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1 Components of Variance

Researchers are often interested in de-composing observable variation into two
or more components or sources. Examples include ...

• quantifying , in genetic or family studies, how much of the variation
in a quantitative trait (e.g. height, blood pressure, cholesterol) is true
between-family variation, how much is true ’between-individual-within-
same-family’ variation, and how much is real within-individual variation
or measurement error. We will examine three such studies.

In the first (see the 1990 Time magazine story1

Canadian researchers [using U. Laval students as subjects –
being in the study was the student’s summer job] fed twelve
pairs of identical twins 1,000 calories above their normal daily
intake for 84 days out of a 100- day period. Weight gains ranged
from 4 kg to 13 kg (9 lbs. to 29 lbs.). But the difference in
the amount gained was much less between twins than between
subjects who were not siblings. Concludes Claude Bouchard,
a professor of exercise physics at Quebec’s Laval University:
”It seems genes have something to do with the amount you
gain when you are overfed.” Some sets of twins transformed
the extra calories into mostly fat, while others converted them
into lean muscle.

The second was motivated by the observation “anatomical, physiological,
and epidemiological data indicate that there may be a significant genetic
component to prolonged time with and recurrent episodes of otitis media
in children”. As its objective, it sought

to determine the genetic component of time with and episodes
of middle ear effusion and acute otitis media (AOM) during the
first 2 years of life’.

The third uses Galton’s family stature (height) data to examine between-
and within-family differences in adult heights.

1“Chubby? Blame those genes: Heredity plays the pivotal role in weight control”
http://www.time.com/time/magazine/article/0,9171,970266,00.html
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• quantifying, in ‘measurement studies’, the amount of measurement
error, and expressing it as a coefficient of variation (CV) or reliability
coefficient or Intra Class Correlation Coefficient (ICC).
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Data analysis

Traditionally, the variance components have been estimated using ‘methods
of moments’ estimators applied to the mean squares calculated in classical
ANOVA tables based on a 1-way (or several-way) mixed or random effects
model. As statistical computing had become easier, we can now more easily
and more flexibly estimate these parameters using a number of approaches
and software packages.

But it is best to begin with the classical way. So, following this page, JH
has pasted in here 5 pages (numbered 2-6) of orientational material on mea-
surement statistics from a measurement course for physical and occupational
therapy students. These students had had limited exposure to statistical con-
cepts in general, and to ‘ANOVA’ in particular; this lack of familiarity with
‘classical’ ANOVA2 does not seem to be limited to such students: many mod-
ern ‘regression and anova’ courses skip the ‘anova’ altogether, since many of
the statistical tests (and anova tests were traditionally the focus) can be car-
ried out within a more general regression framework. But in our focus on
estimation, and in particular on variance-estimation, we have something to
learn from the classical anova tables and calculations, and particularly from
a concept that is seldom taught within a regression-only course, namely the
Expected Mean Square or EMS. It was mainly used in classical anova to il-
lustrate which Mean Squares should be used in an F test to test which null
hypotheses.

Opposite is an excerpt from an older text, showing the EMS for the two
simplest ‘1-way anova’ models. We will be more interested in the version where
the α’s are random rather than fixed, but to make it easier, the orientational
material starts with the fixed effects model. The anova calculations are the
same in both the fixed and random-effects models: it is the use of the Means-
squares that differs in the two models.

2By ‘classical’ I mean the calculations could be easily done by a hand calculator; the
data structure was nicely balanced and the data could be laid out in rows and columns, or
in a higher-dimensional array, with no missing values, no other explanatory , etc.

ANALYSIS OF VARIANCE AND EXPECTED MEAN
SQUARES FOR THE ONE-WAY CLASSIFICATION

Model: yij = µ+ αi + εij ; (i = 1, 2, . . . , k; j = 1, 2, . . . , ni; n. =
∑
i ni)

Fixed Effects: α1, . . . αk fixed & unknown; 1, 2, . . . , k exhaustive;
∑
i αi = 0.

Random Effects: α1, . . . αk: sample from larger no. of α’s, with α ∼ N(0, σ2
B)

εij ∼ N(0, σ2
W ), i.i.d. B: Between; W: Within.

Source of Degrees of Sum of Squares Mean Test
Variation Freedom Square Statistic

Between k − 1 S1 =
∑
i

∑
j(ȳi − ȳ..)

2 s21 = S1

k−1 F =
s21
s20

groups

Within n. − k S0 =
∑
i

∑
j(yij − ȳi)

2 s20 = S0

n.−k
groups

Total n. − 1 S =
∑
i

∑
j(yij − ȳ..)

2

Source of Degrees of Mean Expected Mean Square (EMS) for model with...
Variation Freedom Square

Fixed Effects Random Effects

Between k − 1 s21 σ2
W +

∑
i niα

2
i

k−1 σ2
W + 1

k−1 (n. −
∑
n2
i

n.
)σ2
B *

groups

Within n. − k s20 σ2
W σ2

W

groups

Total n. − 1

* With equal n’s, EMS = σ2
W + nσ2

B ; with unequal n’s, EMS > σ2
W + n̄σ2

B .
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Introduction to Measurement Statistics 2 - 
First, a General Orientation to ANOVA and its primary use, namely DE-COMPOSITION OF OBSERVED (EMPIRICAL) VARIATIOPJ 
testing differences between p's of  k ( 22 ) different groups. 

DATA: 

Group 
1 2 1 k 

Subject 
1 Y11 
2 

j Yij 

n Y kn 

- - - - 
Mean Y1 Y2 Yi Yk 

Variance s2, s22 s2k 

MODEL 

o refers to the variation (SD) of all possible individuals in a group; 
It is an (unknowable) parameter; it can only be ESTIMATED. 

Or,  in symbols  ... 

TOTAL Sum - - BETWEEN Groups + W I T m  Group 
of Squares Sum of Squares Sum of Squares 

ANOVA TABLE 

Sum of Degrees Mean F P-Value 
Squares of Freedom Square Ratio 

SOURCE SS df MS MSerTwrrN prob(>~)  
MS WITHIN 

(= SS /df) 

BETWEEN xx.x k-1 xx.x x.xx 0.xx 
WITHIN xx.x k(n-1) xx.x 

LOGIC FOR F-TEST (Ratio of variances) as a test of  

UNDER HO 

Means, based on samples of n, 
(T 

2 
should vary around p with a variance of 

Thus, if Ho is true, and we calculate the empirical variance of the k different Ti's, it 
02 should give us an unbiased estimate of - n 

.
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Introduction to  Measurement Statistics 3 - 
02 Z['i - 'I2 is an unbiased estimate of - k- 1 n 

How ANOVA can be used to estimate Components of  Variance used 
in quantifying Reliability. 

The basic ANOVA calculations are the same, but the MODEL underlying them is 
i.e. Z[yi - 'I2 is an unbiased estimate of o2 different. First, in the more common use of ANOVA just described, the groups can 

k- 1 be though of as all the levels of the factor of interest. The number of levels is 
necessarily finite. The groups might be the two genders, all of the age groups, the 4 
blood groups, etc. Moreover, when you publish the results, you explicitly identify 

i.e. "[" - 'I2 = M S B E ~ ~  is an unbiased estimate of o2 k- 1 the groups. 

Whether or not Ho is true, the empirical variance of the n (within-group) values 
C[?.. - 7.12 

11 
Y i l  to Yin i.e. should give us an unbiased estimate of o2 n- 1 

C[Y.. - 7.12 S 2 . =  11 ' is an unbiased estimate of o2 
n- 1 

so the average of the k diferent estimates, 

is also an unbiased estimate of o2 

i.e. ZZ[Yii - yi12 = M S W ~  is an unbiased estimate of d k[n-1] 

When we come to study subjects, and ask "How big is the intra-subject variation 
compared with the inter-subject varaition, we will for budget reasons only study a 
sample of all the possible subjects of interest. We can still number them 1 to k, and 
we can make n measurements on each subject, so the basic layout of the data doesn'y 
change. All we do is replace the word 'Group' by 'Subject' and speak of BETWEEN- 
SUBJECT and WITHIN-SUBJECT variation. So the data layout is ... 
DATA: 

Subject 

Measurement 

j Yij 

n Y kn 

THUS, under Hg, both M S B E ~ ~  and M S W I T ~  are unbiased estimates of - - - - Mean 
estimates of o2 and so their ratio should, apart from sampling variability, be 1. Y1 Y2 Yi Y k 

IF however, Ho is not true, M S B E ~ ~  will tend to be larger than MSWITHIN, Variance s22 since it contains an extra contribution that is proportional to how far the p's are s2k 

from each other. 

In this "non-null" case, the M S B E ~ E N  is an unbiased estimate of MODEL 

and so we expect that, apart from sampling variability, the ratio MSBETWEEN 
MS WITHIN 

The model is different. There is no interest in the specific subjects. Unlike the critical 
labels "male" anf "female", or "smokers", "nonsmokers" and "exsmokers" to identify 
groups of interest, we certainly are not going to identify subiects as Yves, Clairi:, 
Jean, Anne, Tom, Jim, and Hany in the publication, and nobody would be fussed if 
in the dataset we used arbitrary subject identifiers to keep track of which 

should be greater than 1. The tabulated values of the F distribution (tabulated measurements were made on whom. we wouldn't even care if the research assistant 
under the assumption that the numerator and denominator of the ratio are both lost the identities of the subjects -- as long as we know that the correct measureiits 
estimaes of the same quantity) can thus be used to assess how extreme the observed go with the correct subject! 
F ratio is and to assess the evidence against the Ho that the p's are equal. 

.
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Introduction to Measurement Statistics 4 - 
The "Random Effects" Model uses 2 stages: DE-COMPOSITION OF OBSERVED (EMPIRICAL) VARIATION 

(1) random sample of subjects, each with hisher own p 
(2) For each subject, series of random variations around hisher p 

TOTAL Sum - - Notice the diagram has considerable 'segregation' of the measurements on different BETWEEN Subjects + WITHIN Subjects 
individuals. There is no point in TESTING for (inter-subject) differences in the p's. of Squares Sum of Squares Sum of Squares 
The task is rather to estimate the relative magnitudes of the two variance components 
2,and dw. ANOVA TABLE (Note absence of F and P-valzle Colz~mns) 

Sum of Degrees Mean What the Mean 
SquaresofFreedom Square S q u a r e i s a n  

p's for Universe 
of Subjects h 

estimate of* 
SOURCE SS df MS 

(= SS /do 

BETWEEN Subjects xx.x k-1 XX.X $ , + n $ B  

WITHIN Subjects xx.x k(n-1) xx.x 2W 

YVS = I \ ACTUAL ESTIMATION OF 2 Variance Components 

refers to the SD of the universe of p's ; If is an 
B unknowable parameter and can only be ESTIMATED 

MS BETWEEN is an unbiased estimate of $ + n $ 

MSWITHIN is an unbiased estimate of $ 

By subtraction ... 
MSBETWEEN - MS WITHIN is an unbiased estimate of n $ 

refers to the variation (SD) of all possible measurements on a sudject 
WIt is an (unknowable) parameter; it can only be ESTIMATED. 

MSBETwEeN - wlTHIN is an unbiased estimate of dB n 
Or,  in symbols ... 

Yij = p i +  e i j  = p f (pi--p) f Eij 
This is the definitional formula; the computational formula may be different. 

* Pardon my ending with a preposition, but I find it difficult to say otherwise. These 
parameter combinations are also called the "Expected Mean Squares". They are the 
long-run expectations of the MS statistics As Winston Churchill would say, "For 
the sake of clarity, this one time this wording is something up which you would 
put". 

.
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Introduction to Measurement Statistics 5 - 
Example .... Estimating Components of Variance using "Black Box" 

DATA: Subject 
Tom Anne Yves Jean Claire 

Measurement 
1 4.8 5.5 5.1 6.4 5.8 4.5 

Mean 

P R O C  VARCOMP; class subject ; model Value = Subject ; 
See worked example following ... - 
2 measurements (in mm) of earsize of 8 subjects by each of 4 
observers 
subject 1 2 3 4 
obsrl 2 3 4  1 2 3  4 1 2 3  4 1 2 3  4 

Variance 0.01 0.03 0.04 0.04 0.13 0.07 

ANOVA TABLE (Check ... I did it by hand!) 

subject 5 6 7 
o b s r 1 2 3 4  1 2 3 4  1 2 3 4  

8 
1 2 3  4 

lst165 62 62 61 59 56 55 53 60 62 60 59 66 65 65 63 

Sum of Degrees Mean What the Mean 2ndi61 62 60 61 57 57 57 53 60 65 60 58 66 65 65 65 

Squares of Freedom Square Square is an INTRA-OBSERVER VARIATION (e.g. observer # I )  
estimate of . . .  * 

SOURCE S S d f MS e.g. observer #1 
(= SS Idf) [ PROC GLM in SAS ==> estimating components 'by hand' I 

INPUT subject rater occasion earsize; if observer=l; 
BETWEEN Subjects 9.205 5 1.841 d w + n $ B  The data set has 16 obsns & 4 variables. 

WITHIN Subjects 0.640 12 0.053 d w  proc glm; class subject; model earsize=subject / ss3; 
random subject ; 

TOTAL 9.845 17 General Linear Models Procedure: Class Level Information 

ESTIMATES OF VARIANCE COMPONENTS Class Levels Values 
SUBJECT 8 1 2 3  4 5 6 7  8 ;  #ofobsns.indataset=16 

M ~ W I T H I N  = 0.053 is an unbiased estimate of $ Dependent Variable: EARSIZE 
Sum of Mean 

1.841 - 0 .053  Source DF Swares Suuare F Value Pr > F 

3 = 0.596 is an unbiased estimate of $& Model 7 341.00 48.71 35.43 0.0001 
Error 8 11.00 1.38 
Corrected Total 15 352.00 1-Way ANOVA Calculations performed by SAS; Components estimated manually 

IPROC GLM in SAS ==> estimating components 'by hand' 
DATA a; INPUT Subject Value; LINES; 

I 
1 4.8 
1 4.7 
. . . 
6 4.5 
proc glm; class subject; model value=subject / ss3; 
random subject ; 

See worked example using earsize data. 
If unequal numbers of measurements per subject, see formula in A&B or Fleiss 

R-Square C.V. Root MSE EARSIZE Mean 
0.968750 1.80 1.17260 65.0 

Source DF Type I11 SS Mean Square F Value Pr > F 
SUBJECT 7 341.00 48.71 35.43 0.0001 

Source m e  I11 Expected Mean Square 
SUBSECT Var (Error) + 2 Var (SUBSECT) 

Var(Error) + 2 Var(SUBJECT) = 48.71 
Var (Error) = 1.38 

2 Var(SUBSECT) = 47.33 
Var(SUBJECT) = 47.33 / 2 = 23.67 

.
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Introduction to Measurement Statistics 6 - 
1 Estimating Variance components using PROC VARCOMP in SAS 1 
Proc varcomp; class subject ; model earsize = subject ; 

Variance Components Estimation Procedure: Class Level Information 

Class Levels Values 

SUBSECT 8 1 2 3 4 5 6 7 8 ; # obsns in data set = 16 

MIVQUE(0) Variance Component Estimation Procedure 

Estimate 
Variance Component EARSIZE 

Var ( SUBSECT) 
Var(Error) 

ICC (Fleiss § 1.3) 

1 -sided 95% Confidence Interval (see Fleiss p 12) 

df for F in CI: (8-1)= 7 and 8 

so from Tables of F distribution with 7 & 8 df, F = 3.5 

So lower limit of CI for ICC is 

EXERCISE: Cany out the estimation procedure for one of the other 3 observers. 

.
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Applying this 1-way model to Bouchard’s ‘chubby genes’ data:

'4 

-! w. incr. twin 13.3 11.1 8.2 6.1 7.9 7.1 6.9 6.5 6.7 7.3 6.5 5.4 ybar: 8.08 , 
Jw.incr.twin4 1 1  12.9 9.6 11.4 7.7 6.9 8 8 8.8 4.3 5.3 7.1 I var: 5.54 
$ i,. s.d.: 2.35 

I.: 
ANOVA TABLE 

df Mean Sq F 
! B 1 w Poplru 
+ ,  . W.58 11 8.87 3.56 ' W / n Poplns 29.93 12 2.49 
~ L u  ii ins1 23 5.54 

weight increase 

twin palr 

.
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From this anova table and the concept of Expected Mean Squares3, we
can, by the method of moments, get estimates of the separate components of
that parameter combination.

Quantifyina Reliability 3 - 
ICC's (Portnoy and Wilkins) 
( I )  multiple (unlabeled) measurements of  each subject 

model: weight gain for person j in family i = p + p + ai + eij 

(2) same set of raters measure each subject; raters thought of as a random sample of 
all possible raters. 1-way Anova and Expected Mean Square (EMS) 

(3) as in (2), but these raters studied are the only raters of interest 
............................................................................ 

Source Sum d. f Mean Expected Mean Square 
of Sq Square 

( I )  multiple (unlabeled) measurements o f  each subject Between (families) 99 11 9.0 0 2 n n  + kg 0%-n 

Error(~ithin families) 30 12 2.5 0211emxn 

ICC = 

Model for obsemed data: 

 subject i, measurement j] = p + q + ~ i j  

EXAMPLE 1 

This example is in the spirit of the way the ICC was first used, as a measure of the 
greater similarity within families than between families: Study by B0uchm-l (NFJM) 
on weight gains of 2 members from each of 12 families: It is thought that there will 
be more variation between members of different families than between members of 
the same family: family (genes) is though to be a large source of variation; the two 
twins per family are thought of as 'replicates' from the family and closer to each other 
(than to others) in their responses. Here the "between" factor is familv i.e. families 
are the subjects and the two twins in the family are just replicates and they don't need 
to be labeled (if we did label them 1 and 2, the labels would be arbitrary, since the 
two twins are thought to be 'interchangeable'. (weight gain in Kg over a summer) 

---- 

Total 

In our example, we measm k=2 members from each family, so ko is simply 2 

[if the k's are unequal, ko is somewhat less than the average t.. ko = average k - 
(variance of kls) / (n times average k) ... see Fleiss page 101 

Estimation of parameters that go to make up ICC 

2.5 is an estimate of G2nermrw 

9.0 is an estimate of 02*mr* + 2 O h t w e a  
---------------------i----------------------------------- 

:. 6.5 is an estimate of 2 oh tween  

6.5 - is an estimate of 2 

is an estimate of ICC = 02between 
b%etween + 02error 

3Think of the EMS for the row in question as the combination of parameters which is
(mean-unbiasedly) estimated by the mean square in that row.

.
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You will often find in statistical ‘cookbooks’ that the ICC, and other concepts –
such as those behind the kappa statistic – are defined by the simplest and user-
friendliest computational formula its estimator. But biostatisticians should
always distinguish between the definition of a parameter and its estimator.
Typically the parameter involves Greek letters (some teachers used upper class
Roman ones) and the estimator uses data, and the estimate is often denoted
by a Greek letter with hat on it, or the lower-case Roman letter equivalent
of the upper-case one. In the ‘by hand’ days, there was the same issue with
respect to the definitional formula for a variance or standard deviation versus
the user-friendliest computational formula for an estimator of it.

COMPUTATIONAL Formula for " 1-way" ICC 

MSbetween - MSwithin 
ko 

MSbetween - MSwithin + MS within ko 

- MSbetween- MSwithin - MS between + &-1)MSwithin 

is an estimate of the ICC 

Quantifying Reliability 4 

Increasing Reliability by averaging several measurements 

In l-way model: Yij=P + Ui + eij 

where var[ai ] = o2ktween subjects ; vafleij ] = Cf21*-rl* 

Then if we average k measurements, i.e., 

ybSi = + ai + e b ~ i  

then 
, 62",,. VW 1 = a2between 

1 k 

Notes: s o  Icc[k] = 
Slreiner and Nonnan start on page 109 with the 2-way anova far inter-obsemer 62wenorw 

variation. There are mistakes in their depiction of the S S e m  on p 110 [it should be 02between + k 
(6-6)2+(4-4)2+(2-1)2 +...(8-)2 =lo. If one were to do the calculations by hand, one 
usually calculates the SStotal and then obtains the S S m r  by subtraction] 
They then mention the I-way case, which we have discussed above, as "the 

ob&er nested within subjeci" on page 112 
Fleiss gives methods for calculating CI's for ICC's. 

EXAMPLE 2: INTRA-OBSERVER VARIATION FOR 1 OBSERVER 

Computations performed on earlier handout... 

An estimated 94% of obseaved variation in earsize measurements by this observer is 
'real' .. i.e. reflects true between-subject variability. 

This is called "Stepped-Up" Reliability. 

Note that I say 'an estimated 94% ...". I do this because the 94% is a statistic that is 
subject to sampling variability (94% is just a point estimate or a 0% Confidence 
Interval). An interval estimate is given by say a 95% confidence interval for the true 
ICC (lower bound of a 1-sided CI is 82% ... see previous handout) 

.
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≥ 3 components of variance:
when human (or other fallible) raters are involved

The 64 ear-length measurements below were taken by 4 raters (a subset of the
students) who measured 8 subjects (6 other students, as well as the teachers
Sharon Wood-Dauphinée and James Hanley) in a (physical and occupational
therapy) class on measurement in rehabilitation. The choice of ’objects’ mea-
sured was prompted by the article Why do old men have big ears? [author
James A Heathcote, general practitioner] in the Christmas Edition of the
BJM in December 1985, and some follow-up letters the following March – see
Resources.

Quantifying Reliability 5 
ICC's (Portnog and Wilkins). 
(2) same set of raters measure each subject; raters thought of ar a random s a v l e  of 

allpossible raters. 
Model 

y for subject 2, latea I1 

qd 4- y for subject 2, rater I I 

"4 y for subject 3, rater I1 +-+ y for subject 3, rater I 
I 

etc ... 

ESTIMATING INTER-OBSERVER VARIATION from occas ion=l; 

PROC GLM in SAS ==> estimating components 'by hand' I 
INPUT subject rater occasion earsize; if occasion=l; (32 obsns) 

proc glm; class subject rater; model earsize=- rater / ss3; 
random subject rater; 

General Linear Models Procedure: Class Level Information 

Levels Val= 
SUBJECT 8 1 2 3 4 5 6 7 8  
RATER 4 1 2 3 4 Number of observations in data aet = 32 

Sum of Mean 
re F Value Pr > E 

Model 10 764.500 76.45 78.80 0.0001 
!ZJZor 21 20.375 0.91 
Corrected Total 31 784.875 

re F Value Pr z E 
SUBJECT 7 734.875000 104.98 108.20 0.0001 
RATER 3 29.625000 9.87 10.18 0.0002 

2 2 2 
o ~ ~ b j c c ~  dl;lters 

From 2- way data layout (subjects x Raters) 

estimate o ~ * * ~ ~ ~ ~ ~ ,  d2nramsn and (r2n-n by 2-way ANOVA 
Substitute variance estimates in appropriate ICC form 

e.g. 2 measurements (in mm) of earsize of 8 subjects by each of 4 
observers 

subject 1 2 3 4 
obsr 1 2 3 4 1 2 3  4 1 2 3  4 1 2 3  4 
1st 67 65 65 64 74 74 74 72 67 68 66 65 65 65 65. 65 
2nd I 67 66 66 66 74 73 71 73 68 67 68 67 64 65 65 64 

subject 5 6 7 6 

1st 65 62 62 61 59 56 55 53 60 62 60 59 66 65 65 63 
2nd 61 62 60 61 57 57 57 53 60 65 60 58 66 65 65 65 0bsi"34 1 2 "  

SUBJECT Var(Error) + 4 Var(SUBJECT) 
RATER Var(Error) + 8 Var(RATER) 
So ... solving 'by hand' for the 3 components ... 

==> Y a r . ( S ~ % ~ C T . l  .. F-.;IP.~.,P.I..~.-~~..:..~C...P.~ 
Var(Error) + 8 Var (RATER) = 9.87 

Estimating Variance components using PROC VARCOMP in SAS I 
proc varcomp; class subject rater; model earsize = subject rater; 

Estimate 

Var (SUBJECT) 26.00 
Var (RATER) 1.11 
Var (Error) 0.97 

Quantifying Reliability 6 

ICC: "Raters Random" (Fleiss 5 I .5.2) 

Var (SUBJECT) 26.00 
= ..................................... = -------------- = 0.93 
Var(SUBJECT) + Var(RATER) + Var(Error) 26.00+1.11+0.97 

df for F in CI: (8-1)= 7 and v' , where 

so from Tables of F distribution with 7 & 8 df, F = 3.5 

So lower limit of CI for ICC is 

ICC: If use one "flxed observer (see Fleiss p 23, strategy 3) 

lower limit of 95% 1-sided CI (eqn 1.49: F = 2.5 ; 7 & 7x3=21 df) 

USING ALL THE DATA SIMULTANEOUSLY 

(can now estimle subject x Rater interaction .. i.e extent to which raters 'reverse 
themselves' with different subjects) 

- - - - - - - - - - - - - - - - - - - 

@omponents of variance when use both measurements (all 64 obsns) 1 
proc varcomp; proc varcomp; 
class subject rater; class subject rater; 
model earsize = subject rater; model earsize = subject rater 

subject*rater; 

Estimate 
u a n c e  CO~DOD l2Aiwa 

Var (SUBJECT) 25.52 Var (SUBJECT) 25.47 
Var (RATER) 0.70 Var (RATER) 0.67 
Var (Error) 1.37 var(sUBJECT*RATER) 0.31 

Var (Error) 1.13 
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m-s exercise 1

i. From first principles, derive the expressions for EMSB and EMSW for
both the fixed and random effects models in the case of equal n’s.

ii. For EMSB under the random effects model, verify the footnote about
the multiplier of σ2

B with unequal n’s.

Worked examples and use of R/WinBUGS code: cf. Resources

i. Estimation of a log(RateRatio) via (frequentist) Inverse-variance weight-
ing, Likelihood, and Bayesian approaches. Data from article ‘Road
Trauma in Teenage Male Youth with Childhood Disruptive Behavior Dis-
orders: A Population Based Analysis’ by D.A. Redelmeier in PLoS Med
7(11): e1000369. doi:10.1371/journal.pmed.1000369

ii. Estimation of between- and within-family variances (and an icc) from
the ‘chubby genes’ (Bouchard) weight-gain data. See Resources for (a) R
code to produce the ANOVA table (for method of moments estimation,
based on expected mean squares shown in Table on first page of these
notes) ‘from scratch’ 4 i.e., directly from the ANOVA formulae, and to
call a ‘classical ANOVA’ function (b) WinBUGS code for a (Gaussian)
random-effects model. R code for other (distribution-based) approaches
is welcomed.

iii. Estimation of between-subject and between-observer variances (and an
icc) using the (64) ear-length measurements collected in the (physical
and occupational therapy) class on measurement in rehabilitation.. via
the method of moments and via a (Gaussian) random-effects model fitted
using WinBUGS. Other approaches are welcomed.

4GOOGLE origin expression “from scratch”

applied exercise 1, option a - otitis media data cf. Resources

i. Derive separate ANOVA tables for the monozygotic and dizygotic twins,
and use the method of moments to estimate the components of variance
(σ2
B and σ2

W ), and the ICC, for each type.

ii. The method of moments approach to variance components estimation
does not explicitly use models for the distribution of the random effects,
or the within-family variations; in addition, the calculation of a confi-
dence intervals for each ICC and the formal statistical comparison of the
two ICCs are problematic. Therefore, use an approach5 that explicitly
assumes a Gaussian model for each component of variance, and obtain a
point and an interval estimate of (a) each ICC and (b) the ratio of the
two ICCs.

5If using JAGS or WinBUGS with these slightly non-rectangular data, with most families
having 2, but some 3, children, you might be able to use an array where one of the dimensions
is the maximum of 3, and the 3rd response is set to NA if there are just 2 children. Or
you could use the “tall” format, where the data are all in one very long vector, and there
is an accompanying vector to say which family it is... the code used in the ear-length data
uses this latter (simpler) approach, even though the data in that example has a perfectly
‘rectangular’ 8 x 4 x 2 array structure.. see the code under Resources.
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applied exercise 1, option b - Galton’s family data6 cf. Resources

i. Fit the following mixed7 model for the height of the jth offspring in
family i and obtain point and interval estimates for the Between-family
variance σ2

B and the Within-family variance σ2
W , as well as for ICC =

σ2
B/(σ

2
B + σ2

W )

heightij = µfemale + ∆Male × I.maleij + bi + εij ,

bi ∼ N(0, σB); εij ∼ N(0, σW ).

You will probably do the fitting via an ML or a Bayesian8 approach.

Comment on how far you would have been able to get with the method
of moments (differences in means squares) approach.

ii. Add what Galton called the ‘mid-parent’ height (an average of the heights
of the 2 parents) as a fixed effect in the above model (technically, σ2

B and
σ2
W will now have a somewhat different meaning). Interpret the value

of the regression9 coefficient associated with the mid-parent height, and
comment on how much (and why) the estimates of σ2

B and σ2
W (and the

ICC) are affected.

6These are taken from the listing found under the Galton tab in JH’s website, and thus
deliberately omit one family per notebook page. They also include the mis-classification
error in his 2004 paper – documented in the notes that accompany that listing. For this
exercise, ignore these omissions and the error.

7A word about notation: the (2) levels of gender are ‘fixed’ i.e. they are the only 2 levels
possible; their associated regression coefficients (µfemale and ∆Male) have meaning and
relevance to others and would be identified in any report. The (198) levels of ‘family’ are
‘random’ i.e. they are a sample of the effectively infinite number of possible families. Note
also the more modern terminology of using the Roman letter b for the random effect and
Greek letters αs or βs or ∆s for the fixed effects. In the older notation used in ANOVA
(cf material at the beginning of this note, and further examples under Resources) it was
customary to use Greek letters for both.

8If using JAGS or WinBUGS with these non-rectangular data, with different families
having different numbers of children, you might be able to use an array where one of the
dimensions is the maximum number in any one family, and the height is set to NA if there
are fewer than the maximum number of children. Or you could use the “tall” format, where
the data are all in one very long vector, and there is an accompanying vector to say which
family it is... the code used in the ear-length data uses this latter (simpler) approach, even
though the data in that example has a perfectly ‘rectangular’ 8 x 4 x 2 array structure..
see the code under Resources.

9You are being part of statistical history here: When Galton fitted the simple linear
regression of offspring height on parental height, he did have a computer (a human one),
but he made life easy on himself by using grouped (binned) data and by further reducing
the data so he was left with just 9 (x, y) datapoints. He could have applied the Method
of Least Squares, developed almost 200 years before, to these 9. But we know that in fact
he merely used an “eye” fit, using a “straight edge” to fit his “regression” coefficient of

iii. Galton did not use an additive model for the male-female height differ-
ences; instead he ‘transmuted’ the female heights by multiplying them by
a factor, namely the ratio of the mean height of males to that of females:

“The factor I used was 1.08, which is equivalent to adding a
little less than one-twelfth to each female height. It differs
slightly from the factors employed by other anthropologists,
who, moreover, differ a trifle between themselves; anyhow, it
suits my data better than 1.07 or 1.09. I can say confidently
that the final result is not of a kind to be sensibly affected
by these minute details, because it happened that owing to a
mistaken direction, the computer to whom I first entrusted the
figures used a somewhat different factor, yet the results came
out closely the same.”10

In a sense, he used a 2-stage estimation process.11 Suggest how today
we might estimate the multiplicative factor from a single-stage regression
(Hint: think of 1.08 as exp[0.077]).

iv. What model would you suggest to deal with the fact that the SD of height
is smaller (by about 8%) for females?

2/3. This 2/3 became the basis for his description of the phenomenon of “regression to the
mean”, and the centrepiece of his famous 1886 article “Regression towards mediocrity in
hereditary stature”. See http://galton.org/bib/JournalItem.aspx action=view id=157

The word “regression” stuck, but our use of it to today has very little to do with its original
meaning. In his 3-volume biography of Galton, Karl Pearson tells us that that 1886
“regression line” was the second such line ever fitted: the first was the one Galton
fitted to the diameters of seeds (sweet peas) in relation to the sizes of their parents, 10 years
earlier. Those data, and their analyses, are described in Appendix 1 of his 1886 paper.

10See Hanley JA. “Transmuting” Women into Men: Galtons Family Data on Human
Stature. The American Statistician, August 2004, Vol. 58, No. 3, page 237. It is available
under the r e p r i n t s on JH’s website.

11He first scaled the heights and then used a simple linear regression on the ‘unisex’ data.
He did not use our type of random effects model. Moreover, when he reduced the unisex
data to the 2 way frequency table (1 inch bins for mid-parent height [rows], 1 inch bins for
offspring height [columns], with all the offspring in the same mid-parent bin [row] treated
as a ‘filial array’), he effectively unlinked the offspring from their parents.
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