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13 Likelihoods for the rate ratio

13.1 Two Rates and a Rate Ratio

• The article referred to in the footnote had Clayton as co-author.
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• “This (the one shown ) is the likelihood for any specified pair of values for the two

parameters �0 and �1. [...] Its maximum value is achieved when these parameters

take values equal to the corresponding observed rates (c�0 and c�1)”

1Morris JN, Marr JW, Clayton DG. Diet and heart: a postscript. Br Med J. 1977 Nov
19;2(6098):1307-14. During 1956-66, 337 healthy middle-aged men in London and south-
east England participated in a seven-day individual weighed dietary survey. By the end of
1976, 45 of them had developed clinical coronary heart disease (CHD) which showed two
main relationships with diet. Men with a high energy intake had a lower rate of disease
than the rest, and, independently of this, so did men with a high intake of dietary fibre
from cereals. Energy intake reflects physical activity, but the advantage of a diet high in
cereal fibre cannot be explained; there was no evidence that the disease was associated with
consumption of refined carbohydrates. Fewer cases of CHD developed among men with
a relatively high ratio of polyunsaturated to saturated fatty acids in their diet, but the
di↵erence was not statistically significant.

The individual data are available in the dataset diet in the Epi package (co-developed
and) maintained by Bendix Carstensen – and he uses it to illustrate the Lexis ‘machinery’.
As per his description...

The diet data frame has 337 rows and 14 columns. The data concern a subsample
of subjects drawn from larger cohort studies of the incidence of coronary heart
disease (CHD). These subjects had all completed a 7-day weighed dietary survey
while taking part in validation studies of dietary questionnaire methods. Upon
the closure of the MRC Social Medicine Unit, from where these studies were
directed, it was found that 46 CHD events had occurred in this group, thus
allowing a serendipitous study of the relationship between diet and the incidence
of CHD.

Format: This data frame contains the following columns: id: subject identifier, a nu-
meric vector. doe: date of entry into follow-up study, a Date variable. dox: date of exit
from the follow-up study, a Date variable. dob: date of birth, a Date variable. y: - number
of years at risk, a numeric vector. fail: status on exit, a numeric vector (codes 1, 3, 11,
and 13 represent CHD events) job: occupation, a factor with levels Driver Conductor Bank
worker month: month of dietary survey, a numeric vector energy: total energy intake
(KCal per day/100), a numeric vector height: (cm), a numeric vector weight: (kg), a nu-
meric vector fat: fat intake (g/day), a numeric vector fibre: dietary fibre intake (g/day),
a numeric vector energy.grp: high daily energy intake, a factor with levels  2750 KCal
> 2750 KCal chd: CHD event, a numeric vector (1=CHD event, 0=no event)

Source: The data are described and used extensively by Clayton and Hills, Statistical
Models in Epidemiology, Oxford University Press, Oxford:1993. They were rescued from
destruction by David Clayton and reentered from paper printouts.

Morris (died 2009): an influential epidemiologist; focused on physical activity: see e.g.,
http://www.ft.com/cms/s/2/e6ff90ea-9da2-11de-9f4a-00144feabdc0.html

http://en.wikipedia.org/wiki/Jerry Morris (physician)

http://ije.oxfordjournals.org/cgi/content/full/36/6/1184

This begs the question as to whether the MLE of ✓ = �1/�0 is

c
�1/

c
�0. It is in

this case, but is it always the case?

• “The 90% confidence intervals for the two rates do not overlap and it might

seem that the data support the proposition that the two rates are di↵erent. In

general, however, the degree of overlap of confidence intervals is a poor criterion for

comparing rates. If the interval in the high intake group had stretched from, say, 3.0

to 12.0 then it could be argued that, since values of the rate parameter in the range

from 11.1 to 12.0 are included in both intervals, the data do not support the idea

that the rates are di↵erent. The flaw in this argument is that this common region

is at the extreme of both ranges; the support for the proposition that the rates are

similar requires two rather poorly supported propositions to hold simultaneously.”

This flaw is often missed: see Wolfe R, Hanley J If we’re so di↵erent, why
do we keep overlapping? When 1 plus 1 doesn’t make 2. Canadian Medical

Association Journal. 2002 Jan 8;166(1):65-6. [find it under Publications in

JH’s main page]. or (directly) here

http://www.medicine.mcgill.ca/epidemiology/hanley/Reprints/CIs_Wolfe_Hanley_CMAJ.pdf ]

• “The way to approach such problems [estimation of ✓] is to reparametrize the

model...”

One could also first draw the iso-log-Likelihood (LL) contours of

LL(�0,�1) = D0 log(�0)� �0Y0 +D1 log(�1)� �1Y1,

over a grid of (�0,�1) values, then draw the lines �1 = ✓ ⇥ �0 as rays across

this grid for various values of ✓, say ✓ = {2�2
, 2

�1
, . . . , 2

3}, say, and finally

to find the maximum L over each line, and finally to plot these maxima as a

function of ✓.

13.2 Profile Likelihood

• “In most situations [the profile log likelihood] behaves in exactly the same way

as a log likelihood”.

Please check out the situations where it does not.

• Our earlier example, from Daniel Bernoulli in 1778, could have benefitted from a
‘profiling’ approach to eliminating a nuisance parameter. Remember that Bernoulli
has 2 parameters: the centre, ✓, of the semi-elliptical error distribution, and the
‘controlling radius’, r, which he fixed at r = 1. In 2016 we plotted the contours of
the likelihood and estimated the MLE of both simultaneously. But we could also
have used the profile likelihood to get rid of the r parameter. See diagram in next
column.
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MLEs of centre (theta) and 'radius' of Bernoulli error model; data: y = {0, 0.2 and 1.0}
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• “In the case of the the rate ratio, this process is simplified since the derivation of

the profile log likelihood can be carried out algebraically, leading to a mathematical

equation for the curve. The value of �0 which maximizes the log likelihood for any

given value of ✓ may be shown to be...”

The full log-likelihood for (✓,�0) is

LL(✓,�0) = D log(�0) +D1 log(✓)� �0Y0 � ✓�0Y1.

So, with ✓ fixed, its derivative with respect to �0 is

dLL(✓,�0)/d�0 = D/�0 � Y0 � ✓Y1,

with its root at

�0 = D/(Y0 + ✓Y1).

[Incidentally, this solution makes intuitive sense, since we can think of Y0+✓Y1

as the number of ‘reference-category-equivalent’ person years: Y1 person years
at a (relative) rate of ✓ should produce as many events as ✓Y1 person years
would at a (reference) rate of 1. So, together, the combined Y0 and Y1 person

years, in the reference and index categories respectively, can be expected to

produce in total as many total cases as Y0+✓Y1 persons years in the reference

category would.]

Upon substituting this expression for �0 into LL(✓,�0), and discarding terms

that do not involve ✓, we get, as C&H do, the Binomial-looking likelihood

LL

profile

(✓) = D1 log(✓)�D log(Y0 + ✓Y1).

This can be rewritten

2
as

LL

profile

(✓) = D1 log

✓
✓ ⇥ Y1

Y0

Y0

Y1

◆
�D log

✓
Y0 + ✓Y1

Y0
Y0

◆
,

and the part that involves ✓ can be written as

LL

profile

(✓) = D1 log

✓
✓

Y1

Y0

◆
�D log

✓
1 + ✓

Y1

Y0

◆
,

or as the binomial likelihood for the odds parameter ⌦,

LL

profile

(⌦) = D1 log(⌦)�D log(1 + ⌦),

with

⌦ = ✓

Y1

Y0
.

• “From the Bernoulli likelihood, the most likely value of ⌦ is D1/D0.”

This is their way of saying

ˆ

⌦

ML

= D1/D0.

• “The standard deviation of log(⌦) is ... ”.

Again, they mean the standard deviation of log

ˆ

⌦

ML

. We know from earlier

in 601 – and the use of the two applications of the Delta method (first for

⇡̂

1�⇡̂

and then for the log – that the variance of a logit, i.e. of a log-odds, is

V ar


log

�
⇡̂

1� ⇡̂

��
= V ar[log

ˆ

⌦] = V ar[⇡̂] ⇥
✓
d log⌦

d⌦

◆2

⇥
✓
d⌦

d⇡

◆2

• “It follows that the most likely value of ✓ is ... ”

ˆ

✓

Y1

Y0
=

D1

D0
! ˆ

✓ =

D1

D0
÷ Y1

Y0
=

D1

Y1
÷ D1

Y0
=

c
�1

c
�0

“... which is the ratio of the most likely values of the two rates.”

2JH thinks that there may be a typo (a minus instead of a plus) in C&Hs’ addition.
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Supplementary Exercise 13.1 Daniel Bernoulli, revisited.

Compute the profile log-likelihood for the centre, ✓, of Daniel Bernoulli’s semi-

circular (technically, semi-elliptical) distribution, obtained by ‘profiling out’

the radius parameter r.

Remember that the pdf is

pdf(y) =

2

⇡r

2

�
r

2 � (y � ✓)

2
 1/2

and that Bernoulli’s 3 datapoints were y1 = 0, y2 = 0.2, and y3 = 1.

Since there does not seem to be a way to derive the profile log likelihood

algebraically, you will need to proceed numerically: for each possible value of

✓ in seq(0.3,0.7,0.01) say, numerically maximize log-likelihood[✓, r] with

respect to r; then plot the resulting set of maxima against the ✓ values in

seq(0.3,0.7,0.01). Check your profile log likelihood against the one shown

in the previous page.

Supplementary Exercise 13.2 Score, score variance, and score test

Derive the expressions for the score and score variance, given at the bottom

of C&H page 127. If you need to, consult C&H chapter 11.4, pp 102-104.

13.3 Conditional Likelihood

• This follows directly from deciding to condition on the sum D of 2 indepen-

dent Poisson random variables D1 and D0:

D1 ⇠ Poisson(µ1); D0 ⇠ Poisson(µ0) ! (D1 | D) ⇠ Binomial

✓
D, ⇡ =

µ1

µ1 + µ0

◆

In our case, µ1 = �1Y1 and µ0 = �0Y0, so

(D1 | D) ⇠ Binomial

✓
D, ⇡ =

�1Y1

�0Y0 + �1Y1
=

✓Y1

Y0 + ✓Y1

◆
.

Clearly, then,

D1

D0
=

⇡̂

1� ⇡̂

=

ˆ

✓Y1

Y0
! ˆ

✓ =

D1

D0
÷ Y1

Y0
=

D1

Y1
÷ D0

Y0
=

c
�1

c
�0

.

So, in this instance, the conditional likelihood is exactly the same

as the profile likelihood. And the ML estimators and the variances

(approx. and exact) derived from curvature of the log-likelihood,

also coincide.

• Extra: towards fitting ✓ via a generalized linear model.

The above formulation of the odds ⌦ = ✓ ⇥ Y1
Y)

in both the profile and condi-

tional likelihoods lends itself to a regression approach to the fitting of ✓. We

have that

D1|D ⇠ Binomial

✓
D, ⇡ =

✓Y1

Y0 + ✓Y1

◆
⇠ Binomial

✓
D, ⌦ = ✓

Y1

Y0

◆
.

We can write this as

E[D1|D]

D � E[D1|D]

= ✓

✓
Y1

Y0

◆
,

or as

log

✓
E[D1|D]

D � E[D1|D]

◆
= log(✓) + log

✓
Y1

Y0

◆
= � ⇥X + 1⇥K.

where � = log(✓) is a regression parameter to be estimated, X = 1, and

K = log(Y1/Y0) is a known constant. In the language of generalized models,

having log(µ1/[D�µ1]) on the left hand side means that we are modeling the

logit of µ

Y |X , i.e., using the ‘logit link ’, and we already have established

that D1|D ⇠ Binomial(D, ⇡), i.e., the ‘distribution’ or the ‘error structure’

or ‘family ’ is Binomial. Lastly, even though we represented the ‘regression

equation’ as having two terms, the � ⇥ X and the 1 ⇥ K, the regression
coe�cient associated with K is known to be unity (1). In the GLM language,

K is called an ‘o↵set ’, i.e., it is a variate whose coe�cient is known to be

1: we force this coe�cient value to be 1, and we don’t allow the software to

estimate it.

3
Technically, it is part of the regression equation, but it used to

be

4
. put in a separate part in the syntax of the sodtware. For example, in R,

one would fit the above logistic model as follows:

3In this very simple example, with just one observation, K may look like an ordinary
intercept, but remember that it is one whose value we know. Moreover, if there are several
di↵erent observations, as there will be in Chapter 15, then K will vary from observation to
observation, each time with a coe�cient of 1.

4Nowadays, it can be written as -1 + X + offset(log(K))

3
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D1=c(28); D=c(45); X=c(1); K=c(log(1857.5/2768.9));

fit=glm(cbind(D1,D-D1)~-1+X,family=binomial,offset=K)

------^-------

# format for grouped (Binomial) data

# for Bernoulli (ie y=0/1) data, use y ~ -1+X etc

summary(fit) [ Number of Fisher Scoring iterations: 3 ]

Deviance Residuals: [1] 0

Coefficients:

Estimate Std. Error z value Pr(>|z|)

X 0.8982 0.3075 2.921 0.00349 **

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 8.889 on 1 degrees of freedom

Residual deviance: 0.000 on 0 degrees of freedom. AIC: 6.2087

beta.hat=log.theta.hat=fit$coefficients

theta.hat=exp(log.theta.hat)

Var.beta.hat = summary(fit)$cov.unscaled[1,1]

c(beta.hat,theta.hat,Var.beta.hat) 0.898 2.455 0.094538

(28/1857.5)/(17/2768.9) = 2.455 #C&Hs’ 2.48 slightly in error

1/28 + 1/17 = 0.09453782; sqrt(1/28 + 1/17) = 0.30747

The glm routine produces the same statistics as the hand fitting used in ex-

ercise 13.1.

NOTE: We would have obtained the same output had we used the statement:

glm(cbind(D1, D - D1) ⇠ 1, family = binomial, offset = K)

Supplementary Exercise 13.3 The 1954 Field Trial of the Salk Poliomyeli-

tis Vaccine

5

Summary of Study Cases by Diagnostic Class and Vaccination Status (Rates

per 100,000): Placebo control areas: All Reported Cases

⇤

Gp. SP Ac Ar Tc Tr PPc PPr NPc NPr FPc FPr

V 200,745 82 41 57 28 33 16 24 12 - -
P l 201,229 162 81 142 71 115 57 27 13 4 2
NI 338,778 182 54 157 46 121 36 36 11 - -
IV 8,484 2 24 2 24 1 12 1 12 - -
All 749,236 428 57 358 48 270 36 88 12 4 1

⇤
V, P l, NI, IV : V accinated, Placebo, N ot Inoculated, and Incomplete

V accinations groups.

SP: Study population (number of children);

A

c

and A

r

: All reported cases and rate;
T

c

and T

r

: Total poliomyelitis cases and rate;
PP

c

and PP

c

: Paralytic Poliomyelitis cases and rate;
NP

c

and NP

r

: N on-Paralytic poliomyelitis cases and rate;
FP

c

and FP

r

Fatal poliomyelitis cases and rate.
Some 70 reported cases were deemed to be “Not Polio” (25 in V , 20 in Pl,

and 25 in NI, are shown in Meier’s table, but omitted here because of space

constraints. Meier’s Source: Adapted from Francis (1955), Tables 2 and 3.

The data are based on followup from the children (in grades 1 2 and 3),

randomized and vaccinated in the months before the 1954 summer vacation,

and followed to the end of December 1954; i.e. over one ‘polio season’.

i. Repeat C&H’s exercises 13.1 and 13.3 using the data of paralytic polio

(PP ) instead of those in C&H Table 13.1, i.e., compute point and interval

estimates of the di↵erence in, and the ratio of, the rates of paralytic polio

with the Salk vaccine and Placebo [first 2 rows].

Francis (1955) also used a conditional approach when computing their
confidence intervals. See (on the top right corner of the BIO601 website,
under Applications) the chapter on Statistical Methods. This chapter
says... (note their use of � for rate ratio. We use it for rate.)

With M =number of vaccinated persons; N = number of per-

sons in corresponding control group; m = number of cases

5Paul Meier. Chapter 2 The Biggest Public Health Experiment Ever: in Tanur JM et al.
(Editors) Statistics: A Guide to the Unknown. Holden-Day San Francisco 1972. Copy in
http://www.medicine.mcgill.ca/epidemiology/hanley/c622/salk trial.pdf More his-
torical info. at http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Polio/ and (under ‘1954 TRIAL
OF SALK POLIO VACCINE’) at http://www.medicine.mcgill.ca/epidemiology/hanley/MiniMed/

4
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among vaccinated persons [treated as the realization of a Pois-

son random variable]; n =number of cases among persons in

corresponding control group [also treated as the realization

of a Poisson random variable]; T =total number of persons

(T = M + N); t = total number of cases (t = m + n), and

� = RateRatio, ...

the probability of m vaccinated cases, given a total of t cases,

may be expressed as:

t

C

m

⇥
⇢

M�

M�+ n

�
m

⇥
⇢

N

M�+ n

�
t�m

This is the binomial distribution with probability parameter

M�

M�+N

.

ii. In this example, how similar would the CI have been if they had used an

unconditional approach to the RateRatio? Is this similarity because of

the large numbers of events, or because of something else?

iii. As is clear from the headline,

6
journalists, and the public, are more inter-

ested in the percent e�cacy, 100⇥(1�RateRatio), than in the RateRatio.

Therefore, convert the CI for the RateRatio into a CI for the percent ef-
ficacy.

6There are 3 virus strains; results in table are not strain-specific. 90% in headline is.

Supplementary Exercise 13.4 Time-specific Rate Ratios in the ERSPC

original article

T h e  n e w  e ngl a nd  j o u r na l  o f  m e dic i n e

n engl j med 360;13 nejm.org march 26, 20091320

Screening and Prostate-Cancer Mortality  
in a Randomized European Study

Fritz H. Schröder, M.D., Jonas Hugosson, M.D., Monique J. Roobol, Ph.D.,  
Teuvo L.J. Tammela, M.D., Stefano Ciatto, M.D., Vera Nelen, M.D.,  
Maciej Kwiatkowski, M.D., Marcos Lujan, M.D., Hans Lilja, M.D.,  

Marco Zappa, Ph.D., Louis J. Denis, M.D., Franz Recker, M.D.,  
Antonio Berenguer, M.D., Liisa Määttänen, Ph.D., Chris H. Bangma, M.D., 

Gunnar Aus, M.D., Arnauld Villers, M.D., Xavier Rebillard, M.D.,  
Theodorus van der Kwast, M.D., Bert G. Blijenberg, Ph.D., Sue M. Moss, Ph.D., 

Harry J. de Koning, M.D., and Anssi Auvinen, M.D., for the ERSPC Investigators*

The authors’ affiliations are listed in the 
Appendix. Address reprint requests to 
Dr. Schröder at the Erasmus Medical Cen-
ter, P.O. Box 2040, Rotterdam 3000 CA, 
the Netherlands, or at secr.schroder@ 
erasmusmc.nl.

*Members of the European Randomized 
Study of Screening for Prostate Cancer 
(ERSPC) are listed in the Appendix.

This article (10.1056/NEJMoa0810084) was 
published at NEJM.org on March 18, 2009.

N Engl J Med 2009;360:1320-8.
Copyright © 2009 Massachusetts Medical Society.

A bs tr ac t

Background
The European Randomized Study of Screening for Prostate Cancer was initiated in 
the early 1990s to evaluate the effect of screening with prostate-specific–antigen 
(PSA) testing on death rates from prostate cancer.

Methods
We identified 182,000 men between the ages of 50 and 74 years through registries 
in seven European countries for inclusion in our study. The men were randomly 
assigned to a group that was offered PSA screening at an average of once every 4 years 
or to a control group that did not receive such screening. The predefined core age 
group for this study included 162,243 men between the ages of 55 and 69 years. The 
primary outcome was the rate of death from prostate cancer. Mortality follow-up 
was identical for the two study groups and ended on December 31, 2006.

Results
In the screening group, 82% of men accepted at least one offer of screening. During 
a median follow-up of 9 years, the cumulative incidence of prostate cancer was 8.2% 
in the screening group and 4.8% in the control group. The rate ratio for death from 
prostate cancer in the screening group, as compared with the control group, was 
0.80 (95% confidence interval [CI], 0.65 to 0.98; adjusted P = 0.04). The absolute risk 
difference was 0.71 death per 1000 men. This means that 1410 men would need to 
be screened and 48 additional cases of prostate cancer would need to be treated 
to prevent one death from prostate cancer. The analysis of men who were actually 
screened during the first round (excluding subjects with noncompliance) provided 
a rate ratio for death from prostate cancer of 0.73 (95% CI, 0.56 to 0.90).

Conclusions
PSA-based screening reduced the rate of death from prostate cancer by 20% but was 
associated with a high risk of overdiagnosis. (Current Controlled Trials number, 
ISRCTN49127736.)

The New England Journal of Medicine 
Downloaded from nejm.org on November 11, 2017. For personal use only. No other uses without permission. 
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1324 Table 1. Numbers of Subjects and Results of Screening, According to Study Center.* 

Variable The Netherlands Belgium Sweden Finland Italy Spain Switzerland Total

November 1993– 
March 2000

June 1991– 
December 2003

June 1991– 
December 2003

January 1996– 
January 1999

October 1996– 
October 2000

February 1996– 
June 1999

September 1998– 
August 2003

June 1991– 
December 2003

Total no. of subjects 34,833 8562 11,852 80,379 14,517  2197 9903 162,243

Screening group — no. (%) 17,443 (50.1) 4307 (50.3) 5,901 (49.9) 31,970 (39.8) 7,265 (50.0)  1056 (48.1) 4948 (50.0) 72,890 (44.9)

Control group — no. (%) 17,390 (49.9) 4255 (49.7) 5,951 (50.1) 48,409 (60.2) 7,252 (50.0)  1141 (51.9) 4955 (50.0) 89,353 (55.1)

Age at randomization — yr

All subjects

Mean 61.9 63.0 59.8 59.6 62.2 61.0 61.6 60.8

Median 61.7 63.0 59.7 58.7 61.8 60.4 61.1 60.1

Screening group

Mean 61.9 63.0 59.8 59.6 62.2 60.5 61.6 60.9

Median 61.7 63.0 59.7 58.7 61.7 59.7 61.0 60.3

Control group

Mean 62.0 63.0 59.8 59.6 62.2 61.4 61.7 60.7

Median 61.7 63.1 59.7 58.7 61.9 61.1 61.2 59.9

First round of screening — no. (%) 16,502 (94.6) 3795 (88.1) 3,649 (61.8) 20,796 (65.0) 4,961 (68.3) 1056 (100) 4721 (95.4) 55,480 (76.1)

Screening interval — yr 4 4–7 2 4 4 4 4 NA

Screened at least once — no. (%) 16,502 (94.6) 3876 (90.0) 4,466 (75.7) 23,608 (73.8) 5,675 (78.1) 1056 (100) 4740 (95.8) 59,923 (82.2)

No. of screening tests performed 34,526 6042 14,848 48,900 11,377 1846 8923 126,462

Positive PSA tests — no. (%)  7,707 (22.3)  984 (16.3) 2,751 (18.5) 5,528 (11.3) 1,267 (11.1)   354 (19.2) 1846 (20.7) 20,437 (16.2)

Biopsies — no. (%)  6,929 (89.9)  728 (74.0) 2,382 (86.6) 4,991 (90.3)   828 (65.4)   263 (74.3) 1422 (77.0) 17,543 (85.8)

Prostate cancers

Total detected in screening 
group — no. (%)

 1,736 (10.0) 363 (8.4)   697 (11.8) 2,493 (7.8)  280 (3.9)   68 (6.4) 353 (7.1) 5,990 (8.2)

Detected during screening  
— no.

 1,521 182 550 1,477 180 60 265 4,235

Detected outside of 
screening protocol — 
no.

   215 181 147 1,016 100  8  88 1,755

Positive predictive value of 
screening — %†

22.0 25.0 23.1 29.6 21.7 22.8 18.6 24.1

Total detected in control group  
— no. (%)

  685 (3.9) 252 (5.9) 421 (7.1) 2,632 (5.4)   133 (1.8)    24 (2.1)  160 (3.2) 4,307 (4.8)

* The results are for the predefined core age group for this study, which included men between the ages of 55 and 69 years. The dates that are listed for each country are the periods in 
which subjects underwent randomization. NA denotes not applicable, and PSA prostate-specific antigen.

† The positive predictive value of biopsy was calculated as the number of screen-detected cancers divided by the number of biopsies.
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As JH points out below, the 20% reduction in prostate cancer mortality in the

ERSPC is not a very meaningful figure. This use of a single average reminded

him of Francis Galton’s 1889 complaint: ‘It is di�cult to understand why statisticians

commonly limit their inquiries to Averages, and do not revel in more comprehensive views. Their

souls seem as dull to the charm of variety as that of the native of one of our flat English counties,

whose retrospect of Switzerland was that, if its mountains could be thrown into its lakes, two

nuisances would be got rid of at once.’

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Background The recently published European Randomized Study of Screening for Prostate Cancer
(ERSPC) reported prostate specific antigen (PSA)-based screening to have reduced the prostate cancer
death rate by only 20%. However, this is an underestimate caused by (i) including in the 20% the years
before the impact of the first screen becomes manifest, and (ii) not having full information for the follow-
up years where the effects of the screening are most apparent. This paper provides a re-analysis of the
results using time-specific measures, which avoid the first of these sources of error.
Methods Mortality rate ratios for follow-up years 1–12 were derived from the yearly numbers of
prostate cancer deaths and numbers of men being followed in each arm of the ERSPC. To reduce
statistical noise, they were based on moving three-year intervals, and a smooth rate ratio curve was
fitted to the yearly data, in order to measure the steady state reduction in mortality and to identify
the time at which it reached this level.
Results The re-analysis suggests that the sustained reduction in prostate cancer mortality may be
more than 50%.
Conclusion Re-analysis of the ERSPC data suggests that if screening is carried out for several years,
and if follow-up is pursued until the reduction becomes manifest, the reduction in mortality will be 50–
60%. An analysis that includes the 2007–2008 follow-up data is required to quantify more precisely
the impact of this intervention.

INTRODUCTION

T he European Randomized Study of Screening for
Prostate Cancer (ERSPC), which began enrolment
19 years ago, accrued 162,000 men. The ERSPC pub-

lication, in March 2009,1 reported a reduction in prostate
cancer mortality due to screening of 20%. This disappointing
result has prompted a number of organizations and auth-
orities to rethink their prostate cancer screening efforts and
their public health messages.

However, the 20% reduction is a substantial underesti-
mate, for two reasons. First, there is a considerable delay
between the time screening starts and the time the effect is
expected to be observed; the estimated 20% is an average
of the null reductions in years 1–7, before benefits could
become apparent, and the substantial reductions that
began to appear from year 8 onwards. Second, the
(proportional-hazards-type) summary measure (the 20%)
is sensitive to the duration of follow-up, which closed at
the end of 2006, after an average of just nine years of
follow-up (range 3–15). A re-analysis of these ERSPC data
that uses yearly rate ratios to avoid these two sources of
error suggests a mortality reduction, due to screening, of
more than 50%. However, a more precise measure will
not be available until the critical data from 2007 and 2008
(and beyond) are included in the analysis.

METHODS

Five randomized trials of prostate cancer screening have now
been reported. The numbers of men invited to the screening
arm in the two Swedish studies2,3 were 1500 and 2400,
respectively. The Quebec4 and USA5 studies enrolled a com-
bined total of 123,000 men (69,000 in the combined screen-
ing arms), but in each of these two studies the actual
screening activities in the screening and control arms dif-
fered so little that at best only a small difference in prostate
cancer mortality could be expected. The ERSPC enrolled
162,000 men aged 55–69 years at intake. The larger
sample size and substantial difference in the participation
rates in the two arms meant that it has considerably
greater resolving power.

In the ERSPC report, the effect of screening on prostate
cancer mortality was expressed as one number, derived from
the numbers of prostate cancer deaths over the entire period
of observation available for each man (range 3–15, average
9 years). Over this period, there were 214 prostate cancer
deaths in 643,401 man-years of observation in the screening
group and 326 in 785,585 man-years in the control group.
These are the basis for the reported rate ratio of 0.80, and
the conclusion that ‘prostate specific antigen (PSA)-based
screening reduced the rate of death from prostate cancer by
20%’ (95% CI: 2–35%). The article in the New England
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Exercise

i. Split the follow-up into two six-year intervals, 1-6 and 7-12, and compute

one rate ratio, and, from it, one estimated percent reduction – and as-

sociated 95% CI – for each interval. Carry out the calculations in two

ways, i.e., using an unconditional and a conditional approach.

ii. Why did the numbers of men being followed (or equivalently, the numbers

of person years) fall o↵ so much over the 12 years of followup? [Hint:
Refer to Table 1 and to the statement “the study was initiated in the
early 1990s ... Mortality follow-up ended on December 31, 2006”]

Journal of Medicine1 (NEJM) also contained a graph showing,
for each arm, the ‘cumulative risk’ of death from prostate
cancer. The two curves in this key graph are redrawn in the
current Figure 1a. On the basis of these curves, the authors
did note that ‘the rates of (prostate cancer) death in the two
study groups began to diverge after seven to eight years and
continued to diverge further over time’. This divergence is
here quantified, because it provides a more appropriate and
meaningful measure of the reduction in mortality produced
by screening than the reported 20% figure.

When studying the results of interventions which have
virtually immediate effects, such as vaccinations,6 many
medications7 and screening for abdominal aortic aneur-
ysms,8 it is logical to cumulate the outcome events from
the time the intervention commenced, and to report a
single rate ratio derived from a proportional hazards
model. However, as is seen in Figure 1a, there is a delay of
several years until the benefit of prostate cancer screening
becomes manifest and a single average mortality reduction,
obtained by cumulating all prostate cancer deaths, will

Figure 1 Comparison of prostate cancer mortality rates in two arms of European Randomized Study of Screening for Prostate Cancer (ERSPC).
The graphs and numbers in this figure are based on the individual-patient-data extracted from the individual-level postscript commands used in
Figure 2 of the NEJM report. For details on how these individual data were extracted, see the Methods section of the present report. (a)
Cumulative mortality curves, presented in the same format as in the original publication. As noted by the authors, ‘the rates of (prostate
cancer) death in the two study groups began to diverge after seven to eight years and continued to diverge further over time’. However, they
included the years of zero effect in their estimate of a reduction of overall average mortality of 20% (mortality rate ratio 0.80). ‘This is not an
appropriate measure of the impact of screening, since the numbers of cures attributable to the screening in year 1 to year T only become
apparent (as lower mortality rates in the screened than the control arm) in year (1 þ ?) to year (T þ ??)’. Note that T varied somewhat across
the seven ERSPC countries, and is used in a generic sense here. (b) Yearly prostate cancer mortality rate ratios, used for re-analysis. These are
designed to measure the timing and extent of the prostate cancer mortality reduction in years (1 þ ?) to (T þ ??) as a result of the screening in
years 1 to T. Each rate ratio was calculated by dividing the observed rate of prostate cancer deaths in the screening arm by the corresponding
rate in the control arm. The rate ratio shown above a given year is based on the data for that year together with the data in the years
immediately preceding and following it. The upper end of each vertical line denotes the upper 95% limit of the percentage reduction in
prostate-cancer mortality: the reductions in the three-year intervals centered on years 9 and beyond are statistically significant. The dotted line,
with an asymptote of 67%, beginning at 12 years, was fitted using the method of maximum likelihood (see Appendix A). The two shaded
regions represent the 50% and 80% confidence regions for these two parameters. The 80% CI associated with the 67% asymptote, derived
from the vertical range of the lighter grey region at 12 years, is 30–89%. The results of the re-analysis using time-specific rate ratios indicate
that the cures attributable to the screening in study year t only begin to become statistically apparent by year t þ 7 and later. They also
indicate that of those in the control arm who died (or will die) of prostate cancer in years 8–12 of the study, possibly as many as half of them
would not have died of prostate cancer had they been offered the programme. The 25–60% reductions seen in years 8–12 of the study
suggest a much greater numbers of cures attributable to the screening in year 1 to year T than the single overall 20% figure reported in the
original article, but further follow-up data are required to make a precise estimate
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Supplementary Exercise 13.5 Women are Safer Pilots

LONDON- Initial results of a study by Britain’s Civil Aviation Au-

thority shows that women behind the controls of a plane might be

safer than men. The study shows that male pilots in general avi-

ation are more likely to have accidents than female pilots. Only 6

per cent of Britain’s general aviation pilots are women. According

to the aviation magazine Flight International, there have been 138

fatal accidents in general aviation in the last 10 years, and only two

involved women - less than 1.5 per cent of the total.

Woman News, page F1 The Montreal Gazette, August 21st, 1995

In this example, since we do not know the absolute sizes of the 2 person-time

denominators, and thus cannot compute absolute rates, or the di↵erence in

rates, we are limited to an analysis of the Rate Ratio.

The large-sample unconditional methods for obtaining a CI for a rate ratio

are both tractable and accurate when there are enough events in each of the

compared categories. But in this example, and in supp. exercise 13.4, the

small number of events in one of the categories (2 in this example, 0 in the

next example) renders large-sample methods inaccurate or even impossible.

In such situations, the conditional approach, in which one bases the inference

on the distribution of the number of events in one category, conditional on

the sum of the numbers of events in the two categories, is one way around this

problem (we use a similar conditioning strategy when dealing with Fisher’s

exact test). As C&H tell us at the top of p. 129, the profile likelihood –

which has a binomial form – is the same as the conditional likelihood, and

thus the same inference, in this type of example. But can we approximate this

‘binomial likelihood’ by a ‘Normal approximation to binomial likelihood’ (as

C&H do in their example in Chapter 13

7
and still have accurate answers? In

order to compare inferences based on an exact-conditional versus approximate-

conditional approach to this particular example, we will compute interval-

estimates for the ratio of the rates of accidents in women relative to men

pilots using di↵erent approaches.

For simplicity, in what follows, assume that on average, women pilots fly just

as many hours as the men pilots, and that all other relevant factors are equal,

although they probably are not! – the true denominator ratio is probably

more extreme than 6:94.

i. Compute a 90% frequentist interval for the rate ratio ✓ by treating the

7The Spiegelhalter et al. text routinely uses a ‘normal likelihood’ (and ‘normal prior’).

observed 2:136 split of the 138 cases as the realization of a binomial ran-

dom variable, with n = 138,⇡ =

6✓
6✓+94 . Do so by converting the 90%CI

for ⇡ into a 90% CI for ✓. Obtain the 90%CI for ⇡ in two ways:- (a) using

an exact (Clopper-Pearson) CI for ⇡ (b) using a normal-approximation

to the distribution of ⇡̂

ii. Compute a 90% interval for the rate ratio ✓ using the Likelihood Ratio

criterion of 0.258 i.e the Log Likelihood Ratio criterion of -1.353 [see

C&H’s remarks on page 22, and on pages 89-91].

Do so in 3 ways, using

(a) the (binomial) likelihood L(✓),

(b) the (binomial) likelihood L(log[✓]),

(c) a normal-approximation to the (binomial) likelihood L(log[✓]) [see

C&H Ch. 9]

iii. Compute a 90% credible interval for the rate ratio ✓ by treating the

observed 2:136 split of the 138 cases as the realization of a binomial

random variable, with n = 138,⇡ =

6✓
6✓+94 . Again, obtain it in two ways:-

using the binomial likelihood itself, along with a suitable (say a Beta)

prior; using, as Spiegelhalter et al do, a normal-approximation to the

likelihood, and a normal (i.e., Gaussian) prior.

iv. Compute a 90% interval for the rate ratio ✓ using generalized linear model

software, a logit link, and a single binomial observation (see example

above). Which of the methods is the estimate from GLM equivalent to?

v. (In point/bullet form] what are the take-home data-analysis messages

from this exercise?

7



BIOS601: Notes, C&H. Ch 13(Rate ratio). November 11, 2017.

Supplementary Exercise 13.6: A Controlled Trial of a Human Papillo-

mavirus Type 16 Vaccine

Background: Approximately 20 percent of adults become infected with human papillo-

mavirus type 16 (HPV-16). Although most infections are benign, some progress to anogeni-

tal cancer. A vaccine that reduces the incidence of HPV-16 infection may provide important

public health benefits.

Methods: In this double-blind study, we randomly assigned 2392 young women (defined

as females 16 to 23 years of age) to receive three doses of placebo or HPV-16 virus-like-

particle vaccine (40 µg per dose), at day 0, month 2, and month 6. Genital samples to test

for HPV-16 DNA were obtained at enrollment, one month after the third vaccination, and

every six months thereafter. Women were referred for colposcopy according to a protocol.

Biopsy tissue was evaluated for cervical intraepithelial neoplasia and analyzed for HPV-16

DNA with use of the polymerase chain reaction. The primary end point was persistent

HPV-16 infection, defined as the detection of HPV-16 DNA in samples obtained at two or

more visits. The primary analysis was limited to women who were negative for HPV-16

DNA and HPV-16 antibodies at enrollment and HPV-16 DNA at month 7.

Results: The women were followed for a median of 17.4 months after completing the vacci-

nation regimen. The incidence of persistent HPV-16 infection was 3.8 per 100 woman-years

at risk in the placebo group and 0 per 100 woman-years at risk in the vaccine group (100

percent e�cacy; 95 percent confidence interval, 90 to 100; P<0.001).All nine cases of HPV-

16-related cervical intraepithelial neoplasia occurred among the placebo recipients.

Conclusions: Administration of this HPV-16 vaccine reduced the incidence of both HPV-

16 infection and HPV-16-related cervical intraepithelial neoplasia. Immunizing HPV-16-

negative women may eventually reduce the incidence of cervical cancer.

(N Engl J Med 2002;347:1645-51.). See full article on Resources-Applications webpage.

i. Why this design rather than a “fixed number of woman-years-of-follow-

up” design?

ii. Let I denote incidence, v denote the vaccinated and u the unvaccinated,

[Clayton and Hills use the general letters �

v

and �

u

]. Let IR denote

the incidence ratio I

v

/I

u

, [Clayton and Hills use the general letter ✓].

‘Vaccine e�cacy’ (E) is defined as a percentage

E = 100⇥(I

u

�I

v

)/I

u

= 100⇥(1�I

v

/I

u

) = 100⇥(1�IR) = 100⇥(1�✓)

Consider a very large R.C.T., so that random variation is not an issue.

A fraction F

v

received the vaccine, and the average follow-up time was

PT

V

units; the remaining fraction F

u

= 1�F

v

received the placebo, and

the average follow-up time was PT

U

units. Denote the number of cases

(of persistent infection) in the un-vaccinated sub-population by C

u

and

the corresponding number of cases in the vaccinated sub-population by

C

v

. Let C

total

= C

u

+ C

v

.

[Clayton and Hill use the letter D, presumably to stand for numbers of

deaths; we use the more general letter C for ‘cases of’ , i.e., ‘transitions’

from the initial state (HPV-) to the state the vaccine is intended to

prevent (persistent HPV+).] Let ⇧ = C

v

/C

total

denote the (theoretical)

proportion of proportion of all cases that had been vaccinated.

• Assuming the rate ratio remains constant over time, express the param-

eter ⇧ as a function of (a) the design parameters F

v

and PT

v

/PT

u

, and

the parameter IR (or ✓), (b) the design parameters F

v

and PT

v

/PT

u

,

and the parameter E.

• Show the mathematical link between these parameters and the ones

C&H use at the top of page 127.

iii. In the actual study cited above, the primary per-protocol e�cacy analysis

was based on observing persistent HPV-16 infection in 0 of 768 vaccinated

women followed for 1084.0 woman years (w-y) and 41 in 765 unvaccinated

women followed for 1076.9 women years (rate 3.8 per 100w-y).

This problem is similar in structure to that analyzed by C&H in their

exercise 13.1 & 13.3. Examine the methods they used (their solutions are

on p. 131-132.) Is it possible to use C&H’s method with the HPV data?

If so, carry them out. If not, describe what other approach(es) is(are)

possible, and carry it(them) out.

iv. (In point/bullet form) what are the take-home data-analysis messages

from this exercise?

Supplementary Exercise 13.7: Extended Work Duration and the Risk of

Self-reported Percutaneous Injuries in Interns

Refer to rows 2 and 3 of Table 3. in this article, by Ayas et al. in JAMA on

Sept 6 of 2006. [Resources - Intensity]

i. Manually calculate ORs and 95% CIs, and repeat by computer software.

ii. Explain why your answers do not match those reported (hint: see the

paragraph beginning “To assess the relationships...” in the last column

of page 1057 of the article.

iii. exactly what (and how many) numbers would you need to carry out their

analysis for row 3 (injuries in ICU). Answer in the form of a 1-paragraph

request to the authors asking for these specific numbers (but do not e-

mail the authors! JH has in fact obtained these numbers from Dr Ayas,

and they will form the basis for some of a future homework).

iv. Is OR the correct term for the ratio being estimated here?

8
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Supplementary Exercise 13.8: Cancer Risk among Children Born

after Assisted Conception

8

BACKGROUND: Accurate population-based data are needed on the incidence of cancer in
children born after assisted conception.

METHODS: We linked data on all children born in Britain between 1992 and 2008 after assisted
conception without donor involvement with data from the United Kingdom National Registry of
Childhood Tumours to determine the number of children in whom cancer developed before 15
years of age. Cohort cancer rates were compared with population-based rates in Britain over
the same period, with stratification for potential mediating and moderating factors, including
sex, age at diagnosis, birth weight, singleton versus multiple birth, parity, parental age, type of
assisted conception, and cause of parental infertility.

RESULTS: The cohort consisted of 106,013 children born after assisted conception (700,705
person-years of observation). The average duration of follow-up was 6.6 years. Overall, 108
cancers were identified, as compared with 109.7 expected cancers (standardized incidence ratio,
0.98; 95% confidence interval [CI], 0.81 to 1.19; P=0.87). Assisted conception was not associated
with an increased risk of leukemia, neuroblastoma, retinoblastoma, central nervous system tu-
mors, or renal or germ-cell tumors. It was associated with an increased risk of hepatoblastoma
(standardized incidence ratio, 3.64; 95% CI, 1.34 to 7.93; P=0.02; absolute excess risk, 6.21 cases
per 1 million person-years) and rhabdomyosarcoma (standardized incidence ratio, 2.62; 95% CI,
1.26 to 4.82; P=0.02; absolute excess risk, 8.82 cases per 1 million person-years), with hepato-
blastoma developing in 6 children and rhabdo-myosarcoma in 10 children. The excess risk of
hepatoblastoma was associated with low birth weight.

CONCLUSIONS: There was no increase in the overall risk of cancer among British children
born after assisted conception during the 17-year study period. Increased risks of hepatoblastoma
and rhabdomyosarcoma were detected, but the absolute risks were small. (Funded by Cancer
Research UK and others.)

STATISTICAL ANALYSIS (in the Methods section): Person-years at risk were calcu-

lated from the date of birth until the date of a cancer diagnosis, December 31, 2008, or

the child’s 15th birthday, whichever came first, and were categorized according to sex, age

at diagnosis (0, 1 to 4, 5 to 9, or 10 to 14 years), birth weight, gestational age at birth,

singleton or multiple birth, parity, maternal and paternal age, type of assisted conception,

fresh or cryopreserved embryos, and cause of parental infertility. To determine the expected

number of cancers in the cohort if the risk for cohort members was the same as that for

the general population, we used the calculated person-years at risk in conjunction with the

NRCT cancer incidence rates for the general population of Britain of the same age during

the same period.29 9 See Figure S2 in the Supplementary Appendix for details of planned

analyses. The number of observed cancers was assumed to follow a Poisson distribution.

Standardized incidence ratios, the ratio of observed to expected numbers of cancers, and

exact 95% confidence intervals were calculated. P values of less than 0.05, calculated on the

basis of the chi-square test,29 were considered to indicate statistical significance. Analyses

were performed with the use of STATA software, version 11.30

8N Engl J Med 2013;369:1819-27.
9The reference is to 29. Breslow NE, Day NE. Statistical methods in cancer research.

Vol. 2. The design and analyses of cohort studies. Lyon, France: International Agency for
Research on Cancer, 1987. (IARC scientific publications no. 82.) See also the textbook by
Armitage and Berry, or JH’s Notes for the intensity parameter of the Poisson distribution.

i. “Overall, 108 cancers were identified, as compared with 109.7 expected
cancers (standardized incidence ratio, 0.98; 95% confidence interval [CI],
0.81 to 1.19; P=0.87).”

Compute both the 95% CI and the P-value using (a) the exact distribu-

tion of a Poisson random variable; (b) the normal approximation to this

random variable; (c) the normal approximation to the log of this random

variable; the Poisson distribution in a generalized linear model with (e)

identity and (f) log link. For all analyses assume that the 109.7 is a scaled

down version of the UK childhood cancer counts, scaled down to match

the age-year distribution of the 700,705 child years of observation of the

cohort.

10

ii. “It was associated with an increased risk of hepatoblastoma (standardized
incidence ratio, 3.64; 95% CI, 1.34 to 7.93; P=0.02; absolute excess risk,
6.21 cases per 1 million person-years) and rhabdomyosarcoma (standard-
ized incidence ratio, 2.62; 95% CI, 1.26 to 4.82; P=0.02; absolute excess
risk, 8.82 cases per 1 million person-years)”

Show how, just from the information in the reported “(standardized in-

cidence ratio, 3.64; 95% CI, 1.34 to 7.93)” and the table of CI’s for the

mean of a Poisson random variable, back-calculate the number of chil-

dren in whom hepatoblastomas developed, and how many would have

been expected based on the general UK rates. Hint : see “3.2 Leukemia

Rate Triples near Nuke Plant: Study” in the “Notes for intensity rates:-

models”.

iii. According to the USA SEER data from 1975-1995 (see below), the %

distribution of childhood (to age 15) cancers over the XII major ICCC

categories is: 31.5, 10.7, 20.2, 7.8, 3.1, 6.3, 1.3, 4.5, 7, 3.5 , 3.5, 0.5.

Conditional on the sum y = y1 + y2 of y1 ⇠ Poisson[µ1] and y2 ⇠
Poisson[µ2] random variables, the distribution of the {y1, y2} split is bi-

nomial with parameter ⇡ = µ1/(µ1 + µ2), 1� ⇡ = µ2/(µ1 + µ2).

Likewise, the (sum-conditional) distribution of the split of several (e..g.

XII) Poisson counts, is multinomial with ⇡

j

= µ

j

/(µ1 + · · ·+ µ

XII

).

Using the 12 above percentages as multinomial relative frequencies, and

e.g., rmultinom in R, simulate how likely it would be, in 108 such cancers,

to obtain a statistically significant excess in at least one ICCC category.

10From UK O�ce of National Statistics & USA SEER: The numbers of births in England
and Wales went steadily down from 690K to 590K from 1992 to 2001 and then steadily up
to 708K in 2008. “The estimated populations of the four constituent countries of the UK in
mid-2012 are 53.5 million people in England, 5.3 million in Scotland, 3.1 million in Wales
and 1.8 million in Northern Ireland.” SEER covers ⇡ 14% of USA population]

9
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INTRODUCTION

2National Cancer Institute SEER Pediatric Monograph

Table 1: Percent distribution of childhood cancers by ICCC category
and age group, all races, both sexes, SEER, 1975-95

Age
<5 5-9 10-14 15-19 <15 <20

All Sites  - Number of cases 9,402 5,024 5,419 9,814 19,845 29,659
% % % % % %

All Sites 100.0 100.0 100.0 100.0 100.0 100.0
36.1 33.4 21.8 12.4 31.5 25.2

    Ia - Lymphoid Leukemia 29.2 27.2 14.7 6.5 24.7 18.7
      Ia - excl. Acute Lymphoid 0.2 0.3 0.2 0.1 0.2 0.2
      Acute Lymphoid 29.0 27.0 14.5 6.4 24.5 18.5
    Ib - Acute Leukemia 4.6 4.1 5.4 4.1 4.7 4.5
      Ib - excl. Acute Myeloid 1.9 0.9 1.6 0.9 1.5 1.3
      Acute Myeloid 2.8 3.2 3.8 3.2 3.2 3.2
    Ic - Chronic myeloid leukemia 0.6 0.7 0.9 1.2 0.7 0.9
    Id - Other specified leukemias 0.2 0.2 0.1 0.1 0.2 0.2
    Ie - Unspecified leukemias 1.4 1.2 0.8 0.5 1.2 1.0

3.9 12.9 20.6 25.1 10.7 15.5

    IIa - Hodgkins' disease 0.4 4.5 11.4 17.7 4.4 8.8
    IIb - Non-Hodgkins' Lymphoma 2.0 5.2 6.1 6.0 4.0 4.6
    IIc - Burkitt's lymphoma 0.8 2.4 1.9 0.6 1.5 1.2
    IId - Miscellaneous lymphoreticular

neoplasms
0.4 0.2 0.3 0.2 0.3 0.3

    IIe - Unspecified lymphomas 0.3 0.7 0.9 0.7 0.6 0.6
16.6 27.7 19.6 9.5 20.2 16.7

    IIIa - Ependymoma 2.6 1.3 1.1 0.5 1.9 1.4
    IIIb - Astrocytoma 6.7 14.2 11.8 6.0 10.0 8.7
    IIIc - Primitive neuroectodermal tumors 4.3 6.3 3.1 1.0 4.5 3.3
    IIId - Other gliomas 2.2 5.0 2.9 1.5 3.1 2.6
    IIIe - Miscellaneous intracranial and

intraspinal neoplasms
0.2 0.3 0.3 0.3 0.3 0.3

    IIIf - Unspecified intracranial and
intraspinal neoplasms

0.5 0.6 0.4 0.2 0.5 0.4

14.3 2.7 1.2 0.5 7.8 5.4
    IVa - Neuroblastoma and

ganglioneuroblastoma
14.0 2.6 0.8 0.3 7.5 5.1

    IVb - Other sympathetic nervous system
tumors

0.3 0.1 0.3 0.1 0.3 0.2

6.3 0.5 0.1 0.0 3.1 2.1
9.7 5.4 1.1 0.6 6.3 4.4

    VIa - Wilms' tumor, rhabdoid and clear cell
sarcoma

9.7 5.2 0.7 0.2 6.1 4.2

    VIb - Renal carcinoma 0.1 0.1 0.4 0.4 0.2 0.2
    VIc - Unspecified malignant renal tumors 0.0 0.0 0.0 0.0 0.0 0.0

  I(total) - Leukemia

  II(total) - Lymphomas and
reticuloendothelial neoplasms

  III(total) - CNS and miscellaneous
intracranial and intraspinal
neoplasms

  IV(total) - Sympathetic nervous system

  V(total) - Retinoblastoma
VI(total) - Renal tumours
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Table 1 (cont’d): Percent distribution of childhood cancers by ICCC category
and age group, all races, both sexes, SEER, 1975-95

  Age
<5 5-9 10-14 15-19 <15 <20

All Sites  - Number of cases 9,402 5,024 5,419 9,814 19,845 29,659
% % % % % %

2.2 0.4 0.6 0.6 1.3 1.1
    VIIa - Hepatoblastoma 2.1 0.2 0.1 0.0 1.0 0.7
    VIIb - Hepatic carcinoma 0.1 0.3 0.5 0.5 0.3 0.3
    VIIc - Unspecified malignant hepatic

tumors
0.0 0.0 0.0 0.0 0.0 0.0

0.6 4.6 11.3 7.7 4.5 5.6
    VIIIa - Osteosarcoma 0.2 2.2 6.6 4.4 2.4 3.1
    VIIIb - Chondrosarcoma 0.0 0.1 0.6 0.6 0.2 0.3
    VIIIc - Ewing's sarcoma 0.3 2.1 3.7 2.3 1.7 1.9
    VIIId - Other specified malignant bone

tumors
0.1 0.1 0.3 0.3 0.2 0.2

    VIIIe - Unspecified malignant bone tumors 0.0 0.1 0.1 0.1 0.1 0.1
5.6 7.5 9.1 8.0 7.0 7.4

    IXa - Rhabdomyosarcoma and embryonal
sarcoma

3.4 4.2 2.8 1.9 3.4 2.9

    IXb - Fibrosarcoma, neurofibrosarcoma and
other fibromatous neoplasms

1.0 1.4 3.1 3.1 1.7 2.1

    IXc - Kaposi's sarcoma 0.0 0.1 0.0 0.1 0.0 0.1
    IXd - Other specifed soft-tissue sarcomas 0.7 1.2 2.2 2.1 1.3 1.5
    IXe - Unspecifed soft-tissue sarcomas 0.4 0.7 1.0 0.9 0.6 0.7

3.3 2.0 5.3 13.9 3.5 7.0

    Xa - Intracranial and intraspinal germ-cell
tumors

0.2 0.8 1.3 0.9 0.7 0.7

    Xb - Other and unspecified non-gonadal
germ-cell tumors

1.7 0.1 0.5 1.4 1.0 1.1

    Xc - Gonadal germ-cell tumors 1.4 1.1 3.0 9.4 1.7 4.2
    Xd - Gonadal carcinomas 0.0 0.0 0.4 1.9 0.1 0.7
    Xe - Other and unspecified malignant

gonadal tumors
0.0 0.1 0.1 0.3 0.1 0.1

0.9 2.5 8.9 20.9 3.5 9.2

    XIa - Adrenocortical carcinoma 0.2 0.1 0.1 0.1 0.1 0.1
    XIb - Thyroid carcinoma 0.1 1.0 3.5 7.4 1.2 3.3
    XIc - Nasopharyngeal carcinoma 0.0 0.1 0.7 0.8 0.2 0.4
    XId - Malignant melanoma 0.4 0.7 2.0 6.8 0.9 2.9
    XIe - Skin carcinoma 0.0 0.0 0.1 0.1 0.0 0.0
    XIf - Other and unspecified carcinomas 0.2 0.7 2.5 5.7 1.0 2.5

0.5 0.3 0.6 0.8 0.5 0.6

    XIIa - Other specified malignant tumors 0.1 0.1 0.1 0.3 0.1 0.1
    XIIb - Other unspecified malignant tumors 0.4 0.3 0.5 0.5 0.4 0.4

  VIII(total) - Malignant bone tumors

  IX(total) - Soft-tissue sarcomas

  X(total) - Germ-cell, trophoblastic and
other gonadal tumors

  XI(total) - Carcinomas and other
malignant epithelial
neoplasms

  XII(total) - Other and unspecified
 malignant neoplasms

  VII(total) - Hepatic tumors
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