even impossible.
In such situations, the conditional approach, in which one bases the inference
on the distribution of the number of events in one category, conditional on
the sum of the numbers of events in the two categories, is one way around this
problem (we use a similar conditioning strategy when dealing with Fisher’s
exact test). As C&H tell us at the top of p. 129, the profile likelihood –
which has a binomial form – is the same as the conditional likelihood, and
thus the same inference, in this type of example. But can we approximate this
‘binomial likelihood’ by a ‘Normal approximation to binomial likelihood’ (as
C&H do in their example in Chapter 136 and still have accurate answers? In
order to compare inferences based on an exact-conditional versus approximate-
conditional approach to this particular example, we will compute interval-
estimates for the ratio of the rates of accidents in women relative to men
pilots using di↵erent approaches.

For simplicity, in what follows, assume that on average, women pilots fly just
as many hours as the men pilots, and that all other relevant factors are equal,
although they probably are not! – the true denominator ratio is probably
more extreme than 6:94.

i. Compute a 90% frequentist interval for the rate ratio ✓ by treating the

6The Spiegelhalter et al. text routinely uses a ‘normal likelihood’ (and ‘normal prior’).

observed 2:136 split of the 138 cases as the realization of a binomial ran-
dom variable, with n = 138,⇡ = 6✓

6✓+94 . Do so by converting the 90%CI
for ⇡ into a 90% CI for ✓. Obtain the 90%CI for ⇡ in two ways:- (a) using
an exact (Clopper-Pearson) CI for ⇡ (b) using a normal-approximation
to the distribution of ⇡̂

ii. Compute a 90% interval for the rate ratio ✓ using the Likelihood Ratio
criterion of 0.258 i.e the Log Likelihood Ratio criterion of -1.353 [see
C&H’s remarks on page 22, and on pages 89-91].

Do so in 3 ways, using

(a) the (binomial) likelihood L(✓),

(b) the (binomial) likelihood L(log[✓]),

(c) a normal-approximation to the (binomial) likelihood L(log[✓])

iii. Compute a 90% credible interval for the rate ratio ✓ by treating the
observed 2:136 split of the 138 cases as the realization of a binomial
random variable, with n = 138,⇡ = 6✓

6✓+94 . Again, obtain it in two ways:-
using the binomial likelihood itself, along with a suitable (say a Beta)
prior; using, as Spiegelhalter et al do, a normal-approximation to the
likelihood, and a normal (i.e., Gaussian) prior.

iv. Compute a 90% interval for the rate ratio ✓ using generalized linear model
software, a logit link, and a single binomial observation (see example
above). Which of the methods is the estimate from GLM equivalent to?

v. (In point/bullet form] what are the take-home data-analysis messages
from this exercise?

5
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Supplementary Exercise 13.3: A Controlled Trial of a Human Papillo-
mavirus Type 16 Vaccine

Background: Approximately 20 percent of adults become infected with human papillo-

mavirus type 16 (HPV-16).Although most infections are benign, some progress to anogenital

cancer. A vaccine that reduces the incidence of HPV-16 infection may provide important

public health benefits.

Methods: In this double-blind study, we randomly assigned 2392 young women (defined

as females 16 to 23 years of age) to receive three doses of placebo or HPV-16 virus-like

particle vaccine (40 ?g per dose), at day 0, month 2, and month 6. Genital samples to test

for HPV-16 DNA were obtained at enrollment, one month after the third vaccination, and

every six months thereafter. Women were referred for colposcopy according to a protocol.

Biopsy tissue was evaluated for cervical intraepithelial neoplasia and analyzed for HPV-16

DNA with use of the polymerase chain reaction. The primary end point was persistent 16

infection, defined as the detection of HPV-16 DNA in samples obtained at two or more

visits. The primary analysis was limited to women who were negative for HPV-16 DNA

and HPV-16 antibodies at enrollment and HPV-16 DNA at month 7.

Results: The women were followed for a median of 17.4 months after completing the vacci-

nation regimen. The incidence of persistent HPV-16 infection was 3.8 per 100 woman-years

at risk in the placebo group and 0 per 100 woman-years at risk in the vaccine group (100

percent e�cacy; 95 percent confidence interval, 90 to 100; P¡0.001).All nine cases of HPV-

16related cervical intraepithelial neoplasia occurred among the placebo recipients.

Conclusions: Administration of this HPV-16 vaccine the incidence of both HPV-16 in-

fection and HPV- 16related cervical intraepithelial neoplasia. Immunizing HPV-16negative

women may eventually reduce the incidence of cervical cancer.

(N Engl J Med 2002;347:1645-51.). See full article on Resources-Applications webpage.

i. Why this design rather than a “fixed number of woman-years-of-follow-
up” design?

ii. Let I denote incidence, v denote the vaccinated and u the unvaccinated,
[Clayton and Hills use the general letters �

v

and �

u

]. Let IR denote
the incidence ratio I

v

/I

u

, [Clayton and Hills use the general letter ✓].
‘Vaccine e�cacy’ (E) is defined as a percentage

E = 100⇥(I
u

�I

v

)/I
u

= 100⇥(1�I

v

/I

u

) = 100⇥(1�IR) = 100⇥(1�✓)

Consider a very large R.C.T., so that random variation is not an issue.
A fraction F

v

received the vaccine, and the average follow-up time was
PT

V

units; the remaining fraction F

u

= 1�F

v

received the placebo, and
the average follow-up time was PT

U

units. Denote the number of cases
(of persistent infection) in the un-vaccinated sub-population by C

u

and
the corresponding number of cases in the vaccinated sub-population by
C

v

. Let C
total

= C

u

+ C

v

.

[Clayton and Hill use the letter D, presumably to stand for numbers of
deaths; we use the more general letter C for ‘cases of’ , i.e., ‘transitions’
from the initial state (HPV-) to the state the vaccine is intended to
prevent (persistent HPV+).] Let ⇧ = C

v

/C

total

denote the (theoretical)
proportion of proportion of all cases that had been vaccinated.

• Assuming the rate ratio remains constant over time, express the param-
eter ⇧ as a function of (a) the design parameters F

v

and PT

v

/PT

u

, and
the parameter IR (or ✓), (b) the design parameters F

v

and PT

v

/PT

u

,
and the parameter E.

• Show the mathematical link between these parameters and the ones
C&H use at the top of page 127.

iii. In the actual study cited above, the primary per-protocol e�cacy analysis
was based on observing persistent HPV-16 infection in 0 of 768 vaccinated
women followed for 1084.0 woman years (w-y) and 41 in 765 unvaccinated
women followed for 1076.9 women years (rate 3.8 per 100w-y).

This problem is similar in structure to that analyzed by C&H in their
exercise 13.1 & 13.3. Examine the methods they used (their solutions are
on p. 131-132.) Is it possible to use C&H’s method with the HPV data?

If so, carry them out. If not, describe what other approach(es) is(are)
possible, and carry it(them) out.

iv. (In point/bullet form) what are the take-home data-analysis messages
from this exercise?

Supplementary Exercise 13.4: Extended Work Duration and the Risk of
Self-reported Percutaneous Injuries in Interns

Refer to rows 2 and 3 of Table 3. in this article, by Ayas et al. in JAMA on
Sept 6 of 2006. [Resources - Intensity]

i. Manually calculate ORs and 95% CIs, and repeat by computer software.

ii. Explain why your answers do not match those reported (hint: see the
paragraph beginning “To assess the relationships...” in the last column
of page 1057 of the article.

iii. exactly what (and how many) numbers would you need to carry out their
analysis for row 3 (injuries in ICU). Answer in the form of a 1-paragraph
request to the authors asking for these specific numbers (but do not e-
mail the authors! JH has in fact obtained these numbers from Dr Ayas,
and they will form the basis for some of a future homework).

iv. Is OR the correct term for the ratio being estimated here?
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