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1 Components of Variance

Researchers are often interested in de-composing observable variation into two
or more components or sources. Examples include ...

e quantifying , in genetic or family studies, how much of the variation
in a quantitative trait (e.g. height, blood pressure, cholesterol) is true
between-family variation, how much is true ’between-individual-within-
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Those Genes

Heredity plays the pivotal
role in weight control
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In the first (see the 1990 Time magazine story*

Canadian researchers [using U. Laval students as subjects —
being in the study was the student’s summer job] fed twelve
pairs of identical twins 1,000 calories above their normal daily
intake for 84 days out of a 100- day period. Weight gains ranged
from 4 kg to 13 kg (9 lbs. to 29 Ibs.). But the difference in
the amount gained was much less between twins than between
subjects who were not siblings. Concludes Claude Bouchard,
a professor of exercise physics at Quebec’s Laval University:
"It seems genes have something to do with the amount you
gain when you are overfed.” Some sets of twins transformed
the extra calories into mostly fat, while others converted them
into lean muscle. Volume 322
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THE RESPONSE TO LONG-TERM OVERFEEDING IN IDENTICAL TWINS

Craupe BoucHarp, Pu.D., ANcero Tremsray, Pu.D., Jean-Pierre DesprEs, Pu.D)., ANDRE Naneav, M.D.,
PauL J. Lupien, M.D., Pu.D., GerMAIN Tuériavet, M.D., Jean Dussauvir, M.D., Sirar. Moorjani, Pu.D.,
Svivie Pinavit, M.D., ano Guy Fournier, B.Sc.

The second was motivated by the observation “anatomical, physiological,
and epidemiological data indicate that there may be a significant genetic

component to prolonged time with and recurrent episodes of otitis media
in children”. As its objective, it sought

to determine the genetic component of time with and episodes
of middle ear effusion and acute otitis media (AOM) during the
first 2 years of life’.

The third uses Galton’s family stature (height) data to examine between-
and within-family differences in adult heights.

1«Chubby? Blame those genes: Heredity plays the pivotal role in weight control”
http://www.time.com/time/magazine/article/0,9171,970266,00.html

Abstract We undertook this study to determine whether
there are ditf in the resp of ditferent

estimated subcutaneous fat, with about three timas more

to long-term overfeeding and to assess the possibility that
g are Involved in such diff After a two-
week base-line period, 12 pairs of young adult male mono-
2zygotic twing were overfed by 4.2 MJ (1000 kcal) per day,
6 days a week, for a tota! of 84 days during a 100-day
period. The total excess amount each man consumed was
353 MJ (84,000 kcal).

Ouring overfeeding, individual changes in body compo-
sition and graphy of fat dk ition varied 3
ably. The mean weight gain was 8.1 kg, but ihe range was
4.3 10 13.3 kg. The similarity within each pair in the re-
sponse to overfeeding was significant (P<0.05) with re-
spect to body weight, percentage of fat, fat mass, and

e quantifying, in ‘measurement

among pairs than within pairs (r =~ 0.5). Atter ad-
justment for the gains in fat mass, the within-pair similarity
was particularly evident with respect to the changes in
regional fat distribution and amount of abdominal visceral
fal (P<0.01), with about six times as much variance
among pairs as within pairs (r ~ 0.7).

_ We conclude that the most likely explanation for the

pai ity in the to long-term overfeed-
ing and for the variations in weight gain and fat distribution
among the pairs of twins is that genetic factors are in-
volved. These may govem the tendendy to store snargy
either fat or lean tissue and the various determinants ol the
resting expenditure of energy. (N Engl J Med 1990;
322:1477-82)

studies’, the amount of measurement
error, and expressing it as a coefficient of variation (CV) or reliability

coefficient or Intra Class Correlation Coefficient (ICC).
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Data analysis

Traditionally, the variance components have been estimated using ‘methods
of moments’ estimators applied to the mean squares calculated in classical
ANOVA tables based on a 1-way (or several-way) mixed or random effects
model. As statistical computing had become easier, we can now more easily
and more flexibly estimate these parameters using a number of approaches
and software packages.

But it is best to begin with the classical way. So, following this page, JH
has pasted in here 5 pages (numbered 2-6) of orientational material on mea-
surement statistics from a measurement course for physical and occupational
therapy students. These students had had limited exposure to statistical con-
cepts in general, and to ‘ANOVA’ in particular; this lack of familiarity with
‘classical’ ANOVA? does not seem to be limited to such students: many mod-
ern ‘regression and anova’ courses skip the ‘anova’ altogether, since many of
the statistical tests (and anova tests were traditionally the focus) can be car-
ried out within a more general regression framework. But in our focus on
estimation, and in particular on variance-estimation, we have something to
learn from the classical anova tables and calculations, and particularly from
a concept that is seldom taught within a regression-only course, namely the
Expected Mean Square or EMS. It was mainly used in classical anova to il-
lustrate which Mean Squares should be used in an F test to test which null
hypotheses.

Opposite is an excerpt from an older text, showing the EMS for the two
simplest ‘1-way anova’ models. We will be more interested in the version where
the a’s are random rather than fixed, but to make it easier, the orientational
material starts with the fixed effects model. The anova calculations are the
same in both the fixed and random-effects models: it is the use of the Means-
squares that differs in the two models.

2By ‘classical’ I mean the calculations could be easily done by a hand calculator; the
data structure was nicely balanced and the data could be laid out in rows and columns, or
in a higher-dimensional array, with no missing values, no other explanatory , etc.

Model: y;; = p + o; + €;5;

(i=1,2,...,k; j

=1,2,...,n

ANALYSIS OF VARIANCE AND EXPECTED MEAN
SQUARES FOR THE ONE-WAY CLASSIFICATION

no=>y,n;)

Fixed Effects: ay,. ..oy fixed & unknown; 1,2, ...,k exhaustive; ), a; = 0.

Random Effects: a,...ax: sample from larger no. of a’s, with a ~ N(0,0%)
€ij ~ N(0,0%,), i.i.d. B: Between; W: Within.
Source of Degrees of Sum of Squares Mean Test
Variation  Freedom Square Statistic
2

Between k-1 S1=32,W—-4.)* si= — F= i—%

groups

Within n —k So =222y — Ui)? 83 = %

groups

Total n —1 =222 — 7.)?

Source of Degrees of Mean Expected Mean Square (EMS) for model with...
Variation = Freedom  Square
Fixed Effects Random Effects
2 2

Between k-1 52 ol + Zk# oy + ﬁ(n — %)a% *

groups

Within n —k s2 o2, ol

groups

Total n —1

* With equal n’s, EMS = 0‘2,[, + no’%; with unequal n’s, EMS > U%,V + fw?g.
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Introduction to Measurement Statistics 2
First, a General Orientation to ANOVA and its primary use, namely DE-COMPOSITION OF OBSERVED (EMPIRICAL) VARIATION
testing differences between p's of k ( 22 ) different groups.
e — .2 + 2 Sy
E.g. 1-way ANOVA: 226’1_1 ¥y 23(Gi-y) ZG’U 4
DATA: TOTAL Sum = BETWEEN Groups + WITHIN Group
‘ of Squares Sum of Squares Sum of Squares
Growp ANOVA TABLE
1 2 . i . k
SUbJIeCt Sum of Degrees Mean F P-Value

) yi : . : : : Squares  of Freedom Square Ratio

: - . . MSgErwEEN .

j Yij SOURCE SS df MS MS Prob(>F)

WITHIN
: : =SS/
0 Vi ( D
_ _ _ _ BETWEEN xx.x k-1 XX.X XXX 0.xx
Mean Y1 ¥2 Yi Yk WITHIN  xx.x k(n-1)  xxx
Variance 2y s25 2y LOGIC FOR F-TEST (Ratio of variances) as a test of
Ho: 1 =2 = o0 = i = .0 = Uk

MODEL ' UNDER HO

o .
o : yu?su pk
yi@ p=pl=p2=_
ul - i i o, Gl o
(o)

Means, based on samples of n, 02
should vary around p with a variance of -

o refers to the variation (SD) of all possible individuals in a group;
It is an (unknowable) parameter; it can only be ESTIMATED.
. Thus, if Hy is true, and we calculate the empirical variance of the k different yi's, it
Or, in symbols...

Vi = W tej = B+ (- +oej

2
. . . o)
should give us an unbiased estimate of W
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Introduction to Measurement Statistics 3

- -2 )
i.e. M is an unbiased estimate of o=
k-1 n

Vi — v2
. n - . . .
i.e. —%}i is an unbiased estimate of &2

5 — 12
ie. Z'Zb;fly] = MSBETWEEN i$ an unbiased estimate of 62

Whether or not Hy is true, the empirical variance of the n (within-group) values

D Y T 2 ] ) )
Yi1 to yin 1.e. M‘n_l—yl] should give us an unbiased estimate of o?
e w12
i.e. $2; = 20ij - yil is an unbiased estimate of 62

n—1

so the average of the k diferent estimates,
1 Z 2 1 Z 2lyi - yil
=82 = 1
k k n-1

is also an unbiased estimate of o2

= .
i zz[}ffn—l]h] = MSw|THIN is an unbiased estimate of G2

THUS, under Hp, both MSRrTWEEN and MSwTHIN are unbiased estimates of
estimates of o2 and so their ratio should, apart from sampling variability, be 1.
IF however, Hy is not true, MSBeTWEEN Will tend to be larger than MSwITHIN,

since it contains an extra contribution that is proportional to how far the p's are
from each other. :

In this "non-null" case, the MSBrTWEEN i an unbiased estimate of

TS 74
o2 + Zn[ui(_l U]

MSBETWEEN
MSWITHIN
should be greater than 1. The tabulated values of the F distribution (tabulated
under the assumption that the numerator and denominator of the ratio are both
estimaes of the same quantity) can thus be used to assess how extreme the observed
F ratio is and to assess the evidence against the Hg that the p's are equal.

and so we expect that, apart from sampling variability, the ratio

How ANOVA can be used to estimate Components of Variance used
in quantifying Reliability.

The basic ANOVA calculations are the same, but the MODEL underlying them is
different. First, in the more common use of ANOVA just described, the groups can
be though of as all the levels of the factor of interest. The number of levels is
necessarily finite. The groups might be the two genders, all of the age groups, the 4
blood groups, etc. Moreover, when you publish the results, you explicitly identify
the groups.

When we come to study subjects, and ask "How big is the intra-subject variation
compared with the inter-subject varaition, we will for budget reasons only study a
sample of all the possible subjects of interest. We can still number them 1 to k, and
we can make n measurements on each subject, so the basic layout of the data doesn'y
change. All we do is replace the word 'Group' by 'Subject' and speak of BETWEEN-
SUBJECT and WITHIN-SUBJECT variation. So the data layout is...

DATA:
Subject
1 2 . i . k
Measurement

1 yi1

2

] Yij

n Ykn
Mean y1 y2 Yi Yk
Variance s24 s25 s2x
MODEL

The model is different. There is no interest in the specific subjects. Unlike the critical
labels "male" anf "female", or "smokers", "nonsmokers" and "exsmokers" to identify
groups of interest, we certainly are not going to identify subjects as Yves, Claire,
Jean, Anne, Tom, Jim, and Harry in the publication, and nobody would be fussed if
in the dataset we used arbitrary subject identifiers to keep track of which
measurements were made on whom. we wouldn't even care if the research assistant
lost the identities of the subjects -- as long as we know that the correct measurents
go with the correct subject!
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introduction to Measurement Statistics 4

The "Random Effects" Model uses 2 stages:

(1) random sample of subjects, each with his/her own p
(2) For each subject, series of random variations around his/her 1

Notice the diagram has considerable 'segregation’ of the measurements on different
individuals. There is no point in TESTING for (inter-subject) differences in the p's.
The task is rather to estimate the relative magnitudes of the two variance components

GZB and GZW

w's for Universe —g
of Subjects

y,; = w(Tom) + g4 u(Tom)

Ow

Yves

Jim

(Anne)
Vo

o refers to the SD of the universe of p's ; It is an
B unknowable parameter and can only be ESTIMATED

refers to the variation (SD) of all possible measurements on a su
W1t is an (unknowable) parameter; it can only be ESTIMATED.

Or, in symbols...
yiji S Hitej = o+t (M- o+ g

=K+ ot g
ai ~ N(0, o%p)

&i ~N(0, &)

ject

DE-COMPOSITION OF OBSERVED (EMPIRICAL) VARIATION

T3(yij - ¥ = TIGi -y + 3G - yi?
TOTAL Sum = BETWEEN Subjects +  WITHIN Subjects
of Squares Sum of Squares Sum of Squares

ANOVA TABLE (Note absence of F and P-value Columns)

Sum of Degrees Mean What the Mean
Squares of Freedom Square Square is an
estimate of*

SOURCE Ss df MS -

(=SS /df)
BETWEEN Subjects  xx.x k-1 XX.X 02W +n 02 B
WITHIN  Subjects XX.X k(n-1) XX.X o'zw

ACTUAL ESTIMATION OF 2 Variance Components

MSBETWEEN Is an unbiased estimate of 02W +n 02B

MSWITHIN s an unbiased estimate of 02W

By subtraction...

MSBETWEEN ~ MSWITHIN s an unbiased estimate of n 02B

MSBETWEEN — MS WITHIN
n

is an unbiased estimate of OZB

This is the definitional formula; the computational formula may be different.

* Pardon my ending with a preposition, but I find it difficult to say otherwise. These
parameter combinations are also called the "Expected Mean Squares". They are the
long-run expectations of the MS statistics As Winston Churchill would say, "For
the sake of clarity, this one time this wording is something up which you would
put".
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Introduction to Measurement Statistics 5

Example....
DATA: Subject
Tom Anne _Yves  Jean Claire
Measurement

1 4.8 5.5 5.1 6.4 5.8 4.5

2 4.7 52 4.9 6.2 6.3 4.1

3 49 5.2 53 6.6 5.6 40
Mean 48 53 51 64 59 42 Variance=0614
Variance 0.01 0.03 0.04 0.04 0.13 0.07

ANOVA TABLE (Check... I did it by hand!)

Sum of Degrees Mean What the Mean
Squares of Freedom Square Square is an
estimate of... «

SOURCE ss dif Ms
(= SS /df)
BETWEEN Subjects ~ 9.205 5 1.841 o’w +no’g
WITHIN Subjects  0.640 12 0.053 oty
TOTAL 9.845 17

ESTIMATES OF VARIANCE COMPONENTS
MSwWITHIN = 0.053 is an unbiased estimate of 0’2W

1.841 - 0.053
3 = 0.596 is an unbiased estimate of 02]3

1-Way ANOVA Calculations performed by SAS; Components estimated manually

| PROC GIM in SAS ==> estimating components 'by hand’ |
DATA a; INPUT Subject Value; LINES;

148

147

64.5
proc glm; class subject; model value=subject / ss3;
random subject ;

See worked example using earsize data.
If unequal numbers of measurements per subject, see formula in A&B or Fleiss

6

Estimating Components of Variance using "Black Box"

PROC VARCOMP; class subject ; model Value = Subject ;
See worked example following...

2 measurements (in mm) of earsize of 8 subjects by each of 4
observers

subject 1 2 3 4

obsr 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4
lst|67 65 65 64 74 74 74 72 67 68 66 65 65 65 65 65
2nd|67 66 66 66 74 73 71 73 68 67 68 67 64 65 65 64

subject 5 6 7 &
obsr 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

1st]65 62 62 61 59 56 55 53 60 62 60 59 66 65 65 63
2nd|61 62 60 61 57 57 57 53 60 65 60 58 66 65 65 65

INTRA-OBSERVER VARIATION (e.g. observer #1)
e.g. observer #1

| PROC GIM in SAS ==> estimating components 'by hand' |

INPUT subject rater occasion earsize; if observer=l;
The data set has 16 obsns & 4 variables.

proc glm; class subject; model earsize=gubject / ss3; -
random subject ;

General Linear Models Procedure: Class Level Information

Class Levels Values
SUBJECT 8 12345678 ; # of obsns. in data set = 16

Dependent Variable: EARSIZE

Sum of Mean

Source DF Squares Square F Value Pr > F
Model 7 341.00 48.71 35.43 0.0001
Error 8 11.00 1.38
Corrected Total 15 352.00
R-Square C.V. Root MSE EARSTIZE Mean
0.968750 1.80 1.17260 65.0
Source DF Type IITI SS Mean Square F Value Pr > F
SUBJECT 7 341.00 48.71 35.43 0.0001
Source Type III Expected Mean Square
SUBJECT Var (Error) + 2 Var (SUBJECT)
Var (Exrror) + 2 Var(SUBJECT) = 48.71
Var (Error) = 1.38

2 Var (SUBJECT) 47.33

Var (SUBJECT) 47.33 / 2 = 23.67
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Introduction to Measurement Statistics 6

| Estimating Variance components using PROC VARCOMP in SAS |

proc varcomp; class subject ; model earsize = subject ;

Variance Components Estimation Procedure: Class Level Information
Class Levels Values

SUBJECT 8 12345678 ; # obsns in data set = 16

MIVQUE(0) Variance Component Estimation Procedure

Estimate
Variance Component EARSIZE
Var (SUBJECT) 23,67
Var (Error) 1.38"
¢ ICC (Fleiss § 1.3)
Var (SUBJECT) 23.67
ICC = mmmmmmmm e = e = 0.94

Var (SUBJECT) + Var(Error) 23.67 + 1.38

1-sided 95% Confidence interval (see Fleiss p 12)

df for F in CI: (8-1)= 7 and 8
so from Tables of F distribution with 7 & 8 df, F = 3.5

So lower limit of CI for ICC is

35.43 + (2 - 1)e3.5

EXERCISE: Carry out the estimation procedure for one of the other 3 observers.
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Applying this 1-way model to Bouchard’s ‘chubby genes’ data:

U twin pair 1 2 3 4 5 6 7 8 9 10 11 12
éh p: ? ? ? ? ?
) a: 77 ? ?
¥
&, o: ? ? ? ?
ki
ok
Aw.incr.twin A} 133 111 82 61 79 71 68 65 67 73 65 54 “ybar: 8.08
jw.incr.twinB|_ 11 129 96 114 77 69 8 8 88 43 853 7. var: 5.54
% sd.:. 2.35
"’ ybar(i): 12145 12 89 875 7.8 7 745 725 775 5.8 59 6.25 [var(ybars): 4.44
var(i): 2.645 1.62 0.98 14.05 0.02 0.02 0.605 1.125 2.205 4.5 0.72 1.445| ave(var): 2.49
i n(i): 2 2 2 2 2 2 2 2 2 2 2 2
W
t’:.‘
%movuwl.e
h Source ISq df Mean Sq F
:|B / w Poplns 97.58 11 8.87 3.56
‘IW /n Poplns 29.93 12 2.49
LAl 127.51 23 5.54
& 14 _
¥ 131 . "
B 121 x X
kS 1 . . .
& 10 -
f weight increase 9 ¢ X X | I
i3 81 8 b4 e v X
o1 74+ 2 a ™ | ] [
y 8 b a X X
5! . .
. s »
o 1 2 3 4 5 6 7 8 9 10 1 12 13
twin pair
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From this anova table and the concept of Expected Mean Squares®, we

)

can, by the method of moments, get estimates of the separate components of
that parameter combination.

Quantifying Reliability 3

ICC’s (Portnoy and Wilkins)

model: weight gain for person j in family i = p + [ + aj + ejj
(1) mudtiple (unlabeled) measurements of each subject

(2) same set of raters measure each subject; raters thought of as a random sample of

all possible raters. 1-way Anova and Expected Mean Square (EMS)
(3) asin(2), but these raters studied are the only raters of interest Source Sum d.f Mean  Expected Mean Square
of Sq Square
(1) multiple (unlabeled) measurements of each subject Between (families) 99 11 9.0 G2 error” + ko OZbetween
Error(Within families) 30 12 2.5 "error”
OSUBJECTS o
ERROR Total 129 23
In our example, we measure k=2 members from each family, so ko is simply 2
B _[ o [if the k's are unequal, ky is somewhat less than the average k... ko = average k —
H l (variance of k's) / (n times average k) ...see Fleiss page 10]
p+o+e Estimation of parameters that go to make up ICC
o2 2.5 is an estimate of O2negror
IcC= SUBIECTS . . )
G“SUBJECTS + O ERROR 9.0is an estimate of G2veror” + 2 02petween

Model for observed data: & 6.5is an estimate of 2 62petween

ylsubject i, measurement j} = 4 + &; + & % is an estimate of O2between
EXAMPLE 1

6.5

This example is in the spirit of the way the ICC was first used, as a measure of the 2 _ 3.25 =057
greater similarity within families than between families: Study by Bouchard (NETM) 6.5 3.25+2.5 = WS
on weight gains of 2 members from each of 12 families: It is thought that there will 5 +2.5
be more variation between members of different families than between members of
the same family: family (genes) is though to be a large source of variation; the two 2
twins per family are thought of as 'replicates’ from the family and closer to each other G “between

(than to others) in their responses. Here the "between” factor is family i.e. families is an estimate of ICC
are the subjects and the two twins in the family are just replicates and they don't need

to be labeled (if we did label them 1 and 2, the labels would be arbitrary, since the

two twins are thought to be "interch ble'. (weight gain in Kg over a summer)

OZpetween + OZerror

3Think of the EMS for the row in question as the combination of parameters which is
(mean-unbiasedly) estimated by the mean square in that row.
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You will often find in statistical ‘cookbooks’ that the ICC, and other concepts —
such as those behind the kappa statistic — are defined by the simplest and user-
friendliest computational formula its estimator. But biostatisticians should
always distinguish between the definition of a parameter and its estimator.
Typically the parameter involves Greek letters (some teachers used upper class
Roman ones) and the estimator uses data, and the estimate is often denoted
by a Greek letter with hat on it, or the lower-case Roman letter equivalent
of the upper-case one. In the ‘by hand’ days, there was the same issue with
respect to the definitional formula for a variance or standard deviation versus
the user-friendliest computational formula for an estimator of it.

Quantifying Reliability 4

Increasing Reliability by averaging several measurements
COMPUTATIONAL Formula for "1-way" ICC
In 1-way model: Yij =W+ 05+ ejj
MSbetween — MSwithin

where  var{o; ] = 0%petween subjects  varleij ] = 0Zrerrar

ko
MSbctweex;m— MSwithin + MSwithin

Then if we average k measurements, i.e.,
_ MSt MSwithin
= MShbetween + (ko-)MSwithin  Lshorteut]

ybar; = U + o + ebary

then

G2 "
is an estimate of the ICC Var [ybar; ] = 0Zpetween +—— 0

Notes:

« Streiner and Norman start on page 109 with the 2-way anova for inter-observer
variation. There are mistakes in their depiction of the SSemor on p 110 (it should be
(6-6)*+(4-4)2+(2-1)? +...(8-)2 =10. If one were to do the calculations by hand, one
usually calculates the SStotal and then obtains the SSerror by subtraction)

« They then mention the 1-way case, which we have discussed above, as "the
observer nested within subject” on page 112

« Fleiss gives methods for calculating CI's for ICC's.

EXAMPLE 2: INTRA-OBSERVER VARIATION FOR 1 OBSERVER
Computations performed on earlier handout...

Var(SUBJECT)=23.67 Var(ERROR)= 138

16C = 23.67/ (23.67 + 1.38) = 0.94

An estimated 94% of observed variation in earsize measurements by this observer is
'real’ .. i.e. reflects true between-subject variability,

Note that I say "an estimated 94% ...". 1 do this because the 94% is a statistic that is
subject to sampling variability (94% is just a point estimate or a 0% Confidence
Interval). An interval estimate is given by say a 95% confidence interval for the true
ICC (lower bound of a 1-sided ClI is 82% ... see previous handout)

So ICCIK] = -—"thgﬂgn—"—
G 2petween +_kmr—

This is called " Stepped-Up" Reliability.

10
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> 3 components of variance:

when human (or other fallible) raters are involved

The 64 ear-length measurements below were taken by 4 raters (a subset of the
students) who measured 8 subjects (6 other students, as well as the teachers
Sharon Wood-Dauphinée and James Hanley) in a (physical and occupational
therapy) class on measurement in rehabilitation. The choice of 'objects’ mea-
sured was prompted by the article Why do old men have big ears? [author
James A Heathcote, general practitioner] in the Christmas Edition of the
BJM in December 1985, and some follow-up letters the following March — see

Resources.

ICC's (Portnoy and Wilkins).

(2) same set of raters measure each subject; raters thought of as a random sample of

all possible raters.
* Model
Raters
Subjects H y for subject 2, rater 1T
«I 24 /
2 «
1

y for subject 2, rater 1

1
5 H(_'¢yforsubje013.mtcrll
3¢ IF_¢ymem13,ml

4l .
etc ...
Ko+ o [subject] + P rated + e
2 2 2
Gsubjecls o-ram Gam'

» From 2- way data layout (subjects x Raters)
estimate 02"subjects" , 02 aters” and  O2verror” by 2-way ANOVA
« Substitute variance estimates in appropriate ICC form

e.g. 2 measurements (in mm) of earsize of 8 subjects by each of 4
observers

subject 1 2 3 4
obsrl 2 3 4 1 23 4 1 23 4 1 23 4

15t|67 65 65 64 74 74 74 72 67 68 66 65 65 65 65 65
2nd|67 66 66 66 74 73 71 73 68 67 68 67 64 65 65 64
subject 5 6 7 6

obsrl 2 3 4 1 23 4 1 23 4 12 3 4

1st |65 62 62 61 59 56 55 53 60 62 60 59 66 65 65 63
2nd |61 62 60 61 57 57 57 53 60 65 60 58 66 65 65 65

Quantifying Reliability 5

ESTIMATING INTER-OBSERVER VARIATION from occasion=1;
PROC GLM in SAS ==> estimating components 'by hand' |

INPUT subject rater occasion earsize; if occasion=1; (32 obsns)

proc glm; class subject rater; model earsize=gubject rater / ss3;
random subject rater;

General Linear Models Procedure: Class Level Information

SUBJECT 8 12345678

RATER 4 123 4 Number of observations in data set = 32
Sum of  Mean

Source  DF Sqguares Sguare F Value Pr> F

Model 10 764.500 76.45 78.80  0.0001

Exror 21 20,375 0,97

Corrected Total 31 784.875

R-Sguare _ C.V, Root MSE FEARSIZE Mean
0.974040  1.534577 0.98501 64.1875

SUBJECT 7  734.875000 104.98 108.20 0.0001
RATER 3 29.625000 9.87 10.18 0.0002

Source  Tvpe III Expected Mean Sduare
SUBJECT Var (Error) + 4 Var(SUBJECT)
RATER Var (Error) + 8 Var(RATER)

So... solving 'by hand' for the 3 components...
Var(Error) + 4 Var (SUBJECT)
Var(Error)
==> 4 Var(SUBJECT)
==> Nar.(SURJECT)..=.

104.98

0,97

104.01
A04.01..L.4.5.26..00

9.87
0.97

Var (Error) + 8 Var(RATER)
Var(Error)
==> 8 Var(RATER) .
==>  VAar(RATER.....%....8420.L.5

L da bl

Nar.(Rrxex). =...0.917

Estimating Variance components using PROC_VARCOMP in SAS

proc varcomp; class subject rater; model earsize = subject rater;

Estimate
Variance C EARSIZE
Var (SUBJECT) 26.00
Var (RATER) 1.11
Var (Error) 0.97

11

+ ICC: "Raters Random" (Fleiss § 1.5.2)

Var (SUBJECT) 26.00
IcC = - = 0.9
Var (SUBJECT) + Var (RATER) + Var(Error) 26.00+41.11+0.97

ided 95% Confi Flelss 0 27

df for F in CI: (8-1)= 7 and v* , where

(8-1) (4-1) (4+0.93+10.18 + 8{1+(4-1)+0.93)-4+0.93)2
v o= =

(8-1)+4%40.932:10.18% + (8([1+(4-1)+0.931-4+0.93)2

so from Tables of F distribution with 7 & 8 df, F = 3.5
So lower limit of CI for ICC is

8(104.98 - 3.5+0.97)

= = 0.78
80104.98 + 3.50[4:9.87 + (8+4 - 8 - 4)+0.97) .

« ICC: if use one "flxed” observer (see Fleiss p 23, strategy 3)

Var (SUBJECT) 26.00
1cc =

- = 0.96
Var (SUBJECT) + Var (Error} 26.00 + 0.97

lower limit of 95% 1-sided CI (egn 1.49: F = 2.5 ; 7 & 7x3=21 df)
104.98 - 2.5

104.98 + {4-1)+2.5

Quantifying Reliability (]

USING ALL THE DATA SIMULTANEOQUSLY

(can now estimate subject x Rater interaction .. i.e extent to which raters ‘'reverse
themselves' with different subjects)

[ s of variance when use both measurements (all 64 obsns)|

proc varcomp;
class subject rater;
model earsize = subject rater;

proc varcomp;
class subject rater;
model earsize = subject rater

subject*rater;
Estimate
Variance C EARSIZE Variance C: EARSIZE
Var (SUBJECT) 25.52 Var (SUBJECT) 25.47
Var (RATER) 0.70 Var (RATER) 0.67
Var (Error) 1.37 Var (SUBJECT*RATER) 0.3
var (Error) 1.13
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m-s exercise 1

i.

ii.

From first principles, derive the expressions for EMSp and EM Sy, for
both the fixed and random effects models in the case of equal n’s.

For EM Sp under the random effects model, verify the footnote about
the multiplier of 0% with unequal n’s.

Worked examples and use of R/WinBUGS code: cf. Resources

i.

ii.

iii.

Estimation of a log(RateRatio) via (frequentist) Inverse-variance weight-
ing, Likelihood, and Bayesian approaches. Data from article ‘Road
Trauma in Teenage Male Youth with Childhood Disruptive Behavior Dis-
orders: A Population Based Analysis’ by D.A. Redelmeier in PLoS Med
7(11): €1000369. doi:10.1371/journal.pmed.1000369

Estimation of between- and within-family variances (and an icc) from
the ‘chubby genes’ (Bouchard) weight-gain data. See Resources for (a) R
code to produce the ANOVA table (for method of moments estimation,
based on expected mean squares shown in Table on first page of these
notes) ‘from scratch’ 4 i.e., directly from the ANOVA formulae, and to
call a ‘classical ANOVA’ function (b) WinBUGS code for a (Gaussian)
random-effects model. R code for other (distribution-based) approaches
is welcomed.

Estimation of between-subject and between-observer variances (and an
icc) using the (64) ear-length measurements collected in the (physical
and occupational therapy) class on measurement in rehabilitation.. via
the method of moments and via a (Gaussian) random-effects model fitted
using WinBUGS. Other approaches are welcomed.

4GOOGLE origin expression “from scratch”
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applied exercise 1, option a - otitis media data cf. Resources

i.

ii.

Derive separate ANOVA tables for the monozygotic and dizygotic twins,
and use the method of moments to estimate the components of variance
(0% and 03,), and the ICC, for each type.

The method of moments approach to variance components estimation
does not explicitly use models for the distribution of the random effects,
or the within-family variations; in addition, the calculation of a confi-
dence intervals for each ICC and the formal statistical comparison of the
two ICCs are problematic. Therefore, use an approach® that explicitly
assumes a Gaussian model for each component of variance, and obtain a
point and an interval estimate of (a) each ICC and (b) the ratio of the
two ICCs.

51f using JAGS or WinBUGS with these slightly non-rectangular data, with most families
having 2, but some 3, children, you might be able to use an array where one of the dimensions
is the maximum of 3, and the 3rd response is set to NA if there are just 2 children. Or
you could use the “tall” format, where the data are all in one very long vector, and there
is an accompanying vector to say which family it is... the code used in the ear-length data
uses this latter (simpler) approach, even though the data in that example has a perfectly
‘rectangular’ 8 x 4 x 2 array structure.. see the code under Resources.
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applied exercise 1, option b - Galton’s family data® cf. Resources

i. Fit the following mized” model for the height of the jth offspring in
family 4 and obtain point and interval estimates for the Between-family
variance 0% and the Within-family variance o3, as well as for ICC =

o /(0% + o)

heighti; = pifemate + Darate X I.maleg; + b; + €4,

b ~ N(0,08); €;; ~ N(0,ow).

You will probably do the fitting via an ML or a Bayesian® approach.

Comment on how far you would have been able to get with the method
of moments (differences in means squares) approach.

ii. Add what Galton called the ‘mid-parent’ height (an average of the heights
of the 2 parents) as a fixed effect in the above model (technically, 0% and
0%, will now have a somewhat different meaning). Interpret the value
of the regression® coefficient associated with the mid-parent height, and
comment on how much (and why) the estimates of 0% and 0%, (and the
ICC) are affected.

6These are taken from the listing found under the Galton tab in JH’s website, and thus
deliberately omit one family per notebook page. They also include the mis-classification
error in his 2004 paper — documented in the notes that accompany that listing. For this
exercise, ignore these omissions and the error.

7A word about notation: the (2) levels of gender are ‘fixed’ i.e. they are the only 2 levels
possible; their associated regression coefficients (i femate and Ajpsqie) have meaning and
relevance to others and would be identified in any report. The (198) levels of ‘family’ are
‘random’ i.e. they are a sample of the effectively infinite number of possible families. Note
also the more modern terminology of using the Roman letter b for the random effect and
Greek letters as or s or As for the fixed effects. In the older notation used in ANOVA
(cf material at the beginning of this note, and further examples under Resources) it was
customary to use Greek letters for both.

81f using JAGS or WinBUGS with these non-rectangular data, with different families
having different numbers of children, you might be able to use an array where one of the
dimensions is the maximum number in any one family, and the height is set to NA if there
are fewer than the maximum number of children. Or you could use the “tall” format, where
the data are all in one very long vector, and there is an accompanying vector to say which
family it is... the code used in the ear-length data uses this latter (simpler) approach, even
though the data in that example has a perfectly ‘rectangular’ 8 x 4 x 2 array structure..
see the code under Resources.

9 You are being part of statistical history here: When Galton fitted the simple linear
regression of offspring height on parental height, he did have a computer (a human one),
but he made life easy on himself by using grouped (binned) data and by further reducing
the data so he was left with just 9 (z,y) datapoints. He could have applied the Method
of Least Squares, developed almost 200 years before, to these 9. But we know that in fact
he merely used an “eye” fit, using a “straight edge” to fit his “regression” coefficient of
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iii. Galton did not use an additive model for the male-female height differ-
ences; instead he ‘transmuted’ the female heights by multiplying them by
a factor, namely the ratio of the mean height of males to that of females:

“The factor I used was 1.08, which is equivalent to adding a
little less than one-twelfth to each female height. It differs
slightly from the factors employed by other anthropologists,
who, moreover, differ a trifle between themselves; anyhow, it
suits my data better than 1.07 or 1.09. I can say confidently
that the final result is not of a kind to be sensibly affected
by these minute details, because it happened that owing to a
mistaken direction, the computer to whom I first entrusted the
figures used a somewhat different factor, yet the results came
out closely the same.” !0

In a sense, he used a 2-stage estimation process.!! Suggest how today
we might estimate the multiplicative factor from a single-stage regression
(Hint: think of 1.08 as exp[0.077]).

iv. What model would you suggest to deal with the fact that the SD of height
is smaller (by about 8%) for females?

2/3. This 2/3 became the basis for his description of the phenomenon of “regression to the
mean”, and the centrepiece of his famous 1886 article “Regression towards mediocrity in
hereditary stature”. See http://galton.org/bib/Journalltem.aspx-action=view_id=157
The word “regression” stuck, but our use of it to today has very little to do with its original
meaning. In his 3-volume biography of Galton, Karl Pearson tells us that that 1886
“regression line” was the second such line ever fitted: the first was the one Galton
fitted to the diameters of seeds (sweet peas) in relation to the sizes of their parents, 10 years
earlier. Those data, and their analyses, are described in Appendix 1 of his 1886 paper.

10See Hanley JA. “Transmuting” Women into Men: Galtons Family Data on Human
Stature. The American Statistician, August 2004, Vol. 58, No. 3, page 237. It is available
under ther e printson JH’s website.

11 He first scaled the heights and then used a simple linear regression on the ‘unisex’ data.
He did not use our type of random effects model. Moreover, when he reduced the unisex
data to the 2 way frequency table (1 inch bins for mid-parent height [rows], 1 inch bins for
offspring height [columns|, with all the offspring in the same mid-parent bin [row] treated
as a ‘filial array’), he effectively unlinked the offspring from their parents.



