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13.2 The observed number of events in the low energy intake group is 28.
There were 45 events in total and, under the null hypothesis, the probability
of having been exposed is my = 1857.5/4626.4 = 0.402. The score is

U =28 — 45 x 0.402 = 9.93,
and the score variance is

V =45 x 0.402 x (1 — 0.402) = 10.81.

The score test is (U)?/V = 9.12, giving p ~ 0.003.

13.3
28 17
= 18575 276890 0.00893 (8.93 per 1000 person-years).
§ = 28 + 17 = 0.00321 (3.21
J =\ @sree GresoE (3.21 per 1000 person-years).

The 90% confidence interval is

M + 1.6455 = 3.65 to 14.2 per 1000 person-years.

13.4 The log likelihood for A! is approximated by a Gaussian curve with

D! VD1
1 1_
M = i St = Vi
Similarly for A%, )3, ... etc. The weights are the durations of observation,

T1,T?,..., so that the profile log likelihood for the cumulative rate has its
maximum at

D' . D?
M= 3T+ 55T 4 -

and the standard deviation of the Gaussian approximation is /

B T 2 T2\ 2
s= o (7)o () o

Note that, as we narrow the time bands to clicks, the ratio T/Y approaches
1/N, where N is the number of subjects under observation during the click.
In these circumstances, M is the Aalen—Nelson estimate of the cumulative
rate and S may be used to calculate an approximate confidence interval.

14
Confounding and standardization

14.1 Confounding

Epidemiological studies generally involve comparing the outcome over a
period of time for groups of subjects experiencing different levels of expo-
sure. Such studies are usually not controlled experiments but ‘experiments
of nature’ of which the epidemiologist is a passive observer. In such in-
vestigations, there is always the possibility that an important influence on
the outcome, which would have been fixed in a controlled experiment, dif-
fers systematically between the comparison groups. It is then possible that
part of an apparent effect of exposure is due to these differences, and the
comparison of the exposure groups is said to be confounded. Statistical ap-
proaches to dealing with the problem of confounding aim to correct, during
analysis, for such deficiencies in the design of experiments of nature.

A particularly important potential confounding variable (or confounder
in many epidemiological studies is the age of subjects. We shall consider
an example in which subjects in a follow-up study are classified according
to whether their age at the start of follow-up was less than 55 years or 55
years or more. Suppose that the breakdown between the two age groups is
0.8 : 0.2 and that the conditional probability of failure is 0.1 in the first age
group and 0.3 in the second. When age is ignored the overall or marginal
probability of failure is

(0.8 x 0.1) + (0.2 X 0.3) = 0.14.

Now suppose that the age distribution differs between the two exposure
groups, being 0.8 : 0.2 in the not exposed group but 0.4 : 0.6 in the exposed
group (see Fig. 14.1). The marginal probability of failure for the unexposed
group is still .
(0.8 x 0.1) + (0.2 x 0.3) = 0.14,

but for the exposed group it is now
(0.4 x 0.1) + (0.6 x 0.3) = 0.22.

The marginal probabilities of failure now suggest an apparent effect of
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Fig. 14.1. Confounding by age.

exposure, but this is entirely due to the difference in age distributions
between the exposed and unexposed subjects.

In this example the apparent effect of exposure is entirely due to age
differences but confounding may also be partial, acting either to exaggerate
or to dilute a real relationship. As an example of this, suppose the effect of
exposure is to raise the probability of failure from 0.1 to 0.2 in the younger
age group and §rom 0.3 to 0.5 for older subjects. When the age distribution
is 0.8 : 0.2 in both exposure groups the overall effect of exposure is to
increase the marginal probability of failure from

(0.8 x0.1) + (0.2 x 0.3) = 0.14
in the unexposed group to
(0.8 x0.2) + (0.2 x 0.5) = 0.26

in the exposed group. When the age distribution is 0.8 : 0.2 in the unex-
posed group and 0.4 : 0.6 in the exposed group the overall effect of exposure
is to increase the marginal failure probability of failure from

(0.8 x 0.1) + (0.2 x 0.3) = 0.14
in the unexposed group to
(0.4 x0.2) + (0.6 x 0.5) =0.38

in the exposed group. Thus the overall effect of exposure appears greater

-
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when the age distributions differ than when they are the same.

These examples demonstrate that a third variable, such as age, can dis-
tort the relationship between an exposure and failure provided it is related
to both exposure and failure. This dual relationship is often taken as the
definition of a confounder. However, although it is a necessary condition
for a variable to be a confounder, it is not sufficient: a confounder must
also be a variable which would have been held constant in a controlled ex-
periment. For example, in perinatal epidemiology, we might ask whether
birthweight could be regarded as confounding the relationship between the
receipt of proper antenatal care and the risk of perinatal death. Although
birthweight is related to both antenatal care and perinatal risk, it cannot
be regarded as a confounder since one of the results of successful antenatal
care should be adequate birthweights. Since it would not make sense to

envisage an experiment in which we varied the provision of antenatal care

while maintaining the distribution of birthweight constant, differences in
birthweight distribution cannot be regarded as a deficiency in the design
of the experiment of nature. It is not, therefore, a confounder.

14.2 Correction for confounding

The linking of confounding to an imaginary experiment helps to clarify the
ideas which lie behind statistical methods for dealing with the problem.
There are two rather different approaches, and these closely mimic the
ways in which extraneous influences are dealt with in experimental science.

The classical approach to experimentation is to hold constant all influ-
ences other than the experimental variable(s) of interest. For example, to
avoid confounding by age, we would simply compare failure risks in exposed
and unexposed subjects of a fized age or, at least, falling within a narrow
range of ages. The statistical comparison would then be of failure prob-
abilities conditional upon age. The same comparison can be made in an
non-experimental study by the analytical strategy called stratification. By
dividing (or stratifying) the data according to age, the single experiment of
nature in which age has not been adequately controlled is transformed into
a series of smaller experiments within which age is closely controlled. The
analysis then compares probabilities of failure between exposure groups

within age bands. However, a consequence of this strategy is that individ- -

ual strata may contain too little data to be informative on their own. The
more finely we stratify the data, the more closely we control for confound-
ing, but the sparser our data becomes within strata. This impasse may
only be broken by making the further assumption -that the comparisons
estimate the same quantity within each stratum, and then combining the
information from the separate strata. We shall defer further discussion of
this approach to Chapter 15.

Holding extraneous variables constant is not the only model for good ex-
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perimentation, although it is certainly the most familiar. In the twentieth
century, experimentation has become a valuable tool in fields of study such
as biology, in which such close control of experimental material and con-
ditions is not possible. The idea of randomization has been central to this
development,; if we cannot ensure that experimental groups are identical in

all important respects, then by assigning subjects to groups at random, we

ensure that the probability distributions for extraneous variables do not
differ between exposure groups. Comparisons between the groups can then
be safely made. .

Returning to the comparison of failure probabilities between exposure
groups, it is rarely possible, in epidemiology, to use randomization to ensure
that extraneous variables have equal distributions in the different exposure
groups. However, it is possible to take account of differences in the dis-
tribution of a specific variable, such as age, by predicting the outcome for
exposure groups which have the same age distribution. This is done by
first estimating the age-specific probabilities of failure for each exposure
group, and then using these to predict the marginal probabilities of failure
for exposure groups which have a standard age distribution. This forms
the basis of the second statistical approach to dealing with confounding,
known in epidemiology as direct standardization.

14.3 Standardized rates

The remainder of this chapter concerns the use of direct standardization
to compare rates. Since rates are probabilities per unit time they can be
compared in the same way as failure probabilities. Age-specific failure rates
are estimated for each of the groups being compared, and these are used
to predict the marginal rates which would have been observed if the age
distributions in the comparison groups had begn the same as the standard
age distribution. These estimates are called standardized rates.

The choice of the age distribution to use for standardization depends
on the purpose of the analysis. It is quite common for the overall distribu-
tion of age, added over exposure groups, to be used as the standard, thus
simulating the results of an experiment in which the total study group was
randomly allocated between exposure categories. However, if one of oug
aims is to facilitate comparisons with other published studies, it is more
useful to use an age distribution which is in general use. Several distribu-
tions are commonly used for this purpose. One is the age distribution of
the world population, another is the age distribution for developed coun-
tries. Since there is no ‘correct’ standard there is much to be said in favour
of using a uniform age distribution where the percentage falling in each
age group is the same. One advantage of using a uniform age distribution
is that the standardized rate is then directly proportional to the cumula-
tive rate for a subject experiencing the age-specific rates from the study
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Table 14.1. IHD incidence rates per 1000 person-years

Exposed : Unexposed
(< 2750 kcal) (= 2750 kcal)
Age Cases P-yrs Rate Cases P-yrs Rate
40-49 2 311.9 6.41 4 607.9 6.58
. 50-59 12 878.1 13.67 5 1272.1 3.93
60-69 14 667.5 20.97 8 888.9 9.00

Total 28 1857.5  15.07 17 27689  6.14

throughout life.

Direct standardization is most commonly used when comparing quite
large groups, such as the populations of different countries or regions. When
used with less extensive data it will yield statistically unreliable estimates
if some of the age-specific rates, although based on very few cases, receive
appreciable weight in the analysis.

To illustrate the technique of direct standardization we shall return to
study of ischaemic heart disease and energy intake, discussed in Chapter 13.
The incidence of ischaemic heart disease in the exposed group (low energy-
intake) is 15.1 per 1000 person-years while the rate in the unexposed group
is 6.1 per 1000 person-years. These rates, which take no account of any
possible confounding effect of age, are often referred to as crude rates to
distinguish them from standardized rates.

Table 14.1 shows the data stratified by 10-year age bands. The age
distribution is different in the two exposure groups; this may be seen by
converting the person-years to a proportion of the total person-years in each
group giving 0.168, 0.472, and 0.359 in the three age bands for the exposed
(low energy-intake) group and 0.210, 0.459, and 0.321 for the unexposed
(high energy-intake) group. These age differences might explain some of
the difference in the crude IHD incidence rates.

Using the uniform age distribution as standard, our estimate of the
marginal rate for a group of exposed subjects with a uniform age distribu-
tion is

(0.333 x 6.41) + (0.333 x 13.67) + (0.333 x 20.97) = 13.67

per 1000 person years and, for a group of unexposed subjects with a uniform
age distribution, it is

(0.333 x 6.58) + (0.333 x 3.93) + (0.333 x 9.00) = 6.50
per 1000 person-years. The standardized rates for the two groups are there-

fore 13.7 and 6.5 per 1000 person-years. These do not differ greatly from
the crude rates of 15.1 and 6.1 per 1000 person-years, showing that the
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confounding effect of age is small in this case.

Exercise 14.1. Find the standardized rates for the exposed and not exposed
groups using as standard the age distribution with probabilities of 0.2, 0.5, and
0.3 in the three age bands.

14.4 Approximating the log likelihood

When there are three age bands, as in the IHD and energy example, the
standardized rate parameter takes the form of a weighted sum of the age-
specific rate parameters,

WIA 4 W2AZ + W33,
where
AL AZ )3
are the rate parameters for the age bands and
wt,w? w3

are the probabilities of the standard age distribution. Since A, % and
A% have independent log likelihoods, we can use the ideas introduced in
section 13.4 and Appendix C to derive a Gaussian approRimation to the
profile log likelihood for the standardized rate. The most likely value is

Wiml + w2mM? + wiMs3

where M! = D'/Y? is the most likely value of the age-specific rate pa-
rameter in band 1, and similarly expressions hold for bands 2 and 3. The
standard deviation of the Gaussian approximation is

VWIS 1 (W282)2 + (W353)2

where S = v/D!/Y! is the standard deviation of the Gaussian approxima-
tion to the log likelihood for A!, again with similar expressions for bands 2
and 3.

For the IHD and energy example the proability weights are

wl=w?=w3=0.333.

The age-specific rate for the first age band of the exposed group is 6.41 and
the corresponding standard deviation is

v/2/311.9 = 0.00453,

or 4.53 per 1000 person-years. The most likely values for the rates in the
other two age bands are 13.67 and 20.97 with standard deviations 3.94 and
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5.61 per 1000 person-years. The standard deviation of the standardized
rate is therefore

/(0.333 x 4.53)2 + (0.333 x 3.94)2 + (0.333 x 5.61)2 = 2.74

per 1000 person-years.

Exercise 14.2. Show that the standard deviation of the standardized rate for
the unexposed group is 1.63 per 1000 person-years.

LOG TRANSFORMATION OF STANDARDIZED RATES

Just as for any other rate, Gaussian approximations to the log likelihood are
more accurate when related to the log of the standardized rate. The most
likely value on the log scale is, of course, just the log of the standardized
rate, and the corresponding standard deviation can be calculated by using
the rule described in Chapter 9. There we saw that the standard deviation
of the Gaussian approximation to the likelihood for log()\) is obtained from
the standard deviation of the Gaussian approximation to the likelihood for
A by multiplying by 1/M, where M is most likely value of A. It follows
that for the example of energy intake and IHD incidence, the standard
deviations of the standardized rates on a log scale are 2.74/13.67 = 0.200
and 1.63/6.50 = 0.251.

A simple extension of the same ideas allows us to calculate estimates
and confidence intervals for the ratio of two standardized rates. The log
of this ratio is equal to the difference between the logarithms of the two
standardized rates, and from section 13.4 and Appendix C the standard
deviation of the log of the ratio of the standardized rates is

1/(0.200)2 + (0.251)2 = 0.321.

This can be used to obtain a confidence interval for the ratio of the stan-
dardized rates by using the error factor

exp(1.645 x 0.321) = 1.696.

Exercise 14.3. Use this error factor to find an approximate 90% confidence
interval for the ratio of the two standardized rate parameters.
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Solutions to the exercises
14.1 The estimated standardized rates are
(0.2 x 6.41) + (0.5 x 13.67) + (0.3 x 20.97) = 14.41
for the exposed group, and
(0.2 x 6.58) + (0.5 x 3.93) + (0.3 x 9.00) = 5.98

for the unexposed group.

14.2 The standard deviations of the age-specific rates are 3.29, 1.76, and
3.18 respectively. The standard deviation of the standardized rate is

/(0.333 x 3.20)% + (0.333 x 1.76)2 + (0.333 x 3.18)% = 1.63.

14.3 The ratio of standardized rates is 13.67/6.50 = 2.10 and the 90%
range for this is from 2.10/1.696 = 1.24 to 2.10 x 1.696 = 3.56 .

15
Comparison of rates within strata

15.1 The proportional hazards model

Direct standardization is a very simple way of correcting for confounding
but it does have some limitations. This chapter deals with the alterna-
tive and more generally useful approach of stratification. We shall again
illustrate our argument using the study of the relationship between en-
ergy intake and IHD first introduced in Chapter 13 and further analysed
in Chapter 14. There, in Table 14.1, we showed the data stratified by
10-year age bands and demonstrated that the low energy intake group is,
on average, rather older. This might explain some, or all, of the increase
in IHD incidence rate. The method of direct standardization predicts the
marginal rates for energy intake groups with the same standard age dis-
tribution. This chapter explores the alternative approach which compares
age-specific rates within strata. Table 15.1 extends Table 14.1 by calculat-
ing rate ratios within each age band. This demonstrates the main prob-
lem with this approach to confounding; holding age constant and making
comparisons within age strata leads to variable and unreliable estimates,
because the age-specific rates are based on so few data.

This problem is resolved is by combining the age-specific comparisons
from the separate strata, but any such procedure carries with it a further
modelling assumption, because combining the age-specific comparisons can
only be legitimate if we believe that they all estimate the same underlying
quantity. If we are prepared to believe that the rate ratio between exposure

Table 15.1. Rate ratios within age strata

Exposed Unexposed
(< 2750 keal) (> 2750 kcal) Rate
Age D Y Rate D Y Rate ratio
40-49 2 .311.9 6.41 4 607.9 6.58 0.97
5
8

50-59 12 878.1 13.67 12721 393  3.48
60-69 14 667.5 20.97 888.9 9.00 2.33

Total 28 1857.5 1507 17 27689 614  2.45
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14 Confounding and Standardization

14.1 Confounding

Ezxperimental vs. non-experimental

JH prefers this implied distinction to the ‘experimental’ vs. ‘observational’
that many authors use. After all, all studies (even randomized trials) make
observations. The word ‘observational’ might also be confused with the term
‘observed only’ for those in the ‘no treatment’ arm of a treated vs. not
treated comparison — even if that comparison is formed experimentally. The
word experiment (check any dictionary) refers to ‘a distortion deliberately
introduced in order to learn about its effects’

Miettinen glossary: experiment: a study in which a determinant is inten-
tionally perturbed for reasons none other than the goals of the study itself.”

C&H’s depiction of the epidemiologist as a ‘passive observer’ also focuses on
this key ‘intentional vs not’ distinction.

In 2021, a new and helpful distinction came to the fore: experimental (RCT)
versus ‘real-world’. If you Google ‘real-world vaccine efficacy’ or other terms
involving these two words, you will get several hits. In the real world, those
who get vaccinated (or get to get vaccinated) are different in many relevant
aspects from those who don’t. As soon as the COVID-19 vaccines were rolled
out, we had to be on the lookout for, and deal with, these differences.

EXTREME EXAMPLES OF CONFOUNDING — FROM ‘BC”[Y

Rather that rely on made-up examples, it is also good to have real ones, and
even extreme ones, to make the point. JH likes the two given in the very 1st
chapter of Rothman’s 2002 introductory tex

Rothman’s first example ... [verbatim]

Common sense tells us that residents of Sweden, where the standard
of living is generally high, should have lower death rates than resi-
dents of Panama, where poverty and more limited health care take
their toll. Surprisingly, however, a greater proportion of Swedish
residents than Panamanian residents die each year. This fact belies
common sense. The explanation lies in the age distributions of the
populations of Sweden and Panama. Figure 1-1 shows the population
pyramids of the two countries. A population pyramid displays the
age distribution of a population graphically. The population pyramid
for Panama tapers dramatically from younger to older age groups,

1Before COVID
2Epidemiology: An introduction. Kenneth J Rothman. Oxford University Press.

reflecting the fact that most Panamanians are in the younger age
categories. In contrast, the population pyramid of Sweden is more
rectangular, with roughly the same number of people in each of the
age categories up to about age 60 and some tapering above that age.
As these graphs make clear, Swedes tend to be older than Panama-
nians. For people of the same age in the two countries, the death
rate among Swedes is indeed lower than that of Panamanians, but in
both places older people die at a greater rate than younger people.
Because Sweden has a population that is on the average older than
that of Panama, a greater proportion of all Swedes die in a given
year, despite the lower death rates within age categories in Sweden
compared with Panama.
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Figure 1-1. Age distribution of the populations of Panama and Sweden (population
pyramids). Source: U.S. Census Bureau, International Data Base.

This situation illustrates what epidemiologists call confounding. In
this example, age differences between the countries are confounding
the differences in death rates.

Confounding occurs commonly in epidemiologic comparisons.
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Rothman’s second example ... [verbatim]

Consider the following mortality data, summarized from a study that looked at
smoking habits of residents of Whickham, England, in the period 1972-1974 and
then tracked the survival over the next 20 years of those who were interviewed?
Among 1314 women in the survey, nearly half were smokers. Oddly, proportion-
ately fewer of the smokers died during the ensuing 20 years than nonsmokers.
The data are reproduced in Table 1-1.

Table 1-1. Risk of death in a 20-year period among women in Whickham, Eng-

proportion of women who were passing through their teenage or young adult
years became smokers. The result is a strikingly different age distribution for
the female smokers and non- smokers of Whickham. Were this difference in the
age distribution ignored, one might conclude erroneously that smoking was not
related to a higher risk of death. In fact, smoking is related to a higher risk of
death, but confounding by age has obscured this relation in the crude data of
Table 1-1. In Chapter 8, we return to these data and show how to calculate the
effect of smoking on the risk of death after removing the age confounding.

TeAes s ms IMOR UL uSAUE I A 2UtyEdL PETIOU dMONG women In Whickham,
land, according to their smoking status at the beginning of the period* England, according to their smoking status at the beginning of the period,

Vital Status Smoker Nonsmoker Total by age*

Dead 139 230 369 Age (years) Vital Status Smoker Nonsmoker Total

Alive 443 502 945

Total 582 732 1314 184 e 2 1 3

Risk (dead/total) 0.24 0.31 0.28 ve %3 61 114

i Risk 0.04 0.02 0.03

Data from Vanderpump et al. Dead 3 5
. e e 8

Only 24% of the women who were smokers at the time of the initial survey 25-34 Alive 121 152 273
died during the 20-year follow-up period. In contrast, 31% of those who were Risk 0.02 0.03 0.03
nonsmokers died during the follow-up period. Does this difference indicate that Dead 14 7 21
women who were smokers fared better than women who were not smokers? 35-44 Alive 95 114 209
Not necessarily. One difficulty that many readers quickly spot is that the smoking Risk 0.13 0.06 0.09

information was obtained only once, at the start of the follow-up period. Smoking Dead 27 12 39

habits for some women will have changed during the follow-up. Could those 45-54 Alive 103 66 169
changes explain the results that appear to confer an advantage on the smokers? It Risk 0.21 0.15 0.19
is theoretically possible that all or many of the smokers quit soon after the survey Dead 51 40 91
and that many of the nonsmokers started smoking. While possible, this scenario 55-64 A}ive 64 81 145
is implausible, and without evidence for these changes in smoking behavior, this Risk 044 0.33 0.39
implausible scenario is not a reason- able criticism of the study findings. €574 Ze;‘,d 2; 101 130
A more realistic explanation for the unusual finding becomes clear if we examine stke 0.81 2(8) 78 33 7
the data within age categories, as shown in Table 1-2 (the risks for each age Dead 13 64. 77'
group were calculated by dividing the number who died in each smoking group 75+ Alive 0 0 0
by the total of those dead or alive). Risk 1.00 1.00 100

Table 1-1 combines all of the age categories listed in Table 1-2 into a single table,
which is called the crude data. The more detailed display of the same data in
Table 1-2 is called an age-specific display, or a display stratified by age. The age-
specific data show that in the youngest and oldest age categories there was little N o -

difference between smokers and nonsmokers in risk of death. Few died among Made by JH using histbackback
those in the younger age categories, regardless of whether they were smokers 85 function in Hmisc packase. with data
or not, whereas among the oldest women, nearly everyone died during the 20 . ) p X e

years of follow-up. For women in the middle age categories, however, there was :Z in mosaicData package in R.
a consistently greater risk of death among smokers than nonsmokers, a pattern o
contrary to the impression gained from the crude data in Table 1-1. 60

Why did the nonsmokers have a higher risk of death in the study population as %
a whole? The reason is evident in Table 1-2: a much greater proportion of the
nonsmoking women were in the highest age categories, the age categories that w©
contributed a proportionately greater number of deaths. The difference in the -
age distributions between smokers and nonsmokers reflects the fact that, for most 30
people, lifelong smoking habits are determined early in life. During the decades 2%
preceding the study in Whickham, there was a trend for increasing proportions 2
of young women to become smokers. The oldest women in the Whickham study
grew up during a period when few women became smokers, and they tended to that article.
remain nonsmokers for the duration of their lives. As time went by, a greater

*Data from Vanderpump et al.®

80

The Whickham story is also told in
DR Appleton, JM French, MPJ Van-
derpump. Ignoring a covariate: an ex-
ample of Simpson’s paradozx. (1996)
American Statistician, 50(4):340-341.
Indeed, the individualized R data are
‘synthesized’ from the table given in

50
45
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A memorable [not involving age] example of [extreme] confounding

Apparent gender-bias in admissions to the Berkeley graduate school
(Most confounding is less extreme than in these ‘classic’ examples.)

Berkeley Data: M:F Comparative parameters Odds Ratio (OR), Risk Ratio (RR) and Risk Difference (RA)

E E (Using KKM table 17.16 notation)
a b | m
D c d mo
np np | n for RA for OR for RR for RA
asd asd bec asng aeng bemy _
Faculty a/n; b/ng RA bec o o b n n var(RA)* w = 1/var weRA
Admitted? Men Women ALl
A Y 512 89 | 601 0.62 0.82 -0.20 0.35 10.4 29.9 0.75 59.3 78.7 1.63E-3 614 =125
N 313 19 332
All 825 108 | 933
B Y 353 17 | 370 0.63 0.68 —0.05 0.80 4.8 6.0 0.93 15.1 16.3 9.12E-3 110 -5
N 207 8 215
All 560 25 | 585
[ Y 120 202 | 322 0.37 0.34 +0.03 1.13 51.1 45.1 1.08 77.5 71.5 1.10E-3 913 26
N 205 391 596
All 325 593 | 918
D Y 138 131 | 269 0.33 0.35 —0.02 0.92 42.5 46.1 0.95 65.3 69.0 1.14E-3 879 =16
N 279 244 523
All 417 375 | 792
E Y 53 94 | 147 0.28 0.24 +0.04 1.22 27.1 22.2 1.16 35.7 30.7 1.51E-3 661 25
N 138 299 437
All 191 393 | 584
F Y 22 24 | 101 0.06 0.07 =0.01 0.83 9.8 11.8 0.84 10.5 12.5 3.41E-4 2935 =33
N 351 317 668
All 373 341 | 769
All Y 1198 557 | 1755 0.44 0.30 +0.14 1.84 1.47
N 1493 1278 | 2771
a1l 373 341 | 4526
Y: 145.8 161.1 263.4 278.7 6113 -129
145.8 263.4 _3werA 129
ORyy=1¢1 7 =091 RRyy=7575.7=0.94 RA,= Sw 6113 =-0.02

* var(RA) = Sum of 2 binomial variances
Confounding by age (Fig 14.1)

The key is that the crude comparison is distorted by age: the ‘exposed vs.
unexposed’ comparison is really a comparison of ‘somewhat younger exposed’
vs. ‘somewhat older exposed’. The diagram below explains confounding with
fewer numbers: the comparison of the more- (‘A’) vs. less- (‘a’) exposed is
distorted or confounded: the ‘pan’ that supports A is — by itself — heavier (by

an amount C' — ¢) than the one that supports a.

Although this dual relationship [“a third variable can distort a re-
lationship between an exposure and failure provided it is related to
both exposure and failure”] is often taken as a necessary condition

or_a variable to be a confounder, it is not sufficient.

C&H give an example involving the variable birthweight as the third variable.
Because it is one of the factors that is improved by proper antenatal care and
that reduces risk, it is often referred to as an ‘intermediate’ variable, or the

3Sex Bias in Graduate Admissions: Data from Berkeley, Bickel PJ et al., Science 7

February 1975: Vol. 187. no. 4175, pp. 398 - 404.

The 'A vs. a' comparison
is confounded by
the 'C vs. ¢' difference

A : A

a+20 A

| ©

A-a # 20
A-a=20- (C-c)

variable that mediates [is a mechanism for] the effect of proper antenatal
care on perinantal risk.

2021 EXAMPLES: EXTREME CONFOUNDING

2021 has brought a large number of confounded contrasts of the efficacy of
COVID-19 vaccines, naive contrasts which give the appearance that the vac-
cines are not as good as they were in the RCTSs; some really extreme ones
can even make the vaccinated look like they have worse outcomes than the
unvaccinated.

By Googling “Simpson’s paradox vaccinations” you will find several examples
of such distorted (unfair) comparisons.

This Washington Post article points us to a helpful blog: “The University of
Pennsylvania biostatistician Jeffrey Morris wrote an especially thorough and
widely shared blog post making this point”.

Nor surprisingly, the earliest examples are found in the ‘real-world’ Israeli
data, but examples of Simpsons’ paradox [*| also showed up in data from the
UK, the home of ‘The Simpson the paradox is named for’. [He is not to be

40ther links re. [Simpson’s paradox; here,/|here, HERE!, here* and here(corr’n.). *The
newer causation video is here. *The older Against All Odds Video series is here.



https://www.science.org/doi/10.1126/science.187.4175.398
https://www.washingtonpost.com/outlook/2021/08/31/covid-israel-hospitalization-rates-simpsons-paradox/
https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated
https://en.wikipedia.org/wiki/Edward_H._Simpson
https://en.wikipedia.org/wiki/Simpson%27s_paradox
https://towardsdatascience.com/simpsons-paradox-how-to-prove-two-opposite-arguments-using-one-dataset-1c9c917f5ff9
https://www.significancemagazine.com/14-the-statistics-dictionary/106-simpson-s-paradox-a-cautionary-tale-in-advanced-analytics
https://www.youtube.com/watch?v=ebEkn-BiW5k
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/AGAINSTALLODDS/p11_causation.mov
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/AGAINSTALLODDS/p09_correlation.mov
https://www.learner.org/series/against-all-odds-inside-statistics/the-question-of-causation/
https://www.learner.org/series/against-all-odds-inside-statistics/the-question-of-causation/
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confused with|'OJ’ Simpson, whose name will forever be connected withe type
of crime that was the topic here.]

As Olli Saarela (the one who alerted JH to these data) noted “The vac-
cine efficacy has two components, against infection, and against hospital-
ization or death if infected. The former has been waning in Israel for the
early vaccinated, but the latter component is still very much there. In the
media the numbers are often misinterpreted by ignoring the denominators
and focusing on the numerators only (e.g. x% of the hospitalized are vacci-
nated/unvaccinated)”

Here are links to the UK data from a report on 6 August 2021. The Simpson’s
paradox Olli was talking about is in comparing hospital admissions or deaths
between vaccinated (2 doses) and unvaccinated — among positive delta cases
— in the North-East and South-East corners of Table 5, page 18.

Important: since this year it has been easy to find real examples of Simpson’s
paradox, you might think that confounding only refers to contexts where the
true direction (slope, ratio, ... ) is reversed when you fail to dis-aggregate the
data by the confounding variable. This is not true. The term confounding also
applies to contexts where failure to dis-aggregate just weakens — or exaggerates
— the association measure, but maintains the same direction seem in the
confounder-specific strata. A good example is the recent data from Scotland,
where the fully-Pfizer-vaccinated vs. unvaccinated case-fatality comparison
suggests a VE of just 40%, even though it is above 80% in each age-stratum.
In other words, Simpson’s paradox is just a very extreme case of confounding.

2022 EXAMPLE: CONFOUNDING

This blog|tried to correct the message contained in an email sent in June 2022
morning to 6 million Americans from the New York Times The Morning. The
email, entitled COVID and Race, reported that the “death rate for White
Americans (W) has recently exceeded the rates for Black (B), Latino and
Asian Americans. The disparities seem to have flipped.”

While the blogger (Katelyn Jetelina, who calls herself “your local epidemiolo-
gist”) begins by addressing the more complex ‘time X race interaction’ using
the full (continuous) time scales in her first 2 graphs, in the exercise below,
we will examine the yearly B:W mortality rate ratios. Even in this simpler
context, however, it has the same features that she considers, but maybe not
extreme enough to produce a full-blown ‘Simpson’s Paradox’

The context missing here is Simpson’s Paradox— a “statistical phe-
nomenon where an association between two variables in a population
emerges, disappears or reverses when the population is divided into

subpopulations.”

In other words, if we just slap data on a graph, it looks like one very
clear story. However, when we take into account confounders—or
other variables that could also explain this phenomenon—it tells
another story.

and we may merely find that the association between two variables in a pop-
ulation changes when the population is divided into subpopulations. [In fact,
the label ‘Simpson’s Paradox’ is reserved for those contexts where the pattern
is reversed, so that the (say) age-specific rate ratios are all on one side of the
null, but the overall rate ratio (the one that ignores age) is on the other side
of the null.

Just like Dr Jetelina did, JH extracted the following data from a database
called CDC WONDER. [As she says the 2022 death data are provisional
(which means it’s not the official count because death certificates take a long
time to process), but it’s the best we have. JH made a dataset of all COVID
deaths for the full 2020-2022 period, but just for White and Black Americans.

Dr Jetelina says that when she looked at just the data for 2022, the COVID
mortality rate was 43 per 100,000 White Americans compared with 37 per
100,000 for Black Americans. After she adjusted for age, “the story changes:
Whites account for 31 per 100,000 while Blacks account for 40 per 100,000.
A complete switch.”

You are asked to look further into this below (see exercise 14.6).

14.2 Correction for confounding

C&H offer two options for minimizing confounding. The first is the ‘classical’
one of holding constant all factors except the one of interest. If one has the
option, one can do this by ‘blocking’, or matching, on these extraneous factors
ahead of time (if one has that option; in the analysis one then combines the
results of the within-statum (within-block) contrasts, under the assumption
that each of these is an estimate of the same (common) parameter value. The
second is the use — when possible — of randomization to make the compared
groups more equal from the outset, and not just on measured, but also on
unmeasured confounders.

C&H present direct standardization as though it were an alternative way of
combining the results of the within-statum (within-block) contrasts. But in
fact, as is described in the next section of these notes, it can sometimes be
regarded as a weighted average of these stratum-specific contrasts.


https://en.wikipedia.org/wiki/O._J._Simpson
http://www.medicine.mcgill.ca/epidemiology/hanley/c607/mm_ch2.pdf#page=5
https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1009243/Technical_Briefing_20.pdf
https://yourlocalepidemiologist.substack.com/p/the-morning-today-iswrong
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14.3 Standardized Rates

The key is the use of the same set of weights W7, ..., Wik to form the weighted
average (w.a.) ;\o,w.a. => ij\mk of the K stratum-specific rates observed
in the unexposed (0), and S\I,M‘a. = Zk ij\l’k of the stratum-specific rates
observed in the exposed(1).

One can also see the difference of these two standardized (weighted averages
of the stratum-specific) rates as a weighted average of the stratum-specific
rate differences, since

j\l,w‘a‘ - 5\(),w‘a‘ = Z Wk{j\l,k - 5\O,k}~
k

Although JH does not advocate calculating a weighted average of ratios (pre-
ferring, as Mantel does to take a single ratio of sums), one can — provided
all of the ratios are finite — also write the ratio of these two standardized
(weighted average of the) rates as a (different) weighted average of the K
stratum-specific rate ratios [A1x/Xo.x]:

M w.a. _ 2k Wi _ S Wi do ] % A/ o] _ 2 Wi X Atk /Ao ]
Mojw.a. 2o Wrkdok >k WiAok > Wi

In this re-expression, the ratio of the two standardized rates is a weighted av-
erage of the observed stratum-specific rate ratios, with weights W, = Wi Aq 1.

CORRECTION VIA ‘REGRESSION-MODELS’ VS. ‘STANDARDIZATION’ (JH)

Increasingly, corrections for confounding are carried out using generalized
linear model versions of what in the simplest case is classically called ‘analysis
of covariance’. These glm’s (and others such as Cox regression) are described
in C&H chapters 22 and beyond. However, before we get there, it is good to
appreciate the basic difference between the type of standardization described
in section 14.3, and these regression models.

One way to think of the difference is via an example where we would like to
create an unbiased (i.e., a fair) comparison between two groups of students,
one that had experienced experimental condition “1” (e.g., distance learning)
and the other under experimental condition “0’ (e.g., face-to-face in class
contact with the teacher on-site). Let’s denote the two conditions by the
subscripts 1 and 0. Suppose that it was unavoidable that one of the classes
was on average older than (and thus at an advantage relative to) the other.

Correction by standardization

We could think of two ways to reduce (eliminate) the age-difference, and arrive
at an unbiased estimate of the true difference (A) in the means — assumed to be
constant across ages. The first is to stratify the students into K age-bands and
take (the same) weighed average of the within-age-band mean scores for each
group, to arrive at §i w.a. = »_, Wi,k and Jo,.w.a. = Y Wro,k respectively.
As discussed above, the difference of these two standardized means is also a
weighed average of the within-age-band differences in the mean scores, i.e.,

Z Wid1x — Yok }-
k

One can think of this as the numerical equivalent of artificially ‘evening up’
the two teams/classes: it is as though one forced some of the distance students
to take the face-to-face version, and vice versa, so that the two classes had
the same age-composition (W7, ..., Wk).

Say that the age distributions in those who had intended to take the course
were:

age-band: 20-25 25-30 30-35
no. who applied to be ‘distance’ students: 20 33 46
no. who applied to be ‘on-site’ students: 50 35 14

Then one possibility would be to — if it were possible — ‘transfer some students
from one to the other format’ so that the age distributions in the classes were:

age-band: 20-25 25-30 30-35
no. of ‘distance’ students: 35 34 30
no. of ‘on-site’ students: 35 34 30

If actual transfers were not possible, one could still ‘mathematically’ move
some students from one to the other format. In other words, one would leave
the students in the class they applied for, and use the observed results to
create results for two synthetic classes with the same age-distribution in each.
Suppose the actual results in the 20, 33 and 46 who took the distance class,
and the 50, 35 and 14 who took the on-site class were:

age-band: 20-25 25-30 30-35
means for actual ‘distance’ students: 41 Yd,2 Ud,3
means for actual ‘on-site’ students: Yo, 1 Yo,2 Yo,3

From these we could create results for two synthetic or hypothetical classes,
with the same age-distribution, say {35,34,30} in each, just as above:
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mean for ‘synthetic’ class

‘distance’ (35 X Fg,1 + 34 X Fa,2 + 30 X Fa,3)/99
‘onsite’ (35 X go.y + 34 X Goz + 30 X Fo.3)/99,

and compare these two weighted averages.

Since these 2 ‘classes’ are synthetic or hypothetical, the choice of weights is
not restricted by the same constraints we had in the situation we we actually
transferred students from one to the other class. Thus, we could just as well
have, say {33,33,33} — or {43,33,23} — in each of the two synthetic classes.

Correction by a regression model

The other way out of this confounding by age is via a regression model. It
requires a somewhat stronger assumption than a ‘constant (or common) across
ages A’: its also requires that we use a model that links the mean response
at each age to age. The most commonly used model is a basic analysis-of-
covariance model, with parallel lines for the distance (d=1) and on-site (d=0)
classes:
E[y|a’ge7d] = Mylage,d = 50 + Bage X age + ﬂd x d.

In our example, the average ages in the distance and on-site classes are 28.8
and 25.7 respectively, a difference of 3.1 years, and so we can obtain an ad-
justed difference by subtracting a correction factor from the crude difference.
This correction is the product of the ﬁ/a\ge and the 3.1 years. The crude and
adjusted difference are therefore:

mean of: y age
actual ‘distance’ students: Y age,
actual ‘on-site’ students: Y, age,
(crude) difference: Yg-Y, 3.1 years

(?d - yo) - 51196 x 3.1
One can see from this that the magnitude of the correction is a function of

how strong the effect of age is and how different the average age is in the
compared groups.

adjusted difference:

In the (synthetic) standardization approach, conceptually one alters the com-
position of the two compared groups — it is as though one adds distance
subjects to, or takes away some distance subjects from, the 3 age-strata of
the distance arm, and likewise adds on-site subjects to, or takes away some
on-site subjects from, the age-strata of the on-site arm. This way one cre-
ates two ‘pseudo-samples’, to use a term used by Robins in causal inference
to describe the samples formed by inverse probability of treatment weighting

(IPTW). One can also think of the adding and taking away of students as giv-
ing different weights to the contributions of students in different age-bands.
For example, in the distance class, the result of each student in the youngest
age-band is up-weighted and given a weight of 35/20; likewise the results of
each student in the middle age-band is slightly up-weighted and given a weight
of 34/33, while the result of those in the oldest age-band is down-weighted
and given a weight of 30/46. the corresponding up/down-weightings for the
results of each student in the on-site class are 35/50, 35/34 and 30/14 in the
youngest, middle and oldest age-bands respectively.

To see why Robins calls it IPTW, consider the first age-band, where of the
70 students, 20 took the distance course and 50 the on-line one. So the
probability that a student in this band took the distance course is 20/70 and
that (s)he took the on-line one is 50/70. The inverses of these probabilities
are 70/20 and 70/50, double the 35/20 and 35/50 used above, and the same if
we scale the IPTW’s so that our pseudo-sample is the same size as our actual
sample.

In the regression approach, conceptually one takes the group means of the two
entire samples of subjects and then adjusts their scores to those of persons of
the mean age.



BIOS601: Notes, C&H. Ch 14 (Confounding and Standardization). October 28, 2022.

Exposure to Scientific Theories
Affects Women's Math Performance

Ilan Dar-Nimrod and Steven ]. Heine*

n 14 January 2005, Lawrence Summers,
Othen president of Harvard University,

speculated that one reason why women
are underrepresented in science and engineer-
ing professions is because of a “different
availability of aptitude at the high end” (/).
These remarks were met with much outcry
by some critics of President Summers, and
social scientists were divided in their re-
action to his comments. The question of sex
differences in math in the
context of the nature-versus-
nurture debate is not new and

Study 1 results

applies to them and hence are vulnerable to
stereotype threat. In contrast, we propose that
people might react differently if the origins of the
group differences were perceived to rest on the
specific experiences that people’s groups have
had. People may reason that their own experi-
ences are different or that they can resist the
effects of their experiences.

Our studies manipulated participants’ beliefs
regarding the source of gender differences in math

Study 2 results

These findings were replicated in a second
study (7) that used a different experimental
design. An analysis of variance identified signif-
icant performance differences between the
conditions [F(3,88) = 4.15, P < 0.01]. Fisher
probable least-squares difference (PLSD) com-
parisons revealed that women in G and S
conditions performed comparably (P > 0.50)
but significantly worse than women in E and ND
conditions (all P values < 0.02), which did not
differ (P > 0.50).

These studies demonstrate that stereotype threat
in women’s math performance can be reduced, if
not eliminated, when women are presented with
experiential accounts of the origins of stereotypes.
People appear to habitually think of some sex
differences in genetic terms unless they are
explicitly provided with experiential arguments. It
remains to be seen whether the results generalize to
stereotypes about other groups and abilities.

‘Whether there are innate sex dif-
ferences in math performance remains
a contentious question. However,

remains contentious. For this

paper, we did not explore
whether such innate sex dif-
ferences exist. Instead, we
investigated how women’s
math performance is affected

# of Correct answers
&

merely considering the role of genes

Math Score
5

id- 2 0 .
b){ whether. they are cgnS{d s 25 8 - P o8 8
ering genetic or experiential o558 E%“: 35 © o535 &22 %
accounts for the stereotype of 282 g gg & Fag 282 g §_§ $
women’s underachievement o oapkE ] = P
Manipulation Manipulation

in math. Such a question is
relevant to how people re-
spond to scientific arguments
and science education more
generally.

Stereotype threat is a phenomenon in which
the activation of a self-relevant stereotype leads
people to show stereotype-consistent behav-
ior, thereby perpetuating the stereotypes (2).
For example, African Americans perform worse
on intelligence tests when their race is high-
lighted (2), and women’s math performances
decrease when their gender is made salient
(3). Stereotype threat can be reduced when peo-
ple focus on the malleability of the traits at
hand (4).

Past research reveals that people respond
differently to genetic and experiential accounts of
behaviors. Undesirable behaviors with experiential
causes are seen as more voluntary and blameworthy
than behaviors with genetic causes (5). Experiential
causes, in contrast to genetic ones, appear to be
viewed as less impactful and more controllable.
We reasoned that stereotypes about one’s groups
are often perceived as inescapable, because many
stereotypes are viewed in essentialized terms (6).
That is, people may view the origin of some
stereotypes as resting on the perceived genetic
basis that distinguishes these groups. If individuals
share the same genetic foundation at the base of
the stereotype, they might feel that the stereotype

Fig. 1. (Left) Study 1 results. Scores on second math test (controlling for scores
on first test) after reading essays. (Right) Study 2 results. Scores on math test
after hearing manipulation.

and measured their subsequent math performance
(Fig. 1). In study 1 (7), women undertook a
Graduate Record Exam-like test in which they
completed two math sections separated by a
verbal section. The verbal section contained the
manipulation in the form of reading comprehen-
sion essays. Each test condition used a different
essay. Two of the essays argued that math-related
sex differences were due to either genetic (G) or
experiential causes (E). Both essays claimed that
there are sex differences in math performance of
the same magnitude. Two additional essays served
as a traditional test of stereotype threat. One essay,
designed to eliminate underperformance, argued
that there are no math-related gender differences
(ND). The other essay, designed as a standard
stereotype-threat manipulation (S), primed sex
without addressing the math stereotype. Control-
ling for performance on the first math section, we
used analyses of covariance to demonstrate that
women in the G and the S conditions exhibited
similar performances on the second math test
(F < 1). Women in the E and the ND conditions,
although not different from each other (F < 1),
significantly outperformed women in G and S
conditions (all 2 values < 0.01).

@)

in math performance can have some
deleterious consequences. These find-
ings raise discomforting questions
regarding the effects that scientific
theories can have on those who leam
about them and the obligation that
scientists have to be mindful of how
their work is interpreted. What Presi-
dent Summers perhaps intended to
be a provocative call for more em-
pirical research on biological bases
of achievement may inadvertently
exacerbate the gender gap in science
through stereotype threat.

Experiential
(E)
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math_output.txt

Printed: Thursday, November 2, 2006 3:46:46 PM

Pa¢

Math / Gender Da

ta..

(Ilan Dar-Nimrod and Steven Heine, Science 4314 20 Oct 2006, p 435)

proc format ;
value codes 1="G
run;

data a; * 1=G
array ic(4) G E

"oz

2=E 3=N
ND S;

3="ND" 4="S";

D 4=S ;

*infile "unix:mathdata.txt";
infile "Macintosh HD:Users:jameshanley:Documents:Courses:626:MathGender:mathdata.txt";

input ¢ mathl ma
do i =

th2;

1 to 4; ic(i)=(c=1i); end;

mathlc = mathl - 4.9099099;

run;

proc means n min mean max; format c codes. ;

var mathl mathlc math2; run;

The SAS System 11:20 Tuesday, October 24, 2006

Variable N Minimum Mean Maximum
MATH1 111 1.0000000 4.9099099 13.0000000
MATH1C 111 -3.9099099 9.9099106E-9 8.0900901
MATH2 111 0 4.4414414 10.0000000

proc means n min mean max; format c codes.; class c; var mathlc math2;

C N Obs Variable N Minimum Mean Maximum
G 28 MATHIC 28 -2.9099099 -0.4456242 5.0900901
MATH2 28 1.0000000 3.5714286 9.0000000
E 27 MATHIC 27 -2.9099099 0.3123123 3.0900901
MATH2 27 2.0000000 5.2222222 9.0000000
ND 27 MATHIC 27 -3.9099099 -0.3913914 4.0900901
MATH2 27 2.0000000 4.8888889 10.0000000
S 29 MATHIC 29 -3.9099099 0.5038832 8.0900901
MATH2 29 0 4.1379310 8.0000000
proc reg data=a; model math2 = S G E ;
Dependent Variable: MATH2
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 3 45.73062 15.24354 3.473 0.0187
Error 107 469.63875 4.38915
C Total 110 515.36937
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Root MSE 2.09503 R-square 0.0887 ===== raw data (Courtesy of 1st author) ========
Dep Mean 4.44144 Adj R-sq 0.0632
C.V. 47.17003

.

Parameter Estimates

group mathl math2 G E ND S

Parameter Standard T for HO:

Variable DF Estimate Error Parameter=0 Prob > |T| 1 2 8 6 0 1 0 0
2 3 9 8 0 0 1 0
INTERCEP 1 4.888889 0.40318855 12.126 0.0001 3 3 4 4 0 0 1 0
S 1 -0.750958%* 0.56027753 -1.340 0.1830
G 1 -1.317460 0.56508076 -2.331 0.0216 4 1 3 1 1 0 0 0
E 1 0.333333  0.57019472 0.585 0.5601 5 1 5 2 1 0 0 0
6 1 5 4 1 0 0 0
7 1 6 5 1 0 0 0
proc reg data=a; model math2 = S G E mathlc;
Dependent Variable: MATH2
Analysis of Variance 16é 3 6 3 0 0 1 0
Sum of Mean 104 4 5 4 0 0 0 1
Source DF Squares Square F Value Prob>F 105 4 3 3 0 0 0 1
Model 4 185.10374 46.27594 14.852 0.0001 106 4 3 6 0 0 0 !
ode . . . .
Error 106 330.26563 3.11571 107 3 5 3 0 0 1 0
C Total 110 515.36937 108 4 4 2 0 0 0 1
L .76514 0.3592 109 3 6 6 0 0 1 0
Root MSE .765 R-square .35
Dep Mean 4.44144 Adj R-sq 0.3350 110 4 5 4 0 0 0 1
c.v. 39.74247 111 3 3 3 0 0 1 0

Parameter Estimates Full dataset available on website

Parameter Standard T for HO:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 5.103533 0.34121364 14.957 0.0001
S 1 -1.241939** 0.47772816 -2.600 0.0107
G 1 -1.287718 0.47612189 -2.705 0.0080
E 1 -0.052588 0.48386265 -0.109 0.9137
MATH1C 1 0.548414 0.08199698 6.688 0.0001
**Example of adjusted difference... (see class notes on confounding by jh)
S vs ND(ref) ..
unadjusted difference = ( 4.1379310 - 4.8888889 ) = -0.750979*

1]
|
o

adjusted difference .750979 - 0.548414 * (0.5038832 - (-0.3913914) )
= -0.750979 - 0.548414 * 0.8952746
= -0.750979 - 0.490981

= 1.2419**
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Confounding: Reducing it by Regression
(page 1)

Preamble Examples...
- Don't overlook classical, “non-regression” methods

- Regression methods are more “synthetic” (i.e. “artificial”)

- Cf chapter 3 by Anderson et al. (c622; readings from aahovw)

+ Does using a Macintosh lead to sloppier writing? 2
« Better Service from Canada Post after “Major Restructuring”a
« Salaries of Master’s and PhD’s 2

Definitions ... / synonyms + Outcomes of Pregnancy during Residency for women and
wives of their male classmates+ Admissions of Males &

Original (statistical, in design of experiments) Females to Berkeley Graduate Schools b

+ Percentage of White & Black Convicts Receiving Death

- inability to estimate higher order interactions Penalty 2
(so typically assume they are zero)

« Intelligence Quotient (IQ) - Mother's Milk; Other Variables 2

- “mixed up with other effects” or “inextricable” * Lung Function of Vanadium Factory Workers Other resources, €697

- vs. reference group (matched for smoking and age) that was 3.4 cm different

Epidemiological in ave. height

- (osm) * Blood Pressure and Altitude - age; height; weight; country &
. ity - ivity: i c622

Other terms Longevity - Sexual Activity; thorax size

+ Fatalities & Speed Limit Change - Time 2

+ NEURODEVELOPMENT OF CHILDREN EXPOSED IN
UTERO TO ANTIDEPRESSANT DRUGS b

- “Lurking” (i.e. “hidden”) variable

- “Simpson’s Paradox” is the most extreme form

(see collection of Simpson's paradox examples under Other
Resources onc626)

+ What Does It Take to Heat a New Room? dataset, c697

Confounding: Reducing it by Regression
(page 3)

2 notes on Ch 2, c607 B resources this course (678), session 5

Confounding: Reducing it by Regression

(page 2)
Adjustment via regression ... In Pictures... (cf Anderson et al. chapter)

- “Outcome” Y

- Contrast with respect to X ("Exposure" variable) _ Y
(for now, say Xis binary X=1 and X=0) Yx=1

- Confounder C \

C
CRUDE CONTRAST:

Crude
via E[Y1X] = by + by X AY
by = crude difference = Yyet = Yxeo _/
Yyeo
ADJUSTED CONTRAST: \ —
. . C
EIYIXC ] =by + by X + bsC Net A \_x=1
"CRUDE" AY = Y. Y Cxeo
bx' = adjusted difference = Tx=t1 X=0
=Yyet — 7x=0 (CRUDE A) AC = CX=,_ Cx:o
minus .
_ _ Bias = 3, x AC
be( Cx=1 = Cx=0) (ADJUSTMENT)
"Net" AY = Y. —

Anatomy of the “Adjustment” Special issues

" A 1.
be ( Cx=1 — Cx=0 ) . ’
- Adjustment uses a LINEAR relation Y <-->C
If Y <-->C relationship not linear, using a
linear relation will not produce correct adjustment

X 'Y

e.g. Y=birthweight and C = Age in residents’ study

bc - If Y <--> C relationship not same at different
levels of X
(ie if C is a modifier of X<->Y rel'n,
or X is a modifier of C<->Y rel'n
i.e. if X<-->C “interaction”)

- for a NON-ZERO ADJUSTMENT...

then cannot make a unique “adjustment”

b c NON ZERO (adjustment different at different levels of C)
AND e.g. gender D’s in salary (C = # years experience)
c.f. Miettinen diagram (covariate as a modifier, confounder, or both)
( C_:X=1 - 6X=O ) NON ZERO 3.
- Inappropriate Adjustment...
X =>C->Y
X ->Y->C
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Supplementary Exercise 14.1a

Refer to the data on the Berkeley graduate school admissions shown on p.
3 and to the article by Bickel, Hammel, and O’Connell in Science in 1975
Sex Bias in Graduate Admissions: Data from Berkeley.

i

ii.

iii.

iv.

In 1 paragraph, summarize the article in words that would be understood
by a professional (e.g. a lawyer) who has little knowledge of statistics or
epidemiology.

Imagine that 933, 585, ... 769 applicants applied to the six Faculties
A-F respectively but that all 4,526 were women. If they had the same
success rates as the women actually achieved, what proportion of the
4,526 women would have been admitted? Calculate the variance of this
proportion.

Imagine that 933, 585, ... 769 applicants applied to the six Faculties
A-F (i.e., 4,526 in all) but that all 4,526 were men. If they had the same
success rates as the men actually achieved, what proportion of them
would have been admitted? Calculate the variance of this proportion.

What would C&H call these two proportions?

Calculate (a) the female-male difference between these two proportions,
and a CI for it (b) the ratio of the proportions, and a CI for it (Hint:
do your calculations in the log(ratio) scale, and convert back. (c) the
ratio of the proportions that were not admitted, and a CI for it. (d) the
ratio of the odds of being admitted, and a CI for it. Comment on your
findings, and give reasons for which of the four metrics you prefer.

Supplementary Exercise 14.1b

Refer again to the data on the Berkeley graduate school admissions shown on

p- 3

i.

(‘MH’ stands for ‘Mantel-Haenszel’).

The three summary measures (OR, RR and RD) at the bottom of the
Table lack accompanying confidence intervals. Find and cite (but do not
implement) the appropriate formulae you could use to calculate them.

Supplementary Exercise 14.1c

Refer again to the Berkeley graduate school admissions data shown on p. 3.

i.

Fit the four measures via binomial regression (glm) with the logit, log
and identity links, using ‘men’ as the reference category, and ‘women’ as
the index category, and using ‘faculty’ as a categorical variable. Use the
relevant fitted coefficient and its SE to obtain a CI.
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Supplementary Exercise 14.2a

Refer to Exposure to Scientific Theories Affects Women’s Math Performance.
and the appended supplementary material, along with the data the authors
provided to JH.

i.

ii.

iii.

iv.

In 1 paragraph, summarize the article in words that would be understood
by a professional (e.g. an educator) who has little knowledge of statistics
or epidemiology.

For now, limit your analysis to the S (index) vs. ND (reference) contrast,
involving 56 women.

How ‘(im)balanced’ were these groups with respect to math1? What are
the implications of this?

Categorize the Mathl scores into 4 bins, so that 13 obtained a score of
1-3, 13 obtained a 4, 20 obtained a score of 5-6 and 10 had a score of
7-13.

Imagine that these 13, 13, 20 and 10 women (56 in all) were all in the ND
group. If they had the same mean math2 scores as the ND women in these
4 math1-bins actually achieved, what would the overall math2 mean of
the 56 women have been? Calculate the variance of this weighted mean.

Imagine that these 13, 13, 20 and 10 women (56 in all) were all in the S
group. If they had the same mean math2 scores as the S women in these
4 math1-bins actually achieved, what would the overall math2 mean of
the 56 women have been? Calculate the variance of this weighted mean.

Calculate the difference of these two weighted means, along with the
variance of this difference. Compare them with the results from the
proc reg data=a; model math2 = S G E mathilc; fitting given on the
right hand side of p7. Comment on any differences.

Supplementary Exercise 14.2b

i

ii.

Estimate the between-group differences in math2 using a linear model
with an intercept (for a suitable reference group) and 3 indicator vari-
ables. [For interest, run it as a traditional ‘anova’ as well].

How ‘(im)balanced’ were the groups with respect to math and how
serious is this in terms of the ‘fairness’ of the comparison you have made
ini. ?

5To make the group differences easier to interpret, use a centered version of it — i.e.
derive a version that has an overall mean of 0.


https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf
https://homepage.stat.uiowa.edu/~mbognar/1030/Bickel-Berkeley.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/tmp/Applications/WomenMath.pdf
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iii. Use the (centered) mathl variable as a covariate in the linear model, and
report the (adjusted) estimates of the between group differences in math2.

iv. Some investigators would have adjusted for baseline scores by subtracting
mathl from math2 and using this difference in the linear model. How
different is this from the approach in iv. 7 Hint: rewrite the fitted model
in iii. so that the left hand side of the regression equation involves both
math2 and mathl. Why approach do you prefer?

Supplementary Exercise 14.3
Sharper and Fairer Comparisons:

See the article “Sexual activity reduces lifespan of male fruitflies” and accom-
panying material in this website.

Limit your analysis to the 50 fruitflies with 1 partner/2 days .. the effect is

obvious in those with 8.

Aside: When we first analyzed this dataset, student PE, now on McGill
faculty, argued that thorax size cannot be used as a predictor or explanatory
variable since fruitflies who die young may not be fully grown, i.e., it is also an
“intermediate” variable. Later, student NK (now on faculty elsewhere) had
studied entomology and assured us that fruitflies do not grow longer after
birth; i.e., thorax length is not time- (age)-dependent!

i. Use 1min R to calculate the difference in mean longevity (mean days lived)
of sexually active flies (index cat.) relative to sexually inactive flies (ref-
erence cat.), ignoring other covariates. Is this difference (i) substantial?
(ii) statistically significant at the conventional o = 0.05 level?

ii. Again ignoring other covariates, calculate the overall mortality rate (no.
deaths / 100 fruitfly-days lived — effectively, apart from the scaling by 100,
the reciprocal of mean longevity) for each of the two compared categories.

iii. How different are the mean thorax lengths of the active and inactive flies?
Is this difference “statistically” significant? Is it substantial? Is statistical
significance a non-issue here anyway? Explain.

iv. (Independently of which flies were subsequently assigned to an ac-
tive/inactive partner) divide the thorax range into 3 (roughly equal-sized)
strata: S, M and L. Compute the mortality rates (no. deaths / fruitfly-
days) for the resulting 6 cells. Then, using the overall proportions of flies
in each stratum as the same 3 weights for both, compute standardized
mortality rates for the active and inactive groups.

11

vi.

vii.

viii.

ix.

xi.

Using these strata, compute the mean longevity for each of the 6 cells.
Then, using the overall proportions of flies in each stratum as the 3
weights, compute a mean longevity for each of the two compared groups.

If — other things being equal — flies 0.01 mm larger live on average 1 day
longer, how much of a longevity “advantage” would the active flies have
from the outset as a result of their larger average thorax size? On this
basis, how much lower would the mean longevity of active than inactive
flies be if it were “adjusted” for the difference in thorax size?

Instead of using the “out of the air” value of 1day/0.01mm, use multiple
regression to simultaneously estimate the additional mean days/mm and
the decrease in days associated with (due to) activity i.e., fit the model:

Ellongevity | thorax, activity] = Bo+ Bthoras X thoraz + Bactive X active.

Verify that if you correct/adjust the comparison as in (vi) but using the
fitted Biporasr from (vii) instead of the ‘out of the air‘ 0.01, and using the
the thorax difference in (iii), you arrive at the Ssctive Obtained in (vii).
Hint: cf schematic diagram in JH notes on confounding.

Use the correction for confounding in the Women and Math study (see
above) to explain — in just a few sentence, and in English rather than in
‘Statistical-ese’ — to your father-in-law how ‘adjustment by regression’
works.

In the Breast milk and subsequent IQ in children born preterm study,
Lucas et al use multiple regression to correct for several 1QQ determinants
that are ‘imbalanced’ between the ‘Mother’s milk’ and ‘No-mothers-milk’
groups. To understand how it works, extend the ‘Adjusted Contrast’
equation on page 2 of JH’s Notes on Confounding: Reducing it by Re-
gression (the same ones at the end of the Women and Math article) so
that it accommodates imbalances in several variables (hint: think of X
as a vector rather than a scalar). This time, using Tables I, IT and IV,
explain the (now multivariable) correction/adjustment to your grandpar-
ents — who strongly believe that the mother’s milk - IQ link is causal.
Use Tables I, IT and IV.

{A ‘sharper’ comparison} The p-value for the activity contrast in (vii)
is smaller (and the associated CI narrower) than the corresponding one
in (i). One reason is that the larger adjusted estimate of the effect (the
numerator of the t-test on adjusted difference); another is the smaller SE
of the estimated effect (the denominator of t-test).

Why is the SE of the estimated longevity difference from analysis (vii)
smaller?


http://www.medicine.mcgill.ca/epidemiology/hanley/c622/
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Notes: JH introduced the ‘shaper and fairer’ terminology in an 1983 arti-
cle entitled |Appropriate uses of multivariate analysis in the Annual Review of
Public Health (also available under REPRINTS/TALKS on his home page).
The same issues are illustrated in notes he appended to the article ‘Ex-
posure to Scientific Theories Affects Women’s Math Performance’ (see
above) and in excerpts from ‘Breast Milk and Subsequent IQ in Chil-
dren Born Preterm’ article, under the ETTIO-gnosis heading on the website
Regression and Multivariable Analysis Sept. 26, 2013.

Supplementary Exercise 14.4

Table 1. Vaccine Effectiveness in Preventing Death from Covid-19, Stratified According to Age Group, Vaccination Status, and Vaccine
(All Community Cases from April 1 to August 16, 2021, with Follow-up Conducted until September 27, 2021).%
Rate per
Person-Years No. of No. of 100,000 Adjusted Hazard
Age Group, Vaccination Status, and Vaccine of Follow-up ~ Persons ~ Deaths  Person-Years Ratio (95% CI)}
16 to 39 Years of Age
Unvaccinated 8669.5 35,449 17 0.20 —
One vaccine dose 0-27 days before test
ChAdOx1 nCoV-19 56.6 150 0 0.00 —
BNT162b2 2338.4 10,535 1 0.04 =
One vaccine dose =28 days before test or two doses with
second dose 0-13 days before test
ChAdOx1 nCoV-19 463.0 1,793 0 0.00 —
BNT162b2 1706.3 10,167 1 0.06 —
Two vaccine doses with second dose =14 days before test
ChAdOx1 nCoV-19 767.7 4,140 0 0.00 =
BNT162b2 567.3 3,040 [ 0.00 =
40to 59 Years of Age
Unvaccinated 1230.3 4,803 33 2.68 Reference
One vaccine dose 0-27 days before test
ChAdOx1 nCoV-19 453.8 1,497 2 0.44 0.24 (0.06-1.01)
BNT162b2 86.9 286 [ 0.00 0.00 (0.00-<2)
One vaccine dose =28 days before test or two doses with
second dose 0-13 days before test
ChAdOx1 nCoV-19 1865.2 7,945 2 0.11 0.04 (0.01-0.15)
BNT162b2 477.9 2,022 0 0.00 0.00 (0.00-<2)
Two vaccine doses with second dose =14 days before test
ChAdOx1 nCoV-19 1707.4 9,587 16 0.94 0.12 (0.07-0.24)
BNT162b2 629.8 3,318 2 0.32 0.05 (0.01-0.21)
260 Years of Age
Unvaccinated 814 380 24 29.49 Reference
One vaccine dose 0-27 days before test
ChAdOx1 nCoV-19 19.1 46 0 0.00 0.00 (0.00-=<)
BNT162b2 0.2 1 0 0.00 0.00 (0.00—<<)
One vaccine dose =28 days before test or two doses with
second dose 0-13 days before test
ChAdOx1 nCoV-19 213.9 692 2 0.93 0.03 (0.01-0.14)
BNT162b2 69.8 190 4 5.73 0.25 (0.09-0.74)
Two vaccine doses with second dose =14 days before test
ChAdOx1 nCoV-19 973.8 5,262 73 7.50 0.10 (0.06-0.16)
BNT162b2 3510 1,952 24 6.84 0.13 (0.07-0.23)

* Vaccine effectiveness was estimated as 1 minus the hazard ratio. Some adults had received the mRNA-1273 vaccine (Moderna) at the time
of their positive test (4135 persons, contributing 379 person-years of follow-up). No deaths from coronavirus disease 2019 (Covid-19) occurred
among the persons who received the mRNA-1273 vaccine, and estimates and numbers are not provided in the table.

Hazard ratios are not provided for the 16-to-39-year age group because only two deaths occurred among vaccinated persons in this group and

no deaths occurred among those who were fully vaccinated (i.e., those who had received two doses with the second dose received =14 days
before testing).

2 N ENGL) MED NEJM.ORG
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The following data were extracted from Table 1 of ‘BNT16202 and ChAdOx1
nCoV-19 Vaccine Effectiveness against Death from the Delta Variant’ based
on a Scotland-wide surveillance platform (Early Pandemic Evaluation and
Enhanced Surveillance of COVID-19 [EAVE II] that includes individual-level
linked data on vaccination, testing, viral sequencing, primary care, hospital
admissions, and mortality among 5.4 million people (approximately 99% of
the Scottish population). The New England Journal of Medicine, October 20,
2021.

Age P-Y P D D/100,000PY* VE
16-39
Unvaccinated 8669.5 35449 17 0.20
Vaccinated* 567.3 3040 0 0.00 VV.V
9236.8
40-59
Unvaccinated 1230.3 4803 33 2.68
Vaccinated* 629.8 3318 2 0.32 VV.V
1860.1
> 60
Unvaccinated 81.4 380 24 29.49
Vaccinated* 351.0 1952 24 6.84 VV.V

ALL
Unvaccinated 9981.2 40632 74 XX.XX
Vaccinated*™ 1548.1 8310 26 yy.yy VV.V
11529.3

P-Y: Person-Years of Follow-up; P: No. of Persons ; D: No. of Deaths: VE:
Vaccine Efficacy; *With BNT162b2; Second dose > 14 days before test.

i. Correct the Column Heading' (copied from the NEJM table).

ii. Using the data in the 2 ‘ALL’ rows at the bottom, calculate the missing
rates, xx.xx and yy.yy — and from them a point estimate of the VE against
death, and associated CI.

iii. Explain to a lay person why these rates, and the resulting VE, are mis-
leading, and why you should have refused to calculate the CI!

iv. Consider a total of 11529.3 person years of follow-up, with 9236.8, 1860.1
and 432.4 of them contributed by the 3 age groups shown. If the mortality
rates in these 3 segments of follow-up time were the same as in the 3


https://www.annualreviews.org/doi/pdf/10.1146/annurev.pu.04.050183.001103
http://www.medicine.mcgill.ca/epidemiology/hanley/IntMedResidents/
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unvaccinated segments, how many deaths would you expect? Iﬂ Convert
this number into a death rate, and compute its variance.

Consider the same total of 11529.3 person years of follow-up, with again
the same 9236.8, 1860.1 and 432.4 of them contributed by the 3 age
groups shown. If the mortality rates in these 3 segments of follow-up
time were the same as in the wvaccinated segments, how many deaths
would you expect? Convert this number into a death rate, and compute
its variance. Mention any reservations you have about your variance
calculation.

. Calculate the difference of these two weighted rates, along with the
SE of this difference. Compare them with the results from a GLM fit
of a Poisson model with the identity linklz] Comment on any differ-
ences/difficulties.

You can do this by putting the D’s, P-Y’s and ‘Vaccinated’ indicator into
vectors of length 6,

D = c( 17, 0, 33, 2, 24, 24)

PY = c(8669.5, 567.3 , 1230.3, 629.8, 81.4, 351.0)

Vaccinated = rep( c(0,1),3)

Stratum = rep( 1:3,each=2)

# additive (rate difference)

V.PY = Vaccinated * PY

#crude

summary (glm(D~ -1+PY+V.PY,
family=poisson(link="identity") ) )

# as fn. of age band

S.1 = (Stratum==1); S.1.PY = S.1 * PY
S.2 = (Stratum==2); S.2.PY = S.2 * PY
S.3 = (Stratum==3); S.3.PY = S.3 * PY

summary (glm(D~ -1+ S.1.PY + S.2.PY + S.3.PY ,
family=poisson(link="identity") ) )

6You can follow the same calculations as C&H, but do not use the 1/3, 1/3, 1/3 weights

that they did; instead, use the observed distribution of the person-years of follow-up.
7See |here and here.
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vi.

vii.

viii.

ix.

# not easy to fit!
summary (glm(D~ -1+ S.1.PY + S.2.PY + S.3.PY + V.PY ,
family=poisson(link="identity") ) )

Calculate the ratio of these two weighted rates, and an associated CI.

Compare them with the results from a GLM Poisson model with (canon-
ical) log link (if need be, see previous link). Comment on any differences.

# multiplicative (rate ratio)

#crude

fit = glm(D” Vaccinated + offset(log(PY)),
family=poisson)

summary (fit)

round (exp(fit$coefficients),3)

# incl. age

fit = glm(D” as.factor(Stratum) + Vaccinated +
offset(log(PY)), family=poisson)

summary (fit)

round (exp(fit$coefficients),3)

Summarize the new elements learned during this exercise.

Indicate which approaches were not quite as satisfactory as you might
like. (This might be a commercial for Chapter 15!)


http://www.epi.mcgill.ca/hanley/c634/rates/RateRegression.pdf
http://www.epi.mcgill.ca//hanley/c634/rates/inference%20models-rates.pdf
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Supplementary Exercise 14.5

Have a quick look at the UK and Israeli studies, and tell us

i.

ii.

iii.

iv.

whether the focus in each one is on efficacy against infection, or against
hospitalization or death if infected.

whether the measures they used were rates (with PT denominators) or
risks (with persons as denominators),

whether there is a good case, when the target is case-hospitalization or
case-fatality rates, to go with the ‘risk’ measure. [Hint: if, in the Scotland
study, the follow-up were extended to 6, 12, 24 months post-Dx, what
would happen to the rates? the risks? and their differences and ratios]

which of the three studies has the most data/information as for the fully
vaccinated vs. unvaccinated contrasts.
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Supplementary Exercise 14.6 — COVID-19 Mortality rates in Black
vs White Americans

See 2022 EXAMPLE on page 4 for context. The dataset JH was able to
extract from CDC WONDER, had 65 rows [3 years x 11 age groups x 2
races, minus one cell (2020, age band 1-4 years, Black) where (presumably)
no COVID deaths were reported.] Since, for any age-race stratum, CDC
WONDER reports the same population-size for all 3 years, JH added in a
row with 0 deaths, to form this dataset of 66 rows.

Presumably, the data from 2020 cover just the portion of the year where
there was the (new) cause of death code for COVID-19, 2021 covers a full 12-
months, and 2022 covers what has been received up to the time the data were
downloaded, in late October 2022. Moreover, there is a possibility, especially
in the 2022 data, that there may be different (ie. race-specific) time lags in
the notifications of death. Nevertheless, the data can help illustrate what
has been going on, and why we need to pay attention to differences in age
distributions when comparing death rates.

For each year separately,

i. Using different symbols or colours for the two races, plot the logs of the
death rates against age, and try to indicate how ‘stable’ each datapoint
is. How close do the rates follow Gompertz law? And how ‘parallel’” are
the 2 sets of logRates?

ii. Plot the corresponding B:W RateRatios against age, again taking care
to not over-emphasize the least precise ones.

iii. Using different symbols or colours for the two races to overlay both on
the same plot, plot the proportions in each age-category against age, and
comment on the difference. Also, for each race, calculate and show the
mean age and the crude mortality rate.

iv. From the latter, calculate the crude mortality rate ratio and rate differ-
ence. In a soundbite/sentence, explain to a lay audience why the crude
differences (and, presumably the differences for all cause mortality as
well) do not align with the well-established ‘vitality’ differences between
US Whites and Blacks.

v. Suggest ways to make a fairer comparison. You don’t need to carry out
the calculations, but do illustrate them using formulae that your research
assistant could code up in R or in a spreadsheet.


https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/1009243/Technical_Briefing_20.pdf
https://www.covid-datascience.com/post/israeli-data-how-can-efficacy-vs-severe-disease-be-strong-when-60-of-hospitalized-are-vaccinated
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/BiasReduction/CovidDeaths.txt
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