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15 Comparisons of rates within strata

15.1 The proportional hazards model

In this example, the p.h. model is used to reduce the dimension of the problem
from a likelihood with 6 parameters for 6 rates

stratum(s) - 1 �s1,1 �s1,0
stratum(s) - 2 �s2,1 �s2,0
stratum(s) - 3 �s3,1 �s3,0

to one with 4 parameters for 6 rates

stratum(s) - 1 ✓�s1,0 �s1,0
stratum(s) - 2 ✓�s2,0 �s2,0
stratum(s) - 3 ✓�s3,0 �s3,0

and from there, by use of either a profile likelihood or a likelihood based
on conditional distributions, to one with the 1 parameter of interest, ✓, the
(assumed constant over strata) rate ratio.

As we will see, in the case where the Poisson denominators are known (rather
than estimates based on sampling), one can also fit the 4 parameter model by
an unconditional approach but focus only on the parameter of interest, ✓.

15.2 “The” likelihood for ✓

JH put quotes around The, since we need to be a bit more careful here. There
are 3 possible likelihoods: 2 of them, the profile and ‘conditional’ likelihoods,
are 1-dimensional, and happen in this case to coincide with each other, and the
3rd just-mentioned one, the ‘unconditional’ likelihood, which is 4-dimensional.

C&H use the 1-dimensional likelihood, and in particular the profile version.

They start with the 4-D log-likelihood

LL(✓, �s1,0, �s2,0, �s3,0)

obtained as a sum of 6 cell-specific contributions. They then use profiling
within each stratum to eliminate the �stratum,0 so that the 2 cells in a stratum
contribute a stratum-specific LLprofile(✓) and so that the profile likelihood

based on all 3 strata is

LLprofile(✓) =
X

i

{Dsi,1 log(⌦i)�Dsi log(1 + ⌦i)},

where, in stratum i,
⌦i = ✓ ⇥ (Ysi,1/Ysi,0).

Just as in chapter 13, with unstratified data, this profile log-likelihood is
exactly the same as the log-likelihood for 3 binomial observations, each with
its own ⌦. However, all all 3 ⌦’s are connected by the single parameter of
interest, ✓, and three constants Ys1,1/Ys1,0, Ys2,1/Ys2,0, and Ys3,1/Ys3,0, so
we can write this as a generalized linear model, with 3 binomial observations,

stratum denom(D) num(D
1

) Y.ratio = Y1
Y0

log(⌦) = log

✓
E(D1)

D�E(D1)

◆

1 6 2 0.513 log(✓) + log(0.513)
2 17 12 0.690 log(✓) + log(0.690)
3 22 14 0.751 log(✓) + log(0.751)

Supplementary Exercise 15.1, based on C&H’s 3-age-strata example

i. Create the function log-likelihood(✓) in R, and maximize it with respect
to ✓ using optimize or otherwise. From the curvature, calculate the SE
for ✓̂ML.

Repeat, but focusing on log-likelihood(�), where � = log[✓], and compare
your results with those of C&H.

ii. Did C&H pick a good example where a confounding factor (here age), if
ignored, would lead to a very di↵erent (and very wrong) answer? Answer
by calculating ✓̂ML for the aggregated data (as in Chapter 13, i.e. before
they segregated the data by age). Note the di↵erence between aggregating
raw data across strata, and aggregating parameter estimates (by summing
likelihoods, or by some other weighting) across strata.

iii. Instead of explicitly defining and maximizing the conditional/profile like-
lihood, which simplifies in this example to a 1-parameter binomial-based
likelihood, obtain ✓̂ML using a GLM, for example, in R:

D1=c(2,12,14); D=c(6,17,22); X=c(1,1,1);

Y.ratio=c(311.9/607.9, 878.1/1272.1, 667.5/888.9);
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fit=glm(cbind(D1,D-D1)~-1+X,family=binomial,offset=log(Y.ratio))

summary(fit)

beta.hat=log.theta.hat=fit$coefficients;

theta.hat=exp(log.theta.hat)

Var.beta.hat = summary(fit)$cov.unscaled[1,1]

c(beta.hat,theta.hat,Var.beta.hat)

and verify that fitting this GLM leads to the same \log(✓) = 0.8697

and SE(\log(✓)) = 0.3080 that C&H report at the bottom/top of page
142/143.

iv. What would happen if you used the same p.h. model but fitted all 4
parameters in an unconditional approach? Use this code to see: you
have 6 Poisson observations, the link is a log link, and the 6 log(y)’s
serve as o↵sets.

Comment on your results.

D.all6 = c(D1,D-D1) ; Index.category=c(1,1,1,0,0,0);

Y.all6=c(311.9,878.1,667.5, 607.9,1272.1,888.9);

Stratum=c(1:3,1:3)

cbind(Stratum,Index.category,D.all6,Y.all6)

Poisson.fit=glm(D.all6 ~ as.factor(Stratum) + Index.category ,

family=poisson,offset=log(Y.all6))

summary(Poisson.fit)

exp(Poisson.fit$coefficients)

v. Remember to ask next term’s MATH523 (GLM) teacher to explain to
you why you get the (dis)agreement you get between the conditional and
unconditional approaches to Poisson data.

Also ask the teacher (or try it for yourself) whether you would you get
the same odds ratio if you fitted an unconditional (2-binomial) model
and the conditional (non-central hypergeometic) model to the frequencies
{a=3,b=2,c=1,d=1}? Hint : see Breslow and Day, Volume I, page xxx.

ML point- (& interval) Estimates via Newton-Raphson

1

Method

From http://en.wikipedia.org/wiki/Newton’s method ...

In numerical analysis, Newton’s method (also known as the Newton-
Raphson method, named after Isaac Newton and Joseph Raphson)
is perhaps the best known method for finding successively better ap-
proximations to the zeroes (or roots) of a real-valued function f(x).
Newton’s method can often converge remarkably quickly, especially
if the iteration begins “su�ciently near” the desired root. Just how
near “su�ciently near” needs to be, and just how quickly “remark-
ably quickly” can be, depends on the problem. This is discussed in
detail below. Unfortunately, when iteration begins far from the de-
sired root, Newton’s method can easily lead an unwary user astray
with little warning. Thus, good implementations of the method em-
bed it in a routine that also detects and perhaps overcomes possible
convergence failures.

Given a function f(x) and its derivative f 0(x), we begin with a first
guess x

0

. A better approximation x
1

is

x
1

= x
0

� f(x
0

)

f 0(x
0

)

Newton’s method can also be used to find a minimum or maximum
of such a function, by finding a zero in the function’s first derivative.

In our case, we seek the root of the function f(✓) = dLogL/d✓, so the iteration
takes the form

✓̂new = ✓̂previous �
dLogL/d✓

d2LogL/d✓2

����
✓=ˆ✓previous

.

Exercises in previous years: Using the Newton-Raphson method, repeat
Supplementary Exercise 3.1 (Estimation of �2 from grouped data), Exercise
3.2 (Estimation of concentration via a dilution series) via the Newton-Raphson
method; Supplementary Exercise 5.1 (Estimation of (constant across time-
bands) rate parameter � from censored HIV data).

1JH included this NewtonRaphson technique in the early years of BIOS601, before he
was introduced to the optimize and optim functions in R. He still believes students should
know this technique and be able to ‘roll their own’ maximization routines when needed.
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15.3 ✓ = RateRatio ! ✓̂Mantel�Haensel ' ✓̂ML a l m o s t !

The key is the form of the ✓ estimator shown in the middle of page 144.

✓̂ML =

P
Dsi,1 ⇥ Ysi,0/(Ysi,0 + ✓̂MLYsi,1)P
Dsi,1 ⇥ Ysi,0/(Ysi,0 + ✓̂MLYsi,1)

C&H note that the profile and conditional likelihoods are both the same, and
are based on the fitting of 3 binomials with di↵erent ⌦’s, as above. You
can work through their math at the top of page 144. You can also arrive at
the estimator by using an estimating equation directly. In this case, we are
estimating a single parameter ✓ and so there is only 1 estimating equation,
and as in all generalized models, the first estimating equation is that the sum
of the observed y values must equal the sum of the fitted or expected values.
In our case, the 3 observed values areDs1,1, Ds2,1 and Ds3,1, so the estimating
equation is X

i

Dsi,1 =
X

i

E[Dsi,1] =
X

i

[Dsi,1.

Now

[Dsi,1 = Dsi ⇥
✓̂Y

1

Y
0

+ ✓̂Y
1

,

and so our estimating equation is

X

i

Dsi,1 =
X

i

Dsi ⇥
✓̂Y

1

Y
0

+ ✓̂Y
1

.

If we now break up each Dsi into its two components, we get

X

i

Dsi,1 =
X

i

Dsi,0 ⇥
✓̂Y

1

Y
0

+ ✓̂Y
1

+
X

i

Dsi,1 ⇥
✓̂Y

1

Y
0

+ ✓̂Y
1

.

After re-arranging terms, we get

X

i

Dsi,1

✓
1� ✓̂Y

1

Y
0

+ ✓̂Y
1

◆
=

X

i

Dsi,0 ⇥
✓̂Y

1

Y
0

+ ✓̂Y
1

,

or
X

i

Dsi,1

✓
Y
0

Y
0

+ ✓̂Y
1

◆
=

X

i

Dsi,0 ⇥
✓̂Y

1

Y
0

+ ✓̂Y
1

,

or as

✓̂ =

P
i
Dsi,1⇥Y0

Y0+
ˆ✓Y1P

i
Dsi,0⇥Y1

Y0+
ˆ✓Y1

,

or, with Wi = 1/(Y
0

+ ✓̂Y
1

), as

✓̂ =

P
i Wi ⇥Dsi,1 ⇥ Y

0P
i Wi ⇥Dsi,0 ⇥ Y

1

.

One can also arrive at this as C&H did, by setting to zero the sums of the 3
derivatives of the profile log likelihood with respect to log(✓), or with respect
to ✓ itself, and finding the root. Either way, the estimating equation is always
the ‘balancing equation’,

X

strata

observed no. of exposed cases =
X

strata

fitted no. of exposed cases,

used above.

Supplementary Exercise 15.2 Follow the iterative re-weighting scheme
1.2.3. described by C&H on the bottom of page 144 to arrive at ✓̂ML.

Note: The iterative re-weighting scheme produces the ML point estimate,
but does not provide a measure of precision for it. The Newton-Raphson
procedure and the optimize procedure do, since they use an analytical or
numerical version of the second derivative of the log-likelihood.

Note also that if we write the log-likelihood as a function of � = log(✓) rather
than log(✓), and carry out the N-R (or optimize) procedure on the � scale to
obtain a ML point estimate of �, then to get back to the CI on the Rate Ratio
scale, you would use the SE on the log scale to get a symmetric (z-based) CI,
then convert it a CI for ✓ = exp(�)
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Supplementary Exercise 15.3 See section (c) of section 3.6 of Breslow and
Day Vol II. There they say that the ML estimation of the rate ratio  from
stratified PT data requires iterative calculations, so let’s iterate...

We will use B&D’s Example 3.11, with data, shown in Table 3.14, from J = 13
age-period strata.

:ratively the 

an approxi- 
ion (4.27) in 

vy exposure to 
< 2 tables from 
in Table 3.14. 

I particularly in 
igher exposure 
es for the two 
: summary test 
,,) is 1.144= 
hese values are 
standard error 
. Approximate 
ons (3.19) are 
lries are shown 

el or other 
10 exposure 
r groupings 
3r trends in 
nerally not 
~easured by 
to evaluate 
xposed and 
e summary 
i to test for 
:ase-control 

i or fitted 
among the 
ulations, in 
j will agree 
> the MLE 

COMPARISONS OF EXPOSURE GROUPS 

Table 3.14 Series of  2 x 2 tables used in  example 3.1 1. Low exposure ( - ) means less 
than 1 year of  heavy o r  moderate arsenic exposure; high exposure ( + ) means 15+ 
years 

Age (years) Calendar period 

1938-1949 1950-1959 1960-1969 1970-1977 
-4.- 

Exposure - + - + 

Exposure - + - + - + 

Exposure - + - + - + - + 

b 
Exposure - + - + - + - + 

d = observed deaths: d =fined deaths under ML estimate of common rate ratio; n = person-years denominator; 4 = rate ratio in each table 

I! that fitted values based oni t  yield nearly identical results. Moreover, if O2 = C j  dj2 and 
C, a,, based on MH differ, say by more than 1%, a 'one-step' correction of BMH 
towards the MLE is available as 

! Fitted values a,, and 'aj2 determined from the corrected MH estimator $c = exp (bc) 
should be adequate for use in what follows if the MLE itself is not available. 

To test for a general difference among the rate ratios in the J strata, we compare,the 

Again interest is in the rate ratio parameter  = �j1/�j0, assumed (for now)
to be constant over the J strata.

Thus, for each of the J strata, Oj1 | Dj ⇠ Binomial(Dj ,⇡j), where

⇡j =  ⇥ PTj1/( ⇥ PTj1 + PTj0).

Note the switch of notation, from Oj+ to Dj , and subscripts 1 and 0 for exposed and not.

i. Derive the ML estimating equation (3.15) for  ̂condn0l,

j=JX

j=1

Dj1 = O
1

= E
1

= E

✓ j=JX

j=1

Dj1; 

◆
=

j=JX

j=1

Dj nj1/(nj0 +  nj1),

by obtaining the expression for d logL/d and setting it to zero.

B&D say that

In large samples the most accurate estimator of  is the max-
imum likelihood estimate, obtained by setting the overall ob-
served number of deaths D

2

in the exposed group (index cate-
gory) overall equal to its expected value.

ii. Use the Newton-Raphson iterative method to find the root of the
d logL/d function, ie

 ̂(k+1) =  ̂(k) +
d logL/d 

d2 logL/d 2

����
ˆ (k)

=  ̂(k) +
⌃jd logLj/d 

⌃jd2 logLj/d 2

����
ˆ (k)

.

iii. How does the iteration change if we rewrite the Likelihood, and thus the
log Likelihood, in terms of �, where  = exp(�)?

iv. Obtain  ̂condn0l from a generalized linear model (Binomial) fitted to the
13 binomial observations. The stratified data are available in the BIOS602 website

in the ‘Inference re Rates -regression methods’ resources. Note that one can specify

Binomial (rather than Bernoulli) data by using as ‘y’ a matrix with 2 columns: the

numbers positive and negative, i.e.

glm(cbind(‘# +ve’ vector,‘#no. -ve’ vector) ⇠ . . . , family=binomial, ...).

v. Obtain  ̂uncondn0l from a generalized linear model (Poisson, 14 param-
eters) fitted to the (j = 1, . . . , 13) ⇥ (i = 0, 1) = 26 observations
{Oji, PTji}.
Are your estimates in agreement with Breslow and Day’s statement (lines
5-6, page 109) that under the Poisson model,  ̂condn0l =  ̂uncondn0l?
Note B&D’s comment that the same will not be true for conditional vs. unconditional

estimation of a common rate ratio when the PT ’s are estimated from J stratified

denominator (‘control’) series, particularly if the strata are sparse.
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Supplementary Exercise 15.4: Is there a higher rate of autism in chil-
dren who have been vaccinated with MMR? And, does it matter whether we
correct/adjust for age?

Autism cases are shown as dots, and the vaccinated and unvaccinated child-
time as darker and lighter areas. Notice that the vaccinated child-years occur
at younger ages (average 2.35 years), where (as is shown at bottom) the rates
of autism diagnosis are lower – so a simple (age-blind) comparison of the
autism density in darker and lighter areas (average ages 2.35 and 4.04 years)
would also be a comparison of rates in older versus younger years, and so
reflect a mix of the e↵ect of age and the e↵ect of vaccination. 2.

316 Cases Randomly Generated from above Child-Time Distribution and with all Age-Specific Dx RR's = 1

1 2 3 4 5 6 7 8 9

1991

1992

1993

1994

1995

1996

1997

1998

V : Vaccinated     [ 4.04 ]

NV: Not Vaccinated [ 2.35 ]

CHILDREN-YEARS

Age

Dec 31, 1999

Born

Dx Rate [V = NV]

1 Case

The locations of the 316 cases in this modification of the Lexis diagram were randomly generated by ...
1 Calculating the "rate of diagnosis by age" curve (arbitrary scale) at ages=1.25 to 8.25 in steps of 0.5 (i.e. at 15 age-points; to simplify your job of counting

cases in the various age cells, the diagram shows coarser, 1 year , i.e.,  birthday, boundaries)
2 Multiplying these "rates" by the numbers of children "in view" at each of these that ages, to get, for each of the 15 vertical age-slices of "child-time", a number

proportional to the expected number of cases in that vertical child-time slice; then scaling the 15 expected numbers  summing to 316.0:  expect an average
of 19.0  to be diagnosed between 1 and 1.5 years of age, 23.5 b/w ages 1.5 and 2, ... 31.1, 33.2, 38.8, 35.5, 36.6, 28.4, 25.9, 16.6, 13.3, 6.71, 4.76, 1.58, ...
0.992 between ages 8 and 8.5.

3 For each age-slice, randomly generating a count from a Poisson distribution with the corresponding expected value. Repeat until the sum of the observed
number of cases is in fact 316, as it was in the actual study. This gave 19 between 1 and 1.5 years of age, 19 between ages 1.5 and 2, and so on, ..  23, 27,
37, 35, 42, 31, 27, 24, 13, 7, 5, 5, ... 2  between ages 8 and 8.5.

4 For each of these cases, randomly choose a year of birth (i.e. randomly along the vertical scale, without regard to whether the location will be in a
unvaccinated or a vaccinated child-time cell.) and a more refined age at diagnosis (randomly within the 0.25 age-band on each side of 1.25, or 1.75, or etc.
,without regard to light/dark). If the random location is in the darker(lighter) area, the case involves a child who was (un)vaccinated at the time of diagnosis.

EXERCISE : From the diagram, (manually) count  the vaccinated and unvaccinated cases (numerators) in each vertical
age-slice. Estimate (roughly) the (relative) sizes of the corresponding vaccinated and unvaccinated
child-years (denominators) [hint: the proportions vaccinated by the end of the study range from 0.92
(1991 cohort) to 0.88 (1994 ), to 0.84 (1997), to 0.55 (1998)]. Using these numerators and
denominators, calculate an age-adjusted  RR.

2Just like the confusion in the case of the Belfast Catholic girl & Protestant boy.

i. On the website you will find R code to read the data into a data frame
with 72 records: 2 ‘exposure’ levels (vaccinated/un-vaccinated)⇥ 36 cells.
The experience inside each cell is from the same Lexis square, where the
child years come from children in a single-age and single year ‘bin’ or
‘rectangle’.

Analyze the data using (unconditional) Poisson regression, as the authors
did, using a 36-level variate for ‘cell’ and a binary indicator (dummy)
variate for the ‘vaccinated’ category (1=‘yes’; 0-‘no’). Don’t forget to
include the (36) o↵sets [see the simple 3-strata example above]

ii. You can also use the R code provided later in the same file to set up
the data for the binomial-based analysis: 36 binomial observations, each
with its own o↵set, 1 per age-year cell.

Analyze the data using conditional Poisson regression, i.e. using a bi-
nomial model, a binary indicator (dummy) variate for the ‘vaccinated’
category (1=‘yes’; 0-‘no’), Don’t forget to include the (36) o↵sets [see the
simple 3-strata binomial example above]

iii. Now use the same 36-row data frame to calculate RateRatioM�H , i.e.,
the ‘almost MLE’ Rate Ratio estimate.

iv. How close are the 3 estimates? Does it matter in this example that we
adjusted for age? (answer by comparing them with the ‘crude’ RateRatio,
which you need to compute).
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Supplementary Exercise 15.5: Do Oscar Winners Live Longer than
Less Successful Peers? A Reanalysis of the Evidence

The aims are to carry out (1) the ‘P-Y’ analysis described in the 2006
‘McGill’ re-analysis, and (2) calculate the ‘fewer-assumptions involved’
Mantel-Haenszel summary ID ratio that the McGill authors calculated but
– not to confuse the reader with yet another analysis – omitted from the
article. Later on in the course, we will analyze the data with the same (time-
dependent Cox PH) model that was reported on in the 2006 article.

Under the EPIB634 Resources for regression models for (incidence) rates,
you will find (a) the Oscar data set3 with one data-record per performer
(b) a dataset (with approx. 20,000 records) in which each the performer’s
data-record has been converted (split) into 1-year data-records, and classified
according to age, period, AND Oscar-status, (c) a smaller dataset in which the
individual performer-years (and numbers of deaths) have been aggregated into
‘sex-age-period-Oscar’ cells, with 5-year age-bands and 10 year calendar-year-
bands,4 and (d) a file similar to (c), but where all of a performer’s performer-
time is allocated to the ‘winners’ category if that performer ever won an
Oscar, or to the ‘nominated’ category if (s)he was nominated but never won.5

In the description of (b) and (c) below, the name of the Oscar-status indicator
is shortened to O, with O = 0 indicating performer-time lived as a nominee,
and O = 1 indicating performer-time lived as an Oscar winner. In the actual
dataset to be analyzed, i.e. in (c), O = 0 corresponds to w.cat=0 and O = 1
to w.cat=1.

In (b) each (Oscar-status-specific) record documents the experience in each
(age, period) ‘rectangle’6 traversed, i.e., the number of years spent in that
rectangle , and the Vital status (0 if alive, 1 if dead) at the end of these

3For reasons jh can better explain in person, this di↵ers slightly from that analyzed in
the Redelmeier article.

4You are asked to the analyses with (c), which is named
aggregated-Lexis-rectangles.txt. Nowadays, with fast computers and lots of live
memory / disk storage space for large datasets, you could do the analysis using (b).
Since it uses finer subdivisions of age and calendar period, you would get get slightly
di↵erent answers, and you would probably choose to model age and calendar-time with
(functions of) continuous variables, rather than with a very large number of indicator
variables – ‘dummy’ variables, if you insist on that meaningless term – for the finer age-
and calendar-period categories.

5The name of datafile (d), aggregated-Lexis-rectangles-r.txt, has the su�x ‘-r’ to
denote it as the ‘Redelmeier’ allocation of the performer-time.

6This terminology is from Lexis, who tended to use squares, e.g., 5-year age bands and
5-year calendar-year bands: since death rates vary faster over ages than over calendar time,
you want to make the age-bands (i.e., the age-matching) quite narrow: thus jh formed
rectangles that are 1 (age) year high by 10 (calendar) years wide, so in e↵ect each slice was
1 year long: you could rerun the time-slicing program with other ‘cuts.’

years.7 Because the Lexis program is written for generic transitions (‘events’)
of any type (not necessarily bad ones), this status variable is called lex.Xst,
which refers to the status (in our example vital status, 0 alive, 1 dead) at
the performer’s ‘exit’ (pardon the pun, but the ‘X’ in ‘Xst’ stands for an
epidemiologic ‘exit’ from the Lexis diagram, and the ‘st’ stands for status).
The other key variable is lex.dur, which refers to the duration or length of
the performer’s time-slice.

In (c), which is formed by summing the performer-time lex.dur and the
lex.Xst over all transits through the same sex-age-period-O cell, the two
sums are the total p-t and total deaths in this cell – remember that a sum of
0’s and 1’s is a count of the number of 1’s.

i. Use dataset version (c) to compare the death rates in the performer-
years lived as nominees (reference category, w.cat=0) with those lived as
winners (index category, w.cat=1), by fitting the following multiplicative
(i.e. ‘rate ratio’) model8 to the numbers of deaths in each sex-age-period-
Oscar (shortened to s-a-p-O here, in order to fit the equation into one
line) ‘cell’.

Ratecell = Rateref.cell ⇥Ms:ref ⇥Ma:ref ⇥Mp:ref ⇥MO:ref ,

where the ref.cell is a suitably chosen reference ‘corner’ cell (Clayton and
Hills’ terminology), and each M (the rate ‘Multiplier’) is short for Mor-
tality Rate Ratio (MRR), – the theoretical, unknown, to be estimated,
ratio of the mortality rate in the category9 of the determinant in question
relative to the reference category of that determinant.

For fitting purposes, you translate the epidemiologic (rate) model above
into the following statistical model

E[#deaths] = e{logRateref+logMs⇥s+logMa⇥a+logMp⇥p+logMO⇥O+log(PT )},

7If you want to see how these split records were created, you can look at and run the R

code shown in the resources. It uses the Lexis package that is available from the R site, and
developed by Carstensen (R ‘Epi’ package http://staff.pubhealth.ku.dk/⇠bxc/Epi/).
See also the survSplit function in the survival package – we used this to split
the time in the COMPARE (stents) study. One of the students in bios602
discovered two other options. One is a standalone Windows program, from
http://epi.klinikum.uni-muenster.de/pamcomp/pamcomp.html; the other is the pyears

function in the Survival package in R (jh doesn’t remember if Survival is part of the default
R installation, or needs to be added). Stata users: there is a time-slicing function used in
conjunction with survival analyses.

8One could, and would if need be, refine this model further, e.g. by refining the rela-
tionship of rates with age, and allowing for the possibility of di↵erent e↵ects of O in males
and females...

9Or level, if we model the variable as an interval variable.
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so that

log{E[#deaths]} = �ref + �s⇥s + �a⇥a + �p⇥p + �O⇥O + log(PT ).

Writing out both models lets you match the coe�cients from the fitted
statistical (R) model with the fitted parameter value(s) of interest in the
epidemiological (rate) model. (def’n.: epidemiologist : a student of rates).

ii. Write out the fitted multiplicative model in the same way as Clayton and
Hills did in Table 22.7 in their Introduction to Regression chapter of their
Statistical Models for Epidemiology textbook. Comment on the MRR for
the ‘years lived as a winner’ vs. ‘years lived as a nominee’ contrast.

iii. Comment on the fitted e↵ects of gender10, age and calendar time,
and whether they ‘fit’ with what you expect, and have seen in other
datasets.11

iv. From dataset (c) calculate the total performer-time lived as a nom-
inee (‘PTnominee’), and the total performer-time lived as a winner
(‘PTwinner’). Compare these with the corresponding values calculated
from the ‘Redelmeier’ version, i.e., from dataset (d). Comment.12

v. Fit the same multiplicative model fitted in (i) to the data in dataset (d).
Compare the fitted ‘O’ e↵ect in this dataset – where w.cat is a fixed-
from-the-outset variable – with what you found in the (McGill) version
– where w.cat is a time-dependent variable. Comment.

vi. How would Mantel have analyzed these data? The R code file in resources
includes some that allows you to convert datafile (c) into a form where
you can treat sex, age and calendar period as stratifying variables – it
puts the ‘exposed’ PT and deaths in the exposed PT in the same data-
record as those for the un-exposed PT in the same stratum, making it
easy to obtain the stratum-specific products, and to obtain the numerator
and denominator sums used to calculate the ratio in formula 8.5 – déjà
vu – in Rothman2002.

10Even though we used the term ‘sex’ above, one could make a good argument for pre-
ferring the term ‘gender’ in this context: Google ‘gender vs. sex’.

11The e↵ects of gender, age and calendar time are secondary here, but if you do choose to
represent age and calendar-time as linear (continuous) variables, make sure you report their
e↵ects correctly – they should broadly ‘line up’ with the fitted e↵ects when using indicator
variables.

12For the principle behind the correct allocation of person-time, and early examples of
incorrect P-T allocation, see section 3.1 of Volume II of Breslow and Day’s text, available
in the resources for the bios602 course. See also the material on ‘immortal-time’ bias in the
‘Regression models for (incidence) rates’ resources on the 634 website.

Use this re-arranged dataset to calculate this Mantel-Haenszel mortality
rate ratio. How does it compare with the one obtained from Poisson
regression?

vii. Use this same re-arranged dataset to calculate separate Mantel-Haenszel
mortality rate ratios for actors and actresses. Based just on the numbers
of deaths involved, do you think they are statistically significantly
di↵erent?

If you wanted to pursue this e↵ect-modification numerically, you
could use the formula to obtain the SE of each rate ratio (or rather
the SE of the log-rate-ratio). The formula is given in section 3.6(d) of
Breslow and Day Volume II. It is quite tedious to do by hand, but quite
easy with R or Excel.

viii. Use this same re-arranged dataset to obtain a ‘MLE’ from the profile (or
conditional) 1-parameter likelihood – i.e. ‘profile-out’ or ‘condition-out’
all of the other parameters in the unconditional model you fitted in part i,
so the focus is just on the rate ratio for the index vs. reference categories
of the determinant of prime interest. Hint: this problem has the same
structuer as the one in supplementary exercise 15.7.

The original report continues to be cited... just Google ‘Oscars longevity’

http://www.health.harvard.edu/press releases/oscar winners
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