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Preface

Statistics is an important component of scientific reasoning, as well as an integral
part of academics, business, and technology. As viewed by the late Sir Ronald Fisher,
statistics is the key technology of the present day. Practicing statisticians and scientists
working in diverse fields need an authoritative reference handbook of statistical tables
developed to “aid” in the investigation and solution of many of today’s challenging
problems. This book has been compiled and arranged to meet the needs of these users of
statistics.

This Second Edition of the Handbook of tables for Probability and Statistics brings
together in a logically arranged, documented, and readily usable form an extensive col-
lection of relatively standard statistical tables. The general arrangement of the First
Edition has been retained. Many of the tables have been expanded and incrensed in
effectiveness. All tables have been corrected of all errors detected. Examples of expanded
tables are:

Individual Terms of the Binomial Distribution
Cumulative Terms of the Binomial Distribution
Confidence Limits for Proportions

Tests of Significance in 2 X 2 Contingency Tables
Critieal Values for Testing Outliers

Critical Values of U in the Mann-Whitney Test
Distribution of the Total Number-of-Runs Test
Number of Combinations

Ineluded in the expository section of the Handbook (Part I) is a completely rewritten
section on deseriptive statistics.

Additional tables and graphs which enhance the importance of this Second Edition
are:

Summary of Significance Tests

Summary of Confidence Intervals

Table of Signs for Calculating Effects in Factorial Designs up to Six Factors

Operating Characteristic (OC) Curves for Tests on the Mean and Standard
Deviation(s) of Normal Distributions

Cochran’s Test for the Homogeneity of Variances

Percentage Points of the Maximum F-Ratio

Confidence Limits for ¢ Based on Mean Range

Critical Values for Duncan’s New Multiple Range Test

Critical Values for Rank-Sum Tests for Dispersion

Cumulative Sum Control Charts (CSCC)

Loga.rithms‘ of the Binomial Coeflicients

Preparation of this enlarged Second Edition has been possible only through the par-

. ticipation of recognized authorities who have taken time from their busy schedules to

'i#tel'pret their thoughts into writing. The Editor has been fortunate indeed to secure the
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aid of a well coordinated and specially selected advisory board. The names of members
of the advisory board are presented in the forefront of this handbook. The Editor is most
grateful to them for their continued cooperation and for their invaluable contributions.

The Editor gratefully acknowledges the authors, editors, and publishers who gave
permission to reproduce these tables. Reference to the sources of material used in this
handbook is indicated in the acknowledgment section. It is quite possible that proper
credit has not always been given. Regrets and apologies are offered to the authors of
such material.

To the many users of the current edition who sent in suggestions for alterations and
additions, the Editorial Staff extends a special thanks. It is hoped that those interested
will continue to send in suggestions and comments to assist in the continuous improve-
ment of the contents.

William H. Beyer
April, 1968

Adyisory Board

Editor and Chairman
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Professor, Department of Mathemalics
Universily of Akron (Ohio)

Rolf E. Bargmann, Ph.D.
Department of Statistics
University of Georgia
Athens, Georgia 30601

Ralph A. Bradley, Ph.D.
Professor and Head,
Department of Statistics

The Florida State University
Tallahassee, Florida 32306

Dr. Herbert A. David, Ph.D.
Department of Biostatistics
University of North Carolina
Chapel Hill, North Carolina 27514

Spencer M. Free, Jr.,, Ph.D.

Section Head, Statistics Section

Smith, Kline and French Laboratories
Research and Development Division
1500 Spring Garden St.

Philadelphia, Pa. 19101

Franklin A. Graybill, Ph.D.
Director, Statistical Laboratory
Colorado State University
Fort Collins, Colorado 80521

Boyd Harshbarger, Ph.D.
Head, Department of Statistics
Director, Statistical Laboratory
Virginia Polytechnic Institute
Blacksburg, Virginia 24061

Samuel M. Selby, Ph.D.

Head, Department of Mathematics ]
University of Akron :

302 E. Buchtel Ave. /
Akron, Ohio 44304



Contents

Greek Alphabet....... .. .. . . Sean B
Part [-PROBABILITY AND STATISTICS

Descriptive Statisties........................... .

Mean (Arithmetic Mean)........ ...

Weighted Mean (Weighted Arithmetic Mean)............... .. . .

Geometric Mean............... . T

Harmonie Mean............. ...

Empirical Relation Between Mean, Median, and Mode....... ... ...
Quartiles.............. e

Variance...............

Root Mean Square................ .. .. 0 EYCTLETTT I T
Interquartile Range..... ... ... .. 10T
Quartile Deviatinn {Semi-Interquartile Range)....... .. .. "
Coeficient of Yariation................_ [
Coeflicient of Quartile Variation............ . ../ o
Standardised Variable (Standard Scores)...................... .
Moments. ...
Coefficient of Skewness. ... .
Coefficient of Momental Skewness.............. .. ...~~~
Pearson’s First Coefficient of Skewness.......... ... ...~~~
Pearson’s Second Coefficient of Skewness........ ... ... [~
Quartile Coefficient of Skewness..................._ ..~~~
Coefficient of Kurtosis. ... ...
Coefficient of Excess (Kurtosis).......... ... ..... 504580800008 5a00 5
Sheppard’s Corrections for Growping................. ... ..
Curve Fitting, Regreasion, and Correlation........ .. .. . """
Curve Fitting. .. ............ ... e
Regression and Correlation..................._.. ./

Probability Theorems...... .. . . . A
Random Variable ... ... ... .
Probability Function {Discrete Case)............................."
Cumulative Distribution Function (Discrete Case)...... ...... ..~
Probability Density (Continuous Case)......................... ..
Cumulstive Distribution Function {Continuous Case).............. . ...
Mathematical Expectation....... ... .0/

A. Expected Value....................... ..

B. Moments............................ .l

|
1
{
i

Analysis of Variance (ANOVA) Tables

Graeco-Latin Square

General Linear Model

3. Summary of Rules for Matrix Operations

»

Contents

B. Continuous Case
Moments...... ... T
Marginal and Conditional Distributions
Probability Distributions. ... /[ /1111

A. Discrete Cage..... ... .

L. Discrete Uniform Distribution
2. Binomial Distribution . .
« Geometric Distribution

3

4. Multinomisl Distribution

5. Poisson Distribution....,. . . T
8

7

. Hypergeometric Distribution
. Negative Binomial Distribution
B. Continuous....... . .. .
1. Uniform Distribution
2. Normal Distribution

Reproductive Property of Chi-8quare Distribution

2. Snedecor’s F-Distribution

3. Student’s t-Distribution
Summary of Significance Tests. ... . . .
Testing for the Value of a Specified Parameter
Comparison of Two Populations
Summary of Confidence Intervals

ne-Way Classification........ /[
Two-Way Classification With One Observation Per Cell
Nested Classifications With Unequal Samples. ... ... . e
Nested Classifications With Equal Samples g

Fixed Model Two-Factor Factorial Experiment in g One-Way Classification Design. ...

Fixed Model Three-Factor Fsctorial Experiment in a Completely Randomized Design. .
txt Latin 8quare... ... .

Youden Square...... . .. . .U
Balanced Incomplete Bloek (BIB)

) Notsﬁgnh_”.._':: ..........................................................

2.1 The Simple Regression Model......... ... .0 00 [T
2.2 Multiple Regression Model ... ... .. . "
2.3 One-Way Classification Analysis of Variance........ . ... . . "
24 Two-Way Classification {Two Factors Factorial)
2.5 Analysis of Covariance

3.1 Expectation......... .. . "
Partitioning of Determinants. ...\ [ 1111111
Inverse of a Partitioned Matrix
Characteristic Roots
Differentiation. ... ... . o[
3.6 Some Additional Definitions end Rules............ . T
Principle of Minimising Quadratic Forms and Gauss-Markov Theorem. ... ..

4.1 Some Remarks on Multivariate Distributions
4.2 The Principle of Least Squares...... .. . .
4.3 Minimum Varianee Unbiased Estimates

o 0w s
Ll L)



ALl CO'I tents

5. General Linear Hypothesis of Full Rank
51 Notation... .~~~ "
5.2 Simple Linear Regression. ... /777
5.3  Analysis of Variance, One-Way Classification, .. .. =~~~
5.4 Multiple Linear Regression
5.5 Randomized Blocks..... ... o
5.6 Quadratic Form Dye to Hypothesis
5.7 Sum of Squares Due to Error
59 CummBy........ ...
5.9  Computational Procedure for Testing a Hypothesis
5.10 Regression Significance Test .. T
5.11 Alternate Form of the Distribution. . .~~~

6. General Linear Mode] of Less Than Full Rank
6.1 Estimable Function ang Estimability.,.__ 7
82 General Linear Hypothesis Model of Locs Than Full Rank.. ..~~~
6.3 Constraints and Conditions. ... "7 T ARG

Simplified Computations for Multiple Regression

Algebraic Procedure

Algebraic Procedure for the Forward Solutio iated Dooli ittle Methog

Teats o Signifcanes. . T tion of the Abbreviated Doolittle Method

Backward Solution of the Abbreviated Doolittle Method

Plans for Design of Experiments
Selected Latin Squares.. T
Graeco-Latin Squares. |||

Index to Plans of Factorial Experiments Confounded in i
Confounded Designs for Other Factorial Experiments. R&ndom.lsed neomplete Blocks.
Index to Plans for 2= Factorials in Fractiona] Replieation. ... = 177
Index to Plans, Incomplete Block Designs. . T
Index to Plans, Incomplete Latin Squares.... . T
Main Effect and Interactions in 2%, 23, 24 26 and 9¢ Factorial Designs. .
Finite Differonces ... 1 """ "< Hactorial Designa.. ...
Function Build-up from Differences. .. ..
Interpolation... .~~~ "7
Newton’s Forward Formula.. . .
Newton’a Backward Formula. |
Gauss’ Forward Formula.... .
Gauss’ Backward Formula, . . .
Stirling’s Formula. ...~~~
Bteflenson’s Formula. .../ |1
Bessels Formula. ...
Everett’s Formula.... . /[
Bessel’s Formula (unmodiﬁed) ..........
Everett’s Formula (unmodified). , .
Generalized Throwback
Symmetri? Formulae for Interpolation to Halves... ..~ """
Interpolation Techniques Which Do Not Require the Function o be
Tabulated for Equal Interval of the Argument
8) Lagrangian Polynomials... . .~
b) Divided Differences. ...
¢) Adjusted Divided Differences
d) Iterative Linear Interpolation, . [ "
¢) Gauss’ Trigonometric Interpolation Formula
) Reciprocal Differences
Inverse Interpolation

Part II-NORMAL Di STRIBUTION

IL.1  The Normal Probability Function gnd Related Funetions
IL2 Tolerance Factors for Norma] Distributions
113  Factors for Computing Probable Errorg
114 Probability of Oceurrence of Deviations

IL5 Opefating Characteristic (OC) Curves for a Test on the Mean of a Normal
Distribution With Known Standard Deviation............. 0 T

11.6
1.7
118
11.9

1110

Contents xiti

Civariate Normal Probabilities... ... . 147

Circular Normal Probabilities........... 151

Sireular Brror Probabilities ... . [ 154
Charts of Upper 19, 2.5%, and 5% Points of the Distribution of the

Largest Characteristic Root....... ... o0 157

Probit Analysis, ... L 170

Part HHI—BINOMIAL, POISSON, HYPERGEOMETRIC, AND NEGATIVE

1111
111.2
111.3
111.4
1I1.5
111.6
1117
111.8
1119
1110
IIL11

Iv.1
1v.2
1v.3
1v.4
V.5

V.1
V.2
V.3

V4

V1.2
VI.2
V13

Vi4

VL5
V1.6

VIIL1
Vil.2
VIL3
Vil4
VIL5
VIIL.6

VIIIL1

.VIIL2

VIIL3
VIIL4
VIIL5

BINOMIAL DISTRIBUTIONS

Individual Terms, Binomia) Distribution........ ... . 182
Cumulative Terms, Binomial Distribution. ... T 184
Individual Terms, Poisson Distribution. ... .. 206
Cumulative Terms, Poisson Distribution ... . . [/ 212
Confidence Limits for Proportions... ... 219
Confidence Limits for the Expected Value of a Poisson Distribution.... ... . 238 &2
Various Functions of psndq=1-—p ... e 240
WY pergeometric Distribution. .. . ||| 245
Degative Binomial Distribution .. ||| || 1T 250
Percentage Points of the Beta Distribution................ 251
Tests of Significance in 2 x 2 Contingency Tables....... .. . .. .~~~ 2866
Part IV—-STUDENT’S t-DI STRIBUTION
Percentage Points, Student’s tDistribution ... . ... . B R 282
rower Function of the t-Test. .., ... ||| 284
Number of Observations for “Test of Mean.............. . .. 286

Number of Observations for t-Test of Difference Between Two Means. e 288
Operating Characteristic (OC) Curves for a Test on the Mean of & Normal

Distribution With Unknown Standard Deviation. .. .. ... .. 290
Part Y—CHI-SQUARE DISTRIBUTION

Percentage Points, Chi-Square Distribution. ... .. 203
Percentage Points, Chi-Square Over Degrees of Freedom Distribution..... .. . 205
Number of Observations for the Comparison of a Population Variance With a

Standard Value Using the ChiSquare Test......... . ... = 299
Operating Characteristic (OC) Curves for a Test on the Standard Deviation of a

Normal Distribution ... "7 " 7 TencArd Deviation of a - 300

Part VI—-F-DISTRIBUTION

poreentage Points, F-Distribution. . ... 304
Power Functions of the Analysis-of-Variance Tests...... . .. .. 311
Number of Observations Required for the Comparison of Two Population

Variances Using the F-Test.. ... ... . = o ccenoto 320
Operating Characteristic (OC) Curves for & Test on the Standard Deviations of

Two Normal Distributions......._. ... oo cvstiensol 322
Cochran’s Test for the Homogeneity of Variances....... ... T 325
Percentage Points of the Maximum F-Ratio.......... . . .0 328

Part VII-ORDER STATISTICS
Expected Values of Order Statistics From a Standard Normal Population. .. ... ... 330
Variances and Covariances of Order Statisties............. . . " 332
Confidence Intervals for Medians............ 338
Critical Values for Testing Outliers............ .0 339
Percentile Es;timat,es in Large Samples............... [ [ 346
Simple Estimates in Small Samples. ...l 348
Part VIII-RANGE AND STUDENTIZED RANGE

Probability Integral of the Renge..... ... 351
Percentage Points, Distribution of the Range............. ... . v 360
Percentage Points, Studentized Range...... ... T 361
Critical Values for Duncan’s New Multiple Range Test. ......... . ... ... 368
Substitute t-Ratios................. LT L 379



X1v Contents

VIIL6 Substitute Voo Bascd o e e 382
VIIL7  Analysis of Variance Based on BAge. oo 385
VIIL.8 Confidence Intervals for » Based on Mean Range. ... ([T 387
Part IX—CORRELATION COEFFICIENT
IX.y Percentage Points, Distribution of the Correlation Coeflicient when p=0..... 389
1X.2  Confidence Limits for the Population Correlation Coefficient. ...~ 391
IX.3 The Transformation g = tanh~1 r for the Correlation Coefficient. ... . =~ 394
Part X~NON-PARAMETRIC STATISTICS

X.1 Critical Values for e e P 397
X.2 Critical Values of T in the Wilcoxon Matched-Pairg Signed-Ranks Test.... ... . 399
X.3 Probabilities for the Wilcoxon (Mann-ijtney) Two-Sample Statistic. . ... 401
X.4 Critical Values of U in the Wilcoxon (Mann~Whitney) Two-Sample Statistic. . . 405
X.5 Critical Values for the Wilcoxon Rank Sum Tesy, . 7777 T0E TS 409
X.6 Distribution of the Total Number-of-Runs Test. ... 414
X7 Critical Values for the Kolmogorov-Smirnoy One-Sample Statistic .~~~ L 425
X.8 Critical Values for the Kolmogorov-Smirnoy Two-Sample Statistic..... . 427
X.9 Kruskal-Wallis One-Way 3 nalysis of Variance by Ranks. .. 430

Xt Critical Vidues for g Sue ¢ Ranks Procedurs for Bolatrve Spread in Unpaired
Pt it . s o g | 2 Uapained 433
X1 Domteenye Yarme ' s Rankasg.s L et Unepersion. 442
X212 Critieal Values of Spedrman’s Rani vrrelation Coefficient. ... 445
X.13 Critieal Values of Kendall’s Rank Correlation Coefficient. ...~~~ 449

Part XI—QUALITY CONTROL
XI1.1 Factors for Computing Control T 451
XI.2 Percentage Points of the Distribution of the Mean Deviation... . | =~ T 455
XL3 Cumulative Sum Control Charts (CBCCE R s 456
B CS00 oy e Mean ... T 456
B. CSCC for Sorble Raages. ... LI 458
C. C8CC for N imoen. e R 459
D. C8CC for Number of Defectives, p, or Fraction Defective P 461
E. CS8CC for Ni umber of D eo0tA, SR 463
F. Summary of CSCC e Lo e e e 464
Part XII-MISCELLANEOUS STATISTICAL TABLES
XII.1  Number of b R I S 466
XI1.2 Number of e pe A SR 467
XIL3 Logarithms of the Binomial Goefficionta............ LIl 472
XII4 Random Nowmal Famhars g = ot em oo LI 479
XI5 Random Normal Numbers, ;4 = st LT L O 484
XI1.6 Random Normal Numbers, 4 = Bem Lo 494
XI1.7 Random Normal Numbers, 4 = L LTI S S 499
XI.8 Orthogonal o A e 504
X119 Percentage Points of Peanan Curves. ... D 518
Part XIII—»MISCELLANEOUS MATHEMATICAL TABLES

XIIL1  Miscellaneous R 527
XII1.2  Numerics! i T ) PO S S 528
XIIL.3 Radians to Degrees, o inotes, and Seconds. |11 529
XIII.4  Natura) Functions for soogles in Radiaus,..., (1111 530
XIIL5  Squares, e U TS 532
XII1.8  Exponential A e g o e 549
XIIL7  Six-Place Rt LTI T 557
XII1.8 Natural or Naperian T s 579
XIIL9  Factorials and P e L S 587
XII1.10 Reciprocals of Factorials and Their Logarithma. ... 00111 589
XII1.11 Powers of S O 590
XIII.12 Sums of Powers of B N IR0 et 592
XULLR Go B+ LI I 594
XII1.14 Gamma PSR R 835
Index 637

GREEK ALPHABET

Greek Greek English Greek Greek Eflglish
Ietter name equivalent letter name equivalent
Aa Alpha 'y N» Nu n
Bs Bets b Et Xi x
Ty Gamma g Oo Omicron 3
Al Delta d Ox Pi p
E« Epsilon ¥ Py R:ho r
Z¢ Zeta s Zos Bigma 8
Hy Eta 8 Tr Tau t
08¢ Theta th Ty Upsilon u
Iota i [ X Phi ph
K« Kappa k Xx Cl%i ch
A Lambda 1 \ &4 Pai ps
My Mu m Qw Omega [




L Probability and Statistics

DESCRIPTIVE STATISTICS
a) Ungrouped Data

The formulas of this section designated as q) apply to a random sample of size n,
denoted by z;, 7 = L2 ..., 5

b) Grouped Data
The formulas of this section designated as b) apply to dats, grouped into a frequency

distribution having class marks Tht=1,2 ..., k, and corresponding class frequencies
wi=1,2, ...,k The total number of observations given by
%
n= fi

In the formulas that follow, ¢ denotes the width of the class interval, z, denotes one of the

elass marks taken to be the computing origin, and v, = % o, Then coded class marks

¢
are obtained by replacing the original class marks with the integers . . ., | -3, =2, ~1,
0,1,23 ... where 0 corresponds to class mark z, in the original seale.

Mean (Arithmetic M, ean)

n

1
a) Fo= = L=abag - 4og,

de]

*
bl) :Ez___l_ ﬂ'.’t,’zflxl + foxs + - - - + fite
n n
fan]

If data is coded

Jou;

. g ]
b2) E= g, 4+ ¢ —
Weighted Mean (W, eighled Arithmetic M. ean)

n
If with each value z, is associated 4 weighting factor w; 2 0, then E w; is the total

dm]

weight, and
"
2 Wi
a}i*i'l _w1$1+w2282+ T +wnx,,
= = BT LT Waly
& Wyt wy + - g,
w;

=
Geometric Mean

a) GM. = Vi Zn

Probability and Statistics 3
In logarithmic form
C s log x,
log (G.M.) = 1 log 2 = log 2, + log 2, + + log 2.
n n
gy
b) GM. = /o gl T
In logarithmic form
b
. e log 2
log (GM) = ) filog 2, = Ll0B s F falog 2ot - + fulog
i=1
Harmonic Mean
o HM. = " - e .
2 Lontat oo tg
z:
i=1
n n
b) HM. = o =
Ll h
£ 17_1 * 2y + + Y

i=1
Relation Between Arithmetic, Geometrie, and Harmonge Mean
HM. < GM. <z (Equality sign holds only if all sample values are identieal )

Mode

@) A mode M, of a sample of size # i a value which occurs with greatest frequency,
i.e., it is the most common value. A mode may not exist, and even if it does exist it may
not be unique.

4y
Ay + Ay
where L is the lower class boundary of the modal class (elass containing the mode),

Ay is the excess of modal frequency over frequency of next lower class,
4, is the excess of modal frequency over frequency of next higher clasg,

Median
a) If the sample is arranged in ascending order of magnitude, then the median M,

z —2*— 1 nd value. When # is odd, the median is the middle value of the
set of ordered data; when n is even, the median is usually taken as the mean of the two

middle values of the set of ordered data.

b M,=L+¢

is given by the

. p

B) Mo=1L+¢2

H
m

where L is lower class boundary of median class {class containing the median),
F, is the sum of the frequencies of all classes lower than the median class,
Jfm is the frequency of the median class.
Empirical Relation Between M. ean, Median, and Mode
Mean-Mode = § {Mean-Median)
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Probability and Statistics ” Ce .
: ANALYSIS OF :AmiNCE ANOVA) TABLES 196% on Probability and Statistics 29
( ' ANALYSIS OF VARIANCE AND EXPECTED MEAN SQUARES FOR THE
The analysis of variance (ANOVA) table containing the sum of squares, degrees of TWO-WAY CLASSIFICATION WITH ONE OBSERVATION PER CELL
freedom, mean square, expectations, etc., present the initial analysis in a compact form. Model: yi; = 4 + S Bte (=13, e i=12.. .,
This kind of tabular representation is customarily used to set out the results of analysis Source of -
of variance calculations. Appropriate ANOVA tables for various experimental design Variath ?:gre,“"f Sum of Squares Mean Square Tewt
models are presented here. In the tables, the use of “dot notstion” indicates a summing : Btatistic
over all observations in the population, i.e., when summing over a suffix, that suffix is —
replaced by a dot. Small letters refer to observations, whereas capital letters refer to ¥ ,
obeervation totals. Column effects | ¢ ~ § 880 w S P o = S8C s
i or €~1 &
ANALYSIS OF VARIANCE AND EXPECTED MEAN SQUARES ij
FOR THE ONE-WAY CLASSIFICATION Row effects r-1 SSE = «i«:.w - «-:r-i o - ﬂ’fl. §
. L r - 3
Modeliyyy mptaite (=L2... . kji=12...,n Error (e=1)r—1)| SSE = 88T - 38C — 38R | o w ___SSE
Bource of | Degrees of Mean Test (e = I}r ~ 1)
Variation | Freedom Bum of Squares Square Btatistic Total er -1 SST E 2 - r
¥
&r
f ” : i g
Between . g o ¥ s 8, o
k-1 &-EM%»«M»Z(W)»W da-St ol
X k-1 .
froups B i " ) Expected Mean Squars §
or
Wishia . _ Yy, & Source of Degrees of Mean
fom k| B, o (Bes ~ e )* = ¥ o 1 Variation Freedom Square ‘
T3 TG 7 ‘ Fixed Model | Mixed Model («) R;I“Qg‘:;n
y? .
Total n ~1 8-22(%:~ﬁ.)"’227§;"“
A v 7 " Z‘: 2 af
Column effects c~1 o PR ;..1 oty ,‘,3“:“1‘ P
Expected Mean Square for 8
o | | o / et E U I OV ) F D
Fixed Model Random Model ) Error (e = 1)r — 1) P - o . ]
Total er ~ 1 d
2t | a2,
Between groups k—1 o ot 4 ‘—kTr Rl L )
Within groups n -k o ot ot .
Total n ~1 : o
Notation:

.‘,
i
oA
N
s
®
i
I
N
g
¥
21
=

Y - Z P T

H LI




30 Probability and Statistics

ANALYSIS OF YARIANCE AND E
NESTED CLASSIFICATIONS

XPECTED MEAN SQUARES FOR
WITH UNEQUAL SAMPLES

Model: yije = 4 + @i + 3 + w0 (i-l,2.-...b;j-l,z,...,q‘,;u-l,z,...,m,)
Expected Mean
Source of Degrees of "
Varistion Freodom Sum of Squares Mean Bquare Sqmo(ral,"l‘x)ed
niaj
» ¥ 8. 3
Between main [k — 1 S;-Z—"i——r t?-k—__—li T
groups i —
Z LI
Y i A 8, 3
Bubgroups ni—k| 8= ’;‘L— . L o+
within main |4 T 4 Z““ z”“
groups [ <
(experimental
error) - p
Within sub- u.‘—ZM 8.-222 m—zz:‘:‘ Q- < ot
groups (sam- i i T T "‘—z”‘
pling error) i
v
Total n. — 1 8-222’5-““
L] ¥
ExpectodMsannmfor
Bource of Variation | Jogroes “’SQM“"M .
Mixed Model (a) Mixed Model (3) Random Modal
e
Between main groups | & ~ 1 ] ¢'+b¢3+-ik—_—l'¢'+cl: o+ be} + oot
Z Ml‘:/
Experimental error Zm—k 8 et tan -'+‘—L‘ o +ae}
[] zac—k
]
Sampling error u..—ziu 3 ! o .
e ™
Total n, -1
where

Probability and Statistics
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ANALYSIS OF VARIANCE AND EXPECTED MEAN SQUARES FOR
NESTED CLASSIF!CATIONS WITH EQUAL SAMPLES

Model: y;;y = u + o+ & + sy

=12 .. kji=L,2 ... ,sy=

L2,...,n

Bource of
Variation

groups

Experimental Kn -~ 1)
error

Bampling error kn(r — 1)/ 8, = 2 Z 2 Vi
=
¢ 5 “

Sum of 8quares Mean Bquare

8y =
S nr

22 v,

Expected Mean
Square for Fixed

¥
ET STy O
[ 4 i [}

Souree of Degrees of | Mean : Meen 8q for

Varistio Froed Bquare

Aristion e Mixed Modsl (a) | Mixed Model (#)| Random Modal

2

Between main | £ — ) o o+ ro} + nr s e+ nred '+ re} + wre?
groups h

Experimental k(n — 1)
error
Bampling error kn(r - 1)

TR ot

o+ e}

85‘_:’4 o ot

Total ,bnr—l

||

where

Gwh ey
C = nr



FACTORIAL EXPERIMENT IN A ONE-WAY CLASSIFICATION DESIGN
Mﬁd:vtiu-u+a¢+ﬂi+(aﬂ)u+ e =12, ... ,8)
Expected Mean
Bum of Bquares Square for Fixed
Model [q, 8, (ap)]
—

88Ty

i P}
2;(&«1—‘)’
ok T S
er—1
4

X

Lol . T -
c-~1
L4
ki
Factor B r—1 88B d-: "+m,._1
[ r
8848 ZZ(aa):,
884B - 8877 ~ 884 | , _ 7
Interaction (e~ 1xr - 1 -8B " T T e eSS
Total om — 1 S8T
where Lyl S
Z v, n
88Tr = - L 884 =L Y.
’ » om ™ o
r
Y.‘l- e r
r r.
888 = 1 N 881'-222'31-‘;
F) -
- r ke v »
wv i v“ ¥ 'vv;\.
— (- — by
- $ - * »
ExpectedMunﬂqumfor
Md Mean 8 L
o
Factor 4 -ﬁ‘; ¢'+"’.‘+r-': "+n(’d~+rn——‘
[ -
Factor § ..!.8.% o+ nely + one} o' + cnej
y -
Interaction d-(‘;if)%l—) o+ nely 4 nel
) S8W
Within (error) T P pe P
—
Total o - 88T
ern ~ 1
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ANALYSIS OF VARIANCE AND EXPECTED MEAN SQUARES FOR A
THREE-FACTOR FACTORIAL EXPERIMENT IN A
COMPLETELY RANDOMIZED DESIGN

Model: yijsy = 4 4 o +Bi + % + (aB); + (av)a + (8y)p + (28X + wpe
(i-l,?,...,c;j-l,z B T X ,2,...,1;11-1,2, cee, )

Bouroce of s Sum of Mean Expocteduunsqm
Variation Squares Square for Fized Mode]
.
54
Factor 4 834 4 bt
3
Factor B 888 o o +du’ =1
oA
Factor ¢ s8¢ 4 oot
27 oy,
)
(c~—'1)(r—l) 8S4AB o 'l+k(c—l)(r—l)
ZZ(&)&
(e ~ 1)1 - 1) 834¢ o ot rn

&
%
+
2
b
N
3
al‘

(r~1x1~1) 88BC

(¢ ~ 1)r — 131 — 1)

eri(n — 1)
erin ~ 1

834 BC

Zm ”
S8THABC)= L i & Y
n erin

o
¢ r
SSTHAB) = ~%—— s
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Y.
S8THAC) = l——tﬂﬁ = :——n
ZZ Y""' 3
S8THBC) = i—”;—— = :‘l—n

S88AB = SSTr(AB) — 884 — 33B
88AC = 88Tr(AC) — 884 — 83C
88BC = 88Tr(BC) — S8B — 88C
SSABC = SSTrABC) — S84 - 8SB 88C ~ S8AB - 884C ~ 88BC
S3E = 83T — 83Tr(ABC)

Expected Mean Square for the

Bouree of M
Variation ean Bquare Mixed Model Mixed Model
Random Model
(a) (ﬂpﬂ)
Factor 4 c}-;%‘-] v’+nc;‘q+blc’ o* + noly, + Inoly o' + sl
+”I(::>+"I’%\ ] d"‘\
] ke
+m"’+ﬂ”c—l +rin L
c—1
Fastor B ::-8881 o+ nolyy +lnely | ot + oned, + cing} o' + cnej,
r- + enaly + clne} .
+ ¢in
3¢ r-1
Factor ¢ '2-‘—_—1 o gy el {0t + s, + ol o+ el
+aw3,+cn3,
8348 , \
AXB CETr D el + inely -‘+no’.,.,+h_f$ o + nely,
22(«5)2,
+l“(c—l)(r—l)
B88AC . . . .
AxC .-m—l—) Jr’+m’*+m,., o + noly, + mol, ot + el
88BC i .
BXxC ‘:-“(f—lxl—l) r\"-{-M:’.r'}-m;., 1’+W;., '|+Wh
884BC YA
AXBXC d-m}(‘-f-uw! r‘+ac‘.,., o+ nely
Within ‘-J‘L L! o ?
(error) Lo
Total $=- 287

orin — 1
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ANALYSIS OF VARIANCE AND EXPECTED MEAN SQUARES
FOR A ¢ Xt LATIN SQUARE
Model:mm)-ﬂ-f'ci'f'ﬁl‘f"nh)+¢mb) (""1.2¢~--,‘;j-1,21~~',‘;k-1,3,.‘.,t)
Expectod
Bource of Degroes of M
Variation Freedom Bum of 8q Mean Square Squue:’;or
Fixed Mode!
¥, o
y* 83C )
Columns |t C-t Y ! e 200 Sl
= 1 a iy Py
& r* 88R 20}
Ro t-1 R w1 Ces -0 -
e G 1 # =1 i
Z}’."m ” 85T 2‘7:
te |41 8Tr = Lo - L
Treatmen 88T 7 i ] = "+‘¢-—l
Error E-1Xt-2) 883-881'—880—8811—881'9' - ot o
(t-1x1 =)
Total r-1 ssr-zzy:,m-ﬂ
‘ o
ExvecudeSquor
Source of M.
Variation ean Square Random Mixed Model | Mixed Model
Model (€2] (o, v)
L1
L
88¢C
Columns A= o+ td ot "+¢‘~‘——l
S8R
Rows H ;—‘l "+¢f, t'+i'; ¢‘+‘I}
z'n'. 272
88Ty N [}
Treatments l:-m ¢‘+"3, "+‘l—-l ¢’+l‘ 1
SSE
Error -
“ -1t -2 i o g
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ANALYSIS OF VARIANCE FOR A GRAECO-LATIN SQUARE
Model: yija = s+ +8i+ve + i+ 6 (jim k=12 ...,n)
Source of Variation F reedgongf Bum of Bquares Mean Bquare
PR
; y? S
- - 2 -
Factor I (Rows) n -1 81 - prs [H —
.
i v 8y
Faetor 11 {Coluwmon) n -1 8y ™ - u";r c:-n—l
I
s hd SI
Factor 11T (Latin Letters) n-1 8, s alider: o T
v,
8,
Factor IV (Greek Letters) n -1 A Z’—; o -t
n n n -1
N So
Residual {(n =~ 1}¥n — 3) | 8, = difference o P T
Total P -1 S-Ezmm—?
ANALYSIS OF VARIANCE FOR A YOUDEN SQUARE
Model: yiju ™ & + as + 87 + ve + eg0
w2 .., hi=02 ..., =-buml2 ..., K<
Bource of Degrees of
Variation Freedom Sum of Squares Mean Square
Blocks Syom 'Y‘;“ - X"’—
{erude) k
I -1 8y
- v ..
Tr(a:;;nents) £-1 8y = W = 1)2 i: 4 Z ) o i1
r
Treatments By = z ! e
{crude) < r
- 8.
Bl o) |© 8= =T (sz.— Y.‘,.) g
(adjusted) 7 7
Y. .
) 1 ot
Factor I1{y) | k — 1 - vy & -1
8’
Residusl BE—t—b—k+2| 8 =8~ (8 +8+8) L v s w
-8 = (8 + 8 + 8) be-t-b-k4
Total bk —~ 1

= 2 — ——
8 E 2 Y bk
]

(Note that 8, + 8, = 8, + 8,)
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ANALYSIS OF VARIANCE FOR BALANCED INCOMPLETE BLOCK (BIB)

Model: piju = 4 + o + 8; + &g {iw= 1,2 ,b;j°1,2,..v,a‘.;umm,)
8o f Degrees of
Va::&:;; Freedom Bum of Squares Mean Squsre
DRE
- I | aa B
Blocks b1 8=t = o -
Treatments t-1 8 Lt Z[W ¥ ]‘ -
- T EE - 13 E b T
(adjusted) bk - 1) v 4 [ |
Residual bk —t—b 418, = difference i
Total bk ~ 1 s-zzyg,,-m
L
where

¢ = number of treatment levels
b = number of blocks
& = pumber of treatment levels per block
r = number of replications of each trestment lovel
A = number of blocks in which any given pair of treatment levels appesr together
bk =t
r(k — 1) = Mt - 1)
GENERAL LINEAR MODEL

by Dr. Rolf B, Burgmann
1. NOTATION

A matrix will be denoted by bold-face capital letters, e.g., if A has m rows and »
columns, we may often specify A = = A{m ¥ n)

G G 0 G
A= Gay  Bga  * 0 Gan
Gy g * ° * Own

A’ denotes the transpose of A.
(A)y = a;; denotes the element in the 7'th row and 7th column of A.
I denotes the identity matrix.
D, denotes a diagonal matrix. The subscript indicates the terms in the diagonal.
, i.e., any matrix with a tilde (™) sbove it will denote a lower triangular matrix,

A column vector will be denoted in general, by a lower-case bold-face letter, e.g.,

&y
Ty

5058 Ex=

Ep
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Oeouionally, capital bold-face letters reprosent column vectors, Examples are a4
follows:

T (vector of treatment totals)
B (vector of Block totals).

where z, ig g fixad foncomitant variaple whose values are assumed to be known before
Al experiment i performed and is Dot subject to chanee, Let Z denote the expectation
Operator, var and ooy the (population) variances and covariances, respectively,
E(‘i) - ?y var (8‘) - "} cov (G(,e,) - 0) i.B., E@‘) =-a+ Pz,
wri

Vi =a+ 8z 4

1= a+tfz, 4
Ur=atfiz, 4o
wecnnwﬁte,inmatrixfom
0n 1 r; L
¥Va 1 z{la o
Vi|=11 gz, [ﬁ}+ &
' 1 =z, L

Yy = A 4 e,
whmAiathededgnmtﬁxandcanbellaowﬁttehintheform

A=0, ).
E VRN ¢))

The numbers in Pparentheses denote the order of the matry,

J is & column veetor containing sl opes,
x is & column vector of a]] concomitant observationg,

Vi=utBEm—1)+a,
where 4 = a + A2,
This, too, can be written in the general linear model form

7 P m-» &

Vs 1 (z. - 2) €y

. . 5 P .
=1, . [ﬁ] +

Y 1 (zu -2 €y

y = A E+ o,

where A = ) (=~ ).
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2.2. Multiple Regression Model

V¢-Bo+ﬁxzu+ﬁsh-+ﬁﬂu+ B ey

Assumption : E(e) =0,
VAT (3) = var (e;) = ol

Oov(y‘ry))-o-
If we write
Vl-ﬂo+ﬁxzu+ﬁszn + By + - - C BTy 4 e
Vl"ﬁl‘!‘ﬁﬂn'ﬂ"ﬁ#n'ﬂ"ﬁﬂn*‘l‘"'ﬂﬂu"’ea
y--ﬁ0+ﬂu3u+ﬁ¢n+ﬁ¢u+"'ﬁb’:h""-:
We can write
B A
" L ozy 2y 2y ... ENRITN el
Vs 1 3y 2y L R A IR !
B el . . s e, 8. +{e
n. lzhzazh“'h. * e;.
4
y = A T+ .,

where A = i3 , Xln), and X denotes the matrix of all observations on all concomitant
SV ()
variables,
2.3. One-way Classification Analysis of Variance
Model

Yo =p+r+e,

where ; = general effect
T¢ = treatment effeots
€y = experimenta] error,

vtreatmentawitheﬁactan,r., T T =1, 2 3, ...
Vn =pu5+ 4 + ey

Vis = u+ 5, + &y
Yim = u + 7, + 1,
m
Ui =g + 1 +oe,

yvl,'# +7v+evn,-
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We can again write this

[;’:: [

[
b s

b
(=]
R -1
[
OO0

Yin, 1100 - ---9 9
Iiny — 7 00
vu 1010 ¢ olls
. R | B
Y |10 1 0 . g oflm|+e
S— T ——— Ts,
Yot 1000 . -.-. 9
Yor 1000 --- ¢
_y.,.__‘ 1 0 0 ¢ 01_‘
y = A E +e.
The design matrix A can be written
A=[ A,
1) @
where
m)fj 00 ... ¢
A,-(m)Ojo'--O
n)le 90 ...

sndtheptmmotervoctorcana!aobewﬁtten

” .
=[]
2.4. Two-way Classification (Two Factors Factorial)
Model
Yn=uta+t B+ by + e 5
where 4 = general effect
a; = factor A effects (usually row effecta)

B; = factor B effocts (usually column effects)
84 = interaction effects,

For example:
¥u (nu)jj0100jooooo
Y (mx)jjOﬂjOﬂjOOOO
Yal=@uw () j 0005 00j 09 o
¥u (na1)j0jj00000j00
¥ (ﬂa)j0j0j00000j0
ul  (ny) 0j00j00000j
A= A

ay
B
Bs
B
én
813
81
&n

+e

Lon

¥ +e.
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2.5. Analysis of Covariance

Analysis of covariance js equivalent to analysis of variance with one or more con-
comitant variables added.

For simplicity, let us take one-way classification and one concomitant variable.
Model

Vo= p+rid Bz + ey .
As a vector equation, this model reads

yn =u <+, + 8zu + e
Vi =y 41 + 8212 + eny
Yoy = a4 vy + 851, + ey,

Y =g +r + B8z + ey

Yiny = o + 7y + Bzs, + o5,

Y = + a4 Bz + ey
Ying = + 71+ B2, + o4,
Let xy, x4, and x, denote the concomitant observations in each group, then
’-yn ]
Yz
- :
" iio0e xlln
=13 0§ 0 x|ir +e
. 0 0 j X3 Ts
Via,
Yu
[ Vau, ]

y=Af + e .

3. SUMMARY OF RULES FOR MATRIX OPERATIONS
3L Let E(y) = ¥ Var (y) = X, a symmetric matrix containing all possible variances
and covariances. Then, E(My) = My, var My) = MEM’, for any conforming matrix
M. Ey'M) = ¥M, var (M) = M'EM.
3.2, Partitioning of Determinants
]é g] = |A] ID ~ CA~'B| if A~ exists |
=~ D A - BD-1C) if D1 exists |
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3.3. Inverse of a Partitioned Matrix

[A B]-l l’x Y]
Cpl] “lzvu
where X = [A — BD-1C}-t
U=[D - CA-1B}-1
Y = —A-1BU
Z = -p-icX

(Au Au]"" [ Al A“]
Al Ay = (A1)’ An
where All = [Ay - AnAu‘"A;J"
A® = (A, — A;‘AII—‘AHI— .
Al AU At
Or A m — A, 14, A1

Computational steps: Order the sets in such 8 way that Ay, is the smaller matrix,

8. Obtain Ayt
. Multiply Al
Obtain A;sﬂu“A;,
. Obtain A, — AuAn“A;,
. Invert the matrix in d.; thus obtain A1
. Obtain Al1A;,4,,~1 by multiplying matrices from steps e. and b,
8igns in f.; thus obtain A
. Obtain (A1) by transposing g.
. Obtain Aj,A the Intter factor from g.
- Obtain I — AjA1 ie,, change all signs in off-diagonal elements of the matrix in step 1.
and complement, diagonal elementa to 1.
k. Obtain Au—1[1 — ARAY) e premultiply the matrix in ;. by An~!obtained in step a.

3.3.1. Symmetric Case

IR S N o o

3.4. Characteristic Roots

a. ch (AB) = gh (BA) except, possibly, for sero roota,
b. Corollary: tr (AB) = tr (BA).
e Ifoh(A)-h,ch(A“) -l/x;,mdch(l:tA)-l:L-M

3.5. Differentiation

3.5.1. Dafinition,:

Let 1 be a scalar function of 2,2, . . .z,

Then 8f/9x denotes o column vector whoee tth element is 3f/3z,

Letfbenaahr funetion of T11, 21y . . . Tigy Ta1, Tag » . ZTagy . 4 . Tyty Tpy, . . . Tye.
Then 3f/9X denotes g matrix whose (5, 7) element is 9f/dzy. Note that, in this definition,
%y denotes the element in the ’th row and j’th column of X. If there are any funetional
relations between the elements of X (as, for instance, in & symmetrie matrix) these rela-
tions will be disregarded in the above definition. In other words, z; denotes the variable
in the {'th row and 7th column of X, and zy denotes that in the j’th row and i"th column,
If the two happen to be identical, & new symbol will be in order. For example, if 2y = 2z, =
Vi, 385, 8f/dy, = 8f/dz4 - dzy/dy, + /024 - 32,/ Bys; = dffomy + A/ 3z =~ (3f/6X)y +
(&f/0X),. Here, y; is the symbol for that distinet variable which ocours in two placesin X,

Probability and Statistics 43

Ifys, ys, . . . y, are functions of z, 3y’/9z denotes the row vector whose £”th element
is dy./oz. )

If yy, Vi, - o -1 ¥, o L Yy .. Ysy, - . . Ype are functions of z, 6Y/oz
denotes the matrix whose (1,7) element is 3y,,/3z. o

If each of the quantities ¥ ¥y, . . . y,i8 & function of the variables Tu Ty . T,
dy’/3x denotes & matrix of order (pq) whose (s,7) element is 3y,/5z.. Note the interchange of
aub:cﬁptc.

3.5.2. Rules:

. 9(x'x)/dx = 2x

 3(¢Qx)/0x = Qx + Q/x ’

- (x'Qx)/dx = 2Qx if Q is symmetric.

. 9(a'x)/ox = a

- 8(a’Qx)/x = Q'a

. 9 tr (AX)/0X = A’

. 9tr (XA)/6X = A’

. 8 log [X|/0X = XY, if X is square and nonsingular.

- “Chain Rule No. 1”: 3y'/ox = ox'/dx - 3y’ /x.
10. 3(x'A)/ox = A }
11. Ife = b — A'x, d(e'e)/dx = ge’'/ax - d(e’e)/de (according to rule 9), = —24’%
rules 10 and 1), .

® 12. “Chain Rzﬂe No. 2”: If the scalar ¢ is related to a scalar 2 through variables

y”("-lizl t ‘p;j-lyz Sk 'q)v

3/9z = tr [92/9Y - oY’ /oz]

© 00DV D

or
32/dz = tr [3s/3Y’ - Y /dz]

This chain rule is eorrect regardless of any functional relationships which may exist
between the elements of Y.

3.6. Some Additional Definitions and Rules

} denotes a column vector, each element of which is 1. Hence J'A is & row vector
whose elements are the column sums of A, and Aj denotes a column vector whose elements
are the row sums of A, J'Aj denotes the sum of all eloments in the matrix A. ]

I denotes the identity matrix. If the order must be atated it will be added in paren-
theses. Henco I(p) denotes a X p) identity matrix.

If & tilde ((%)ia placed nl(::ve & matrix, the matrix is assumed to be triangular. For
definitenees, the untransposed matrix

‘u 0 0 M 0

iy tas O .. 0
T~ b by 1y 0

(b1 fys 4y - - - ‘».j

is & “lower” triangular matrix, whereas the transposed matrix

Pu T SR Y

0 i 4y - - b
T=lo o by = by

[0 0 0 .. y,]

is an “upper” triangular matrix.
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1f T is lower triangular, so is T-.

If Q is a symmetric, positive-definite matrix, we can find, uniquely, & real matrix T,
such that Q = T1Y, provided we let the diagonal elements of T be positive. This matrix
and its inverse can be readily obtained from the forward Doolittle solution. If, in each
eyele, we divide each element of the nexi-to-last row (the row which is immediately
above the one beginning with unity) by the square-root of the “leading” (first) element,
we obtain T’ on the left and T on the right-hand side.

1f Q iz a (p X p), symmetric, positive-semidefinite matrix of rank r, the matrix T
obtained in the above manner will have zeros to the right of the r'th column. Q can then be
represented &s

)
(') Tl m ] T'ljr
Q-(,,_,)[T,] ® @-9

where, of course, only ¥, is triangular. This is an important computational device in con-
nection with rule 3.4.s. on characteristic roots. For, if the largest root of AB is desired,
where both A and B are symmetric, but A is of low rank, we can obtain the representation

A=, 2]

()
by the forward Doolittle solution. Then, by 3.4.a., ch (AB) = ch (m , TYB [I:D, and
the matrix in parentheses is of small order and symmetric.
D, denotes s diagonal matrix whose non-sero elements are us, us * * ° Uy
4. PRINCIPLE OF MINIMIZING QUADRATIC FORMS AND
GAUSS MARKOV THEOREM

4.1. Some Remarks on Multivariate Distributions
In univariate situation, suppose we have a random varisble z, such that

E(@) =&
var (z) = o3 .

1f we want to find a random variable y, such that
E@)=0 and var(y) =1,

i.e., we are to find y such that it has mean 0 and variance 1, we perform the “standard-
ization”

T—p

S

Y=
We also recall that, if y is normally distributed,
= EC o pwith1df
In multivariate situations, we have random variables x such that
E(x) =y and ~ var (x) =Z
and we wish to find y such that
E(y) =0 and var(y) = I .
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To obtain this, we will proceed as follows: Let
= 1Y,

where f* is a lower triangular matrix, which, given X, can be obtained conveniently 85 a
by-product of the forward Doolittle analysis. Then,

Bt (Bt
Now, let
y=1"x-y
E(y) = - E(x~9) =0
and

var (y) = £~ var (x — g)(I¥)!
= -1 var (x)(f¥)!
= feiz(f)—
= PPt =1
Hence y is of the desired standard form. Then
Yy =& — )T )T (x— v
=& —-y)Z'x-w -
This is called the “Standard Quadratic Form”.
Since it is equal to the sum-of-squares of p standard variables, it will be distributed as
x* with p degrees of freedom, if x has the multivariate normsal distribution.
4.2. The Principle of Least Squares
Recall that the General Linear Model is

y=Af+e.

On the assumption, for the time being that A is of full rank, the ‘“least squares’”
approach tells us to estimate ¥ in such a way that the sum of squares of errors is minimiged.
Then, ¢’e is the desired sum of squares and

em=y— Al
e = yr _ fIAI
e")s = (y — FA))(y — AD
a(e’e) - o
Betting this equal to sero, we obtain
AGy—Ah =0

(A’A)E = A'y .
These are calied the Normal Equations for the estimation of &.

4.3. Minimum Variance Unbiased Estimates

The minimum variance, unbiased, linear estimate of { is obtained by the application
of & very general form of the Gauss Markov Theorem:

E(e) = 0
var (y) = var (e) = o'V

where V is & matrix (square, symmetric, non-singular) of order (n X n) with known

elements, That is to say that variances of y; (regardless of {) and covariances between y:
and g, are known except for an arbitrary scalar multiplier applied to all of them. Then the
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best linear estimate of an arbitrary linear function V¥ ig equal to 1§ where £ minimiges
the quadratic form
e'V-ig |
Since
E(e) = 0
and
var (e) = var (y) = gty ,

the standard quadratic form of e would be -
(¢' — [E(e)')[var @) (e ~ [E(e)]) = (e’ — O)e*VI-1(e — 0)

== e'V“e .
¢

Minimising this expression is equivalent 4o minimizing

general case are A'V~14§ = A'V-ty,

5. GENERAL LINEAR HYPOTHESIS OF FULL RANK

In this section, we ghal] discuss, with illustntions, the problem of testing hypotheses
about certain parameters and also derive Some necessary distribution in connection with
testing hypotheses,

5.1. Notation
In general, o nyj hypothesis wi] be stated as
Ctm=k,
where C = C(na X m), (ms < m), is called the hypothesis matrix and is of rank 7.
fisan (m x 1) coluran vector of parameters as defined in the genera] linear mode.
k is & vector of 5, known elements usually equal to 0,

7y i8 called degrees of freedom due to hypothesis, Actually it is the number of rows
in the hypothesis matrix C, In other words, it is the number of hornredundant

(1) contradicting statements such ag,
Hy: 8, = g, and B = 28, simultaneously
2 rqdundant statements guch as,
Horymyy  and 3ry = 3r, .

———— e |
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5.2. Simple Linear Regression
Model
Vi= p+ 8z, + o
parameter vector ¢ = B]
Exawrrr |
Hu:}l -
Alt.: g »0
Geuera.llinearhypothesis
[1,0] [ﬂ] -
8 0
C & =90 , ny =]
Examris 2
H.: ﬁ -0
Alt.: gm0
[0111 [I‘] -
8 0
C ¢ =9 R n =1
ExaurLy 3
Hypm0, 8=y simultaneoualy
Alt.:AHeutoneofthepandﬁ#O
o o][3]-[¢]
0 1{|g8 0
C £ = o, o= 2
Examrrx 4
Hyymg
Alt.: y » 8

[1,-11{;] =0, =l

5.3. Analysis of Variance, One-way Classification

Vo= p+ i 4 o (i-1,2,3-'~v)
Parameter vector ¥ = 1,007y, . . . 7]
Examrrr 1
H.:n-n-n- Ce s g,

Alt.: 5, 5 4, for at least one pair

Keep in mind that We must not make redundant statements. Here we have -1
rows in the hypothesis matrix. ie. ny = p — 1

HEH

0 1 ~1 0 o .. 0]l 0

0 1 0 - o ... 01]r 0
@=Djo 1 0 o 3 ... , o S Y P

0 1 [1] [1] 0 -1 e .

@+1) 4]

-] o]

C £ =0
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Examrrz 2 i
Hotf;-r’--r'--.. =7, =
Alt.: At least one r # 0 _
C 5
01000 07| s 0
00100 - 0] s ;
(0)90(-)1?...9'-."'(:))
0 00 0O ---1 ‘
(o +1) .
] L0
C E o= 0

7 = number of rows in C and is equal to v .
Exaumpre 3. For simplicity, let us take 5 = 1,234

He: —11 + 2ry — 1y = 0 (Quadratic contrast of three effecta)
Alt.: Quadratic contrast 0

fo -1 42 -1 0ljrs | =0

C E =0
4. Multiple Linear Regression

Vi=p+ Bizu+Brtn + Bru 4+ ¢ - - Bz + o
parameter veotor £’ = [4,8: 6,8, . . . 8]

Examrrx 1
H.Z ﬁx =0
Alt.: 5 w0
]

-}
fo’lyo:o tr 0] Bi|=0
B

Exaurre 2

Hepr=py=fy= - mpf, =0
Alt.: At least one g » 0 .
rlll
.. 0 ﬁ’
0|8

0 ﬂ" -0

01
00
0

0
0
*)]o 1

OO

0000 -
(k+1)

C

n
¥E =0, ny =k,
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Examrrre 3
Ho: By = 0, By = 0 simultaneously
Alt.: At least one of 8; and 8; »= 0

L8
g
&
Bs

00 --- ¢ ﬁ;_[O]
01 --- 0]f- 0

5.
C E = 0 ; =2,

(=)
O -

5.5. Randomized Blocks
Vi=p+ri+ B+ ey

where u is the general effect
s are the treatment effects (=123
B; are the block effects (j=12234)
¢y i8 the experimental error
parameter vector £ = [u,r1,ry,73,81,80,8:84
Examrrr 1
Hy: 7y = £y = 75 (all treatments effects are oqual)
Alt.: At least one pair r, » r, L
F '}
L2
T3
[o 1 -1 0 0 0 o0 o]r._[o]
0 1 0 -1 0 0 o0 o0]is 0
B
By
| B¢
C E = 0; m=2.
Examnrry 2

He: —ry + 2ry — r; = 0 (quadratic contrast)
Alt.: Quadratic contrast » 0 o

8

0P ~1 2 -1 0 o o o0]"|=0

C E =0; m=1.

From the above illustrations, it can be seen that we can write a great variety of tests
in the form of the General Linear Hypothesis provided that we make no redundant
hypothesis statements.
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5.6. Quadratic Form due to Hypothesis
80 far we have discussed only the model of full rank. i.e., in the normal equations,
A'AE = A’y |

(A’A) bas an inverse. We shall continue to assume this model throughout this chapter.

Recall the General Linear Model

y=Af+e
E(y) = Af  and  var(y) = o4 .

We then have the normal equations,
A'Af = A%y |
= (AR Ay
aend M ey s W Ui atimate is

e 1w (APA) var Ay A A
= (A’A) A" var (yia. & A)-!
= o ATA) A A(AA
= s}A'A)? .
This is the expression for the varianes-covariance matrix of the estimates of L
Now suppose that we have a null hypothesis

H ™ C{ -0,
We have an unbissed estimate of C& namely C£, i.e., under the null hypothesis,
E(C}) = Cx=0
var (C§) = C var )’
; = s} C(A'A)~IC,
[rar (CHF = 2 [CAAICT .

The estimate of  is

Thus, under the null hypothesis, the standard quadratic form is
Lecrcanerc .

The expression, £ C/[C(A’A)-1C'}-'CY, is called the sum of equares due to hypothesis,
usually denoted by 88H. If y has the multivariate normal distribution, 8SH/o* is dis-
tributed as x* with n. degrees of freedom, since it is & standard quadratic form.

5.7. Sum of Squares due to Error

Recall the general linear model

y=At+e.

Let us define & = y — A%, the error of estimation. Then, JZ & = ¥4 is called the
=1
sum of squares of errors of estimation. It is customarily denoted by SSE
BBE = &8 = (' — PA")(y — AD)
=Yy~ Ay — yAE+ PAAE
=yy - Fa:’zy — YAt + PA'y
- y,y - !' )
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where y'y is the sum of squares over all observations.
A’y is the column vector on the right hand side of the normal equations.
£ is & column vector whose elements are the estimates of E

In words, SSE is obtained by subtracting from the sum of squares of all observations, the
scalar product of the vector of estimates of £ and the vector on the right-hand side of the
normal equations.

It should be noted that 8SE can depend only on the model, and iz determined once
the model is stated; it is entirely independent, of any hypothesis which may be stated or
tested.

If y is normally distributed, SSE/o? has the x* distribution with n, degrees of freedom.
It is independent of any 8SH.
5.8. Summary
We have the general linear model
y=Af+ e
E(y) = At .

We assume that the model is of full rank, that is, A’A is non-singular and thus has an
inverse. If we further assume that

var (y) = off |
that is, homoscedasticity plus independence, we will have the normal equations

(A'A)¢ = A'y
and we can obtain the estimate of £ by

¢ = (AA)Ay .
Again, if we further assume that the elements of y are normally distributed, we may test
the following hypothesis:
H 'Y C{ -0
A.:CEm n (»40)

This hypothesis matrix has n) rows and, if we avoid inconsistency and redundancies in the
statement of the hypothesis, n, will be the “degrees of freedom due to hypothesis”.

5.9. Computational Procedure for Testing a Hypothesis
In testing a hypothesis, proceed as follows:
(1) Obtain B8H, the 20 called “‘sum of squares due to hypothesis” from the formula
88H = §C[C(A’A)-1CCE .
(2) Obtain 88E, the “sum of squares due to error” from

SSE-‘Z{y.-'—y’AE.

(3) Introduce n,, the “degrees of freedom due to error” which equals n (sample sise)
minus effective number of parameters in the model.
(4) Then, if H, is true
BSH/na F
m = oy -
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5.10. Regression Significance Test
Suppose that we have the general linear mode)

oAb+ et
subject to the condition Cf w ¢

Analogously, after estimating £ ip the above modai g model) we may write

where £ is the estimace 30 ¢ in the reduced modef, We can then find the 8um of squares due
Y0 hm: Renothemg by obtaining
BSE (reduced) anqd subtracting SQg (the origina] or general mode}), ie.,
88H ~ sgg (reduced) — g5
5.1L Alternate Form of the Distribution
g% has the Betg distribution with parameters (uraynayy).

The beta tests &are lower-iq4] tests, ie., we reject H, if the value of the observed ratio is
#maller than the tabulated one, i.e., )

rejection region 8 < constant,

m%?m =8 (%': %) (usual notation)

= 8*(na,n,) (Tables for Betg bercentage pointg)
-7 (!‘5' g) (Tables of the Incomplete Beta Function),
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with normg] equations
A'Af = Ay

the rank of the design matrix A i8 less than m (r < m) then (A’A) would be singula‘r and
1o inverse. We muyst examine the system to see whether a solution exists. We wish to
find functiong of the £/s for which unbiased estimates exist,

6.1. Estimable Function and Eatimability
Let us estimate & function Vg, Le, find ¢’y = V'E such that the expectation
E(c'y) = YE for all £,
and var (c'y) = minimum, Le., we would like to find & linear funetion of the y/s such that
E(cy) = 1
where |’ ig g given vector of “weights”. The constraints of unbissedness are
E(c'y) = ¥x
CE(y) = 1§
'A¥ = g for all , hencs,
c’A =)
CA-Vwmy,
Hence, we are Mminimiging

var (¢’y) subject to the constraints ¢’'A = )/

where var (e'y) = otp’e.
The criterion function & ig then

® = jc'e ~ [e'A — 1,

aT!-c—Al.

Betting the derivative equa] to 2ero, we obtain
(6.1.1) Ad = p
Premultiplying by A’, we have
A’Ad = A%p 5
which is equal 4o } under our constraints,
Hence,
(6.1.2) A'Ad =],

(6.1.1) and (8.1.2) are called “conjugate normal equations”, If A has mnk r(<m)
we can always select 1 columns which form & “basis” and take the remaining (m - r)
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.and that A, is a basis of A. The columns of A, must then be linear combinations of those
in A;. We may express this fact formally by saying there exists

Qir Xm—7r) such that Ay = A,Q .

Suppose As = A,Q
AAy = AAQ
Q = (AlA)PAA, .

This is one of the ways to determine Q when A, and A are given. Ususlly, however, we
would try to find Q by inapection.
Now,
A=[A , A0
N (m—-r
= {A1, AiQ] = AT Qitr)
r} (m—7)
(6.1.2) can be written as

[&A] [As, AQRR = [35:’:1&1 :r;:':gxo] re “] -r’

Expanding we have
(6.1.3) [AlAL, AJAQI = 1,
(6.1.4) [QAA;, QAAQL = ], .

Premultiply (6.1.3) by @’ and obtain
[QAIAL, QAAQ] = Q1 .
For consistency of the equation system, the condition

12 ol Q'lx

must be met.
That is to say, in the function I'E, I cannot be chosen arbitrarily but must be of the
form :
l,-ﬂ; ’ l;]; where
N (m-r
(6.1.5) L =10 .

Only an 1 satisfying this relation can be used in the construction of a function which admits
of & linear unbissed (and mathematically consistent) estimate.

(6.1.5) is called the condition of “estimability” of & linear function. Hence, we will
call & function V' eatimable if I’ can be written as

m, g,

where 1, is related to I; in the same way as A, to A;

We may then define that a parametric function is said to be linearly estsmable if there
exists a linear combination of the observations whose expected value is equal to the func-
tion, Le., if there exists an unbiased estimate.
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Now, if the function V'E is estimable, (6.1.3) can be written as
(AALQD. = 1 .
Notice that 1; may be disregarded since it is determined by the relation 1; = Q'l,, hence,

(6.1.6) LQ1 = (AJA)1, .
The firat conjugate normal equations (6.1.1) stated
Ad = @
or, [ALAqd = &
AILQla = ¢ .

Inserting (6.1.6), we obtain
AdAA) N = ¢ .
Hence, 'y = I'E = 1j{(AJA)AYy ,
which is of the same form as in the non-singular case, except that A has been replaced by

its basis A, and in 1 we consider only the first » elements, i.e., 1;.
Hence, the normal equations in the Least Squares approach, i.e.,

A'Af = Ay
can be used formally in the reduced statement
(AjADE: = Ajy .
6.2. General Linear Hypothesis Model of Less Than Full Rank
We have the general linear model
y=At+e
- i [B] 46

- WAl [8] +o
= A+ AQEs + e
= As(Ei+ Q&) + e .

Hence, we may write the general linear model in the form y = A£* + e, where {* =
&+ QL.

6.2.1. Sum of Squares Due to Error and Its Distributsion
Notice that e has not been changed in this model, hence we can set up the normal
equations
(AlADE* = Aly.
8SE = e'e = y'y — y'A£*
= y'y — YA(AJA) ALy
Then, as before

§8;TE =x¥n —71) where r is the rank of A,

and replaces m in the non-singular model. The “effective’” number of parameters in the
singular model is only r, the remaining (m — r) parameters are determined in terms of the
first r by the estimability condition.
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6.2.2. Sum of Squares Due to Hypothesis and Its kDistrﬂmtion
Suppose that we wish to test
Hy: Cf =0 s

C,,C = ;
ecf]=[;
Each row on the left-hand side must represent an estimable function, hence, we must have

G =CQ.
This is called the condition of “testability”, i.e., if

where ¢ = [C; |, G .
r (m-r
Then CE = 0 implies that

1
Cy
’
€

where (¢;E) is an estimable function (& = 1,2, . . ., na). Then the null hypothesis

Heo: Cify 4 Cokp = 0
can be written as
Cli+CQE =90

or simply Ci&* = 0, where £* = (¥, + QF;). Hence, we can formally state that a null
hypothesis

H o C{ =0
is “testable” if C¥ consists of n, estimable functions, i.e., if C; = C;Q, where C = [Cy,Cal.

Consequently,
SSH = £*'Cj[Ci(A;A)ICI1CiE*

where §* = (AlA)~1Asy.

As before
S8H

o = Ko -

Again, if the null-hypothesis is true, we have the test statistic F

MSH/m _ F
MSE /ﬂ. (mamy) -
6.3. Constraints and Conditions

1f the model is singular, of rank r < m, (m — ) constraints on the §s (the estimates)
may be arbitrarily introduced, for example:

(6.3.1) f1=0,...,8.=0

or

(6.3.2) ;= 0, $:=0 .
:Zl é 621 ”‘ff

This is called reparametrizing the model. The constraining functions are fairly arbitrary,
but they must not be estimable functions, otherwise the resulting model will still be singular.
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In effect, this is done by deletion of the last (m - r) rows and columns of A'A and the last
{(m — r) elements of A'y, for constraints of the type (6.3.1), or by adding a constant to all
elements of A’A, for constraints of the type (6.3.2). This has no effect on the value of
estimable functions, or test statistics.

An entirely different situation prevails if we place conditions on the paramelers of &
model, especially on interactions. In the two-way classification model

Elyin) = p++ o + 8 + ¥y

one usually specifies
z m;&;; = ) for all j’s
7

and
2 nyby =0 forall '8 |
7

where ny; denotes the number of observations in the {1, 7) cell. These are sometimes called
natural consirainis (they are neither nafural nor constrainis). They simply represent a set
of conditions or assumplions on the interactions, minimizing this effect (making 88H for
interaction & minimum). After introducing these conditions, one still has a singular
model, which can be made nonsingular by introduction of the arbitrary constraints

Ya=0Y4=0.
i g

(Note the carets, for estimates). One could introduce the different assumptions,

All afs = 0
All /s = 0

and would have a simple one-way classification model, quite different from the previous
one. A classical example is the following. Suppose some organic substance is attacked by
sulphuric acid or by sodium hydroxide.

NaOH
-
-1 0 4
H.80,
+1 6 0

Using, formally, the minimizing interaction conditions, one would obtain effect estimates
&5 means of rows and columns

H.80, sabsent: 2 present: 3
NaOH absent:3  present: 2

and make the ridiculous inference that sodium hydroxide, by itself, has an inhibiting
effect. The correct parametric model in this case would be

u w8

pta ptatf+d
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i.e., interaction occurs only if both substances are present. This leads to the estimation

p=0
4=6
f=4
§=—10,

which is the appropriate neutralization model.

It is usually quite easy to decide whether a constraint or a condition is involved. The
{model-changing) conditions are required whenever a hierarchy of effects is present (main
effects, interactions, higher-order interactions), while constraints (with no effect on the
model) can be introduced within the same kinds of effects (row effect estimates adding to
gero, column effect estimates adding to zero). The sum of squares due to a given hypothesis
is a good indicator of the situation. If it changes by the introduction of two different sets of
combinations, they are conditions, and must be determined in accordance with plausibility
of the physical model. If it stays me, they are usually constrainis on the estimates, and
thus arbiteary, without effecr s the model.

SIMPLIFIED COMPUTATIONS FOR MULTIPLE REGRESSION
by Dr. Clyde Y. Kramer

The following method is especially suited for a research problem which has several
dependent variables with one set of independent variables. It allows the worker to decide
which dependent variables are explained by regression with the least time and work.
Regression coefficients and their variances are not usually wanted unless the regression is
significant. This procedure eliminates the need of calculating these quantities when pre-
diction is not good enough to be useful.

The main advantages of this method are:

(a) the numbers of digits to the left of the decimal points of the elements of the sums of
squares and sums of products matrix are adjusted to be one or zero which permits the
use of & uniform number of decimal places in the calculations;

{b) the multiple correlation coefficient and entries for the analysis of variance table for
multiple regression ean be found without computing the regression coefficients and
the inverse of the sums of squares and sums of products matrix;

(c) the additional reduction due to any regression variable over that obtained for pre-
vious ones is obtainable for every regression variable;

(d) the research worker can fit only those regression variables that add a significant addi-
tional reduction if he so desires;

{e) time or work is not lost if one wishes to obtain the regression coefficients and their
variances; and

(f) numerous checks are employed on the calculations that are required.

Algebraic Procedure

For simplicity, this method will be illustrated by considering four independent
variables (zy, Ts, s, z4), and one dependent variable, (y). First compute and record the
sums of squares and sums of produets in the following manner:

an Gz G Gu Oy

Gz Gy G Gy

1) Gy Ou Gy
a4 Gy

Qy
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where

o w1
Qi = Tig = n !
aml
»
o (2 (2)
s g}
Q= Y Tialga — — T
aml
o
SN OEORD
3\ e
Oy = Ligla n !
P
& k
. (L)
Y @l
Qyy = ya - 7 !
=l

i=j=123,4,and nis the number of observations.

The first feature of this method is that the sum of squares for the dependent variable,
G, i8 recorded as the last entry of the column containing the sums of products of the
dependent variable with the independent variables. The addition of a,, to the last column
results in a square matrix, This feature will be utilized to adjust the number of digits
preceding the decimal points in the elements of the sbove matrix. The residual sum of
squares is also obtained directly by adding the term g, to the last column of (1).

Then, in order to simplify the calculations, make the diagonal terms (@, Gaz, a3, a4,
a,,) lie between 0.1 and 10 by pre-and post-multiplying (1) by 8 diagonal matrix of powers
of ten which is as follows:

0ws 0 0 0 0
0 10« 0 0 0
@) 0 o0 10 0 O
0 0 0 1% 0

0 0o o0 0 10°

This will also result in the sums of products having at most one digit before the deci-
mal points, thus allowing a uniform number of decimal places in all future ealeulations.
The values of the ¢’s and p are determined as follows:

Consider only a diagonsal term and in it the largest even number of places through
which the decimal point must be shifted (left or right) to make that term be a number be-
tween 0.1 and 10. Then divide this even number by two to get the applieable value of ¢
or p. For example, if a: = 8,238.93, ¢ would be —2; if ags = 2,213,822.00, ¢ would be
—8; and if a,, = 5,098,35, p would be —2. )

After pre- and post-multiplying (1) by (2), which in effect is accomplished by adding
the g/s and p according to the term we are adjusting and shifting the decimal point the
number of places indicated by the sum, we obtain a matrix of a*'s. If, as in the above
paragraph, ¢; = —2 and p = —2, we would shift the decimal point of a1 four places to
the left and the decimal point of a, four places to the left, ete,




