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1 Probability models

1.1 Observation, experiments and models

Stochastic Models

1

Normal vs Bernoulli and Poisson: We need to distinguish between individual
observations, governed by Bernoulli and Poisson (or if quantitative rather
than all-or-none or a count, Normal) and statistics formed by aggregation of
individual observations. If a large enough number of individual observations
are used to form a statistic, its (sampling) distribution can be described by a
Gaussian (Normal) probability model. So, ultimately, this probability model
is just as relevant.

1.1.1 Epidemiologic [subject-matter] models [JH]

We need to also make a distinction between the quantity(quantities) that
is(are) of substantive interest or concern, the data from which this(these)
is(are) estimated, the statistical models used to get to the the quan-
tity(quantities) and the relationships of interest.

For example, of medical, public health or personal interest/concern might be
the

• level of use of cell phones while driving

• average and range [across people] of reductions in cholesterol with regular
use of a cholesterol-lowering medication

• amount of time taken by health care personnel to decipher the handwrit-
ing of other health care personnel

• (average) number of times people have to phone to reach a ‘live’ person

• reduction in one’s risk of dying of a specific cancer if one is regularly
screened for it.

1‘Stochastic’ http://www.allwords.com/word-stochastic.html French: stochas-
tique(fr) German: stochastisch(de) Spanish: estocstico(es) Etymology: From Ancient
Greek (polytonic, ), from (polytonic, ) “aim at a target, guess”, from (polytonic, ) “an
aim, a guess”. Parzen, in his text on Stochastic Processes .. page 7 says: <<The word is of
Greek origin; see Hagstroem (1940) for a study of the history of the word. In seventeenth
century English, the word “stochastic” had the meaning “to conjecture, to aim at a
mark.” It is not clear how it acquired the meaning it has today of “pertaining to chance.”
Many writers use the expression “chance process” or “random process” as synonyms for
“stochastic process.”>>

• appropriate-size tracheostomy tube for an obese patient, based on easily
easily obtained anthropometric measurements

• length of central venous catheter that can be safely inserted into a child
as a function of the child’s height etc.

• rate of automobile accidents as a function of drivers’ blood levels of alco-
hol and other drugs, numbers of persons in the car, cell-phone and other
activities, weather, road conditions, etc.

• Psychological Stress, Negative Life Events, Perceived Stress, Negative
A↵ect Smoking, Alcohol Consumption and Susceptibility to the Common
Cold

• The force of mortality as a function of age, sex and calendar time.

• Genetic variation in alcohol dehydrogenase and the beneficial e↵ect of
moderate alcohol consumption on myocardial infarction

• Are seat belt restraints as e↵ective in school age children as in adults?

• Levels of folic acid to add to flour, so that most people have su�ciently
high blood levels.

• Early diet in children born preterm and their IQ at age eight.

• Prevalence of Down’s syndrome in relation to parity and maternal age.

Of broader interest/concern might be

• the wind chill factor as a function of temperature and wind speed

• how many fewer Florida votes Al Gore got in 2000 because of a badly
laid-out ballot

• a formula for deriving one’s “ideal” weight from one’s height

• yearly costs under di↵erent cell-phone plans

• yearly maintenance costs for di↵erent makes and models of cars

• car or life insurance premiums as a function of ...

• cost per foot2 of commercial or business rental space as a function of ...

• Rapid Changes in Flowering Time in British Plants

• How much money the City of New York should revover from Brink’s
for the losses the City incurred by the criminal activities of two Brink’s
employees (they collected the money form the parking meters, but kept
some of it!).
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1.1.2 From behaviour of statistical ‘atoms’ to statistical
‘molecules’

‘1 condition’ or ‘1 circumstance’ or ‘setting’ [also known as “1-sample
problems”]

The smallest statistical element or unit (? atom): the quantity of interest
might have a Y distribution that under sampling, could be represented by a
discrete random variable with ‘2-point’ support (Bernoulli), 3-point support,
k�point support, etc. or interval support (Normal, gamma, beta, log-normal,
... )

The aggregate or summary of the values associated with these elements is
often a sum or a count: with e.g., a Binomial, Negative Binomial, gamma
distribution. Or the summary might be more complex – it could be some re-
arrangement of the data on the individuals (e.g., the way the tumbler longevity
data were summarized). This brings in the notion of “su�cient statistics”.

More complex: t, F , ...

‘2 or conditions’ or ‘circumstances’ or ‘settings’, indexed by possible
values of ‘X’ variable(s). Think of the ‘X’ variable(s) as ‘covariate patterns’
or ‘profiles.’

unknown conditions or circumstances Sometimes we don’t have any mea-
surable (or measured) ‘X’ variable(s) to explain the di↵erences in Y from say
family to family or person to person.There instead of the usual multiple re-
gression approach, we use the concept of a hierarchical or random-e↵ects or
latent class or mixture model.

1.2 Binary data

It is worth recalling from bios601 in earlier years (e.g., Sept 21, 2009, con-
cepts/terminology/measures in epidemiology), the concepts of states and
events (transitions from one state to another).

Cohort studies with fixed follow-up time

Recall: cohort is another name for a closed population, with membership
(entry) defined by some event, such as birth, losing one’s virginity, obtain-
ing one’s first driver’s permit, attaining age 21, graduating from university,
entering the ‘ever-married’ state, undergoing a certain medical intervention,
enrolling in a follow-up study, etc. Then the event of interest is the exit
(transition) from a/the state that prevailed at entry. So death is the transi-
tion from the living state to the dead state, receiving a diagnosis of cancer

changes one’s state from ‘no history of cancer since entry/birth’ to ‘have a
history of cancer’, being convicted of a tra�c o↵ense changes one’s state from
‘clean record’ to ‘have a history of tra�c o↵enses.’ We can also envision more
complex situations, with a transition from ‘never had a stroke,’ to ‘have had
1 stroke,’ to ‘have had 2 strokes,’ ... or ‘haven’t yet had a cold this winter,’
to ‘have had 1 cold,’ to ‘have had 2 colds,’ etc.

Censoring : to be distinguished from truncation. Truncation implies some
observations are missed by the data-gathering process, i.e., that the observed
distribution is a systematic distortion of the true distribution. Note that we
can have censoring of any quantitative variable, not just one that measures
the duration until the event of interest. For example, the limits on say a
thermometer or a weight scale or a chemical assay may mean that it cannot
record/detect values below or above these limits. Also, the example in C&H
implicitly refers to right censoring: one can have left censoring, as with lower
limits of detection in a chemical assay, or interval censoring, as – in repeated
cross-sectional examinations – with the date of sero-conversion to HIV.

Incidence studies: the word new means a change of state since entry.

“Failure”: It is a pity that C&H didn’t go one step more and use the even more
generic term “event”. That way, they would not have to think of graduating
with a PhD (i.e., getting out of – exiting from – here) as “failure” and still
being here” as “survival.” This simpler and more general terminology would
mean that we would not have to struggle to find a suitable label of the ‘y’
axis of the 1 � F (t), usually called S(t), function. One could simply say
“proportion still in initial state,” and substitute the term for the initial state,
i.e., proportion still in PhD program, proportion event-free, etc.

N or n? D or d? JH would have preferred lower case, at least for the
denominator. In sampling textbooks, N usually denotes the population size,
and n the sample size. In the style manual used in social sciences, n is the
sample size in each stratum, whereas N is the overall sample size. Thus, for
example, a study might report on a sample of N = 76 subjects, composed of
n = 40 females and n = 36 males.

Cohort studies with variable follow-up time: If every subject entered a study
at least 5 years ago, then, in principle, one should be able to determine D
and N �D, and the 5-year survival proportion. However, losses to follow-up
before 5 years, and before the event of interest, lead to observations that are
typically regarded as censored at the time of the loss. Another phenomenon
that leads to censored observations is staggered entry, as in the JUPITER trial.
Unfortunately, some losses to follow-up may be examples of ‘informative’
censoring.
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Cross-sectional prevalence data

Recall again that prevalence refers to a state. Examples would include the
proportion (of a certain age group, say) who wear glasses for reading, or have
undetected high blood pressure, or have high-speed internet at home, or have
a family history of a certain disease, or a certain ‘gene’ or blood-type.

From a purely statistical perspective, the analysis of prevalence proportions
of the form D/N and incidence proportions of the form D/N takes the same
form: the underlying statistical ‘atoms’ are N Bernoulli random variables.

Important: Concepts and terms in Epidemiology

• State2 vs. Event3 [the transition (rapid) from one state to another] 4

2Google: The way something is with respect to its main attributes; “the current state of
knowledge”; “his state of health”; “in a weak financial state”. State of matter: (chemistry)
the three traditional states of matter are solids (...) liquids (...) and gases (...).

3Most of the definitions below are adapted from the glossary in the textbook Theoretical
Epidemiology: Principles of Occurrence Research in Medicine by O.S. Miettinen (Wiley
1985).
Google: something that happens at a given place and time | a phenomenon located at a
single point in space-time; the fundamental observational entity in relativity theory | In
the Unified Modeling Language, an event is a notable occurrence at a particular point in
time. Events can, but do not necessarily, cause state transitions from one state to another
... | An event in computer software is an action which can be initiated either by the user,
a device such as a timer or Keyboard (computing), or even by the operating system. | In
probability theory, an event is a set of outcomes and a subset of the sample space where a
probability is assigned. Typically, when the sample space is finite, any subset of the sample
space is an event (i.e. all elements of the power set of the sample space are defined as
events). | An occurrence. | A runtime condition or change of state within a system. | A
thing which happens, like a button is pressed. Events can by low-level (such as button or
keyboard events), or they can be high level (such as when a new dataset is available for
processing). | A means by which the server notifies clients of changes of state. An event
may be a side e↵ect of a client request, or it may have a completely asynchronous cause,
such as the user’s pressing a key or moving the pointer. In addition, a client may send an
event, via the server, to another client.

4In epidemiology, some authors reserve the word “occur” for an event (Google: happen;
take place; come to pass; “Nothing occurred that seemed important”) But, both in epidemi-
ology and in lay use, it is and can also be used for a state ( to be found to exist; “sexism
occurs in many workplaces”; “precious stones occur in a large area in Brazil”). Miettinen
[European J of Epi. (2005) 20: 11-15] makes this point in his reply to one of the several
authors who commented on his article Epidemiology: Quo vadis? ibid, 2004; 19: 713718.

Walker’s commentary was devoted to teaching me that the concept of occurrence
has to do with outcome events only; that it thus does not encompass outcome
states; and that etiologic occurrence research therefore does not encompass the
important study of causal prevalence functions. As I now consult The New
Oxford Dictionary of English (1998 edn), I find as the meanings of occurrence
(as a mass noun) these: ‘the fact or frequency of something happening’ and ‘the
fact of something existing or being found . . .,’ as in ‘the occurrence of natural
gas fields.’ And in my Perspective article I find ’state’ or ’prevalence’ occurring

• Population An aggregate of people, defined by a membership-defining...

– event ! “cohort” ( closed population i.e., closed for exit)
or

– state – one is a member just for duration of state! Open population
(open for exit) / dynamic / turnover

• Prevalence (of a state) : The existence (as opposed to the inception or
termination) of a particular state among the members of the population.

• Prevalence Rate: the proportion of a population that is in a particular
state.

• Population-time: The amount of population experience in terms of the
integral of population size over the period of observation.

• Incidence: The appearance of events of a particular kind in a population
(of candidates over time)

– Incidence density (ID): The ratio of the number of events to the
corresponding population time (candidate time). If we subdivide
time into very short spans, ID becomes a function of time, ID(t);
otherwise ID refers to the average over the entire span of time.

– Hazard : limiting case of ID as we narrow the span of time. More
commonly used w.r.t. closed population, with a natural “t

0

.”

– Force of morbidity/mortality (Demography).

• Case: Medicine – episode of illness, (“a case of gonorrhea”). Epidemi-
ology – a person representing a case (in medical sense) of some state or
event.5

• Incident cases: Cases that appear (as against those that exist or prevail).

• Cumulative Incidence (CI): The proportion of a cohort (of candidates)
experiencing the event at issue over a particular risk period if time-specific
incidence density is considered to operate over that period.

as many as eight times, ‘event’ or ‘incidence’ no more than nine times. The
verb ‘occur,’ I might need to add, means ‘happen; take place; exist or to be
found to be present . . . ,’ as in ‘radon occurs naturally in rocks . . . ’ [italics
added by JH]

5
Google: an occurrence or instance of something; “a case of bad judgment”’; “another in-

stance occurred yesterday”; Merriam-Webster: noun, Middle English cas, from Anglo-French,

from Latin casus fall, chance, from cadere to fall. 1 a: a set of circumstances or conditions b

(1): a situation requiring investigation or action 6 a: an instance of disease or injury <a case of

pneumonia> .

3
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– The relation between ID and CI can be expressed mathematically
as

CIT = CI
0!T = 1� exp

⇢
�

Z T

0

ID(t)dt

�
.

– As a function of t, the complement, 1�CI
0!t is called the “Survival”

function, S(t), since it is the proportion of the cohort that, at time
t, remains (continues, “survives”) in the initial state.

• Risk: The probability that an event (untoward) will occur.

• Case Fatality Rate: (Rothman 1986, p31) The cumulative incidence of
death among those who develop an [acute] illness [e.g., SARS, influenza].
The time period for measuring the case fatality rate is often unstated.

1.3 The binary probability model

JH presumes they use this heading as a shorthand for ‘the probability model
for binary responses’ (or ‘binary outcomes’ or binary random variables)

... to “predict the outcome” : JH takes this word predict in its broader mean-
ing. If we are giving a patient the probability that he will have a certain
future event say within the next 5 years, we can talk about predicting6 the
outcome: we are speaking of prognosis; but what if we are giving a woman
the probability that the suspicious finding on a mammogram does in fact rep-
resent an existing breast cancer, we are speaking of the present, of whether
a phenomenon already exists, and we use a prevalence proportion as an esti-
mate of the diagnostic probability. Note that prevalence and incidence refer
to aggregates.

The risk parameter

Risk typically refers to the future, and can be used when speaking to or about
one person; we don’t have a comparable specialized term for the probability
that a state exists when speaking to or about one person, and would therefore
just use the generic term probability.

The odds parameter

The sex-ratio is often expressed as an odds, i.e., as a ratio of males to fe-
males. If the proportion of males is 0.51, then the male:female ratio is 51:49
or (51/49):1, i.e., approximately 1.04:1. This example is a good reason why

6The term ‘Risk Prediction’ has led to further confusion. Risk is by definition anout the
future, and is a probability. It is the probability that (a future) Y=1. The Y is unknown,
but the Risk may be well or poorly ’known’.

C&H should have used a more generic pair of terms than failure and survival
(or success and failure).

In betting on horse races (at least where JH comes from), odds of 3:1 are the
odds against the horse winning; i.e., the probability of winning is 1/4.7 When
a horse is a heavy favourite so that the probability of winning was 75%, the
“bookies” would give the odds as “3:1 on.”8

Rare events

One of the tricks to make events rare will be to slice the time period into
small slices or windows.

Death, the first of the two only sure events (taxes is the other) is also rare -
in the short term!

Also, it would be more correct to speak of a rare events, since disease is often
used to describe a process, rather than a transition. And since most transitions
are rapid, the probability of a transition (an event) occurring within a given
short sub-interval will usually be small.

If the state of interest being addressed with cross-sectional data is uncommon
(or rare), then yes, the prevalence odds and the prevalence proportion will be
very close to each other.

Supplementary Exercise 1.1. If one rounds probabilities or risks or preva-
lences (⇡’s), or their corresponding odds, ⌦ = ⇡/(1 � ⇡), to 1 decimal place,
at what value of ⇡ will the rounded values of ⇡ and ⌦ be di↵ererent? Also,
why use lowercase ⇡ for proportion, and uppercase ⌦ for odds?

1.4 Parameter Estimation

Should you be surprised if the estimate were ⇡ were other than D/N? Consult
Google or Wikipedia on “the rule of succession,” and on Laplace’s estimate of
the probability that the sun will rise tomorrow, given that it has unfailingly
risen (D = 0) for the past 6000 years, i.e., N ⇡ 365⇥ 6000.

Supplementary Exercise 1.2. One has 2 independent observations from
the model

E[y|x] = � ⇥ x.

The y’s might represent the total numbers of typographical errors on x ran-
domly sample pages of a large document, and the data might be y = 2 errors

7Think of the 3:1 as the ‘bookie’ putiing $3 in an envelope, and the better butting $1,
and when the race result is known, the bookie or the bettor taking the envelope with the
$4.

8Now the bookie puts in 1 and the bettor 3
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in total in a sample of x = 1 page, and y = 8 errors in total in a separate
sample of x = 2 pages. The � in the model represents the mean number of
errors per page of the document. Or the y’s might represent the total weight
of x randomly sample pages of a document, and the data might be y = 2
units of weight in total for a sample of x = 1 page, and y = 8 units for a
separate sample of x = 2 pages. The � in the model represents the mean
weight per page of the document. We gave this ‘estimation of �’ problem to
several statisticians and epidemiologists, and to several grade 6 students, and
they gave us a variety of estimates, such as �̂ = 3.6/page, 3.33/page, and
3.45!

How can this be? [If it still works] You might run the applet ‘2 datapoints
and a model’ (link from the bottom left corner of JH’s home page.)

1.5 Is the model true?

I wonder if they were aware of the quote, attributed to the statistician George
Box that goes something like this

“all models are wrong; but some are more useful than others”

Box also said

Statisticians, like artists, have the bad habit of falling in love with
their models.

http://en.wikiquote.org/wiki/George_E._P._Box

2 Conditional probability models

2.1 Conditional probability

JH is suprised at how few textbooks use trees to explain conditional proba-
bilities. Probability trees make it easy to see the direction in which one is
preceeding, or looking, where simply algebraic symbols can not, and make it
easier to distinguish ‘forward’ from ‘reverse’ probabilities.

M&M Ch 4.1, 4.2, 4.5  Probability
How to calculate probabilities

Probability Calculations

"I figure there's a 40% chance of showers, and a
10% chance we know what we're talking about"

Wall Street Journal

Basic Rules

A
B

A
B

A and B

Probabilities add to 1

Prob(event) =
 1 - Prob(complement)

   

ADDITION  FOR "EITHER A OR B"

If mutually exclusive
"PARALLEL"   P(A or B) = P(A) + P(B)

If overlapping
  P(A or B) = P(A) + P(B) - P(A and B)

A

Not A
Not B

B

B
Not B

   MULTIPLICATION  FOR "A  AND B" OR "A THEN B"

If independent
"SERIAL" P(A and B) = P(A) • P(B)

If dependent
P(A and B) = P(A) • P(B | A)

Conditional Probability P(B | A) = Probability of B "given A" or "conditional on A"

More Complex:
• Break up into elements
• Look for already worked-out calculations
• Beware of intuition, especially with "after the fact" calculations for non-

standard situations

page 2

Figure 1: From JH’s notes for EPIB607, introductory biostatistics for epidemiology

Trees show that the probability of a particular sequence is always a fraction
of a fraction of a fraction .. , and that if we start with the full probability of 1
at the single entry point on the extreme left, then we need at the right hand
side to account for all of this (i.e., the ‘total’) probability.

Statistical dependence and independence

JH likes to say that with independence, one doesn’t have to look over one’s
shoulder to the previous event to know which probability to multiple by.. The
illustrated example on the gender composition of 2 independent births, and of
a sample of 2 persons sampled (without replacement) from a pool of 5 males
and 5 females, show this distinction: in the first example, when one comes to
the second component in the probability product, Pr(y

2

= male) is the same
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whether one has got to there via the ‘upper’ path, or the ‘lower’ one.
M&M Ch 4.1, 4.2, 4.5  Probability

Examples of Conditional Probabilities...
PERSONS 

Smoke?
Develop 
Lung Ca.?

YES

NO

YES

YES

NO

NO

YES
YES

NO
NO

NO

YES

PERSONS 

Smoke?
Develop 
Lung Ca.?

GENDER: 2 BIRTHS
1st 2nd

M
M

F

0.5

0 .5

0 .5

0 .5
F

M
0.5
0 .5
F

0 .25

0 .25

0 .25

0 .25

GENDER: 2  from  5 M & 5 F

5 /10

20/90
4 /9

5 /10

5 /9 25/90

4 /9
5 /9

25/90

20/90

1st 2nd

M
M

F

F
M

F
Testing Dx Tests.. .
Disease Test

+
+

–

–
+

–

Dx Tests In Practice. . .

+
+

–

-
+

–

DiseaseTestSMOKERS: 1 M & 1 F 
M F

YES

NO

SMOKERS: Husband & Wife
H W

YES

YES

NO

NO

YES
YES

NO
NO

NO
YES

O. J.  SIMPSON 
Murdered 
wife?

YES

NO

YES

YES

NO

NO

YES
YES

NO
NO

NO
YES

DNA 
Match?

O. J.  SIMPSON 
Murdered 
wife?

DNA 
Match?

page 3Figure 2: JH examples of independence/dependence, and ‘forward’/‘reverse’ probabilities

2.2 Changing the conditioning: Bayes’ rule

The right hand half of JH Figure 2 shows 3 examples of ‘forward’ (on left)
and ‘reverse’ probabilities.

These same distinctions between ‘forward’ and ‘reverse’ probabilities is at
the heart of the frequentist p-values (probabilities) versus Bayesian posterior
probabilities. To state it simply,

Probability[data|Hypothesis] 6= Probability[Hypothesis|data]

or, if you prefer something that rhymes,

Probability[data|theta] 6= Probability[theta|data].

Two striking – and frightening – examples of misunderstandings about them
are given on the next page.

The True Title of Bayes’s Essay

Today’s students are told that the Bayes essay was published after his death
under the title “An Essay toward solving a Problem in the Doctrine of
Chances”. But when he spoke in Montreal at the end of 2013, Stephen Stigler
gave us the inside story on the very concrete reason the person who published
it, Richard Price, had for being interested in this work, and why it was adver-
tised elsewhere under a very di↵erent title: ‘A method of calculating the
exact probability of all conclusions based on induction’ Read about
Stigler’s fascinating detective work in his captivating article ‘The True Title
of Bayes’s Essay’ Statistical Science 2013, Vol. 28, No. 3, 283-288. JH had
put a copy in the Resources Website.

6
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U.S. National Academy of Sciences under fire over plans for new
study of DNA statistics: Confusion leads to retrial in UK.9

[...] He also argued that one of the prosecution’s expert witnesses, as well as
the judge, had confused two di↵erent sorts of probability.

One is the probability that DNA from an individual selected at random from
the population would match that of the semen taken from the rape victim, a
calculation generally based solely on the frequency of di↵erent alleles in the
population. The other is the separate probability that a match between a
suspect’s DNA and that taken from the scene of a crime could have arisen
simply by chance – in other words that the suspect is innocent despite
the apparent match.10 This probability depends on the other factors that
led to the suspect being identified as such in the first place.

During the trial, a forensic scientist gave the first probability in reply to a
question about the second. Mansfield convinced the appeals court that the
error was repeated by the judge in his summing up, and that this slip – widely
recognized as a danger in any trial requiring the explanation of statistical
arguments to a lay jury – justified a retrial. In their judgement, the three
appeal judges, headed by the Lord Chief Justice, Lord Farquharson, explicitly
stated that their decision “should not be taken to indicate that DNA profiling
is an unsafe source of evidence.”

Nevertheless, with DNA techniques being increasingly used in court cases,
some forensic scientists are worried that flaws in the presentation of their
statistical significance could, as in the Deen case, undermine what might oth-
erwise be a convincing demonstration of a suspect’s guilt.

Some now argue, for example, that quantified statistical probabilities should
be replaced, wherever possible, by a more descriptive presentation of the con-
clusions of their analysis. “The whole issue of statistics and DNA profiling has
got rather out of hand,” says one. Others, however, say that the Deen case
has been important in revealing the dangers inherent in the ‘prosecutor’s
fallacy’. They argue that this suggests the need for more sophisticated cal-
culation and careful presentation of statistical probabilities. “The way that
the prosecution’s case has been presented in trials involving DNA-based iden-
tification has often been very unsatisfactory,” says David Balding, lecturer in
probability and statistics at Queen Mary and Westfield College in London.
“Warnings about the prosecutor’s fallacy should be made much more explicit.
After this decision, people are going to have to be more careful.”

9NATURE p 101-102 Jan 13, 1994.
10italics by JH. The wording of the italicized phrase is imprecise; the text in bold wording

is much better .. if you read “despite” as “given that” or “conditional on the fact of”t

“The prosecutor’s fallacy”: Who’s the DNA fingerprinting
pointing at? 11

Pringle describes the successful appeal of a rape case where the primary ev-
idence was DNA fingerprinting. In this case the statistician Peter Donnelly
opened a new area of debate. He remarked that

forensic evidence answers the question “What is the probability that
the defendant’s DNA profile matches that of the crime sample, as-
suming that the defendant is innocent?”

while the jury must try to answer the question “What is the proba-
bility that the defendant is innocent, assuming that the DNA profiles
of the defendant and the crime sample match?” 12

Apparently, Donnelly suggested to the Lord Chief Justice and his fellow judges
that they imagine themselves playing a game of poker with the Archbishop of
Canterbury. If the Archbishop were to deal himself a royal flush on the first
hand, one might suspect him of cheating. Assuming that he is an honest card
player (and shu✏ed eleven times) the chance of this happening is about 1 in
70,000.

But if the judges were asked whether the Archbishop were honest, given that
he had just dealt a royal flush, they would be likely to place the chance a bit
higher than 1 in 70,000 *.

The error in mixing up these two probabilities is called the “the prosecutor’s
fallacy,” and it is suggested that newspapers regularly make this error.

Apparently, Donnelly’s testimony convinced the three judges that the case
before them involved an example of this and they ordered a retrial

[* Comment by JH: This is a very nice example of the advantages of Bayesian
over Frequentist inference .. it lets one take one’s prior knowledge (the fact
that he is the Archbishop) into account.

The book ‘Statistical Inference” by Michael W. Oakes is an excellent intro-
duction to this topic and the limitations of frequentist inference.]

11New Scientist item by David Pringle, 1994.01.29, 51-52; cited in Vol 3.02 Chance News
12(JH) Donnelly’s words make the contrast of the two types of probability much “crisper.”

The fuzziness of the wording on the previous story is sadly typical of the way statistical
concepts often become muddied as they are passed on.

7



BIOS601: Notes, Clayton&Hills. Ch 1(Probability models); 2 (Condn’l prob. models; Bayes rule ) 2016.09.07.

2.3 Examples

2.3.1 Example from genetics
M&M Ch 6  Introduction to Inference ... OVERVIEW

Introduction to Inference* Bayes Theorem : Haemophilia
Brother has haemophilia => Probability (WOMAN is Carrier) = 0.5
New Data:  Her Son is Normal (NL) .
Update: Prob[Woman is Carrier, given her son is NL] = ??

Inference is about Parameters (Populations) or general
mechanisms -- or future observations. It is not about
data (samples) per se, although it uses data from
samples. Might think of inference as statements about a
universe most of which one did not observe.

0.5 0.5

CARRIERNOT CARRIER

WOMAN

Son

0.0
0.5

NL H

Son

Products  of PRIOR  and LIKELIHOOD

PRIOR   [ prior to knowing status of her son ]

LIKELIHOOD

0.25

0.67
0.33

WOMAN

CARRIERNOT CARRIER

WOMAN

POSTERIOR   Given that Son is NL

0.5

observed data
NL H

1.0
0.5

1.

2.

3.

 [  Prob son is NL | ]PRIOR

Probs. 
Scaled to 
add to 1

0.5 x 1.0 
0.5 x 0.5 

Two main schools or approaches:

Bayesian [ not even mentioned by M&M ]
• Makes direct statements about parameters

and   future observations

• Uses  previous impressions plus new data to update impressions
about parameter(s)

e.g.
Everyday life
Medical tests:  Pre- and post-test impressions

Frequentist

• Makes statements about observed data (or statistics from data)
(used indirectly [but often incorrectly] to assess evidence against
certain values of parameter)

• Does not use  previous impressions or data outside of current
study (meta-analysis is changing this)
e.g.
• Statistical Quality Control procedures [for Decisions]
• Sample survey organizations:  Confidence intervals
• Statistical Tests of Hypotheses

Unlike Bayesian inference, there is no quantified pre-test or pre-
data  "impression"; the ultimate statements are about data,
conditional on an assumed null or other hypothesis.

Thus, an explanation of a  p-value must start with the conditional
"IF the parameter is ... the probability that the data would ..."

Book "Statistical Inference" by Michael W. Oakes is an excellent
introduction to this topic and the limitations of frequentist inference.

page 1Figure 3: simpler [older] example – nowadays, direct tests mean women don’t have to wait to

have a son to be probabilistically sorted into definite/possible carriers.

Women

Their Son(s)

Carrier

Non-Carrier

1

H

NL

2

H

NL

3

H

NL

4

H

NL

5

H

NL

6

H

NL

NL: Normal
H: Haemophiliac
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Figure 4: At the outset, each of these women had a 50:50 chance of being a
haemophilia carrier. Accumulating information from their sons increas-
ingly ‘sorts’ or segregates them by moving their probability of being a carrier
to 100% or towards 0%.
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2.3.2 Twins: Excerpt from an article by Bradley Efron

Modern science and the Bayesian-Frequentist controversy

Here is a real-life example I used to illustrate Bayesian virtues to the
physicists. A physicist friend of mine and her husband found out,
thanks to the miracle of sonograms, that they were going to have
twin boys. One day at breakfast in the student union she suddenly
asked me what was the probability that the twins would be identical
rather than fraternal. This seemed like a tough question, especially
at breakfast. Stalling for time, I asked if the doctor had given her any
more information. “Yes”, she said, “he told me that the proportion
of identical twins was one third”. This is the population proportion
of course, and my friend wanted to know the probability that her
twins would be identical.

Bayes would have lived in vain if I didn’t answer my friend using
Bayes’ rule. According to the doctor the prior odds ratio of identi-
cal to nonidentical is one-third to two-thirds, or one half. Because
identical twins are always the same sex but fraternal twins are ran-
dom, the likelihood ratio for seeing “both boys” in the sonogram is
a factor of two in favor of Identical. Bayes’ rule says to multiply the
prior odds by the likelihood ratio to get the current odds: in this
case 1/2 times 2 equals 1; in other words, equal odds on identical or
nonidentical given the sonogram results. So I told my friend that her
odds were 50-50 (wishing the answer had come out something else,
like 63-37, to make me seem more clever.) Incidentally, the twins
are a couple of years old now, and “couldnt be more non-identical”
according to their mom.

Supplementary Exercise 2.1. Depict Efron’s calculations using a proba-
bility tree.

Supplementary Exercise 2.2 Use a probability tree to determine the best
strategy in the Monty Hall problem

( http://en.wikipedia.org/wiki/Monty_Hall_problem )

Supplementary Exercise 2.3 A man has exactly two children: you meet
the older one and see that it’s a boy. A woman has exactly two children;
you meet one of them [don’t know if its the younger/older] and see is a boy.
What is the probability of the man’s younger child being a boy, and what is
the probability of the woman’s “other” child being a boy?

Supplementary Exercise 2.4

Refer to the article ‘BBC News - Amanda Knox and bad maths in court.pdf’
on the website containing resources for C&H Ch01 [prob. Models] and Ch02
[conditional Prob. Models].

Specifically look at the highlighted section ”why are two tests better than
one?” and in particular, the statement that

“The probability that the coin is fair – given this outcome

– is about 8%”

This statement and the subsequent one involving the phrase “Now the prob-
ability for a fair coin” both seem to come out of nowhere.

Questions:

• Is this a well posed problem, or does one need to specify more context in
order to do the calculations?

• Are they using a p value somehow?

• (After you have first thought about it for a while) read the relevant
portion of pages 61-62 and pages 85-86 of the book chapter and find out
what information was missing from the BBC article. Then verify the 92:8
posterior odds given in the chapter. Repeat the calculation, but assuming
only a 5% prior probability that the coin is biased and a 95% probability
that it is fair. Comment.

Supplementary Exercise 2.5

Refer to the Economist article ‘Problems with scientific research: HOW SCI-
ENCE GOES WRONG’ on the website containing resources for C&H Ch01
[prob. Models] and Ch02 [conditional Prob. Models].

It has a very nice graphical explanation of why some many studies get it
wrong, and cannot be reproduced – the topic of the Reproducibility Project
in Psychology referred to on same page.

One reason is that even if all studies were published, regardless of whether the
p-value was less than 0.05 (a common screening/filtering criterion) or greater
than 0.05, of all the hypotheses tested, only a small percentage of them are
‘true’. Thus many or most of the ‘positive’ tests (published results) will be
false positives. It is just like when using mammography to screen for breast

9
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cancer: in maybe 4 of every 5 women referred for biopsy, the biopsy will come
back negative.

• Use the information in their Figure and represent it in tree. Then present
the same information in a di↵erent tree, with data on left, and hypothesis
on the right (rather than the conventional ‘theta ! data’ direction) – as
JH has done in the three rightmost instances in Figure 2 on page 6 above.

• What percentage of positive tests would be correct/not if, instead, 1 in
2 of the hypotheses interesting enough to test were true?

• Come up with a general formula for what in medicine is called the ‘posi-
tive predictive value’ of a positive medical test.

• Try to simplify it so that the characteristics of the test (↵ and �) are
isolated in one factor, and the testing context (the 1 in 10 or 1 in 2, etc)
is in another. Hint: use odds rather than probabilities, so that you are
addressing the ratio of true positives to false positives, and the ratio of
true hypothesis to false hypotheses.

• On the same Resources web page is another (but longer) attempt to ex-
plain these concepts graphically to left brain and right brain doctors. JH
was impressed with this, and wanted to share it with the Court for Ar-
bitration in Sport, when explaining the interpretation of positive doping
tests. But he found that the ‘teaser’ sentence immediately following the
title

Can you explain why a test with 95% sensitivity might identify
only 1% of a↵ected people in the general population?

is misleading, and so he make his own diagram (available on request).

Revise this misleading phrase.

Supplementary Exercise 2.613 How many o↵spring do I need to test?

Background:14

A researcher is trying to develop a strain of “transgenic” mice, by introducing
an altered gene (transgene) into the genome. In order to breed true, the
animals must be made to be homozygous, i.e., to have two copies of the
introduced gene (+ +) . Molecular biology techniques can detect whether

13New this year, so wording may need some polishing. Also, JH developed this question
in 1991; it may well be that technology since then has made the task easier.

14If in a hurry, skip to the Possible F3 genotypes later in the piece.

the transgene is present in an individual animal (without having to sacrifice
the animal), but cannot distinguish a hemizygote, with one copy of the gene
(+ -), from a homozygote (+ +). This di↵erence can only be detected by
breeding strategies. But, time and resources are pressing.

First generations:

A copy of the transgene is injected into the pronucleus of a newly fer-
tilized ovum, prior to fusion with the male pronucleus. Thus all animals
that develop from these zygotes can have at most one copy of the gene, from
the ovum. After birth, screening is performed to detect these “positive”
animals, called founders. After sexual maturation, all founders are bred to
normal “wild type” (WT) animals, to ensure that the transgene has been
incorporated in such a way as to be heritable. Pairs of positive (hemizygous)
animals in this F1 generation are then bred to each other. By Mendelian
genetics, the distribution of F2 o↵spring should be 1:2:1, homozygous
transgenic : hemizygous transgenic : homozygous normal. The homozygous
normal animals are not used. The question is, how to tell the homozygous
transgenic mice (the desired ones) from the hemizygous transgenic ones?
Note that the mix in this reduced population is 1 homozygous transgenic to
2 hemizygous transgenic.

F2 breeding:

All ’positive’ F2 animals (i.e. all homozygous and hemizygous ani-
mals) are bred to wild type. Possible F3 genotypes are as follows: (by
Mendelian genetics)

• Hemizygous (which comprise 2/3 of the F2 animals used) x wild type
= 50:50, hemizygous (and therefore ‘positive’) : normal (and therefore
‘negative’),

• Homozygous (which comprise 1/3 of the F2 animals used) x wild type =
all hemizygous (and therefore ‘positive’).

That is, while only half of the o↵spring from a Hemi x WT pair will be
‘positive’ when screened, all of the o↵spring of a Homo x WT pair will be
‘positive’.

The question:

How many F3 o↵spring from a particular pairing does the researcher
have to screen before declaring the positive parent as homozygous? Note:
as soon as an o↵spring is screened as ‘negative’, one knows the parent must

10
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have been hemizygous.

The point is to check the least number of o↵spring and do as few repeated
breedings as possible to detect homozygous animals. How many consecutive
‘positive’ F3 o↵spring does one need to observe to be convinced (and with what
probability) that the positive F2 parent is homozygous for the transgene?

1. Calculate the probability before the positive F2 parent has any o↵spring,
and after observing 1, 4, 8, 11 consecutive ’positive’ F3 o↵spring. Give a
general rule for the probability after K consecutive ‘positives’.

2. This probability problem has a structure similar to the hemophilia one
in the Notes for section 2.3. So redraw the diagram provided there, using
the transgenic testing example, and making the necessary changes to the
prior probabilities and to the labels. Do so first for the “1 inconclusive
o↵spring” case: think of this 1 inconclusive o↵spring as somewhat help-
ful, better than where the probabilities stood before any o↵spring were
observed. Then extend the diagram to the general “K inconclusive o↵-
spring” case; think of this as ‘not quite conclusive but closer to certainty
than where one stood before any o↵spring were observed. [Many students
argue that even after the suspected carrier has a NL son, the probability
she is a carrier is unaltered, at 0.5. It is only when asked what the prob-
ability is once she has had 3 or more consecutive NL sons that they begin
to realize that each consecutive NL son pushes the probability that she is
a carrier closer to 0.] For the transgenic testing, the longer the run of
‘positives’ the more the probability is moved close to 1.

3. Denote the probability of being transgenic, or a haemophilia carrier, af-
ter observing K , as the post-test’ probability (think of the o↵spring as
providing a test for the status of the parent). Obviously, if at any stage
the next o↵spring provides conclusive evidence, the probability immedi-
ately goes to 0 (transgenic) or 1 (haemophilia). But if the K consecutive
o↵spring are inconclusive but still informative, it merely moves i the prob-
ability of interestfurther in the other direction.
The formula for the post-test probability of being transgenic, or a
haemophilia carrier, i.e., after observing K consecutive inconclusive but
still informative o↵spring, is awkward. It has the form A/(A + B). But,
what if we switch from pre-test and post-test probabilities to pre-test and
post-test ‘odds?15 Redo the calculations in terms of pre-and post-test
odds, and characterize (give a more familiar name to) the ??? in the

15As C&H tells us, ⌦ = ⇡/(1� ⇡); Odds = Prob(+)/Prob(-).

expression
Post-test odds = Pre-test odds ⇥ ??? ,

or
log[Post-test odds] = log[Pre-test odds] + log[???].

or
logit.post = logit.pre+ log[???].

Supplementary Exercise 2.716

A woman had a daughter and then 3 sons; the 3rd son has Duchenne
muscular dystrophy17. There is a chance the daughter is a carrier. If the
a↵ected son’s status is a result of a gene inherited from his mother (the
a↵ected gene lies on the X chromosome), then the probability that the
daughter is [also] a carrier is 50%. If the son’s status is a result of a sponta-
neous mutation in his genome, then the probability that the daughter is a
carrier is negligible. The mother can have the daughter tested, but prefers to
wait until she is grown up when she can decide for herself whether to be tested.

What additional information, if any, is provided by the data on the other
2 sons? 18 Depict the situation as a tree diagram, and state any assump-
tions/information you have to make/include.

Supplementary Exercise 2.8: How often does it land like this?

A thumbtack refers to ‘a tack with a large, flat head, designed to be thrust
into a board or other fairly soft object or surface by the pressure of the
thumb’. The British tend to call it a drawing pin – a tack used to hold
drawings on drawing boards. (Nowadays, a pin or map tack refers to thumb
tacks used to mark locations on a map and to hold the map in place). [

https://en.wikipedia.org/wiki/Drawing pin. ]

We will focus on this version and on what proportion (⇡)
of times, if tossed in the air or dropped from a height, it would land in the

16This exercise, also new in 2016, was suggested by a statistical geneticist colleague whom
JH consulted as to whether using o↵spring to infer haemophia carriage or trangenicity is
outdated: answer YES!

17https://en.wikipedia.org/wiki/Muscular dystrophy.
18The son of a female carrier has a 50% chance of receiving the a↵ected X chromosome.

If the son has the mutation, it is 100% probability of disease.
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position indicated in the above diagram, as opposed to on its back. Of course,
this (⇡) might well depend on the height, or whether the surface it is dropped
onto is soft (a carpet) or hard (a table, or wood floor), or even on the person
tossing it.19 For our class investigation we will choose a hard surface.

1. Before you gather any data, make your best educated guess as to the
magnitude of ⇡. Since you won’t want to bet all your money on one
specific value, you should give your ‘distribution’ in the form of a pdf
with a range of 0 to 1. Thus, describe your uncertainty (or degree of
certainty) concerning ⇡ as a beta distribution with parameters ↵ and �,
with the parameter values chosen to reflect how concentrated or vague
your estimate of ⇡ is. Remember (or look up, preferably in Cassela
and Berger, or – only if stuck – Wikipedia) that the mean of a beta
distribution is µ = ↵/(↵+ �) and the SD is [µ(1� µ)/(↵+ � + 1)]1/2.

2. Then carry out a number of tosses and update the pdf.

Supplementary Exercise 2.920

For this exercise we will take the term fecundability to mean the probability
of pregnancy during a single menstrual cycle.

Couples attempting pregnancy are to be followed for up to K menstrual cycles,
or until pregnancy occurs. We assume K is fairly small, so that aging during
the follow-up interval will have negligible e↵ects on the fecundability of any
given couple. In practice, K is usually some number less than or equal to 12.

If all non-contracepting, sexually active couples had the same per-cycle con-
ception probability, ⇡, then the number of cycles required to achieve preg-
nancy would be distributed as geometric with parameter ⇡. In fact, there is
ample evidence that couples vary in their fecundability. About 30% of sexu-
ally active couples achieve pregnancy in their first non-contracepting cycle, a
smaller proportion of the remaining couples achieve pregnancy in the second,
and with each additional unsuccessful cycle, the conception rate continues
to decline, as the risk sets become further depleted of the relatively fecund
couples. The pronounced decrease in conception probability over time is not

19The data in Beckett and Diaconis (Advances in Mathematics, 103, 107-128 (1994)
‘involve repeated rolls of a common thumbtack, and recording whether the tack landed
point up or point down. All tacks started point down. Each tack was flicked or hit with the
fingers from where it last rested. A fixed tack was flicked 9 times. The data are recorded
in Table I. There are 320 9-tuples. These arose from 16 di↵erent tacks, 2 “flickers,” and
10 surfaces. The tacks vary considerably in shape and in proportion of ones. The surfaces
varied from rugs through tablecloths through bathroom floors.

20This exercise, based on Weinberg & Gladen, Biometrics 42, pp.547-560 (1986), is new
in 2016, so the wording may still need some polishing.

properly viewed as a time e↵ect, but as a sorting e↵ect in a heterogeneous
population.

Thus, couples will be assumed to vary in their fecundability, so that a given
couple has a per-cycle conception probability that stays constant throughout
the follow-up interval, but these probabilities vary across couples. Assume
that ⇡ varies according to a beta distribution, with parameters ↵ = 3, � = 7,
i.e.,

⇡ ⇠ Beta(3, 7).

1. Show that if this is indeed the case, then indeed about 30% of sexually
active couples achieve pregnancy in their first non-contracepting cycle. It
may help to think of the results as the realizations of Bernoulli random
variables with di↵ering expectations, in other words, i. i. d. Bernoullis.

2. Now, exclude the first-cycle pregnancies and consider the couples who
proceed to the second cycle. What is the distribution of ⇡ in these remain-
ing couples? Hint: to see what happens, you might want to make a graph:
convert the continuous r.v. – and associated density – for cycle 1 into
a discrete one with 100 probabilities centered on 0.005, 0.015, . . . , 0.995
with a rectangle erected over each one; then remove the appropriate por-
tion from the top of each rectangle, and rescale the altered rectangles so
that the frequencies again add to 1, and then convert the discrete r.v.
back to a continuous r.v. The new p.d.f. should have a familiar (and
remarkable!) functional form. What is it?

3. Generalize to 12 cycles, and plot the 12 pdfs on a single graph. Then, for
k = 2, . . . , 12, find what % of those who undergo non-contracepting cycle
k become pregnant in cycle k.

4. After 6 unsuccessful cycles, a couple asks you what is the estimated prob-
ability that – if they continue to try – they will be successful in one of
the next 6 cycles. Rather than just giving a ‘central’ estimate, give a
pessimistic21 estimate and an optimistic22 one.

5. Instead of ‘assuming’ ↵ = 3, � = 7, how might one estimate ↵ and �
from data? For concreteness, imagine one had the data from 500 couples
followed for up to 12 cycles after discontinuing contraception.

6. Among the couples attempting pregnancy, a proportion ⇢ will have some
hidden condition that makes ⇡ = 0. Thus, it may be more realistic to
consider the distribution of ⇡ to be a beta ‘contaminated by’ (or ‘mixed

21Use the 5th percentile of the ‘after-6-unsuccessful cycles’ distribution.
22Use the 95th percentile of this ‘after-6’ distribution.
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with’) a second distribution degenerate at 0. In this context, ⇢ is called
the ‘mixing parameter’.

Repeat the calculations for the cycle-specific distributions and percent-
ages.
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