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1 Probability models

1.1 Observation, experiments and models

Stochastic Models1

Normal vs Bernoulli and Poisson: We need to distinguish between individual

observations, governed by Bernoulli and Poisson (or if quantitative rather
than all-or-none or a count, Normal) and statistics formed by aggregation of
individual observations. If a large enough number of individual independent
but non-Gaussian observations are used to form a statistic, its (sampling)
distribution can be described by a Gaussian (Normal) probability model. So,
ultimately, the Normal probability model is very relevant.

1.1.1 Epidemiologic [subject-matter] models [JH]

We need to also make a distinction between the quantity(quantities) that
is(are) of substantive interest or concern, the data from which this(these)
is(are) estimated, the statistical models used to get to the the quan-
tity(quantities) and the relationships of interest.

For example, of medical, public health or personal interest/concern might be
the [list compiled some years ago, add your own for 2021]

• level of use of cell phones among drivers

• average and range [across people] of reductions in cholesterol with regular
use of a cholesterol-lowering medication.

• amount of time taken by health care personnel to decipher the handwrit-
ing of other health care personnel.

• (average) number of times people have to phone to reach a ‘live’ person.

• reduction in one’s risk of dying of a specific cancer if one is regularly
screened for it.

1‘Stochastic’ http://www.allwords.com/word-stochastic.html French: stochas-
tique(fr) German: stochastisch(de). Etymology: From Ancient Greek (polytonic, ), from
(polytonic, ) “aim at a target, guess”, from (polytonic, ) “an aim, a guess”. Parzen, in his
text on Stochastic Processes .. page 7 says: <<The word is of Greek origin; see Hagstroem
(1940) for a study of the history of the word. In seventeenth century English, the word
“stochastic” had the meaning “to conjecture, to aim at a mark.” It is not clear how it ac-
quired the meaning it has today of “pertaining to chance.” Many writers use the expression
“chance process” or “random process” as synonyms for “stochastic process.” >>

• appropriate-size tracheostomy tube for an obese patient, based on easily
easily obtained anthropometric measurements.

• length of central venous catheter that can be safely inserted into a child
as a function of the child’s height etc.

• rate of automobile accidents as a function of drivers’ blood levels of alco-
hol and other drugs, numbers of persons in the car, cell-phone and other
activities, weather, road conditions, etc.

• Psychological Stress, Negative Life Events, Perceived Stress, Negative
A↵ect Smoking, Alcohol Consumption and Susceptibility to the Common
Cold.

• The force of mortality as a function of age, sex and calendar time.

• Genetic variation in alcohol dehydrogenase and the beneficial e↵ect of
moderate alcohol consumption on myocardial infarction.

• Are seat belt restraints as e↵ective in school age children as in adults?

• Levels of folic acid to add to flour, so that most people have su�ciently
high blood levels, but birth defects are reduced.

• Early diet in children born preterm and their IQ at age eight.

• Prevalence of Down’s syndrome in relation to parity and maternal age.

Of broader interest/concern might be

• the wind chill factor as a function of temperature and wind speed.

• how many fewer Florida votes Al Gore got in 2000 US Presidential be-
cause of a badly laid-out ballot.

• a formula for deriving one’s “ideal” weight from one’s height.

• yearly costs under di↵erent cell-phone plans.

• yearly maintenance costs for di↵erent makes and models of cars.

• car or life insurance premiums as a function of ...

• cost per foot2 of commercial or business rental space as a function of ...

• Rapid Changes in Flowering Time in British Plants.

• How much money the City of New York should revover from Brink’s
for the losses the City incurred by the criminal activities of two Brink’s
employees (they collected the money from the parking meters, but kept
some of it!).
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1.1.2 From behaviour of statistical ‘atoms’ to statistical
‘molecules’

‘1 condition’ or ‘1 circumstance’ or ‘setting’ [“1-sample problems”]

The smallest statistical element or unit (? atom): the quantity of interest
might have a Y distribution that under sampling, could be represented by a
discrete random variable with ‘2-point’ support (Bernoulli), 3-point support,
k�point support, etc. or interval support (Normal, gamma, beta, log-normal,)

The aggregate or summary of the values associated with these elements is
often a sum or a count: with e.g., a Binomial, Negative Binomial, gamma
distribution. Or the summary might be more complex – it could be some re-
arrangement of the data on the individuals (e.g., the way the tumbler longevity
data were summarized). This brings in the notion of “su�cient statistics”.

More complex: t, F , ...

‘2 or conditions’ or ‘circumstances’ or ‘settings’, indexed by possible
values of ‘X’ variable(s). Think of the ‘X’ variable(s) as ‘covariate patterns’
or ‘profiles,’ not as a ‘random’ variable.

Unknown conditions or circumstances: Sometimes we don’t have a mea-
surable (or measured) ‘X’ variable(s) to explain the di↵erences in Y from say
family to family or person to person. There instead of the usual multiple
regression approach, we use a hierarchical or random-e↵ects or latent class or
mixture model. [case in point]: JH’s numbers of steps, 2017-2020]

1.2 Binary data

It is worth recalling from bios601 in earlier years 2 the concepts of states and
events (transitions from one state to another).

Cohort studies with fixed follow-up time

Recall: cohort is another name for a closed population, with membership (en-
try) defined by some event, such as birth, losing one’s virginity, obtaining one’s
first driver’s permit, attaining age 21, graduating from university, entering the
‘ever-married’ state, undergoing a certain medical intervention, enrolling in a
follow-up study, etc. Then the event of interest is the exit (transition) from
a/the state that prevailed at entry. So death is the transition from the living

state to the dead state, receiving a diagnosis of cancer changes one’s state
from ‘no history of cancer since entry/birth’ to ‘have a history of cancer’, a

2
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/Epidemiology1/

epi-notes-bios601-2009.pdf

conviction for tra�c o↵ense changes one’s state from ‘clean record’ to ‘have
a history of tra�c o↵ences.’ We can also envision more complex situations,
with a transition from ‘never had a stroke,’ to ‘have had 1 stroke,’ to ‘have
had 2 strokes,’ ... or ‘haven’t yet had a cold this winter,’ to ‘have had 1 cold,’
to ‘have had 2 colds,’ etc.

Censoring : to be distinguished from truncation. Truncation implies some
observations are missed by the data-gathering process, i.e., that the observed
distribution is a systematic distortion of the true distribution. Note that we
can have censoring of any quantitative variable, not just one that measures
the time duration until the event of interest. For example, the limits on say a
thermometer or a weight scale or a chemical assay may mean that it cannot
record/detect values below or above these limits. Also, the example in C&H
implicitly refers to right censoring: one can have left censoring, as with lower
limits of detection in a chemical assay, or interval censoring, as – in repeated
cross-sectional examinations – with the date of sero-conversion to HIV.

Incidence studies: the word new means a
::::::
change

::
of

:::::
state since entry.

“Failure”: It is a pity that C&H didn’t go one step more and use the even more
generic term “event”. That way, they would not have to think of graduating
with a PhD (i.e., getting out of – exiting from – here) as “failure” and “still
pursuing one” as “survival.” This simpler and more general terminology would
mean that we would not have to struggle to find a suitable label of the ‘y’
axis of the 1 � F (t), usually called S(t), function. One could simply say
“proportion still in initial state,” and substitute the term for the initial state,
i.e., proportion still in PhD program, proportion event-free, etc.

N or n? D or d? JH would have preferred lower case, at least for the
denominator. In sampling textbooks, N usually denotes the population size,
and n the sample size. In the style manual used in social sciences, n is the
sample size in each stratum, whereas N is the overall sample size: thus, for
example, a study might report on a sample of N = 76 subjects, composed of
n = 40 females and n = 36 males.

Cohort studies with variable follow-up time: If every subject entered a study
at least 5 years ago, then, in principle, one should be able to determine D
and N �D, and the 5-year survival proportion. However, losses to follow-up

before 5 years, and before the event of interest, lead to observations that are
typically regarded as censored at the time of the loss. Another phenomenon
that leads to censored observations is staggered entry, as in the JUPITER
trial.3 Unfortunately, some losses to follow-up may be examples of ‘informa-

tive’ censoring.

3
http://www.medicine.mcgill.ca/epidemiology/hanley/c634/JUPITER/
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Cross-sectional prevalence data

Recall again that prevalence refers to a state. Examples would include the
proportion (of a certain age group, say) who wear glasses for reading, or have
undetected high blood pressure, or have high-speed internet at home, or have
a family history of a certain disease, or a certain ‘gene’ or blood-type.

From a purely statistical perspective, the analysis of prevalence proportions
of the form D/N and incidence proportions of the form D/N takes the same
form: the underlying statistical ‘atoms’ are N Bernoulli random variables.

Important: Concepts and terms in Epidemiology

• State4 vs. Event5 [the transition (rapid) from one state to another] 6

4Google: The way something is with respect to its main attributes; “the current state of
knowledge”; “his state of health”; “in a weak financial state”. State of matter: (chemistry)
the three traditional states of matter are solids (...) liquids (...) and gases (...).

5Most of the definitions below are adapted from the glossary in the textbook Theoretical

Epidemiology: Principles of Occurrence Research in Medicine by O.S. Miettinen (Wiley
1985). See also, by same author, Epidemiological Research: Terms and Concepts https:

//link-springer-com.proxy3.library.mcgill.ca/book/10.1007%2F978-94-007-1171-6

Google: something that happens at a given place and time | a phenomenon located at a
single point in space-time; the fundamental observational entity in relativity theory | In
the Unified Modeling Language, an event is a notable occurrence at a particular point in
time. Events can, but do not necessarily, cause state transitions from one state to another
... | An event in computer software is an action which can be initiated either by the user,
a device such as a timer or Keyboard (computing), or even by the operating system. | In
probability theory, an event is a set of outcomes and a subset of the sample space where a
probability is assigned. Typically, when the sample space is finite, any subset of the sample
space is an event (i.e. all elements of the power set of the sample space are defined as
events). | An occurrence. | A runtime condition or change of state within a system. | A
thing which happens, like a button is pressed. Events can by low-level (such as button or
keyboard events), or they can be high level (such as when a new dataset is available for
processing). | A means by which the server notifies clients of changes of state. An event
may be a side e↵ect of a client request, or it may have a completely asynchronous cause,
such as the user’s pressing a key or moving the pointer. In addition, a client may send an
event, via the server, to another client.

6In epidemiology, some authors reserve the word “occur” for an event (Google: happen;
take place; come to pass; “Nothing occurred that seemed important”) But, both in epidemi-
ology and in lay use, it is and can also be used for a state ( to be found to exist; “sexism
occurs in many workplaces”; “precious stones occur in a large area in Brazil”). Miettinen
[European J of Epi. (2005) 20: 11-15] makes this point in his reply to one of the several
authors who commented on his article Epidemiology: Quo vadis? ibid, 2004; 19: 713-718.

Walker’s commentary was devoted to teaching me that the concept of occurrence
has to do with outcome events only; that it thus does not encompass outcome
states; and that etiologic occurrence research therefore does not encompass the
important study of causal prevalence functions. As I now consult The New
Oxford Dictionary of English (1998 edn), I find as the meanings of ‘occurrence’
(as a mass noun) these: ‘the fact or frequency of something happening’ and ‘the
fact of something existing or being found . . .,’ as in ‘the occurrence of natural

• Population An aggregate of people, defined by a membership-defining...

– event ! “cohort” ( closed population i.e., closed for exit)
or

– state – one is a member just for duration of state ! Open population
(open for exit) / dynamic / turnover

• Prevalence (of a state) : The existence (as opposed to the inception or
termination) of a particular state among the members of the population.

• Prevalence Rate: the proportion of a population that is in a particular
state.

• Population-time: The amount of population experience in terms of the
integral of population size over the period of observation.

• Incidence: The appearance of events of a particular kind in a population
(of candidates over time)

– Incidence density (ID): The ratio of the number of events to the
corresponding population time (candidate time). If we subdivide
time into very short spans, ID becomes a function of time, ID(t);
otherwise ID refers to the average over the entire span of time.

– Hazard : limiting case of ID as we narrow the span of time. More
commonly used w.r.t. closed population, with a natural “t0.”

– Force of morbidity/mortality (Demography).

• Case: Medicine – episode of illness, (“a case of gonorrhea”). Epidemi-
ology – a person representing a case (in medical sense) of some state or
event.7

• Incident cases: Cases that
::::::
appear (as against those that

::::
exist or prevail).

• Cumulative Incidence (CI): The proportion of a cohort (of candidates)
experiencing the event at issue over a particular risk period if time-specific
incidence density is considered to operate over that period.

gas fields.’ And in my Perspective article I find ‘state’ or ‘prevalence’ occurring
as many as eight times, ‘event’ or ‘incidence’ no more than nine times. The
verb ‘occur,’ I might need to add, means ‘happen; take place; exist or to be

found to be present . . . ,’ as in ‘radon occurs naturally in rocks . . . ’ [italics
added by JH]

7 Google: an occurrence or instance of something; “a case of bad judgment”’; “another in-

stance occurred yesterday”; Merriam-Webster: noun, Middle English cas, from Anglo-French,

from Latin casus fall, chance, from cadere to fall. 1 a: a set of circumstances or conditions b

(1): a situation requiring investigation or action 6 a: an instance of disease or injury <a case of

pneumonia> .

3
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– The relation between ID and CI 8 can be expressed mathematically
as

CIT = CI0!T = 1 � exp

⇢
�

Z T

0

ID(t)dt

�
.

– As a function of t, the complement, 1�CI0!t is called the “Survival”
function, S(t), since it is the proportion of the cohort that, at time
t, remains (continues, “survives”) in the initial state.

• Risk: The probability that an event (untoward) will occur.

• Case Fatality Rate: (Rothman 1986, p31) The cumulative incidence of
death among those who develop an [acute] illness [e.g., SARS, influenza,
COVID-19]. The time period for measuring the case fatality rate is often
unstated. 9

In 2020, whether the denominator is limited to recognized cases,
or includes all cases no matter where recognized or not, became
contentious. Thus, we saw the emergence of a new term, which
estimates the proportion of deaths among all infected individuals.
infection fatality ratio (IFR). See also footnote to Q28 in 2021 ver-
sion of Measurement Error Notes.

1.3 The binary probability model

JH presumes they use this heading as a shorthand for ‘the probability model
for binary responses’ (or ‘binary outcomes’ or binary random variables)

... to “predict the outcome” : JH takes this word predict in its broader mean-
ing. If we are giving a patient the probability that he will have a certain
future event say within the next 5 years, we can talk about predicting10 the
outcome: we are speaking of prognosis; but what if we are giving a woman
the probability that the suspicious finding on a mammogram does in fact rep-
resent an existing breast cancer, we are speaking of the present, of whether

8 So fundamental JH puts it in red
9From Miettinen’s Terms and Concepts: Case-fatality rate (synonyms: fatality rate,

death rate) – Concerning cases of an illness
:
in
:::::::
general,

::
or

::::::::
recognized

::::
cases

::
of
::
it (ones with

rule-in diagnosis about the illness), the proportion in which the illness is fatal; that is, such
that the outcome of the course of the illness is fatality from it. (Cf. ‘Survival rate.’)
Note: For the concept to be truly meaningful, it commonly is to be specific to particulars
of the case (broadly at least) and to the choice of treatment; and it also is to be conditional
on absence of intercurrent death from some other, ‘competing’ cause.

10The term ‘Risk Prediction’ has led to further confusion. Risk is by definition anout the
future, and is a probability. It is the probability that (a future) Y=1. The Y is unknown,
but the Risk may be well or poorly ’known’.

a phenomenon already exists, and we use a prevalence proportion as an esti-
mate of the diagnostic probability. Note that prevalence and incidence refer
to aggregates.

The risk parameter

Risk typically refers to the future, and can be used when speaking to or about
one person; we don’t have a comparable specialized term for the probability

that a state exists when speaking to or about one person, and would therefore
just use the generic term probability.

The odds parameter

The sex-ratio is often expressed as an odds, i.e., as a ratio of males to fe-
males. If the proportion of males is 0.51, then the male:female ratio is 51:49
or (51/49):1, i.e., approximately 1.04:1. This example is a good reason why
C&H should have used a more generic pair of terms than failure and survival
(or success and failure).

In betting on horse races (at least where JH comes from), odds of 3:1 are
the odds against the horse winning; i.e., the probability of winning is 1/4.11

When a horse is a heavy favourite so that the probability of winning was 75%,
the “bookies” would give the odds as “3:1 on.”12

Rare events

One of the tricks to make events rare will be to slice the time period into
small slices or windows.

Death, the first of the two only sure events (taxes is the other) is also rare -
in the short term!

Also, it would be more correct to speak of a rare events, since disease is often
used to describe a process, rather than a transition. And since most transitions
are rapid, the probability of a transition (an event) occurring within a given
short sub-interval will usually be small.

If the state of interest being addressed with cross-sectional data is uncommon
(or rare), then yes, the prevalence odds and the prevalence proportion will be
very close to each other.

Supplementary Exercise 1.1. If one rounds probabilities or risks or preva-
lences (⇡’s), or their corresponding odds, ⌦ = ⇡/(1 � ⇡), to 1 decimal place,
at what value of ⇡ will the rounded values of ⇡ and ⌦ be di↵ererent? Also,

11Think of the 3:1 as the ‘bookie’ putiing $3 in an envelope, and the better butting $1,
and when the race result is known, the bookie or the bettor taking the envelope with the
$4.

12Now the bookie puts in 1 and the bettor 3

4
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why use lowercase ⇡ for proportion, and uppercase ⌦ for odds?

1.4 Parameter Estimation

Should you be surprised if the estimate were ⇡ were other than D/N? Consult
Google or Wikipedia on “the rule of succession,” and on Laplace’s estimate of
the probability that the sun will rise tomorrow, given that it has unfailingly
risen (D = 0) for the past 6000 years, i.e., N ⇡ 365 ⇥ 6000.

Supplementary Exercise 1.2. Suppose one has 2 independent observations
from the model

E[y|x] = � ⇥ x [‘no intercept’ model].

The y’s might represent the total numbers of typographical errors on x ran-
domly sample pages of a large document, and the data might be y = 2 errors
in total in a sample of x = 1 page, and y = 8 errors in total in a separate
sample of x = 2 pages. The � in the model represents the mean number of
errors per page of the document. Or the y’s might represent the total weight
of x randomly sample pages of a document, and the data might be y = 2
units of weight in total for a sample of x = 1 page, and y = 8 units for a
separate sample of x = 2 pages. The � in the model represents the mean
weight per page of the document. We gave this ‘estimation of �’ problem to
several statisticians and epidemiologists, and to several grade 6 students, and
they gave us a variety of estimates, such as �̂ = 3.6/page, 3.33/page, and
3.45!

How can this be? [If it still works] You might run the applet
‘2 datapoints and a model’ http://www.biostat.mcgill.ca/hanley/

2DatapointsAndaModel/

1.5 Is the model true?

I wonder if they were aware of the quote, attributed to the statistician George
Box that goes something like this

“all models are wrong; but some are more useful than oth-
ers”

Box also said

Statisticians, like artists, have the bad habit of falling in
love with their models.

http://en.wikiquote.org/wiki/George_E._P._Box

2 Conditional probability models

2.1 Conditional probability

JH is surprised at how few textbooks use trees to explain conditional proba-
bilities. Probability trees make it easy to see the direction in which one is
preceeding, or looking, where simply (and often arbitrarily chosen) algebraic
symbols like A and B can not; they make it easier to distinguish ‘forward’
from ‘reverse’ probabilities. try to order letters so it is A ! B not B ! A.

M&M Ch 4.1, 4.2, 4.5  Probability
How to calculate probabilities

Probability Calculations

"I figure there's a 40% chance of showers, and a
10% chance we know what we're talking about"

Wall Street Journal

Basic Rules

A
B

A
B

A and B

Probabilities add to 1

Prob(event) =
 1 - Prob(complement)

   

ADDITION  FOR "EITHER A OR B"

If mutually exclusive
"PARALLEL"   P(A or B) = P(A) + P(B)

If overlapping
  P(A or B) = P(A) + P(B) - P(A and B)

A

Not A
Not B

B

B
Not B

   MULTIPLICATION  FOR "A  AND B" OR "A THEN B"

If independent
"SERIAL" P(A and B) = P(A) • P(B)

If dependent
P(A and B) = P(A) • P(B | A)

Conditional Probability P(B | A) = Probability of B "given A" or "conditional on A"

More Complex:
• Break up into elements
• Look for already worked-out calculations
• Beware of intuition, especially with "after the fact" calculations for non-

standard situations

page 2

Figure 1: From JH’s notes for EPIB607, introductory biostatistics for epidemiology

Trees show that the probability of a particular sequence is always a fraction

of a fraction of a fraction .. , and that if we start with the full probability
of 1 at the single entry point on the extreme left, then we need at the right
hand side to account for (‘conserve’) all of this (i.e., the ‘total’) probability.

Statistical dependence and independence

JH likes to say that with independence, one doesn’t have to look over one’s
shoulder to the previous event to know which probability to multiple by. The
illustrated example on the gender composition of 2 independent births, and of
a sample of 2 persons sampled (without replacement) from a pool of 5 males
and 5 females, show this distinction: in the first example, when one comes to
the second component in the probability product, Pr(y2 = male) is the same

5
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whether one has got to there via the ‘upper’ path, or the ‘lower’ one.

M&M Ch 4.1, 4.2, 4.5  Probability

Examples of Conditional Probabilities...
PERSONS 

Smoke?
Develop 
Lung Ca.?

YES

NO

YES

YES

NO

NO

YES
YES

NO
NO

NO

YES

PERSONS 

Smoke?
Develop 
Lung Ca.?

GENDER: 2 BIRTHS
1st 2nd

M
M

F

0.5

0 .5

0 .5

0 .5
F

M
0.5
0 .5
F

0 .25

0 .25

0 .25

0 .25

GENDER: 2  from  5 M & 5 F

5 /10

20/90
4 /9

5 /10

5 /9 25/90

4 /9
5 /9

25/90

20/90

1st 2nd

M
M

F

F
M

F
Testing Dx Tests.. .
Disease Test

+
+

–

–
+

–

Dx Tests In Practice. . .

+
+

–

-
+

–

DiseaseTestSMOKERS: 1 M & 1 F 
M F

YES

NO

SMOKERS: Husband & Wife
H W

YES

YES

NO

NO

YES
YES

NO
NO

NO
YES

O. J.  SIMPSON 
Murdered 
wife?

YES

NO

YES

YES

NO

NO

YES
YES

NO
NO

NO
YES

DNA 
Match?

O. J.  SIMPSON 
Murdered 
wife?

DNA 
Match?

page 3Figure 2: JH examples of independence/dependence [2 panels on left] and
‘forward’/‘reverse’ probabilities [3 panels on right]

2.2 Changing the conditioning: Bayes’ rule

The panels on the right hand column of JH Figure 2 shows 3 examples of
‘forward’ probabilities (on the left) and ‘reverse’ probabilities (on the right).

The di↵erence between ‘forward’ and ‘reverse’ probabilities distinguishes fre-

quentist p-values (probabilities) from Bayesian posterior probabilities.

Probability[data | Hypothesis] 6= Probability[Hypothesis | data]

or, if you prefer something that rhymes,

Probability[ data | theta] 6= Probability[ theta | data].

Two striking – and frightening – examples of misun-
derstandings about them are given on the next page.

:::::
The

::::::
True

:::::::
Title

:::
of

:::::::::
Bayes’s

::::::::
Essay

Today’s students are told that the Bayes essay was published after

his death under the title “An Essay toward solving a Problem in

the Doctrine of Chances”. But when he spoke in Montreal at the

end of 2013, Stephen Stigler gave us the inside story on the very

concrete reason the person who published it, Richard Price, had for

being interested in this work, and why it was advertised elsewhere

under a very di↵erent title: ‘A method of calculating the ex-

act probability of all conclusions based on induction’ Read

about Stigler’s fascinating detective work in his captivating arti-

cle Statistical Science 2013, Vol. 28, No. 3, 283-288 (Resources

website) or here:

http://www.medicine.mcgill.ca/epidemiology/hanley/

bios601/CandH-ch0102/StiglerBayesTitle.pdf
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Statistical Science
2013, Vol. 28, No. 3, 283–288
DOI: 10.1214/13-STS438
c� Institute of Mathematical Statistics, 2013

The True Title of Bayes’s Essay
Stephen M. Stigler

Abstract. New evidence is presented that Richard Price gave Thomas
Bayes’s famous essay a very di↵erent title from the commonly reported
one. It is argued that this implies Price almost surely and Bayes not
improbably embarked upon this work seeking a defensive tool to combat
David Hume on an issue in theology.

Key words and phrases: Thomas Bayes, Richard Price, Bayes’s theo-
rem, history.

Monday 23 December 2013 is the 250th anniver-
sary of the date Richard Price presented Thomas
Bayes’s famous paper at a meeting of the Royal So-
ciety of London. The paper was published in 1764 as
part of the 1763 volume of the Philosophical Trans-

actions of the Royal Society, with the block of print
shown in Figure 1 at its head. In December 1764
Richard Price read a follow-up paper with himself
as author (Figure 2); it was published in 1765 as
part of the volume for 1764. All modern readers have
taken these article heads as the titles of the papers;
the first as “An Essay toward solving a Problem in
the Doctrine of Chances;” the second as “A Demon-
stration of the Second Rule in the Essay toward the
Solution of a Problem in the Doctrine of Chances.”
But Richard Price (and perhaps Bayes as well) had
very di↵erent titles in mind.

At that time, it was the occasional practice of the
Royal Society to supply authors with o↵prints of
published papers, generally before the appearance of
the printed volume, based upon the same print block
used for the Transactions but with the pagination
beginning with the number 1 and the first page from
the journal version set to accommodate the di↵erent

Stephen M. Stigler is the Ernest DeWitt Burton

Distinguished Service Professor in the Department of

Statistics, University of Chicago, 5734 University

Avenue, Chicago, Illinois 60637, USA e-mail:
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This is an electronic reprint of the original article
published by the Institute of Mathematical Statistics in
Statistical Science, 2013, Vol. 28, No. 3, 283–288. This
reprint di↵ers from the original in pagination and
typographic detail.

Fig. 1. The heading for Bayes (1764).

format. Presumably this was only done when the
author requested and at the author’s expense. The
o↵prints were supplied with a cover page. In Bayes’s
case the o↵prints produced in 1764 had a cover page
showing a dramatically di↵erent title:

A Method of Calculating the Exact Prob-
ability of All Conclusions founded on In-
duction.

The journal title was retained on page 3 of the
o↵print, as a subtitle. A year later, in 1765, o↵prints
of the second paper were produced with the title:

1

2 S. M. STIGLER

Fig. 2. The heading for Price (1765).

A Supplement to the Essay on a Method
of Calculating the Exact Probability of
All Conclusions founded on Induction.

These are shown in Figures 3–5.
Where the commonly accepted title is almost com-

pletely uninformative, the o↵print title is bold and
clear and promises even more than the paper de-
livers. This latter title surely originated from Price,
either as an afterthought or as a version omitted by
the Transactions editor as too long or too bold. The
o↵print title clearly fixes the intention of the paper
as addressing the fundamental issue of induction,
and it lends support to the following story of how it
came to be written and published.

(1) In 1748 David Hume published his famous es-
say “Of Miracles” (Hume (1748)). The essay pre-
sented his probabilistic argument for dismissing re-
ligious miracles, such as the story of Christ’s res-
urrection. Hume argued that the great improbabil-
ity of the miracle (“a violation of the laws of na-
ture”) overwhelmed the probability (far less than
certainty) that the miracle was accurately reported.
Hume’s essay caused quite a stir; it was widely read
and much discussed and attacked.

(2) Thomas Bayes attempted to address Hume’s
argument, initiating a study of the application of
probability to induction in 1748 or 1749 with at
least some of the calculations that were to appear in
the eventual paper. The earliest surviving notes of
Bayes on probability contain these calculations and
have been dated to be prior to 31 December 1749
(Dale, 1986, 2003, page 429; Bellhouse (2004)). In

Fig. 3. The title page from the o�print of Bayes (1764).
Source: Watson (2013).

Fig. 4. Page 3 of the Bayes o�print, showing the journal
title as a subtitle. Source: Beinecke Rare Book and Manuscript
Library, Yale University.

Figures 1 and 3 from Stigler 2013

6

http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/CandH-ch0102/StiglerBayesTitle.pdf
http://www.medicine.mcgill.ca/epidemiology/hanley/bios601/CandH-ch0102/StiglerBayesTitle.pdf


BIOS601: Notes, Clayton&Hills. Ch 1(Probability models); 2 (Condn’l prob. models; Bayes rule, Diagnostic probabilities, etc. ) v. 2022.09.08.

U.S. National Academy of Sciences under fire over plans for new
study of DNA statistics: Confusion leads to retrial in UK.13

[...] He also argued that one of the prosecution’s expert witnesses, as well as
the judge, had confused two di↵erent sorts of probability.

One is the probability that DNA from an individual selected at random from
the population would match that of the semen taken from the rape victim, a
calculation generally based solely on the frequency of di↵erent alleles in the
population. The other is the separate probability that a match between a

suspect’s DNA and that taken from the scene of a crime could have arisen

simply by chance – in other words that the suspect is innocent despite
the apparent match.14 This probability depends on the other factors that
led to the suspect being identified as such in the first place.

During the trial, a forensic scientist gave the first probability in reply to a
question about the second. Mansfield convinced the appeals court that the
error was repeated by the judge in his summing up, and that this slip – widely
recognized as a danger in any trial requiring the explanation of statistical
arguments to a lay jury – justified a retrial. In their judgement, the three
appeal judges, headed by the Lord Chief Justice, Lord Farquharson, explicitly
stated that their decision “should not be taken to indicate that DNA profiling
is an unsafe source of evidence.”

Nevertheless, with DNA techniques being increasingly used in court cases,
some forensic scientists are worried that flaws in the presentation of their
statistical significance could, as in the Deen case, undermine what might oth-
erwise be a convincing demonstration of a suspect’s guilt.

Some now argue, for example, that quantified statistical probabilities should
be replaced, wherever possible, by a more descriptive presentation of the con-
clusions of their analysis. “The whole issue of statistics and DNA profiling has
got rather out of hand,” says one. Others, however, say that the Deen case
has been important in revealing the dangers inherent in the ‘prosecutor’s
fallacy’. They argue that this suggests the need for more sophisticated cal-
culation and careful presentation of statistical probabilities. “The way that
the prosecution’s case has been presented in trials involving DNA-based iden-
tification has often been very unsatisfactory,” says David Balding, lecturer
in probability and statistics at Queen Mary and Westfield College in Lon-
don. “Warnings about the prosecutor’s fallacy should be made much
more explicit. After this decision, people are going to have to be
more careful.”

13NATURE p 101-102 Jan 13, 1994.
14italics by JH. The wording of the italicized phrase is imprecise; the text in bold wording

is much better .. if you read “despite” as “given that” or “conditional on the fact of”

“The prosecutor’s fallacy”: Who’s the DNA fingerprinting
pointing at? 15

Pringle describes the successful appeal of a rape case where the primary
evidence was DNA fingerprinting. In this case the statistician Peter
Donnelly opened a new area of debate. He remarked that

“forensic evidence answers the question

What is the probability that the defendant’s DNA profile
matches that of the crime sample, assuming that the
defendant is innocent?

while the jury must try to answer the question

What is the probability that the defendant is innocent, [in
the light of ALL of the OTHER EVIDENCE and] assum-
ing that the DNA profiles of the defendant and the crime
sample match? ”

Apparently, Donnelly suggested to the Lord Chief Justice and his fellow judges
that they imagine themselves playing a game of poker with the Archbishop of
Canterbury. If the Archbishop were to deal himself a royal flush on the first
hand, one might suspect him of cheating. Assuming that he is an honest card
player (and shu✏ed eleven times) the chance of this happening is about 1 in
70,000.

But if the judges were asked whether the Archbishop were honest, given that
he had just dealt a royal flush, they would be likely to place the chance a bit
higher than 1 in 70,000 *.

The error in mixing up these two probabilities is called the “the prosecutor’s
fallacy,” and it is suggested that newspapers regularly make this error.

Apparently, Donnelly’s testimony convinced the three judges that the case
before them involved an example of this and they ordered a retrial.

[* Comment by JH: This is a very nice example of the advantages of Bayesian
over Frequentist inference .. it lets one take one’s prior knowledge (

:::
the

::::
fact

::::
that

::
he

::
is
::::
the

::::::::::
Archbishop) into account.

The book ‘Statistical Inference” by Michael W. Oakes is an ex-
cellent introduction to this topic and the limitations of frequen-
tist inference.] See also http://nautil.us/issue/74/networks/

the-flawed-reasoning-behind-the-replication-crisis

15New Scientist item by David Pringle, 1994.01.29, 51-52; cited in Vol 3.02 Chance News
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2.3 Examples

2.3.1 Example from genetics

M&M Ch 6  Introduction to Inference ... OVERVIEW

Introduction to Inference* Bayes Theorem : Haemophilia
Brother has haemophilia => Probability (WOMAN is Carrier) = 0.5
New Data:  Her Son is Normal (NL) .
Update: Prob[Woman is Carrier, given her son is NL] = ??

Inference is about Parameters (Populations) or general
mechanisms -- or future observations. It is not about
data (samples) per se, although it uses data from
samples. Might think of inference as statements about a
universe most of which one did not observe.

0.5 0.5

CARRIERNOT CARRIER

WOMAN

Son

0.0
0.5

NL H

Son

Products  of PRIOR  and LIKELIHOOD

PRIOR   [ prior to knowing status of her son ]

LIKELIHOOD

0.25

0.67
0.33

WOMAN

CARRIERNOT CARRIER

WOMAN

POSTERIOR   Given that Son is NL

0.5

observed data
NL H

1.0
0.5

1.

2.

3.

 [  Prob son is NL | ]PRIOR

Probs. 
Scaled to 
add to 1

0.5 x 1.0 
0.5 x 0.5 

Two main schools or approaches:

Bayesian [ not even mentioned by M&M ]
• Makes direct statements about parameters

and   future observations

• Uses  previous impressions plus new data to update impressions
about parameter(s)

e.g.
Everyday life
Medical tests:  Pre- and post-test impressions

Frequentist

• Makes statements about observed data (or statistics from data)
(used indirectly [but often incorrectly] to assess evidence against
certain values of parameter)

• Does not use  previous impressions or data outside of current
study (meta-analysis is changing this)

e.g.

• Statistical Quality Control procedures [for Decisions]
• Sample survey organizations:  Confidence intervals
• Statistical Tests of Hypotheses

Unlike Bayesian inference, there is no quantified pre-test or pre-
data  "impression"; the ultimate statements are about data,
conditional on an assumed null or other hypothesis.

Thus, an explanation of a  p-value must start with the conditional
"IF the parameter is ... the probability that the data would ..."

Book "Statistical Inference" by Michael W. Oakes is an excellent
introduction to this topic and the limitations of frequentist inference.

page 1Figure 3: simpler [older] example – nowadays, direct tests mean women don’t have to wait to

have a son to be probabilistically sorted into definite/possible carriers.

Women

Their Son(s)

Carrier

Non-Carrier

1

H

NL

2

H

NL

3

H

NL

4

H

NL

5

H

NL

6

H

NL

NL: Normal
H: Haemophiliac
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Figure 4: At the outset, each woman had a 50:50 chance of being a
haemophilia carrier. Accumulating information from their sons in-
creasingly ‘sorts’ or segregates them by moving their probability of being
a carrier to 100% or towards 0%.

Probabilities: Diagnostic and Screening Tests

Try https://jameshanley.shinyapps.io/FromPreTestToPostTestProbabilities/,

while noting that what JH calls

• detection rate is called sensitivity in medicine, and power in statistics

• false alarm rate is alpha (medical people call it the false positive rate, but focus on
its complement, 1-alpha, and call it specificity)

• pre-test probability is sometimes referred to as the prior probability or ‘prevalence’

JH borrowed the nomogram from Fagan (p. 11, below). Fagan

put the pre-test probability on the right and worked from right

to left; his middle column has the Likelihood ratios (LR +ve >

1 and LR- < 1); his post-test probabilities are on left. In JH’s

nomogram, pre-test is at bottom, then LRs, and then post-test.

Here is an older introduction to terminology/concepts in med-

ical diagnosis http://www.biostat.mcgill.ca/hanley/bios601/CandH-ch0102/

PrimerMedicalDecisionMaking.pdf

See also the very interesting ‘When doctors meet numbers’ http://www.biostat.mcgill.
ca/hanley/bios601/CandH-ch0102/Berwick1981WhenDoctorsMeetNumbers.pdf

This link http://www.biostat.mcgill.ca/hanley/bios601/CandH-ch0102/ has several
newer articles under PERFORMANCE AND INTERPRETATION OF DIAGNOSTIC
TESTS. The one by Steurer – where he tries to improve matters by proving a user-friendly
explanation of the Likelihood ratio – is of note.

SCREENING for HIV http://www.biostat.mcgill.ca/hanley/bios601/

CandH-ch0102/MeyerPaukerHIVscreening.pdf Can we a↵ord the False Positive
Rate? MDs tell Pres. Reagan: ‘5/15 +ve results will be in people who are not infected.’
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2.3.2 Twins: Excerpt from an article by Bradley Efron

Modern science and the Bayesian-Frequentist contro-
versy

Here is a real-life example I used to illustrate Bayesian virtues to the
physicists. A physicist friend of mine and her husband found out, thanks
to the miracle of sonograms, that they were going to have twin boys. One
day at breakfast in the student union she suddenly asked me what was the
probability that the twins would be identical rather than fraternal. This
seemed like a tough question, especially at breakfast. Stalling for time, I
asked if the doctor had given her any more information. “Yes”, she said,
“he told me that the proportion of identical twins was one third”. This
is the population proportion of course, and my friend wanted to know the
probability that her twins would be identical.

Bayes would have lived in vain if I didn’t answer my friend using Bayes’
rule. According to the doctor the prior odds ratio of identical to noniden-
tical is one-third to two-thirds, or one half. Because identical twins are
always the same sex but fraternal twins are random, the likelihood ratio
for seeing “both boys” in the sonogram is a factor of two in favor of Identi-
cal. Bayes’ rule says to multiply the prior odds by the likelihood
ratio to get the current odds: in this case 1/2 times 2 equals 1; in
other words, equal odds on identical or nonidentical given the sonogram
results. So I told my friend that her odds were 50-50 (wishing the answer
had come out something else, like 63-37, to make me seem more clever.)
Incidentally, the twins are a couple of years old now, and “couldn’t be
more non-identical” according to their mom.

Supplementary Exercise 2.1. Depict Efron’s calculations using

a probability tree.

Supplementary Exercise 2.2 Use a probability tree to deter-

mine the best strategy in the Monty Hall problem http://en.

wikipedia.org/wiki/Monty_Hall_problem

Supplementary Exercise 2.3 A man has exactly two children:

you meet the older one and see that it’s a boy. A woman has

exactly two children; you meet one of them [don’t know if its the

younger/older] and see is a boy. What is the probability of the

man’s younger child being a boy, and [be careful!] what is the

probability of the woman’s “other” child being a boy?

Supplementary Exercise 2.4

Refer to the article http://www.biostat.mcgill.ca/hanley/bios601/

CandH-ch0102/BBCNewsAmandaKnoxAndBadMathsInCourt.pdf

Specifically look at the highlighted section ”why are two tests better than
one?” and in particular, the statement that

“The probability that the coin is fair – given this outcome
– is about 8%”

This statement and the subsequent one involving the phrase “Now the prob-
ability for a fair coin” both seem to come out of nowhere.

Questions:

• Is this a well posed problem, or does one need to specify more context in
order to do the calculations?

• Are they using a p-value somehow?

• (After you have first thought about it for a while) read the rele-
vant portion of pages 61-62 and pages 85-86 of the book chapter
http://ebookcentral.proquest.com/lib/mcgill/reader.action?

docID=991081&ppg=74 Math Error Number 4: Double Experiment: the
test that wasn’t done (Amanda Knox case) and find out what informa-
tion was missing from the BBC article. Then verify the 92:8 posterior
odds given in the chapter. Repeat the calculation, but assuming only a
5% prior probability that the coin is biased and a 95% probability that
it is fair. Comment.

Supplementary Exercise 2.5

Refer to the Economist article ‘Problems with scientific research: HOW
SCIENCE GOES WRONG’ http://www.biostat.mcgill.ca/hanley/

bios601/CandH-ch0102/HowScienceGoesWrong.pdf

It has a very nice graphical explanation of why some many studies get it
wrong, and cannot be reproduced – the topic of the Reproducibility Project
in Psychology referred to on same page.

One reason is that even if all studies were published, regardless of whether the
p-value was less than 0.05 (a common screening/filtering criterion) or greater
than 0.05, then, of all the hypotheses tested, only a small percentage of the
hypotheses are ‘true’. Thus many or most of the ‘positive’ tests (published
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results) will be false positives. It is just like when using mammography to
screen for breast cancer: in maybe 4 of every 5 women referred for biopsy, the
biopsy will come back negative.

1. Represent the information in their Figure as a tree. Then present the
same information in a di↵erent tree, with data on left, and hypothesis on
the right (rather than the conventional ‘theta ! data’ direction) – as JH
has done in the three rightmost instances in Figure 2 on page 6 above.

2. What percentage of positive tests would be correct/not if, instead, 1 in
2 of the hypotheses interesting enough to test were true?

3. Come up with a general formula for what in medicine is called the ‘
::::::
positive

::::::::
predictive

:::::
value’ of a positive medical test.

4. Try to simplify it so that the characteristics of the test (↵ and �) are
isolated in one factor, and the testing context (the 1 in 10 or 1 in 2, etc)
is in another. Hint: use odds rather than probabilities, so that you are

addressing the ratio of true positives to false positives, and the ratio of

true hypothesis to false hypotheses. And use the Likelihood Ratio

5. On the same Resources web page is another (but longer) at-
tempt to explain these concepts graphically to left brain and right
brain doctors. http://www.biostat.mcgill.ca/hanley/bios601/

CandH-ch0102/RightSideLeftSide.pdf. JH was impressed with this,
and wanted to share it with the Court for Arbitration in Sport, when
explaining the interpretation of positive doping tests. But he found that
the ‘teaser’ sentence immediately following the title

Can you explain why a test with 95% sensitivity might identify
only 1% of a↵ected people in the general population?

is misleading, and so he make his own diagram (available on request).

Exercise : Revise this misleading phrase.

see http://shinyapps.org/apps/PPV/

Supplementary Exercise 2.616 How many o↵spring do I need to test?
Background:17

A researcher is trying to develop a strain of “transgenic” mice, by introducing
an altered gene (transgene) into the genome. In order to breed true, the

16New this year, so wording may need some polishing. Also, JH developed this question
in 1991; it may well be that technology since then has made the task easier.

17If in a hurry, skip to the Possible F3 genotypes later in the piece.

animals must be made to be homozygous, i.e., to have two copies of the
introduced gene (+ +) . Molecular biology techniques can detect whether
the transgene is present in an individual animal (without having to sacrifice
the animal), but cannot distinguish a hemizygote, with one copy of the gene
(+ -), from a homozygote (+ +). This di↵erence can only be detected by
breeding strategies. But, time and resources are pressing.

First generations:
A copy of the transgene is injected into the pronucleus of a newly fertilized
ovum, prior to fusion with the male pronucleus. Thus all animals that develop
from these zygotes can have at most one copy of the gene, from the ovum.
After birth, screening is performed to detect these “positive” animals, called
founders. After sexual maturation, all founders are bred to normal “wild
type” (WT) animals, to ensure that the transgene has been incorporated in
such a way as to be heritable. Pairs of positive (hemizygous) animals in this
F1 generation are then bred to each other. By Mendelian genetics, the distri-
bution of F2 o↵spring should be 1:2:1, homozygous transgenic : hemizygous
transgenic : homozygous normal. The homozygous normal animals are not
used. The question is, how to tell the homozygous transgenic mice (the de-
sired ones) from the hemizygous transgenic ones? Note that the mix in this
reduced population is 1 homozygous transgenic to 2 hemizygous transgenic.

F2 breeding:
All ’positive’ F2 animals (i.e. all homozygous and hemizygous animals) are
bred to wild type. Possible F3 genotypes are as follows: (by Mendelian
genetics)

• Hemizygous (which comprise 2/3 of the F2 animals used) x wild type
= 50:50, hemizygous (and therefore ‘positive’) : normal (and therefore
‘negative’),

• Homozygous (which comprise 1/3 of the F2 animals used) x wild type =
all hemizygous (and therefore ‘positive’).

That is, while only half of the o↵spring from a Hemi x WT pair will be
‘positive’ when screened, all of the o↵spring of a Homo x WT pair will be
‘positive’.

The question:

How many F3 o↵spring from a particular pairing does the researcher
have to screen before declaring the positive parent as homozygous? Note:
as soon as an o↵spring is screened as ‘negative’, one knows the parent must
have been hemizygous.
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The point is to check the least number of o↵spring and do as few repeated
breedings as possible to detect homozygous animals. How many consecutive
‘positive’ F3 o↵spring does one need to observe to be convinced (and with what
probability) that the positive F2 parent is homozygous for the transgene?

1. Calculate the probability before the positive F2 parent has any o↵spring,
and after observing 1, 4, 8, 11 consecutive ’positive’ F3 o↵spring. Give a
general rule for the probability after K consecutive ‘positives’.

2. This probability/odds problem has a structure similar to the hemophilia
one in §2.3. So redraw the diagram provided there, using the transgenic
testing example, and making the necessary changes to the prior probabil-
ities and to the labels. Do so first for the “1 inconclusive o↵spring” case:
think of this 1 inconclusive o↵spring as somewhat helpful, better than
where the probabilities stood before any o↵spring were observed. Then
extend the diagram to the general “K inconclusive o↵spring” case; think
of this as ‘not quite certain but closer to it than where one stood before
any o↵spring were observed. [Many students argue that even after the

suspected carrier has a NL son, the probability she is a carrier is unal-

tered, at 0.5. When asked again once she has had 3 or more consecutive

NL sons that they begin to realize that each NL son pushes the probability

that she is a carrier closer to 0.] For the transgenic testing, the longer

the run of ‘positives’ the more the probability is moved close to 1.

3. Denote the probability of being transgenic, or a haemophilia carrier, af-
ter observing K , as the post-test’ probability (think of the o↵spring as
providing a test for the status of the parent). Obviously, if at any stage
the next o↵spring provides conclusive evidence, the probability immedi-
ately goes to 0 (transgenic) or 1 (haemophilia). But if the K consecutive
o↵spring are inconclusive but still informative, it merely moves the prob-
ability of interest further in the other direction.
The formula for the post-test probability of being transgenic, or a
haemophilia carrier, i.e., after observing K consecutive inconclusive but
still informative o↵spring, is awkward. It has the form A/(A + B). But,
what if we switch from pre-test and post-test probabilities to pre-test and
post-test ‘odds?18 Redo the calculations in terms of pre-and post-test
odds, and characterize (give a more familiar name to) the ??? in the
expression

Post-test odds = Pre-test odds ⇥ ??? ,

or
log[Post-test odds] = log[Pre-test odds] + log[???].

or
logit[post.test.prob] = logit[pre.test.prob] + log[???].

18As C&H tells us, ⌦ = ⇡/(1� ⇡); Odds = Prob(+)/Prob(-).

The New England Journal of Medicine 
Downloaded from nejm.org at MCGILL UNIVERSITY LIBRARY on September 14, 2015. For personal use only. No other uses without permission. 

 From the NEJM Archive. Copyright © 2010 Massachusetts Medical Society. All rights reserved. 

N.E. J. Med, 1975

The New England Journal of Medicine 
Downloaded from nejm.org at MCGILL UNIVERSITY LIBRARY on September 14, 2015. For personal use only. No other uses without permission. 
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Supplementary Exercise 2.719

A woman had a daughter and then 3 sons; the 3rd son has Duchenne
muscular dystrophy20. Thus, there is a chance the daughter is a carrier.
If the a↵ected son’s status is a result of a gene inherited from his mother
(the a↵ected gene lies on the X chromosome), then the probability that the
daughter is [also] a carrier is 50%. If the son’s status is a result of a sponta-
neous mutation in his genome, then the probability that the daughter is a
carrier is negligible. The mother can have the daughter tested, but prefers to
wait until she is grown up when she can decide for herself whether to be tested.

What additional information, if any, is provided by the data on the other
2 sons? 21 Depict the situation as a tree diagram, and state any assump-
tions/information you have to make/include.

Supplementary Exercise 2.8: How often does it land like this?

A thumbtack refers to ‘a tack with a large, flat head, designed to be thrust
into a board or other fairly soft object or surface by the pressure of the
thumb’. The British tend to call it a drawing pin – a tack used to hold
drawings on drawing boards. (Nowadays, a pin or map tack refers to thumb
tacks used to mark locations on a map and to hold the map in place). [

https://en.wikipedia.org/wiki/Drawing pin. ]

We will focus on this version and on what proportion (⇡)
of times, if tossed in the air or dropped from a height, it would land in the
position indicated in the above diagram, as opposed to on its back. Of course,
this (⇡) might well depend on the height, or whether the surface it is dropped
onto is soft (a carpet) or hard (a table, or wood floor), or even on the person
tossing it.22 For our class investigation we will choose a hard surface.

19This exercise, also new in 2016, was suggested by a statistical geneticist colleague whom
JH consulted as to whether using o↵spring to infer haemophilia carriage or trangenicity is
outdated: answer YES!

20
https://en.wikipedia.org/wiki/Muscular_dystrophy.

21The son of a female carrier has a 50% chance of receiving the a↵ected X chromosome.
If the son has the mutation, it is 100% probability of disease.

22The data in Beckett and Diaconis (Advances in Mathematics, 103, 107-128 (1994)
‘involve repeated rolls of a common thumbtack, and recording whether the tack landed
point up or point down. All tacks started point down. Each tack was flicked or hit with the
fingers from where it last rested. A fixed tack was flicked 9 times. The data are recorded
in Table I. There are 320 9-tuples. These arose from 16 di↵erent tacks, 2 “flickers,” and

1. Before you gather any data, make your best educated guess as to the
magnitude of ⇡. Since you won’t want to bet all your money on one
specific value, you should give your ‘distribution’ in the form of a p.d.f.
with a range of 0 to 1. Thus, describe your uncertainty (or degree of
certainty) concerning ⇡ as a beta distribution with parameters ↵ and �,
with the parameter values chosen to reflect how concentrated or vague
your estimate of ⇡ is. Remember (or look up, preferably in Cassela
and Berger, or – only if stuck – Wikipedia) that the mean of a beta
distribution is µ = ↵/(↵ + �) and the SD is [µ(1 � µ)/(↵ + � + 1)]1/2.

2. Then carry out a number of tosses and update the p.d.f.

Supplementary Exercise 2.923

For this exercise we will take the term fecundability to mean the probability
of pregnancy during a single menstrual cycle.

Couples attempting pregnancy are to be followed for up to K menstrual cycles,
or until pregnancy occurs. We assume K is fairly small, so that aging during
the follow-up interval will have negligible e↵ects on the fecundability of any
given couple. In practice, K is usually some number less than or equal to 12.

If all non-contracepting, sexually active couples had the same per-cycle con-
ception probability, ⇡, then the number of cycles required to achieve preg-
nancy would be distributed as geometric with parameter ⇡. In fact, there is
ample evidence that couples vary in their fecundability. About 30% of sexu-
ally active couples achieve pregnancy in their first non-contracepting cycle, a
smaller proportion of the remaining couples achieve pregnancy in the second,
and with each additional unsuccessful cycle, the conception rate continues
to decline, as the risk sets become further depleted of the relatively fecund
couples. The pronounced decrease in conception probability over time is not
properly viewed as a time or age e↵ect, but as a

::::::
sorting e↵ect in a heteroge-

neous population.

Thus, couples will be assumed to vary in their fecundability, so that a given
couple has a per-cycle conception probability that stays constant throughout
the follow-up interval, but these probabilities vary across couples. Assume
that ⇡ varies according to a beta distribution, with parameters ↵ = 3, � = 7,
i.e.,

⇡ ⇠ Beta(3, 7).

10 surfaces. The tacks vary considerably in shape and in proportion of ones. The surfaces
varied from rugs through tablecloths through bathroom floors.

23This exercise, based on Weinberg & Gladen, Biometrics 42, pp.547-560 (1986), is new
in 2016, so the wording may still need some polishing.
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1. Show that if this is indeed the case, then indeed about 30% of sexually
active couples achieve pregnancy in their first non-contracepting cycle. It

may help to think of the results as the realizations of Bernoulli random

variables with di↵ering expectations, in other words, i. i. d. Bernoullis.

2. Now, exclude the first-cycle pregnancies and consider the couples who
proceed to the second cycle. What is the distribution of ⇡ in these remain-
ing couples? Hint: to see what happens, you might want to make a graph:

convert the continuous r.v. – and associated density – for cycle 1 into

a discrete one with 100 probabilities centered on 0.005, 0.015, . . . , 0.995
with a rectangle erected over each one; then remove the appropriate por-

tion from the top of each rectangle, and rescale the altered rectangles so

that the frequencies again add to 1, and then convert the discrete r.v.

back to a continuous r.v. The new p.d.f. should have a familiar (and

remarkable!) functional form. What is it?

3. Generalize to 12 cycles, and plot the 12 pdfs on a single graph. Then, for
k = 2, . . . , 12, find what % of those who undergo non-contracepting cycle
k become pregnant in cycle k.

4. After 6 unsuccessful cycles, a couple asks you what is the estimated prob-
ability that – if they continue to try – they will be successful in one of
the next 6 cycles. Rather than just giving a ‘central’ estimate, give a
pessimistic24 estimate and an optimistic25 one.

5. Instead of ‘assuming’ ↵ = 3, � = 7, how might one estimate ↵ and �
from data? For concreteness, imagine one had the data from 500 couples
followed for up to 12 cycles after discontinuing contraception.

6. Among the couples attempting pregnancy, a proportion ⇢ will have some
hidden condition that makes ⇡ = 0. Thus, it may be more realistic to
consider the distribution of ⇡ to be a beta ‘contaminated by’ (or ‘mixed
with’) a second distribution degenerate at 0. In this context, ⇢ is called
the ‘mixing parameter’.

Repeat the calculations for the cycle-specific distributions and percent-
ages.

Supplementary Exercise 2.1026 Two (orientational) probabil-
ity examples from Alan Turing [Full Turing article available here

24Use the 5th percentile of the ‘after-6-unsuccessful cycles’ distribution.
25Use the 95th percentile of this ‘after-6’ distribution.
26New in 2018, so wording may need some polishing.

http://www.biostat.mcgill.ca/hanley/bios601/CandH-ch0102/, along
with commentary by Zabell.] Each question is preceded by a • .

Zabell tells us

In April 2012, two papers written by Alan Turing during the Second
World War on the use of probability in cryptanalysis were released
by GCHQ. The longer of these presented an overall framework for
the use of Bayes’s theorem and prior probabilities, including [in Ch.
2] four examples worked out in detail: the Vigenère cipher, a let-
ter subtractor cipher, the use of repeats to find depths, and simple
columnar transposition. (The other paper was an alternative version
of the section on repeats.) Turing stressed the importance in prac-
tical cryptanalysis of sometimes using only part of the evidence or
making simplifying assumptions and presents in each case computa-
tional shortcuts to make burdensome calculations manageable. The
four examples increase roughly in their di�culty and cryptanalytic
demands. After the war, Turing’s approach to statistical inference
was championed by his assistant in Hut 8, Jack Good, which played
a role in the later resurgence of Bayesian statistics.

The following numbering of the Chapter 1 subsections was introduced by Ian
Taylor, who reset the ‘manuscript’ in LateX.

Chapter 1. Introduction

1.1. Preamble

1.2. Meaning of probability and odds

1.3. Probabilities based on part of the evidence

1.4. A priori probabilities

1.5. The Factor Principle

1.6. Decibanage

1. Turing’s Section 1.2 (‘Meaning of probability and odds’) is quite
short

I shall not attempt to give a systematic account of the theory
of probability, but it may be worth while to define shortly
probability and odds.
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The probability of an event on certain evidence is
the proportion of cases in which that event may be
expected to happen given that evidence. For instance if
it is known the 20% of men live to the age of 70, then knowing
of Hitler only Hitler is a man we can say that the probability
of Hitler living to the age of 70 is 0.2. Suppose however that
we know that Hitler is now of age 52 the probability will be
quite di↵erent, say 0.5, because 50% of men of 52 live to 70.

The odds of an event happening is the ratio P/(1-P)
where P is the probability of it happening. This termi-
nology is connected with the common phraseology ‘odds of 5:2
on’ meaning in our terminology that the odds are 5/2.

• Does Turing’s definition of probability fit with what you have been
taught, or is it a bit more qualified and specific? (cf. commentary by
Zabell, and specifically his quotes from Laplace and Bertrand.)

• Later on, in another example, Turing admits that his ‘facts’ are ‘no
doubt hopelessly inaccurate.’ How accurate are the ‘facts’ he used in the
living to 52 and to 70 example? Compare them with those in the por-
tion of the ‘current’ English lifetable from 1930-1932, used by Armitage,
and discussed by JH in section 4.2 of his Notes on Clayton & Hills.
Ch 4: Follow-up. http://www.biostat.mcgill.ca/hanley/bios601/

ch04.pdf In that lifetable, approximately what % of men of 50 live to
70?

2. Section 1.5. (‘The Factor Principle’) is illustrated with a medical
example:

Nearly all applications of probability to cryptography depend
on the ‘factor principle’ (or Bayes’ theorem). This principle
may first be illustrated by a simple example.

Suppose that one man in five dies of heart failure, and that
of the men who die of heart failure two in three die in their
beds, but of the men who die from other causes only one in
four die in their beds. (My facts are no doubt hopelessly
inaccurate). Now suppose we know that a certain man died
in his bed. What is the probability that he died of heart failure?

Of all men numbering N say, we find that

N ⇥ (1/5) ⇥ (2/3) die in their beds of heart failure
N ⇥ (1/5) ⇥ (1/3) die elsewhere of heart failure

N ⇥ (4/5) ⇥ (1/4) die in their beds from other causes
N ⇥ (4/5) ⇥ (3/4) die elsewhere from other causes

Now as our man died in his bed we do not need to consider the
cases of men who did not die in their beds, and these consist
of

N ⇥ (1/5) ⇥ (2/3) cases of heart failure
N ⇥ (4/5) ⇥ (1/4) from other causes,

and therefore the odds are 1 ⇥ (2/3) : 4 ⇥ (1/4) in favour of
heart failure. If this had been done algebraically the result
would have been

A posteriori odds of the theory

= A priori odds of the theory

⇥ Probability of the data being fulfilled if the theory is true

Probability of the data being fulfilled if the theory is false
.

In this the ‘theory’ is that the man died of heart failure, and
the ‘data’ is that he died in his bed.

The general formula above will be described as the ‘factor prin-
ciple’, the ratio Probability of the data if the theory is true

Probability of the data if the theory is false
is called

the factor for the theory on account of the data.

• Use the above information to sketch 2 probability trees, along the lines
of those shown in Figure 2 (p.6) of JH’s Notes.

3. Section 1.6. (‘Decibanage’) adds 2 additional pieces of information to
the same medical example.

Usually when we are estimating the probability of a theory
there will be several independent [empahsis added by JH]
pieces of evidence e.g. following our last example, where we
want to know whether a certain man died of heart failure or
not, we may know
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a) He died in his bed
b) His father died of heart failure
c) His bedroom was on the ground floor

and also have statistics telling us

2/3 of men who die of heart failure die in their beds

2/5 ................................................ have fathers who died of heart failure

1/2 ................................................ have their bedrooms on the ground floor

1/4 of men who died of other causes die in their beds

1/6 ................................................. have fathers who died of heart failure

1/20 ............................................... have their bedrooms on the ground floor

Let us suppose that the three pieces of evidence are indepen-
dent of one another if we know that he died of heart failure,
and also if we know that he did not die of heart failure. That is
to say that we suppose for instance that knowing that he slept
on the ground floor does not make it any more likely that he
died in his bed if we knew all along that he died of heart failure.

When we make these assumptions the probability of a man who
died of heart failure satisfying all three conditions is obtained
simply by multiplication, and is (2/3) ⇥ (2/5) ⇥ (1/2) and
likewise for those who died from other causes the probability is
(1/4) ⇥ (1/6) ⇥ (1/20), and the factor in favour of the heart
theory failure is

(2/3) ⇥ (2/5) ⇥ (1/2)

(1/4) ⇥ (1/6) ⇥ (1/20)
.

We may regard this as the product of three factors (2/3)/(1/4)
and (2/5)/(1/6) and (1/2)/(1/20) arising from the three
independent pieces of evidence.

Products like this arise very frequently, and sometimes one will
get products involving thousands of factors, and large groups
of these factors may be equal. We naturally therefore work
in terms of the logarithms of the factors. The logarithm of
the factor, taken to the base 101/10 is called the decibanage
in favour of the theory! A ‘deciban’ is a unit of evidence; a
piece of evidence is worth a deciban if it increase the odds of
the theory in the ratio 101/10 : 1. The deciban is used as
a more convenient unit that the ‘ban’. The terminology was

introduced in honour of the famous town of Banbury.27

Using this terminology we might say that the fact that our man
died in bed scores 4.3 decibans in favour of the heart failure
theory (10log(8/3) = 4.3). We score a further 3.8 decibans
for his father dying of heart failure, and 10 for his having his
bedroom on the ground floor, totalling 18.1 decibans. We then
bring in the a priori odds 1/4 or 10�6/10 and the result is the
the odds are 1012.1/10, or as we may say ‘12.1 decibans up on
evens’. This means about 16:1 on.

• Sketch the relevant parts of Turing’s example using a probability tree.

This ‘independence ’ assumption that Turing invokes is called ‘condi-
tional independence ’ today, and it is widely used in the statistical
literature that deals with imperfect diagnostic tests. The ‘classic’ papers
in the field are by Hui and Walter (1980) and Walter and Irwig (1988).28

The work of McGill’s Lawrence Joseph, beginning with Bayesian Esti-
mation of Disease Prevalence and the Parameters of Diagnostic Tests in
the Absence of a Gold Standard (AJE 1995) and his student Nandini
Dendukuri, and their students has considerably extended the uses of this
model. In some cases they have tried to relax the conditional indepen-
dence assumption. Links to some of these are provided in the Resources.

One of the objections to the conditional independence assumption is that
(especially in those with the disease who are the target of the diagnos-
tic tests), the results of the various tests (physical examination, blood
tests, imaging tests) may be correlated, and that one may be giving too

27As Zabell tells us, ‘The factor of 10 was included to simplify the arithmetic, dropping
everything after the first decimal place. For example, in the cases p=0.55 and p=0.9, one
has log10(0.55/0.45) = 0.08715 and log10(0.9/0.10) = 0.95424, and these would be reported
in decibans as 0.9 and 9.5, respectively.’ Zabell also has an interesting note on the (time-
and e↵ort-saving) switch to half-decibans, a practical innovation introduced by I.J. Good.

28Hui SL, Walter SD. (1980) Estimating the error rates of diagnostic tests. Biometrics 36,
167-171; and Walter SD and Irwig L. Estimation of test error rates, disease prevalence and
relative risk from misclassified data: a review. J Clin Epidemiol. 1988;41(9):923-37. They
latter ‘shows how, under certain conditions, it is possible to estimate error parameters such
as sensitivity, specificity, relative risk, or predictive value, even though no definitive classifi-
cation (gold standard) is available. The parameter estimates are obtained by modelling the
data, using maximum likelihood, with or without some constraints. The models recognize
that the true classification of an individual is unknown, and so are sometimes referred to as
“latent class” models. The latent class approach provides a unified framework for various
methods found in a dispersed literature, characterising each by the number of populations
or subgroups in the data, and the number of observations made on each individual; the
statistical degrees of freedom are implied by the sampling design. Data sets with less than
three replicate observations per individual necessarily require constraints for parameter es-
timation to be possible. Data sets with three or more replicates lead directly to estimates
of the misclassification rates, subject to some simple assumptions.’
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much weight to them if one combines the evidence on the assumption
that the pieces of information are independent. However, some investi-
gations (e.g., Torrance-Rynard and Walter. E↵ects of dependent errors
in the assessment of diagnostic test performance. Stat Med. 1997 Oct
15;16(19):2157-75.) have found that ‘violations’ of the assumption may
not matter greatly in practice. In a recent email to me, Lawrence Joseph
agreed that ‘conditional dependence is likely rarely exactly true in real
problems’ but went on to say that ‘e↵ects from dependence may be small
so assuming independence may be good as an approximation. it can also
be pretty di�cult to evaluate conditional independence from available
data.’

Imagine29 2 pieces of information (younger(Y) / older(O) age and
female(F) / male(M) gender) that might help decide which cases of
chest pain reported to a telephone helpline are because the patient is (a)
having a heart attack, or (b) su↵ering from anxiety or panic.
Suppose that of 12 calls in whom it is ultimately determined that the
cause is (b), the expected frequencies of the 4 profiles (YF, YM, OF,
OM), are 3 : 3 : 3 : 3; and that of 12 calls in whom it is ultimately
determined that the cause is (a), the frequencies of these same 4 profiles
are 1 : 2 : 3 : 6.

• Do these data obey the conditional independence assumption?

• Calculate (i) the a-priori odds of heart-attack : anxiety, (ii) the
(overall) ‘factor’ associated with each of the four profiles, and (iii) the
a-posteriori odds of heart-attack : anxiety for each profile. (Don’t bother
converting them to decibans)

• Generically, denote the states of interest by Y=0 and Y=1, and the 2
pieces of information as X1 and X2, each categorized as ‘+’ or ‘-’. Sup-
pose that of 100 instances in whom it is ultimately determined that Y=0,
the expected frequencies of the 4 profiles (- -, - +, + -, + +), are 75 : 9 :
9 : 7; and that of 100 instances in whom it is ultimately determined that
Y=1, the frequencies of these same 4 profiles are 7 : 9 : 9 : 75.
Repeat the 2 earlier questions. How much do the ‘violations’ of the
conditional- independence assumption a↵ect the a-posteriori probabili-
ties?

29As with Turing, these are ‘made up’ frequencies, so as to keep the arithmetic easy.

x1x2[,1]

Y=1

Y=0

X2

+

-

0.841

0.159

0.159

0.841

X1 +-

0.8410.159
0.1590.841

0.025
0.708

0.133
0.133

0.133
0.133

0.708
0.025

Joint frequencies of Xs in plain font;
marginal frequencies in bold italic.

Y=1

Y=0

X2

+

-

0.841

0.159

0.159

0.841

X1 +-

0.8410.159
0.1590.841

0.073
0.755

0.086
0.086

0.086
0.086

0.755
0.073

x1x2[,1]

x1
x2
[,2
]

Y=1

Y=0

X2

+

-

0.841

0.159

0.159

0.841

X1 +-

0.8410.159
0.1590.841

0.045
0.728

0.113
0.113

0.113
0.113

0.728
0.045

x1
x2
[,2
]

Y=1

Y=0

X2

+

-

0.841

0.159

0.159

0.841

X1 +-

0.8410.159
0.1590.841

0.115
0.798

0.043
0.043

0.043
0.043

0.798
0.115

——————

Note regarding the frequencies in last part of the question above:

The bottom left panel of this Figure was used to calculate the (rounded) frequencies. It
uses 2 overlapping bivariate {X1, X2} distributions, one for those in the Y = 1 state (in
red) and one for those in the Y = 0 state (in grey). The {X1, X2} correlations range from
0 (upper right panel) to 0.9 (lower left). The vertical and horizontal lines are cut-points
that dichotomize the {X1, X2} values into ’positive’ and ’negative’ results.

The assumption of 2 overlapping Multivariate Normal distributions is the basis for
the disciminant function (the linear combination �X) introduced by Ronald Fisher in
1936. If the 2 covariance matrices are equal to each other, then the linear discriminant is
also (modulo an intercept) the logit of the probability that Y=1:

log
Prob[Y = 1|X]

Prob[Y = 0|X]
= �X,

a form known today as logistic regression.

This logistic form was introduced to epidemiology with Cornfield’s 1962 paper30 that
used 2 variables (X1 = log10 cholesterol) and X2 = log10 (blood pressure - 75) measured in
the Framingham Heart study to fit the risk (probability) of developing heart disease (Y=1)
over the next 6 years. The linear discriminant function (LD) he fitted was

LD = �23.13 + 6.14X1 + 3.29X2

30
http://www.medicine.mcgill.ca/epidemiology/hanley/c678/cornfield.pdf
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So the odds is exp[LD] : 1 and the probability is odds/(odds+1)

Probability = odds/(1+odds) =
exp[LD]

1 + exp[LD]

The dataset had 92 instances of Y=1 and 1237 of Y=0, so the a-priori odds were 92:1237
or 0.074:1. The ‘average’ probability is thus approximately 7%.

Consider 4 profiles: cholesterol of 200 or 300 (log=2.30 or 2.48), and SBP of 120 or 180 (log
= 2.08 or 2.26). So the 4 LDs are -23.13 + 6.14⇥(2.30 or 2.48) + 3.29⇥(2.08 or 2.26), i.e.,
-3.56, -2.35, -2.48 and -1.27. So the profile-specific odds are 0.028:1, 0.095:1, 0.084:1 and
0.281:1. So the probabilities are 0.03, 0.09, 0.08 and 0.22, or 3%, 9%, 8% and 22%.

50 years ago, in 1967, Truett Cornfield and Kannel31 relaxed the insistence on
strict multivariate normality (which could not work apply to binary variables, or to
many continuous ones).

‘For the multiple logistic function to provide an exact description of the relation between
risk and risk factors it is su�cient that the underlying distributions be multivariate normal.
It is by no means necessary, however. In fact a much weaker condition is su�cient, namely
that the linear compound of risk factors be univariate normal. The circumstances under
which a linear com- pound of independent variables will be normal are given by the central
limit theorem, and of dependent variables by Bernstein?s theorem.’

They still used the (1-pass) method of Discriminant Analysis to fit the weights or coe�-
cients.

That same year, in Biometrika, Walker and Duncan32 reversed the statistical modelling
focus. Remember that the focus of discriminant analysis is Prob[X|Y ] – the random variable
is the multivariate X. But why model the joint distribution of these X variables? Walker
and Duncan focused directly on what Cornfield et al. were ultimately interested in but had
derived indirectly (post-fit) from the LD, namely the Prob[Y |X]: the random variable is
now the univariate Y, and the X’s are regressors.

They estimated the model coe�cients ‘through a least-squares argument using (iteratively)
re-estimated weights, which ‘as is well known’ gives coe�cients that ‘are identical with
those which would be obtained by the method of maximum likelihood.’

31A multivariate analysis of the risk of coronary heart disease in Framingham. Truett J,
Cornfield J, Kannel W. J Chronic Dis. 1967 Jul;20(7):511-24.

32Walker, SH, Duncan, DB. Estimation of the probability of an event as a function of
several independent variables. Biometrika. 1967;54:167?179.

NB: Diagnostic versus Prognostic probabilities – and the ‘directionalities’ involved

The above examples bring out an important point that is missed by today’s use of logistic
regression of Y (=1/0) on X for fitting both diagnostic and prognostic probabilities.

In
::
dia-gnosis, the disease or condition is

:::::
already

:::::
either

::::::
present

::
or

:::::
absent, and (apart from

variables such as age and sex, that act as risk factors) many of the X’s (symptoms, signs,
what is seen on imagining, or in blood tests) will be consequences or manifestations of Y.
So the directionality is

Y ! X. (Diagnostic)

In
:::
pro-gnosis, the disease or condition is in the

::::
future, i.e., the X’s precede Y. So the

directionality is
X ! Y. (Prognostic)
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Supplementary Exercise 2.1133 Lie-detection technology

2003

The executive summary of the authoritative 2003 report The Polygraph and

Lie Detection by the National Research Council. 2003. Washington, DC:
The National Academies Press. [available for free, https://www.nap.edu/
catalog/10420/the-polygraph-and-lie-detection ] includes these con-
clusions

CONCLUSION: Notwithstanding the limitations of the quality of
the empirical research and the limited ability to generalize to real-
world settings, we conclude that in populations of examinees such as
those represented in the polygraph research literature, untrained in
countermeasures, specific-incident polygraph tests can discriminate
lying from truth telling at rates well above chance, though well be-
low perfection. Because the studies of acceptable quality all focus on
specific incidents, generalization from them to uses for screening is
not justified. Because actual screening applications involve consider-
ably more ambiguity for the examinee and in determining truth than
arises in specific-incident studies, polygraph accuracy for screening
purposes is almost certainly lower than what can be achieved by
specific-incident polygraph tests in the field.

and

CONCLUSION: Basic science and polygraph research give reason
for concern that polygraph test accuracy may be degraded by coun-
termeasures, particularly when used by major security threats who
have a strong incentive and su�cient resources to use them e↵ec-
tively. If these measures are e↵ective, they could seriously under-
mine any value of polygraph security screening.

Under the heading Polygraph Use for Security Screening, we read

The proportion of spies, terrorists, and other major national secu-
rity threats among the employees subject to polygraph testing in the
DOE laboratories and similar federal sites presumably is extremely
low. Screening in populations with very low rates of the target trans-
gressions (e.g., less than 1 in 1,000) requires diagnostics of extremely

33New in 2019, so wording may need some polishing.

high accuracy, well beyond what can be expected from polygraph
testing.

Table S-1 illustrates the unpleasant tradeo↵s facing policy makers
who use a screening technique in a hypothetical population of 10,000
government employees that includes 10 spies, even when an accuracy
is assumed that is greater than can be expected of polygraph testing
on the basis of available research. If the test were set sensitively
enough to detect about 80 percent or more of deceivers, about 1,606
employees or more would be expected “fail” the test; further investi-
gation would be needed to separate the 8 spies from the 1,598 loyal
employees caught in the screen.

TABLE S-1 Expected Results of a Polygraph Test Procedure
::::
with

::
an

:::::::::
Accuracy

::::::
Index

::
of

:::::
0.90 in a Hypothetical Population of 10,000

Examinees That Includes 10 Spies

S-1A If detection threshold is set to detect the great majority (80
percent) of spies

Examinee’s True Condition
Test Result Spy Nonspy Total
“Fail” test 8 1,598 1,606
“Pass” test 2 8,392 8,394
Total 10 9,990 10,000

If the test were set to reduce the numbers of false alarms (loyal
employees who “fail” the test) to about 40 of 9,990, it would correctly
classify over 99.5 percent of the examinees, but among the errors
would be 8 of the 10 hypothetical spies, who could be expected to
“pass” the test and so would be free to cause damage.

S-1B If detection threshold is set to greatly reduce false positive
results

Examinee’s True Condition
Test Result Spy Nonspy Total
“Fail” test 2 39 41
“Pass” test 8 9,951 9,959
Total 10 9,990 10,000

Available evidence indicates that polygraph testing as currently used
has extremely serious limitations in such screening applications, if
the intent is both to identify security risks and protect valued em-
ployees. Given its level of accuracy, achieving a high probability of
identifying individuals who pose major security risks in a popula-
tion with a very low proportion of such individuals would require
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setting the test to be so sensitive that hundreds, or even thousands,
of innocent individuals would be implicated for every major security
violator correctly identified. The only way to be certain to limit the
frequency of “false positives” is to administer the test in a manner
that would almost certainly severely limit the proportion of serious
transgressors identified.

CONCLUSION: Polygraph testing yields an unacceptable choice
for DOE employee security screening between too many loyal em-
ployees falsely judged deceptive and too many major security threats
left undetected. Its accuracy in distinguishing actual or potential se-
curity violators from innocent test takers is insu�cient to justify
reliance on its use in employee security screening in federal agencies.
Polygraph screening may be useful for achieving such objectives as
deterring security violations, increasing the frequency of admissions
of such violations, deterring employment applications from poten-
tially poor security risks, and increasing public confidence in national
security organizations. On the basis of field reports and indirect sci-
entific evidence, we believe that polygraph testing is likely to have
some utility for such purposes. Such utility derives from beliefs about
the procedure?s validity, which are distinct from actual validity or
accuracy. Polygraph screening programs that yield only a small per-
centage of positive test results, such as those in use at DOE and
some other federal agencies, might be useful for deterrence, eliciting
admissions, and related purposes. However, in populations with very
low base rates of the target transgressions they should not be counted
on for detection: they will not detect more than a small proportion
of major security violators who do not admit their actions.

We have thought hard about how to advise government agencies
on whether or how to use information from a diagnostic screening
test that has these serious limitations. We note that in medicine,
such imperfect diagnostics are often used for screening, though only
occasionally in populations with very low base rates of the target
condition. When this is done, either the test is far more accurate
than polygraph testing appears to be, or there is a more accurate
(though generally more invasive or expensive) follow-up test that
can be used when the screening test gives a positive result. Such a
follow-up test does not exist for the polygraph. The medical analogy
and this di↵erence between medical and security screening underline
the wisdom in contexts like that of employee security screening in
the DOE laboratories of using positive polygraph screening results
– if polygraph screening is to be used at all – only as triggers for

detailed follow-up investigation, not as a basis for personnel action.
It also underlines the need to pay close attention to the implications
of false negative test results, especially if tests are used that yield a
low proportion of positive results.

A belief that polygraph testing is highly accurate probably enhances
its utility for such objectives as deterrence. However, overconfidence
in the polygraph – a belief in its accuracy that goes beyond what is
justified by the evidence – also presents a danger to national security
objectives. Overconfidence in polygraph screening can create a false
sense of security among policy makers, employees in sensitive posi-
tions, and the general public that may in turn lead to inappropriate
relaxation of other methods of ensuring security, such as periodic
security re-investigation and vigilance about potential security vi-
olations in facilities that use the polygraph for employee security
screening. It can waste public resources by devoting to the poly-
graph funds and energy that would be better spent on alternative
procedures. It can lead to unnecessary loss of competent or highly
skilled individuals in security organizations because of suspicions cast
on them by false positive polygraph exams or because of their fear of
such prospects. And it can lead to credible claims that agencies that
use polygraphs are infringing civil liberties for insu�cient benefits
to the national security. Thus, policy makers should consider each
application of polygraph testing in the larger context of its various
costs and benefits.

Exercises related to the 2003 report

1. Figure out what the authors mean by ‘
::
an

:::::::::
Accuracy

::::::
Index

::
of

::::
0.90’ in their

table.

2. Plot the 2 operating points (from tables S1-A and S1-B) in the (unit-
square) ROC space.

3. The authors used a ‘spy’ prevalence of 10/10,000 or 0.1%. Develop a
general equation linking the post-test odds (after a ‘Fail” result) that a
person is a spy to the pre-test odds that a person is a spy.

4. What (post - “Fail” result) probability would this equation yield if the
equation were applied to a person for whom – on the basis of all of the

other evidence bearing on the case – the probability of his/her having
committed a very serious o↵ence against another person is thought be be
(a) 20% (b) 50% (c) 80% ?
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5. What would the (minimum) pre-test probability have to be in order for
the post-test probability to exceed the 50% (the balance-of-probabilities)
threshold use in civil law cases?

2016

Refer to the 2016 article “Laboratory and Field Research on
the Ocular-Motor Deception Test” (‘ODT’) by Kircher JC and
Raskin DC in the journal European Polygraph 10(4): 159-172.
You can find it here https://www.polygraph.pl/vol/2016-4/

european-polygraph-2016-no4-kircher-raskin.pdf For this exer-
cise, refer specifically to the section ‘Field study of the ODT’ on pages
168-169.

Exercises related to this 2016 article

1. From the reported percents, back-calculate the numerators and denomi-
nators for each of the 5 folds in Table 4, and add across folds to get an
overall ‘specificity’ (for the ‘truthful’ row, consisting of 83 persons) and
an overall sensitivity (for the ‘deceptive’ row, consisting of 71 persons)
[the overall n’s are given in paragraph 1]

2. Add this single operating point to the already-plotted points in ROC
space.

3. Calculate the (post - ‘Fail” result) probability of deception for a person
for whom – on the basis of all of the other evidence bearing on the case
– the pre-test probability is thought to be (a) 0.1% (b) 20% (c) 50% (d)
80%.

4. What would the (minimum) pre-test probability have to be in order for
the post-test probability to exceed 50%?

If interested, see the 2018 article https://www.wired.com/story/

eye-scanning-lie-detector-polygraph-forging-a-dystopian-future/

and the 2019 one https://www.theguardian.com/technology/2019/sep/05/

the-race-to-create-a-perfect-lie-detector-and-the-dangers-of-succeeding

Supplementary Exercise 2.12 Estimating Prevalence using Imper-
fect Tests

• Antibody surveys suggesting vast undercount of coronavirus infections
may be unreliable – Science, April 21, 2020.

• COVID- 19 antibody seroprevalence in Santa Clara County, California.
version 1, April 11, 2020. • version 2, April 27, 2020

• Statistical Modeling, Causal Inference, and Social Science: Gelman Blog

• Gelman’s July 20 paper (with co-author Carpenter):
Bayesian analysis of tests with unknown specificity and sensitivity

• Lawrence Joseph’s 1995 paper (with co-authors Gyorkos and Coupal):
Bayesian estimation of disease prevalence and the parameters of diagnostic tests
in the absence of a gold standard. Lawrence Joseph’s website.

1. Summarize version 1 of the Santa Clara study in your own words, as if
you were one of the authors being interviewed on national television –
and had 1 minute (125 words) to do so.34

2. Extract the most important concerns in Gelman’s (April 19) ‘Concerns
with that Stanford study of coronavirus prevalence’

3. Describe the main changes in version 2, and give the main points in
Gelman’s (April 30) ‘Updated Santa Clara coronavirus report’

4. Gelman’s blog has several followup items, including his May 1 ‘Simple
Bayesian analysis’ and his article with Carpenter.

There is no reference to the 1995 article by Joseph at al. Do the methods
in the Joseph at al. article apply to the Santa Clara study? If they do,
apply them to the original Santa Clara data and compare the results with
those of Gelman and Carpenter.

Also, briefly describe the models Gelman and Carpenter applied to the
additional data in the updated Santa Clara report.

5. How does the ‘overall size of iceberg’ to the ‘amount visible above the wa-
ter’ ratio in the Santa Clara study compare with that in the US CDC data
and in this report from Ireland? Suggest reasons for the di↵erences.

34Journalists usually ask: why(did you do the study)? how(did you do it)? what did you
find? [or, use the 5 ’Ws’ of journalism, Who, What, Where, When and Why] or the 3: is
it new? is it true? does it matter?
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Supplementary Exercise 2.13: Reverse-engineering Vaccine E�cacy
from hospital statistics, and conversely. And coming up with more
helpful terminology for ‘Study Designs’ in epidemiology

In the summer of 2021, statements such as the following became increasing
common in the USA and Canada:

“90% of COVID-19 patients admitted to our hospitals are unvacci-
nated.”

1. Assuming, for the sake of this exercise, that 65% of the same-age popu-
lation have been vaccinated, back-calculate a point estimate of Vaccine
E�cacy (VE) against hospitalization.

2. In addition to doing the calculations by algebra, depict the situation using
a rectangle representing the total population time, say 1 million person
weeks, generated by 1 million persons (vertical axis) at risk for 1 week
(horizontal axis). Now divide this rectangle horizontally into vaccinated
and not vaccinated person days, and within each of the two, show the
cases of COVID-19 hospitalization as randomly placed dots. See Figure
1 here as an example. Show 1 - VE as a rate ratio, using an adaptation
of the calculation on the top right of the Figure.

3. If the 90% figure is based on a total of 200 hospitalized patients, compute
a 95% confidence interval (VI) for the VE. (Assume that the 65% is based
on a very large population, so that, by comparison, it has a negligible
margin of error.)

4. Suppose, as is the case in some jurisdictions, that the percent vaccinated
is only 40%. Use your VE point-estimate to (forward-)calculate what
percentage of hospitalized COVID-19 patients would be unvaccinated.

5. In part 3. how would you calculate the CI if, instead, the 65% was based
on a sample of say just 400 persons.

6. Which (colour) dots in the top half of Figure 1 correspond to the sample
of 400?

7. Ask an upper-year epidemiology student what are the common (but not
very helpful) names for the types of ‘study’ you are using in parts 1. and
5. If you were ‘patenting’ these types of studies, what would you have
called them?35

35See here, in particular, the first 3 paragraphs, Figure 1 and the 2 closing paragraphs.
If interested, see also the ‘Woolf/Mantel/Miettinen’ and ‘case control studies’ sections in
this website.

8. What is the connection between the type of study in part 5. and the type
of study described in the last slide of this presentation ?

9. What is the connection between the type of study in part 5. and the
type of study described in this article ? Although the variance formula
it uses had been derived by the statistician Yule much earlier, it tends
to be called Woolf ’s formula. [We will derive it again on our chapter on
proportions and logits.]

10. What is the connection between the type of study in part 5. and the type
of study described in example 2 in this chapter of Gary Friedman’s very
readable 1974 epidemiology textbook?

11. Summarize in words the learning points in this exercise.

Supplementary Exercise 2.14: Translating numbers into pictures

Here is an expository article, by two by authors whom JH knows, and gave
comments to. The diagram, with the relative sizes of the various rectangles
within a larger rectangle/square, helps those who prefer pictures over num-
bers/algebra understand where the ‘bottom line’ numbers come from. JH had
suggested to them a diagram with ‘people’ (or dots) drawn in, like here.

Here is another , from a newspaper in JH’s alma-mater city. (There is, how-
ever, JH thinks, a logical flaw in their reasoning, one that overstates what the
counterfactual would be)

We saw a nice visualization in part 5 of supplementary exercise 2.5 but it has
one text error up front that, sadly, detracts from the otherwise very good
article.
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If anyone is interested, JH would like to work with them on translating the
numbers in the boxes in their Figure

into more helpful boxes whose dimensions show the magnitudes directly.

As JH had mentioned before the course, this type of exercise is de-
signed to get you to have a much bigger (and di↵erent) view of
what matters in statistics... see http://www.biostat.mcgill.ca/hanley/

CommunicationCommunicationCommunication/.

.
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Supplementary Exercise 2.15: What’s the value of a confirmatory
PCR test?

[ article by David Spiegelhalter and Anthony Masters in The Guardian newspaper, 17 Oct 2021]

After a wave of cases in which a positive lateral flow device (LFD) test was
followed by a negative PCR test, a private laboratory handling swab tests has
been suspended.

But conflicting results are not a new problem. Back in June, when secondary
school students with a positive LFD were retested with a PCR check, over
one in eight came back negative. And even without laboratory problems, it
is unclear why a negative PCR should trump a positive LFD.

Imagine a (rather strange) legal case with the prosecution alleging that you
harbour the virus. In court, it is becoming common to quote a “likelihood
ratio” provided by forensic evidence — the relative support for the prosecution
versus the defence.

First, the positive LFD is presented by the prosecution. If the virus were
present, a recent study estimates around an 80% chance of a positive LFD –
higher if you were infectious. Alternatively, if the defence is correct, there is
a less than one in 1,000 chance of a false positive LFD. The likelihood ratio
is therefore at least 800 (0.8/0.001). As a comparison, the curvature of the
spine found on the skeleton in a Leicester car park contributed an estimated
likelihood ratio of 200 in favour of the remains being those of Richard III.

The defence retorts with the negative PCR test. If you were infected, the
PCR test might miss it around one in 20 times. If there were no virus, then
that test is almost certain to be negative. Here, the likelihood ratio is around
one in 20.

Combining these two conflicting pieces of evidence gives an overall likelihood
ratio of about 40 (800 divided by 20). In a court, that might be reported as
“moderate evidence” in favour of you having an infection.

As viral prevalence changes, then the probability of infection following con-
flicting test results also changes. At the current infection rate in England of
one in 60 people, and with labs working well, out of 100 people with a positive
LFD followed by a negative PCR, around 40 would actually have the virus
and be falsely reassured.

The negative PCR does not outweigh the positive LFD.

[David Spiegelhalter is chair of the Winton Centre for Risk and Evidence Communication at

Cambridge. Anthony Masters is statistical ambassador for the Royal Statistical Society]

Exercise:

1. Summarize the article in 50 words.

2. Enter the Fagan nomogram (on page 11) from the right, i.e. at the
pre-test [P (D)], at the “current infection rate in England of one in 60
people”, and draw a straight line through the likelihood ratio of 800
[P (T |D)/P (T |D̄)], ending at a P (D|T ) on the left side. What is this
post-LFD probability?

3. Use this new probability to again enter the Fagan nomogram on page
11 from the right. and draw a straight line through the likelihood ra-
tio of 1/20 [P (T |D)/P (T |D̄)]. Now, what is the post-LFD-post-PCR
probability?

4. Does this result agree with the calculation reported in the second last
paragraph of the article?

5. Are there any assumptions you might challenge? [Hint: see the 2nd
column of pages 15 and 16 in relation to exercise 2.10]

Supplementary Exercise 2.16: “Probability problem involving mul-
tiple coronavirus tests in the same household”

Posted on April 28, 2021 by Andrew Gelman

Supplementary Exercise 2.17: ”Here’s a little problem to test your
probability intuitions”

Posted on August 1, 2022 by Andrew Gelman

Supplementary Exercise 2.18: The structure/logic of the
Likelihood-Ratio-based formulae used to teach post-test probabili-
ties: derived/explained in words and pictures, rather than by alge-
bra.

Refer to the 2019 draft of an article that attempts to do this.

1. Summarize the article in (your own) 50 words.

2. What suggestions do you have for improving it?

3. Would you be interested in being a co-author and working on getting this
into a submittable manuscript?
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