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1 First: Overview of Sampling Distributions

1.1 Examples of Sampling Distributions

Distribution Statistic whose sampling variability it describes

Binomial(n, π) no. (or prop’n, p) of 1’s in s.r.s. of n from infinite-sized
universe containing proportion π of 1’s & (1− π) of 0’s.
— can think of p as a mean of n (Bernouilli) 1’s and 0’s.

Hypergeometric no. (or prop’n, p) of 1’s in s.r.s. of size n from universe
(N1 1′s, N0 0′s) of 1’s and 0’s, but universe size (N = N1 +N0) is finite.

Poisson(µ) no. of 1’s in s.r.s. of n from infinite-sized universe of 0’s
and 1’s, but where π is small, and n is large, so that
np(1− p) ≈ np = µ [limiting case of Binomial].

No. of ‘events’ in a sampled volume of experience
(conditions apply ! – see later).

Gaussian mean, proportion, count, difference, etc. (n large)

Student’s t (ȳ − µ) / (sy/
√
n ); y ∼ N(µ, σ); s2

y =
∑

(y − ȳ)2/(n− 1).

F ratio of sample variances (used for ANOVA)

??? order statistic as estimate of quantile

1.2 Ways of calculating sampling variability

i. directly from the relevant discrete distribution, by adding probabilities
of the variations in question, e.g. :

• 0.010+0.001 = 0.011 Binomial prob. of ≥ 9 1’s in n = 10 if π = 0.5.

• 2.5% probability of (Poisson) count ≥ 5 if µ = 1.624

• 2.5% probability of (Poisson) count ≤ 5 if µ = 11.668

ii. from specially-worked out distributions for more complex statistics cal-
culated from continuous or rank data –

• Student’s t, F ratio, χ2, distribution of Wilcoxon statistic.

iii. (very common) from the Gaussian approximation to the relevant
discrete or continuous distribution – by using (an estimate of) the stan-
dard deviation of the sampling variation in question and assuming the
variation is reasonably symmetric and bell-shaped [every sampling distri-
bution has a standard deviation – but it isn’t very useful if the distribu-
tion is quite skewed or heavy-tailed]. We give a special name (standard
error1) to the standard deviation of a sampling distribution in order to
distinguish it from the measure of variability of individuals. Interestingly,
we haven’t given a special name to the square of the SD of a statistic –
we use Variance to denote both SE2 and SD2.

iv. jack-knife (only for variance), or bootstrap (more detailed picture)

1.3 Standard Error (SE) of a sample statistic

What it is

An estimate of the SD of the different values of the sample statistic one would
obtain in different random samples2 of a given size n.

Since we observe only one of the many possible different random samples of
a given size, the SD of the sample statistic is not directly measurable: is is
merely conceptual.

In this course, in computer simulations, and in mathematical statistics courses,
we have the luxury of knowing the relevant information about each element in
the population and thus the probabilities of all the possible sample statistics.
Thus, for example, we can say that if individual Y ’s are such that Y ∼
N(µ, σ), then the different possible ȳ’s will vary from µ in a certain known

1Note: Up to Ch 5, M&M use the same notation for the SD of a mean or a difference of
means as they do for the SD of individuals – they use ‘SD’ for both. Many texts distinguish
the two by using SE (Standard Error) when dealing with the SD of a mean or proportion or
other statistic, and SD when dealing with individual variation. Moore & McCabe in page
500 of Ch 7 say “when the SD of a statistic is estimated from the data, the result is called
the SE of the statistic.” This is a more restricted definition than many authors use. JH’s
advice: always say what SD or SE one is referring to: the SD or SE of a mean, SD or SE
of a median, the SD or SE of a proportion, the SD or SE of a slope, the SD of individual
measurements etc. If one sees a SD on its own i.e., without reference to a specific statistic,
one would suspect (but cannot be sure) that it is the SD of individuals. However a SE is
never in relation to individuals; it is always in relation to a statistic.

2Notice how JH says ‘different possible samples’ rather than ‘in repeated sampling’. Try
to avoid this ‘repeated sampling’ notion, and instead think of what might have been if the
sample has been based on a different starting seed for the random number generator, or
starting at a different place in a sapling frame, etc. In real life there is only one sample: one
spends one’s entire budget on it, and there are not possibilities of ’repeating’ it or winding
back the clock and getting another one instead.

1



Course BIOS601: Mean/quartile of a quantitative variable:- models / inference / planning v 2016.09.13

way. In real life, we don’t know the value of µ and are interested in estimating
it using the one sample we are allowed to observe. Thus the SE is usually an
estimate or a projection of the variation in a conceptual distribution i.e. the
SD of all the “might-have-been” statistics.

Use

If n large enough, the different possible values of the statistic would have a
Gaussian distribution with a spread of 2-3 SE’s on each side of the “true”
parameter value [note the “would have”]

So, one can calculate the chance of various deviations from the true value.

Thus, we can assess under the range of parameter values for which the ob-
served statistic would or would not be an extreme observation. Note the convo-
luted legal wording: this is not as satisfactory as we would wish, but under the
frequentist paradigm, it is the best we can do. Under the Bayesian paradigm,
we would speak directly about the parameter, and where (now that we have
new data) we think it is. Under the frequentist approach, we speak about
the behaviour of the (new) data: there are no prior data, and there is just a
hypothetical value (or a range of hypothetical values) for the parameter.

e.g.

if statistic is ȳ, we talk of SE of the mean (SEM)

SE(ȳ) describes variation of ȳ from µ;

SD(y) describes variation of y from µ (or from ȳ).

DIGRESSION: How old is the concept of a ‘mean’ ? 3

The delightful new book The Seven Pillars of Statistical Wisdom, by Stephen Stigler,
historian of statistics, addresses this in his first Chapter (the “Aggregation” pillar).

But when did the scientific analysis of statistical data begin? When
did the use of the arithmetic mean become a formal part of
a statistical analysis? Was it really not much before the seventeenth
century? Why was the mean not used to combine observations in some
earlier era – in astronomy, surveying, or economics? The mathematics of
a mean was certainly known in antiquity. The Pythagoreans knew already
in 280 BCE of three kinds of means: the arithmetic, the geometric, and
the harmonic. And by 1000 CE the philosopher Boethius had raised that
number to at least ten, including the Pythagorean three. To be sure, these

3cf The Early History of Average Values and ... A. Bakker. J Stat. Educ. 11(1)2003.

means were deployed in philosophical senses, in discussing proportions
between line segments, and in music, not as data summaries.

Surely we might expect the Greeks or the Romans or the Egyptians to have
taken means of data in day-to-day life more than two millennia ago. Or,
if they did not, surely the mean may be found in the superb astronomical
studies of Arabic science a thousand years ago. But diligent and far-
ranging searches for even one well-documented example from
those sources have come up empty.

The most determined seeker of an early use of the mean was the indefati-
gable researcher Churchill Eisenhart, who spent most of his professional
career at the National Bureau of Standards. Over several decades he pur-
sued historical uses of the mean, and he summarized his researches in
his presidential address to the American Statistical Association in 1971.
His enthusiasm carried the address to nearly two hours, but for all that
effort, the earliest documented uses of the mean he found were those I
have already mentioned by D. B. and Gellibrand. Eisenhart found that
Hipparchus (ca. 150 BCE) and Ptolemy (ca. 150 CE) were silent on
their statistical methods; al-Biruni (ca. 1000 CE) gave nothing closer to a
mean than using the number produced by splitting the difference between
a minimum and a maximum. The mean occurred in practical geometry in
India quite early; Brahmagupta, in a tract on mensuration written in 628
CE, suggested approximating the volume of irregular excavations using
that of the rectangular solid with the excavation’s mean dimensions.

Over all these years, the historical record shows that data of many types
were collected. In some cases, inevitably, summaries would be needed; if
the mean was not used, what did people do in order to summarize, to
settle on a single figure to report? Perhaps we can get a better idea of
how this question was seen in pre- statistical times by looking at a few
examples where something similar to a mean was employed.

One story told by Thucydides involved siege ladders and dates to 428
BCE: Ladders were made to match the height of the enemy’s wall, which
they measured by the layers of bricks, the side turned towards them not
being thoroughly whitewashed. These were counted by many persons at
once; and though some might miss the right calculation, most would hit
upon it, particularly as they counted over and over again, and were no
great way from the wall, but could see it easily enough for their purpose.
The length required for the ladders was thus obtained, being calculated
from the breadth of the brick. Thucydides described the use of what we
can recognize as the mode – the most frequently reported value. With the
expected lack of independence among counts, the mode is not particularly
accurate, but if the reports were tightly clustered it was likely as good as
any other summary. Thucydides did not give the data.

Another, much later example dates from the early 1500s and is reported
by Jacob Köbel in a finely illustrated book on surveying. As Köbel tells
us, the basic unit of land measure in those times was the rod, defined

2



Course BIOS601: Mean/quartile of a quantitative variable:- models / inference / planning v 2016.09.13

as sixteen feet long. And in those days a foot meant a real foot, but
whose foot? Surely not the king’s foot, or each change of monarch would
require a renegotiation of land contracts. The solution Köbel reports was
simple and elegant:

sixteen representative citizens (all male in those days) would be recruited
after a church service and asked to stand in a line, toe to heel, and the
sixteen-foot rod would be the length of that line. Köbel’s picture, etched
by himself, is a masterpiece of explanatory art (see Figure 1.7).

It was truly a community rod! And, after the rod was determined, it was
subdivided into sixteen equal sections, each representing the measure of
a single foot, taken from the communal rod. Functionally, this was the
arithmetic mean of the sixteen individual feet, but nowhere was the mean
mentioned.

Wikipedia [ Foot (unit) ] also has the picture, and the wording:

Stand at the door of a church on a Sunday and bid 16 men to
stop, tall ones and small ones, as they happen to pass out when
the service is finished; then make them put their left feet one
behind the other, and the length thus obtained shall be a right
and lawful rood to measure and survey the land with, and the
16th part of it shall be the right and lawful foot.

2 Sampling Distribution of ȳ:
Expectation / SD / Shape

• Quantitative variable (characteristic) of interest : Y

• N (effectively) infinite (or sampling with replacement)

• Mean of all Y values in population: µ

• Variance of all Y values in population: σ2

• Shape of distribution of Y ’s: Unknown/Unspecified

• Sample of size n; ( i.i.d.) observations y1, . . . , yn

• Sample mean: ȳ = (1/n)
∑
yi

Statistic E(Statistic) SD(Statistic)

ȳ µy σy/
√
n

2.1 ?? Shape of the sampling distribution of ȳ ??

The sampling distribution is the frequency distribution (e.g. in the form of
a histogram or other depiction) we would get if we could observe the mean
(or any other calculated statistic) of each of the (infinite number of) different
possible random samples of a given size. It quantifies probabilistically how
the different possible values of the statistic would vary around some central
value. The sampling distribution is strictly conceptual (except, for illustration
purposes, in toy classroom exercises where we can actually do the ‘what if’
exercise for all possible samples from some made-up universe of known values).

Relevance of knowing shape of a sampling distribution:

We will only observe the mean in the one sample we chose; however we can,
with certain assumptions, mathematically (beforehand) calculate how far the
mean (ȳ) of a randomly selected sample is likely to be from the mean (µ)
of the population. Thus we can say with a specified probability (95% for
example) that the ȳ that we are about to observe will be no more than Q (some
constant, depending on whether we use 90%, 95%, 99%, ... ) units from µ. In
‘frequentist’ inference, we say that in 95% of the applications of our procedure,
our estimate will come within the stated distance of the target, and so we
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can have this much ‘confidence’ in the procedure. The probability statement
associated with the confidence interval for µ is really about the stochastic
behaviour of ȳ in relation to µ.4. We also use the sampling distribution to
assess the (probabilistic) distance of a sample mean from some “test” or “Null
Hypothesis” value in statistical tests.

2.1.1 Example of the distribution of a sample mean:

When summing (or averaging) n 0’s and 1’s (i.e numbers measured on a 2-
point scale), there are only n+1 unique possibilities for the result (0, 1, . . . , n).
However, if we were studying a variable, e.g. cholesterol or income, that was
measured on a continuous scale, the numbers of possible sample means would
be very large and not easy to enumerate. For the sake of illustration, we
instead take a simpler variable, that is measured on a discrete integer scale
with a very limited range. However, the principle is the same as for a truly
continuous variable.

Imagine we are interested in the average number of cars per household µ in
a city area with a large number (N) of households. With an estimate of the
average number per household and the total number of households we can
then estimate the total number of cars N × µ. It is not easy to get data on
every single one of the N , so we draw a random sample, with replacement, of
size n. [The sampling with replacement is simply for the sake of simplicity in
this example – we would use sampling without replacement in practice].

How much sampling variation can there be in the estimates we might obtain
from the sample? What will the degree of “error” or “noise” depend on? Can
we anticipate the magnitude of possible error and the pattern of the errors in
estimation caused by use of a finite sample?

Suppose that:

4Ideally any description of the CI should involve sentences in which ȳ is the subject;
µ should not be the subject of the sentence. In the ‘frequentist’ approach, we are not
allowed to say before (or after) the fact that there is a 95% probability that the target
will be (is) within the stated distance of where the estimate lands. If one is pretty sure
that a particular location is within 15 Km of downtown Montreal, then it is mathematically
correct to say that one is pretty sure that downtown Montreal is within 15 Km of the
location in question. In the frequentist approach, however, it is not ‘statistically correct ’ to
turn this type of statement around and to say that there therefore is a 95% chance that the
population mean (µ, the quantity we would like to make inferences about) will not be more
than Q units away from the sample mean (ȳ) we (are about to) observe. The reason has to
do with the different (asymmetric) logical status of each of the 2 quantities: even though it
is unknown, µ is treated as a fixed point, while ȳ is treated as the stochastic element. Thus,
for example, if µ were the speed of light, and ȳ was a future estimate of it, we cannot speak
of µ ‘falling’ randomly somewhere near ȳ: instead. In Bayesian inference, it is permitted to
speak of the pre-sample and thus the post-sample uncertainty concerning µ.

• 50% have 0 cars,

• 30% have 1 car,

• 20% have 2 cars.

i.e. in all, there are 0.5×N 0’s, 0.30×N 1’s, and 0.20×N 2’s.

You would be correct to object “but how can we know this - this is the point
of sampling”; however, this is a purely conceptual or “what if” exercise; the
relevance will become clear later.

The mean of the entire set of Y ’s is

µY = 0× 0.5 + 1× 0.3 + 2× 0.2 = 0.7

The variance of the Y ’s is

σ2
Y = (0− 0.7)2 × 0.5 + (1− 0.7)2 × 0.3 + (2− 0.7)2 × 0.2

= 0.49× 0.5 + 0.09× 0.3 + 1.69× 0.2

= 0.61

[Thus, the SD, σ =
√

0.61 = 0.78 is slightly larger than µ].

We take a s.r.s. of n = 2 houses, obtain y1 and y2, and use ȳ = (y1 + y2)/2 as
µ̂Y . What estimates might we obtain?

The distribution of all possible ȳ’s when n = 2 is:

Probability µ̂ error % error
(frequency) [i.e., ȳ] [ȳ − µ] [% of µ]

25% 0
2 = 0.0 -0.7 -100

30% 1
2 = 0.5 -0.2 -29

29% 2
2 = 1.0 +0.3 +43

12% 3
2 = 1.5 +0.8 +114

4% 4
2 = 2.0 +1.3 +186
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Most of the possible estimates of µ from samples of size 2 will be “off the
target” by quite serious amounts. It’s not much good saying that “on average,
over all possible samples” the sample will produce the correct estimate.

Check:

Average[ȳ]

= 0× 0.25 + 0.5× 0.30 + 1.0× 0.29 + 1.5× 0.12 + 2.0× 0.04

= 0.7

= µ

V ariance[ȳ]

= (−0.7)2 × 0.25 + . . . (1.3)2 × 0.04

= 0.305

= σ2/2

A sample of size n = 4 would give less variable estimates. The distribution of
the 3n = 81 possible sample configurations, and their corresponding estimates
of µ can be enumerated manually as:

Distribution of all possible ȳ’s when n = 4:

Probability µ̂ error % error
(frequency) [i.e., ȳ] [ȳ − µ] [% of µ]

6.25% 0
4 = 0.00 -0.70 -100

15.00% 1
4 = 0.25 -0.45 -64

23.50% 2
4 = 0.50 -0.20 -29

23.4% 3
4 = 0.75 +0.05 +7

17.61% 4
4 = 1.00 +0.30 +43

9.36% 5
4 = 1.25 +0.55 +79

3.76% 6
4 = 1.50 +0.80 +114

0.96% 7
4 = 1.75 +1.05 +150

0.16% 8
4 = 2.00 +1.30 +186

Of course, there is still a good chance that the estimate will be a long way
from the correct value of µ = 0.7. But the variance or scatter of the possible
estimates is less than it would have been had one used n = 2.
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Check:

Average[ȳ]

= 0× 0.0625 + 0.25× 0.15 + ...+ 2.0× 0.0016

= 0.7

= µ

V ariance[ȳ]

= (−0.7)2 × 0.0625 + (−0.45)2 × 0.15 + . . .

= 0.1525

= σ2/4

If we are happy with an estimate that is not more than 50% in error, then the
above table says that with a sample of n = 4, there is a 23.50 + 23.40 + 17.61
or ≈ 65% chance that our sample will result in an “acceptable” estimate (i.e.
within ±50% of µ). In other words, we can be 65% confident that our sample
will yield an estimate within 50% of the population parameter µ.

For a given n, we can trade a larger % error for a larger degree of confidence
and vice versa e.g. if n = 4, we can be 89% confident that our sample will
result in an estimate within 80% of or be 25% confident that our sample will
result in an estimate within 10% of µ.

If we use a bigger n, we can increase the degree of confidence, or narrow the
margin of error (or a mix of the two), since with a larger sample size, the
distribution of possible estimates is tighter around µ. With n = 100, we can
associate a 20% error with a statement of 90% confidence or a 10% error with
a statement of 65% confidence.

But one could argue that there are two problems with these calculations:
first, they assumed that we knew both µ and the distribution of the
individual Y ’s before we start; second, they used manual enumeration of
the possible configurations for a small n and Y ’s with a small number (3) of
possible integer values.

2.1.2 What about real situations with a sample of 10 or 100 from
an unknown distribution of Y on a continuous scale?

The answer can be seen by examining the sampling distributions as a function
of n in the ‘cars per household’ example, and in other examples dealing with
Y ’s with a more continuous distribution (see Colton p103-108, A&B p80-83
and M&M 403-404). All the examples show the following:

i. As expected, the variation of possible sample means about the (in
practice, unknown) target µ is less in larger samples. We can use the
variance or SD of ȳ to measure this scatter. The SD (scatter) in the
possible ȳ’s from samples of size n is σ/

√
n, where σ is the SD of the

individual Y ’s.

This is true no matter what the shape of the distribution of the
individual Y’s.

ii. If the individual Y ’s DO HAVE a Gaussian distribution, then the
distribution of all possible ȳ’s will be Gaussian.

BUT...

even if the individual Y ’s DO NOT a Gaussian distribution...

the larger the n [and the more symmetric and unimodal the distribution
of the individual Y’s], the more the distribution of possible ȳ’s resembles
a Gaussian distribution. And for many distributions, this approximation
is already quite good for samples of n = 30 or fewer.

The sampling distribution of ȳ [or of a sample proportion, or slope or
correlation, or other statistic created by aggregation of individual
observations ..] is, for a large enough n [and under other condi-
tions5], close to Gaussian in shape no matter what the shape of the
distribution of individual Y values. This phenomenon is referred to
as the CENTRAL LIMIT THEOREM.

We use the notation Y ∼ Distribution(µy, σy) as shorthand to say that “Y
has a certain type of distribution with mean µy and standard deviation σy”.

In this notation, the Central Limit Theorem says that

if Y ∼???(µY , σY ), then

ȳ ∼ N(µY , σY /
√
n), if n is large enough and ...

The Gaussian approximation to certain Binomial distributions is an example
of the Central Limit Theorem in action: Individual (Bernoulli) Y ’s have a

5On the degree of symmetry and dispersion of the distribution of the individual Y ’s.
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2-point distribution: a proportion (1 - π) have the value Y = 0 and the
remaining proportion π have Y = 1.

The mean (µ) of all (0, 1) Y values in population is π.

The variance (σ2) of all Y values in population

σ2 = (0− π)2 × (1− π) + (1− π)2 × π = π(1− π)

From a sample of size n:

observations y1, y2, ..., yn (sequence of n 0’s and 1’s)

sample mean ȳ =
∑
yi
n = number of 1′s

n = p.

CLT ...

If Y ∼ Bernoulli(µ = π, σ =
√
π[1− π]), then

p = ȳ ∼ N(π,
√
π[1− π]/

√
n) if n is sufficiently ‘large’ and π is not ex-

treme.6

Returning to example on estimating µcars/household.

If n = 100, then the SD of possible ȳ’s from samples of size n = 100 is
σ/
√

100 = 0.78/10 = 0.078. Thus, we can approximate the distribution of
possible ȳ’s by a Gaussian distribution with a mean of 0.7 and a standard
deviation of 0.078, to get ...

Interval Prob. % Error
µ± 1.00SD(ȳ) 0.7± 0.078 0.62 to 0.77 68% ±11%
µ± 1.50SD(ȳ) 0.7± 0.117 0.58 to 0.81 87% ±17%
µ± 1.96SD(ȳ) 0.7± 0.143 0.55 to 0.84 95% ±20%
µ± 3.00SD(ȳ) 0.7± 0.234 0.46 to 0.93 99.7% ±33%

[The Gaussian-based intervals are only slightly different from the results of a
computer simulation in which we drew samples of size 100 from the above Y
distribution]

6E[no. ‘positive’ = numerator =
∑
yi] needs to be sufficiently far ‘inland’ from 0 and

from 1, and n needs to be large enough that Binomial(n, π) distribution does not have much
probability mass on 0 or n,, i.e., so that the Gaussian approximation to it does not spill
over onto, and thus place substantial probability mass on, silly values such as · · ·−3,−2,−1
or on n+ 1, n+ 2, . . . . One Rule of Thumb for when the Gaussian approximation provides
a reasobable accurate approximation is that both n × π ≥ 5 and n × (1 − π) ≥ 5, i.e. the
expected number of ‘positives’ should be ‘inland’ or ‘away from the edge’ by at least 5 from
both boundaries.

If this variability in the possible estimates is still not acceptable and we use
a sample size of n = 200, the standard deviation of the possible ȳ’s is not
halved (divided by 2) but rather divided by

√
2 = 1.4. We would need to go

to n = 400 to cut the s.d. down to half of what it is with n = 100.

[Notice that in all of this (as long as we sample with replacement, so that the
n members are drawn independently of each other), the size of the population
(N) didn’t enter into the calculations at all. The errors of our estimates
(i.e. how different we are from µ on randomly selected samples) vary directly
with σ and inversely with

√
n. However, if we were interested in estimating

Nµ rather than µ, the absolute error would be N times larger, although the
relative error would be the same in the two scales.]

Message from diagram on next page:

The variation of the possible sample means is closer to Gaussian than the
variation of the individual observations (the panel where we have a mean of
n = 1 values can be taken as the distribution of individual Y ’s), and the
bigger the sample size, the closer to Gaussian: with large enough n, you
could not tell from the sampling distribution of the means what the shape
of the distribution of the individual ‘parent’ observations was. Averages of
n = 16 are “effectively” Gaussian in this example. How ‘fast’ or slowly the
CLT will ‘kick in’ is a function of how symmetric, or how asymmetric and
‘CLT-unfriendly’ , the distribution of Y is.

2.1.3 Another example of central limit theorem at work: word
lengths

The distribution of the lengths of words has a long right tail (see ‘n = 1′ panel
in Fig 2), but the (sampling) distribution of the possible values of the sample
mean when n = 2 has less of a long right tail, and the distribution of ȳn=4 is
less asymmetric and closer to Gaussian, and that of ȳn=16 even more so.

You can think of the effects of increasing n as two-fold:

• It makes for a ‘finer’ measuring scale (just as with a ruler with finer
gradations). For example, if the Y ’s are recorded with a ‘bin-width’ of
δY (integers in our two examples), then the sample mean has a ‘bin-
width’ of δY ÷ n.

• Extreme sums, and thus extreme means, are less likely: with large enough
n, there are enough extremes from each end of the distribution that they
will tend to cancel each other.
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mean no. of cars in sample of size n
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Figure 1: Illustration of Central Limit Theorem in the case where Y is the
number of cars per household

mean no. letters/word in sample of size n
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Figure 2: Another illustration of Central Limit Theorem (harder?) at work
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2.1.4 Other examples of central limit theorem in action work:

• Lengths of n-th generation copies of the 1-metre bar:

Suppose we use a piece of string (or a large photocopier) to make 2 copies
of the 1-metre prototype bar http://en.wikipedia.org/wiki/Metre.
But suppose that in doing so, we make independent errors of either
+1cm or -1cm. From each of these 2, we make 2 second generation
copies, again with independent +/- errors of 1mm, and from these 8 third
generation copies, etc.. What would be the distribution of the lengths
of the 216 16-th generation copies? They will have a binomial-shape
distribution, ranging from 84cm to 116cm, and centered on 100cm. A
plot this (using
plot(100+seq(0,16),dbinom(seq(0,16),16,0.5),type="h")

say, in R) you will see that it has the shape of what Gauss called the Law
or Errors. Much earlier, de Moivre worked out a normal approximation
directly from the binomial in his 1733 pamphlet ‘A Method of approx-
imating the Sum of the Terms of the Binomial (a + b)n expanded to a
Series from whence are deduced some practical Rules to estimate the
Degree of Assent which is to be given to Experiments.’ If you make the
errors smaller, but have more of them, the variation will be effectively on
a continuous scale. One way to establish the Normal density φ(y, µ, σ) is
(as de Moivre did more generally for π 6= 0.5) to apply Stirling’s formula
(http://en.wikipedia.org/wiki/Stirling’s approximation) to the
Binomial probabilities in the case of a large n and “success” probability
π = 0.5.

• Generating random numbers from a Gaussian distribution:

Since Φ−1, the inverse of the cdf of a N(0,1) random variable does
not have a closed form, the inverse cdf method of obtaining Gaussian
random numbers has to rely on an approximation involving powers.7

Another way to produce values that have close to a N(0,1) distribution
is by summing n = 12 realizations from a Uniform(0,1) distribution and
subtracting 6 from the sum.

# sum of 12 random numbers from U(0,1)

r = function(dummy) sum(runif(12))-6 ;

sum.12.uniforms = sapply(1:50000,r);

hist(sum.12.uniforms,breaks=50)

7For an exact method, see http://en.wikipedia.org/wiki/Box-Muller transform

• There is also a CTL that applies to sums of independent but not identi-
cally distributed random variables. The key element is the independence.
See the cartoon “The Central Limit Theorem in Action (courtesy
Lawrence Joseph)” in the Resources page. If the components were
correlated, say because of weather, then it would impede the cancellation
of extremes.

days=2000;

walk.to.bus = rnorm(days,mean=4,sd=1);

wait.for.bus = runif(days,4,16);

bus.ride = rnorm(days,mean=20,sd=2);

walk.up.hill = rgamma(days,scale=2,shape=3/2);

hist(walk.to.bus); summary(walk.to.bus);

hist(wait.for.bus); summary(wait.for.bus);

hist(bus.ride); summary(bus.ride);

hist(walk.up.hill); summary(walk.up.hill);

total.time = walk.to.bus + wait.for.bus + bus.ride +

walk.up.hill;

summary(total.time);

c(mean(total.time),sd(total.time),var(total.time))

hist(total.time)

boxplot(total.time)

3 Standard Error (SE) of combination or
weighted average of estimates

SE(
∑

estimates) =
√∑

([SE of each estimate]2)

SE(constant× estimate) = constant× SE(estimate)

SE(constant+ estimate) = SE(estimate)

SE(
∑

wi × estimatei) =
√∑

(w2
i × [SE estimatei]2) (1)

This last one is important for combining estimates from stratified
samples, and for meta-analysis.
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In an estimate for the overall population, derived from a stratified sample, the
weights are chosen so that the overall estimate is unbiased for the weighted
average of the stratum-specific parameters i.e. the w’s are the relative sizes
of the segments (strata) of the overall population (see “combining estimates
... entire population” below). The parameter values usually differ between
strata: this is why stratified sampling helps. The estimate for this weighted
avearge of the stratum-specific parameters is formed as a weighted average of
the age-specific parameter estimates, and so one has no choice in the choise of
weights: they must reflect the proportions of population in the various strata.

If instead, one had several estimates of a single parameter value (a big as-
sumption in the ‘usual’ approach to meta-analyses), but each estimate had a
different uncertainty (precision), one should take a weighted average of them,
but with the weights inversely proportional to the amount of uncertainty in
each. From the formula above one can verify by algebra or trial and error that
the smallest variance for the weighted average is obtained by using weights
proportional to the inverse of the variance (squared standard error) of each
estimate. If there is variation in the parameter value, a ‘fixed effects’ SE is too
small. The ‘random effects’ approach to meta-analyses weights each estimate
in inverse relation to an amalgam of (i) each SE and (ii) the ‘greater-than-
random’ variation between estimates [it allows for the possibility that the
parameter estimates from each study would not be the same, even if each
study used huge n’s). The SE of this weighted average is larger than that
using the simpler (called fixed effects) model; as a result, CI’s are also wider.

3.1 Combining Estimates from Subpopulations to form
an Estimate for the Entire Population

Suppose several (say k) sub-populations or “strata” of sizes N1, N2, ... Nk,
form one entire population of size

∑
Nk = N . Suppose we are interested

in the average level of a quantitative characteristic, or the prevalence of a
qualitative characteristic in the entire population. Denote this numerical or
binary characteristic in each individual by Y , and an average or proportion (or
total) across all individuals in the population by θ. It could stand for a mean
(µ), a total (Tamount = N ×µ), a proportion (π), a percentage (% = 100π) or
a total count (Tc = N × π).

Examples:

If Y is a measured variable (i.e. “numerical”)
µ: the annual (per capita) consumption of cigarettes
Tamount: the total undeclared yearly income

(Tamount = N × µ and conversely µ = Tamount/N)

If Y is a binary variable (i.e. “yes / no”)
π: the proportion of persons who exercise regularly
100π%: the percentage of children who have been fully vaccinated
Nπ: the total number of persons who need Rx for hypertension

(Tc = Nπ; π = Tc/N)

The sub-populations might be age groups, the 2 sexes, occupations, provinces,
etc. There is a corresponding θi for the i-th of the k sub-populations. Rather
than study every individual each each stratum, one might instead measure Y
in a sample from each stratum.

3.2 Estimate of overall µ, π, or π%, by combining esti-
mates:

Sub Relative Size Sample Estimate SE of
Popln Size Wi = Ni/N Size of θi estimate

1 N1 W1 n1 e1 SE(e1)
... ... ... ... ... ...
... ... ... ... ... ...
k Nk Wk nk ek SE(ek)

Total
∑
Ni = N

∑
Wi = 1

∑
ni = n

∑
Wiei

∑
W 2
i [SE(ei)]

2

Note 1 To estimate Tamount or Tc, use weights Wi = Ni;

Note 2 If any sampling fraction fi = ni/Ni is substantial, the SE of the ei
should be scaled down i.e. it should be multiplied by

√
(1− fi).

Note 3 If variability in Y within a stratum is smaller than across strata,
the smaller SE obtained from the SE’s of the individual stratum specific
estimates more accurately reflects the uncertainty in the overall estimate.
Largest gain over SRS is when large inter-stratum variability.

10
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4 (FREQUENTIST) Inference for µ – small n:
Student’s t distribution

Use: when we replace σ by s (an estimate of σ) when forming CI’s, or carrying
out statistics tests, using the sample mean and the standard error of the
mean.8 We proceed in the usual way – expressing the distance of ȳ from µ in
terms of multiples of SEȳ = s/

√
n – except that we use a different ‘reference’

distribution than the usual Z (Gaussian)one. The percentiles of this new
distribution are further from 0 than the familiar 0.84, 1.28, 1.645, 1.96, etc,
of the Z distribution: how much further depends on the amount of data (i.e.,
the (n− 1) used to estimate σ2.

To paraphrase, and quote from, Student’s 1908 paper... (italics by JH)

(Until now) “the usual method of calculating the probability that “µ
is within a given distance of x̄ 9 is to assume µ ∼ N(x̄, s/

√
n), where

s is the standard deviation of the sample, and to use the tables of
the (Normal) probability integral.” But, with smaller n, the value
of s “becomes itself subject to increasing error.” In some instances,
we can use a more reliable value of s from earlier experiments, but
“in some chemical, many biological, and most agricultural and large
scale experiments,” we are forced to “judge of the uncertainty of the
results from a small sample, which itself affords the only indication of
the variability.” Inferential methods for such small-scale experiments
had “hitherto been outside the range of statistical enquiry.”

Rather than merely complain, Gosset did something about it.

Although it is well known that the method of using the normal curve
is only trustworthy when the sample is “large”, no one has yet told us
very clearly where the limit between “large” and “small” samples is
to be drawn. The aim of the present paper is to determine the point
at which we may use the tables of the (Normal) probability integral in
judging of the significance of the mean of a series of experiments, and
to furnish alternative tables for use when the number of experiments
is too few.

8it is also used in a wider context, where we have a ratio of a Gaussian random variable,
and the square root of an independent random variable that has a chi-squared distribution.

9This way of writing, i.e., of making µ the subject of the sentence, was commonplace
in 1908; it is not politically or statistically correct today, unless one adopts a Bayesian
viewpoint, where the focus is directly on the pre- and post-data uncertainty concerning µ.
[JH]

Student assumed that the Y values are normally distributed, so that ȳ has a
Gaussian sampling distribution.10

“Student’s” t distribution is the (conceptual) distribution one would get if
one...

• took (an infinite number of) samples, of a given size n, from a
Normal(µ, σ) distribution

• formed the ratio t = (ȳ − µ) / (s/
√
n) from each sample

• compiled a histogram of the ratios.

In fact, to check that his derivation was correct, Gosset11 actually performed
a simulation in which he followed the above process:

Before I had succeeded in solving my problem analytically, I had
endeavored to do so empirically. The material I used was a ... table
containing the height and left middle finger measurements of 3000
criminals.... The measurements were written out on 3000 pieces of
cardboard, which were then very thoroughly shuffled and drawn at
random... each consecutive set of 4 was taken as a sample... [i.e.
n = 4 above]... and the mean [and] standard deviation of each sample
determined.... This provides us with two sets of... 750 (ratios) on
which to test the theoretical results arrived at. The height and left
middle finger... table was chosen because the distribution of both
was approximately normal...”

Sampling distribution of t

• is symmetric around 0 (just like Z distribution)

• has shape like that of the Z distribution, but with SD slightly larger than
unity i.e. slightly flatter & more wide-tailed; V ar[t] = df/(df − 2).

• its shape becomes indistinguishable from that of Z distribution as n→∞
(in fact as n goes much beyond 30.)

10even if the Y ’s were not normally distributed, but n was sufficiently large, the Central
Limit Theorem would guarantee that the distribution of all possible ȳ’s is close to a Gaussian
distribution – but with large enough n, one would have sufficient degrees of freedom to
estimate σ quite precisely, and so the problem would disappear.

11Student. The probable error of a mean, Biometrika 1908. See JHs website for 2008
‘anniversary’ paper and related material.
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• Instead of ±1.96σ/
√
n for 95% confidence, we need

Multiple n Degrees of freedom (‘df’)

±3.182 4 3
... ... ...

±2.228 11 10
... ... ...

±2.086 21 20
... ... ...

±2.042 31 30
... ... ...

±1.980 121 120
... ... ...

±1.960 ∞ ∞

•

Test of µ = µ0 Confidence Interval (CI) for µ

t ratio = (ȳ − µ0/(s/
√
n) ȳ ± t× s/

√
n

4.1 WORKED EXAMPLE: CI and Test of Significance

Response of interest: D: Increase (D) in hours of sleep with a test medication.

Test:
µD = 0 H0

6= 0 Halt

α = 0.05 2 sided

Data:12

Hours of Sleep † Difference:
Subject Drug Placebo Drug minus Placebo

d

1 6.1 5.2 0.9
2 7.0 7.9 -0.9
3 8.2 3.9 4.3
4 • • 2.9
5 • • 1.2
6 • • 3.0
7 • • 2.7
8 • • 0.6
9 • • 3.6
10 • • -0.5

d̄ = 1.78

SD[d] = 1.77

Test statistic: t = (1.78− 0)/(1.77/
√

10 = 3.18.

Critical Value: |t9| = 2.26

Since 3.18 > |t9|, we “reject” H0.

95% CI for µD: 1.78± t9 × SEd̄
1.78± 2.26× (1.77/

√
10)

1.78± 1.26
0.5 to 3.0 hours

12table deliberately omits the full data on the drug and placebo conditions: this is to
emphasize that all we need for the analysis are the 10 differences. Incidentally, Stephen
Senn has traced these classic data and found that Student, and Fisher after him, did not
describe them correctly: the experiment was a bit more complicated than was initially
described.
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4.2 Another worked Example, with graphic:

Posture, blood flow, and prophylaxis of venous thromboembolism.
CPG Barker, The Lancet Vol 345. April 22, 1995, p. 1047.

Sir–Ashby and colleagues (Feb 18, p 419) report adverse effects of posture on
femoral venous blood flow. They noted a moderate reduction velocity when a
patient was sitting propped up at 35◦ in a hospital bed posture and a further
pronounced reduction when the patient was sitting with legs dependent. Pa-
tients recovering from operations are often asked to sit in a chair with their
feet elevated on a footrest. The footrests used in most hospitals, while raising
the feet, compress the posterior aspect of the calf. Such compression may be
important in the aetiology of venous thrombo-embolism. We investigated the
effect of a footrest on blood flow in the deep veins of the calf by dynamic
radionuclide venography.

Calf venous blood flow was measured in fifteen young (18-31 years) healthy
male volunteers. 88 MBq technetium-99m-labelled pertechnetate in 1 mL
saline was injected into the lateral dorsal vein of each foot, with ankle tourni-
quets inflated to 40 mm Hg, and the time the bolus took to reach the lower
border of the patella was measured (Sophy DSX Rectangular Gamma Cam-
era). Each subject had one foot elevated with the calf resting on the footrest
and the other plantigrade on the floor as a control. The mean transit time of
the bolus to the knee was 24.6 s (SE 2.2) for elevated feet and 14.8 s (SE 2.2)
for control feet [see figure 3]. The mean delay was 9.9 s (95% CI 7.8-12.0).

Simple leg elevation without hip flexion increases leg venous drainage and
femoral venous blood flow. The footrest used in this study raises the foot
by extension at the knee with no change in the hip position. Ashby and
colleagues’ findings suggest that such elevation without calf compression would
produce an increase in blood flow. Direct pressure of the posterior aspect of
the calf therefore seems to be the most likely reason for the reduction in flow we
observed. Sitting cross-legged also reduced calf venous blood flow, probably
by a similar mechanism. If venous stasis is important in the aetiology of
venous thrombosis, the practice of nursing patients with their feet elevated on
footrests may need to be reviewed.

[Data abstracted from diagram; calculations won’t match exactly those in text ]

d̄(SD) = 9.8(4.1); t = (9.8− 0)/(4.1/
√

15) = 9.8/1.0 = 9.8

Critical ratio: t14,0.05 = 2.145. So, the observed difference is ‘off the t-scale’.
This corroborates the impression gained from visual display of the data.

95% CI for µD : 9.8± 2.145× 1.0 i.e., 7.7s to 11.9s.
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 38 48 10
 26 32 6
 21 28 7
 18 27 9
 16 21 5
 15 22 7
 14 25 11
 12 28 16
 12 31 19
 12 25 13
 11 20 9
 8 13 5
 7 17 10
 7 14 7
 5 18 13

mean 14.8 24.6 9.8
SD 8.5 8.7 4.1
SEM 2.2 2.2 1.0

No FootRest FootRest Delay

No FootRest

Figure 3: Raw data, and summary statistics. JH encourages a display like
this for showing paired data, and for letting the data themselves tell the story.
Here there is no need for a formal statistical test: the data easily pass the
‘IntraOcular Trauma Test’: Plot the data. if the result hits you between
the eyes, then it’s (statistically – but of course, not necessarily clinically)
significant.
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Remarks:

Whereas the mean, 9.8, of the 15 within-person between-condition differences
is arithmetically equal to the difference of the 2 means of 15, the SE of the
mean of these 15 differences is not the same as the SE of the difference of two
independent means. In general...

V ar(ȳ1 − ȳ2) = V ar(ȳ1) + V ar(ȳ2)− 2× Covariance(ȳ1, ȳ2)

Double-check that one can arrive at the SE of 1.1 for the mean delay by
subtracting twice the covariance from the sum of the two variances, and then
taking the square root of this.

Indeed, the effect of pairing is to remove the intrinsic between-person variance,
and focus the within-person differences. Applying an inefficient statisti-
cal analysis to data collected by an efficient statistical design is a
common ‘Type III’ error!

Authors continue to report the SE of each of the 2 means, but the
2 separate SEs are of little use here, since we are not interested in
the difference of means, but in the mean difference.

Calculating

V ar(ȳ1 − ȳ2) = V ar(ȳ1) + V ar(ȳ2) = 2.22 + 2.22 = 9.7

so that the SEdiff. in means is
√

9.7 =
√

2 × 2.2 = 3.1 assumes that we used
one set of 15 subjects for the No FootRest condition, and a different set of 15
for the FootRest condition, a much noisier contrast.

Fortunately, it turned out that in this study the signal is much greater than
the ‘noise’. Thus, even the inefficient (2-independent samples) analysis, based
on a SEȳ1−ȳ0 = 3.1, would have produced a statistically significant 2-sample
t-ratio of 9.8/3.1 = 3.2.

See article (in jh’s catalogued collection) on display of data from pairs.

4.3 Sample Size for CI’s and test involving µ

4.3.1 n required for a (2 sided) CI with margin of error (ME) at
confidence level 1− α

<-- Margin of Error(ME) -- • -- Margin of Error(ME) -->

<------------------------- • ------------------------->

• large-sample CI: • ±ME = ȳ ± Zα/2SE(ȳ)

• SE(ȳ) = σ/
√
n, so solving for n...

• n = (σ2 × Z2
α/2) /ME2.

• If n small, replace Zα/2 by tα/2

Typically we do not know σ, so we use use a pre-study estimate of it.

In planning n for example just discussed, authors might have had pilot data
on inter leg differences in transit time – with both legs in the No FootRest
position. Sometimes, one has to ‘ask around’ as to what the SD of the d’s will
be. Always safer to assume a higher SD than might turn out to be the case.

4.3.2 n required to have power 1− β when testing H0 : µ = µ0,
if unknown mean, µ, is ∆ units from µ0, i.e., if µalt − µ0 = ∆,
and if test is carried out with Probability[type I error] = α.

[cf. Fig 4, as well as Colton p. 142, and CRC table on next page.
See also ‘Sample Size, Precision and Power Calculations: A Unified
Approach’ by Hanley and Moodie on JH’s Reprints WebPage – link on left
hand column of JH’s home page.]

• Assume that the ‘unit variability’, σY , is the same under H0 and Halt,
so that

SE0[ȳ] = SEalt[ȳ] = σY /
√
n.

• Need
Zα/2 × SE0[ȳ] + Zβ × SEa;lt[ȳ] ≥ ∆.

• Substitute SE[ȳ] = σY /
√
n.

• Solve for n:

n ≥ [Zα/2 + Zβ ]2 × [σY /∆]2 σY /∆ is the “noise-to-signal” ratio.
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α/2
µ

Z      SE[ybar]

µ

Z  SE[ybar]

β

 ∆ = µ    − µ

alt

0

0alt

α/2
β

Figure 4: Link between test size (α), sample size, n, power (1− β) and ∆.

Notes:

• To make life simpler, JH has made the diagram and formula in terms of
the absolute values of Zα/2 and Zβ . Thus, be careful with the sign of Zβ :
If µalt > µ, then the alternative distribution of ȳ is to the right of µ0 (as
in diagram), so that a power of more than 50% means that technically,
Zβ is negative. e.g. :

α = 0.05 & β = 0.2 ⇒ Zα/2 = 1.96 & Zβ = −0.84.

If back-solving for Zβ (and thus β) in terms of n,∆ and σY , be especially
careful as to the sign of Zβ : always draw a diagram.

• While it can be α or α/2, its always 1− β, never 1− β/2 !

• Technically, if n is small, should use the more conservative tα/2 and tβ :
see table on the following page. Since the required n is a function of tα/2
and tβ and vice versa, arriving at this table takes some iteration.

• The question of what ∆ to use is not a matter of statistics or samples,
or what the last researcher found in a study, but rather the “difference
that would make a difference” i.e., it is a clinical judgement, and includes
the impact, cost, alternatives, etc... JH thinks of it as the ∆ that IF IT
WERE TRUE would lead to a difference in management or a substantial
risk, or ...

4.4 Sign Test for median

Test:
MedianD = 0 H0

6= 0 Halt

α = 0.05 2 sided

Reference: Binomial [n = 10; π(+) = 0.5]. See also Sign Test Table which I
have provided in Chapter on Distribution-free Methods.

Data:

DIFFERENCE SIGN
Drug-Placebo

0.9 +
-0.9 -
4.3 +
2.9 +
1.2 +
3.0 +
2.7 +
0.6 +
3.6 +
-0.5 -∑

8+, 2-

Upper-tail: Prob[≥ 8 + | π = 0.5] = 0.0439 + 0.0098 + 0.0010 = 0.0547.
2-tails: P = 0.0547 + 0.0547 = 0.1094. P > 0.05 (2-sided) ...less powerful
than t-test.

In above example on Blood Flow, fact that all 15/15 had delays makes any
formal test unnecessary... the “Intra-Ocular Traumatic Test” says it all.

[Q: could it be that the investigators always raised the left leg, and blood flow
is less in the left leg? JH doubts it, but asks the question just to point out
that just because we find a numerical difference doesn’t necessarily mean that
we know what caused the difference!]

Famous scientist, begins by removing one leg from an insect and, in an accent
I cannot reproduce on paper, says “quick march”. The insect walks briskly.
The scientist removes another leg, and again on being told “quick march” the
insect walks along... This continues until the last leg has been removed, and
the insect no longer walks. Whereupon the Scientist, again in an accent I
cannot convey here, pronounces “There! it goes to prove my theory: when
you remove the legs from an insect, it cannot hear you anymore!”.
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4.4.1 Number of Observations to ensure specified power β if use
1-sample or paired t-test concerning µY or µd

Required n for test where α = 0.005 (1-sided) or α = 0.01 (2-sided)

β 0.01 0.05 0.10 0.20 0.50
Power 99% 95% 90% 80% 50%

∆/σ
0.2
0.3 134 78
0.4 115 97 77 45
0.5 100 75 63 51 30

0.6 71 53 45 36 22
0.7 53 40 34 28 17
0.8 41 32 27 22 14
0.9 34 26 22 18 12
1.0 28 22 19 16 10

1.2 21 16 14 12 8
1.4 16 13 12 10 7
1.6 13 11 10 8 6
1.8 12 10 9 8 6
2.0 10 8 8 7 5

2.5 8 7 6 6

3.0 7 6 6 5

Notes:

• ∆/σ = (µ− µ0)/σ = “Signal” / “Noise”

• Table entries transcribed from Table IV.3 of CRC Tables of Prob-
ability and Statistics. Table IV.3 tabulates the n’s for the Sig-
nal/Noise ratio increments of 0.1, and also includes entries for
α = 0.01 (1sided) / 0.02 (2-sided). See also Colton, page 142, or the
Hanley-Moodie article.

• Sample sizes based on t-distribution, and so slightly larger (and more
realistic, when n small) than those given by Z-based formula:
n = (Zα + Zβ)2 × (σ/∆)2.

Required n for test where α = 0.025 (1-sided) or α = 0.05 (2-sided)

β 0.01 0.05 0.10 0.20 0.50
Power 99% 95% 90% 80% 50%

∆/σ
0.2 99
0.3 119 90 45
0.4 117 84 68 51 26
0.5 76 54 44 34 18
0.6 53 38 32 24 13
0.7 40 29 24 19 10
0.8 31 22 19 15 9
0.9 25 19 16 12 7
1.0 21 16 13 10 6
1.2 15 12 10 8 5
1.4 12 9 8 7
1.6 10 8 7 6
1.8 8 7 6
2.0 7 6 5
2.5 6
3.0 5

Required n for test where α = 0.05 (1-sided) or α = 0.1 (2-sided)

β 0.01 0.05 0.10 0.20 0.50
Power 99% 95% 90% 80% 50%

∆/σ
0.2 70
0.3 122 97 71 32
0.4 101 70 55 40 19
0.5 65 45 36 27 13
0.6 46 32 26 19 9
0.7 34 24 19 15 8
0.8 27 19 15 12 6
0.9 21 15 13 10 5
1.0 18 13 11 8 5
1.2 13 10 8 6
1.4 10 8 7 5
1.6 8 6 6
1.8 7 6
2.0 6
2.5
3.0
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4.5 “Definitive Negative” Studies: Starch Blockers –
their effect on calorie absorbtion from a high-starch
meal.

Abstract: It has been known for more than 25 years that certain plant foods,
such as kidney beans and wheat, contain a substance that inhibits the activ-
ity of salivary and pancreatic amylase. More recently, this antiamylase has
been purified and marketed for use in weight control under the generic name
“starch blockers.” Although this approach to weight control is highly popu-
lar, it has never been shown whether starch-blocker tablets actually reduce
the absorption of calories from starch. Using a one-day calorie-balance tech-
nique and a high-starch (100 g) meal (spaghetti, tomato sauce, and bread), we
measured the excretion of fecal calories after normal subjects had taken either
placebo or starch-blocker tablets. If the starch-blocker tablets had prevented
the digestion of starch, fecal calorie excretion should have increased by 400
kcal. However, fecal reduce the absorption of calories from starch. Using a
one-day calorie-balance technique and a high-starch (100 g) meal (spaghetti,
tomato sauce, and bread), we measured the excretion of fecal calories after
normal subjects had taken either placebo or starch-blocker tablets. If the
starch-blocker tablets had prevented the digestion of starch, fecal
calorie excretion should have increased by 400 kcal. However, fecal
calorie excretion was the same on the two test days (mean ± S.E.M.,
80 ± 4 as compared with 78 ± 2). We conclude that starch-blocker
tablets do not inhibit the digestion and absorption of starch calories
in human beings.
Bo-Linn GW. et al New England J of Medicine. 307(23):1413-6, 1982 Dec 2.

Overview of Methods: The one-day calorie-balance technique begins with
a preparatory washout in which the entire gastrointestinal tract is cleansed
of all food and fecal material by lavage with a special calorie-free, electrolyte-
containing solution. The subject then eats the test meal, which includes
51CrCl3 as a non absorbable marker. After 14 hours, the intestine is cleansed
again by a final washout. The rectal effluent is combined with any stool
(usually none) that has been excreted since the meal was eaten. The energy
content of the ingested meal and of the rectal effluent is determined by bomb
calorimetry. The completeness of stool collection is evaluated by recovery of
the non absorbable marker.]

——-
See Powell-Tuck J. “A defence of the small clinical trial: evaluation of three
gastroenterological studies.” Br Med J Clinical Research Ed..292(6520): 599-
602, 1986 Mar 1. (under Resources on webpage). for a good paper on ‘nega-
tive’ studies,

Table 1: Standard Test Meal

Ingredients Dietary constituents*
Spaghetti (dry weight)** 100 g Protein 19 g
Tomato sauce 112 g Fat 14 g
White bread 50 g Carbohydrate (starch) 108 g (97 g)
Margarine 10 g
Water 250 g
51CrCl3 4µCi

*Determined by adding food-table contents of each item.
**Boiled for seven minutes in 1 liter of water.

Table 2. Results in Five Normal Subjects on Days of Placebo and Starch-
Blocker Tests.

Placebo Test Day Starch-Blocker Test Day
Duplicate Rectal Marker Duplicate Rectal Marker

Test Meal* Effluent Recovery Test Meal* Effluent Recovery

subject kcal kcal % kcal kcal %

1 664 81 97.8 665 76 96.6
2 675 84 95.2 672 84 98.3
3 682 80 97.4 681 73 94.4
4 686 67 95.5 675 75 103.6
5 676 89 96.3 687 83 106.9

Means 677 80 96.4 676 78 100
± S.E.M. ±4 ±4 ±0.5 ±4 ±2 ±2

Does not include calories contained in three placebo tablets (each tablet,
1.2±0.1 kcal) or in three Carbo-Lite tablets (each tablet, 2.8±0.1 kcal) that
were ingested with each test meal.

Is this a Definitive Negative Study?

---0-----100-----200-----300----- | <- Company’s Claim: 400 kcal
--***----100-----200-----300----- |

---0-----100-----200-----300-----400-- kcal blocked

*** 95% CI estimate from study
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0 Exercises

0.1 Are all head sizes alike?

Stephen Jay Gould’s book “The Mismeasure of Man” discusses a table from
a 1978 article by Epstein. Gould read the original article and found that
“a glance at E A. Hooton’s original table, reproduced below,13 reveals that
the SE column had been copied and re-labelled SD” Then, using this SD,
and the n, to compute a much smaller-than-it-should-be SE, Epstein was able
to “show” that the CI’s for mean head circumference for people of varied
vocational statuses did not overlap, and thus that there were “statistically
significant” inter-group differences.

Vocational Status N Mean (in mm) “S.D.”
Professional 25 569.9 1.9
Semiprofessional 61 566.5 1.5
Clerical 107 566.2 1.1
Trades 194 565.7 0.8
Public service 25 564.1 2.5
Skilled trades 351 562.9 0.6
Personal services 262 562.7 0.7
Laborers 647 560.7 0.3

i. Explain why the “SDs” in the table should not decrease with increasing
n, i.e., why the SD from a smaller n is as likely to be greater than the SD
from a bigger n 1 as it is to be smaller. If SD’s were smaller (some argue
larger) in larger samples, then the SD of the diameters of red blood cells
should be different for a large adult than a smaller adult!

ii. Also, from what you have seen of hat-sizes, what would be a reasonable
SD, and thus a reasonable CV, for inter-individual headsizes?

0.2 Births after The Great Blackout of 1966

On November 9, 1965, the electric power went out in New York City, and it
stayed out for a day – The Great Blackout. Nine months later, newspapers
suggested that New York was experiencing a baby boom. The table shows the
number of babies born every day during a twenty-five day period, centered
nine months and ten days after The Great Blackout.

13Table VIII-17 “Mean and standard deviation of head circumference for people of varied
vocational statuses” , The American Criminal, v. 1, Harvard U. Press, 1939,

Number of births in New York, Monday August 1-Thursday August 25, 1966.

Mon Tue Wed Thu Fri Sat Sun
451 468 429 448 466 377 344
448 438 455 468 462 405 377
451 497 458 429 434 410 351
467 508 432 426

These numbers average 436. This turns out to be not unusually high for New
York. But there is an interesting twist: the 3 Sundays only average 357.

i. How likely is it that the average of three days chosen at random from
the table will be 357 or less? What do you infer? Hint: The SD of the
25 numbers in the table is about 40. Formulate the null hypothesis; the
normal approximation can be used.

ii. The above question and the following footnote come from the Statistics
text by Freedman et al.

”Apparently, the New York Times sent a reporter around to a few hospi-
tals on Monday August 8, and Tuesday August 9, nine months after the
blackout. The hospitals reported that their obstetric wards were busier
than usual – apparently because of the general pattern that weekends
are slow, Mondays and Tuesdays are busy. These “findings” were pub-
lished in a front-page article on Wednesday, August 10, 1966, under the
headline ”Births Up 9 Months After the Blackout.” This seems to be the
origin of the baby-boom myth.”

Exercise: Suggest a better plan for estimating the impact, if any, of the
Blackout on the number of births.

Credits for story & questions: Freeman, Pisani and Purves and their book Statistics

iii. (Still on the subject of births, but now in Québec). In an effort to bolster
the sagging birth rate, the Québec government in its budget of March
1988 implemented a cash bonus of $4,500 to parents who had a third
child. Suggest a method of measuring the impact of this incentive scheme
– be both precise and concise.
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0.3 Planning ahead

One has to travel a distance of 7500 Km by 4-wheel jeep, over very rough
terrain, with no possibility of repairing a tire that becomes ruptured. Suppose
one starts with 14 intact tires (the 4, plus 10 spares). It is known that on
average, tires rupture at the rate of 1 per 5,000 tire-Kms (the mean interval
between punctures is 5,000 tire-Kms). Assume ruptures occur independently
of the of tire position or the distance already driven with the tire (i.e., the
sources of failure are purely external). Also, ignore the possibility of multiple
failures from a single source, e.g. a short bad section of the trail. [Can use R
code under Resources to animate this]

Calculate the probability of completing the trip, using the..

i. Poisson Distribution for the number of ruptures.

ii. Exact distribution of a sum of distances i.e. of a (fixed) number of ‘dis-
tance’ random variables.

iii. Central Limit Theorem to approximate the distribution in ii.

iv. Central Limit Theorem to approximate the distribution in i.

v. Random number fns. in R/SAS to simulate intervals between ruptures.

0.4 A random selection?

A colony of laboratory mice consisted of several hundred animals. Their
average weight was about 40 grams, with an SD of about 5 grams. As part
of an experiment, graduate students were instructed to choose 25 animals
haphazardly, without any definite method. The average weight of these 25
sampled animals was 43 grams. Is choosing animals haphazardly the same as
drawing them at random? Assess this by calculating the probability, under
strict random selection, of obtaining an average of 43 grams or greater.

0.5 Planning ahead

On the average, conventioneers weigh about 150 pounds; the SD is 25 pounds.

i. If a large elevator for a convention centre is designed to lift a maximum
of 15,500 pounds, the chance it will be overloaded by a random group of
100 conventioneers is closest to which of the following: 0.1 of 1%, 2%,
5%, 50%, 95%, 98%, 99.9% ? Explain your reasoning.

ii. The weights of conventioneers are unlikely to have a Gaussian (“Normal”)
distribution. In the light of this information, are you still comfortable
using the Normal distribution for your calculations in part i? Explain
carefully. Explain why the ‘random’ is key to being able to answer part
i. and what impact it would have if it is not the case.

0.6 An unexpected pattern: or is it?

Suppose the pathology reports from biopsies taken during a given week are
equally likely to be received on any one of the weekdays from August 4 to
Friday August 9.14 Women with positive biopsies then have their surgery
scheduled for one of the weekdays of the last full week of August, i.e., Mon-
day August 25 to Friday August 29, equally likely to be any one of these
5 weekdays, and unrelated to which day of the week the biopsy result was
received.

i. Derive and plot the probability distribution of the wait (i.e., no. of days)
from when the biopsy was received until the woman had the surgery.

ii. Calculate the mean and standard deviation of the distribution.

iii. Comment on its shape, and why it is this shape, and what would happen
if there were several stages, not just 2.

iv. What if we had a 7-day work-week rather than 5?

0.7 A snail’s pace

A snail (escargot) starts out to climb a very high wall. During the day it moves
upwards an average of 22 cm (SD 4 cm); during the night, independently of
how well it does during the day, it slips back down an average of 12 cm (SD
3 cm). The forward and backward movements on one day/night are also
independent of those on another day/night.

i. After 16 days and 16 nights, how much vertical progress will it have
made? Answer in terms of a mean and SD. Note that – contrary to what
many students in previous years calculated – the SD of the total progress
made is not 80 cm; show that it is in fact 20 cm.

14Exercise freely adapted from patterns seen in study by Mayo et al, Waiting time for
breast cancer surgery in Quebec. CMAJ. 2001 Apr 17;164(8):1133-8.
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ii. What is the chance that, after 16 days and 16 nights, it will have pro-
gressed more than 150 cm?

iii. ”Independence was ’given’. Did you have to make strong [and possibly
unjustified] distributional assumptions in order to answer part b? Explain
carefully.

0.8 Student’s t-distribution - beyond n = 10

“Student”’s table was for z = (ȳ−µ0)/s, not the t = (ȳ−µ0)/(s/
√
n) tabulated

and used today [Also, the s in Student’s z was obtained by ÷n, not ÷(n−1)].

Moreover, his 1908 table only went up to n = 10. For n > 10 he suggested
using z = (ȳ − µ0)/(s/

√
n− 3) and obtaining the (approximate) p-value by

using the Normal table to finding the tail area corresponding to this z value.

His first e.g.’s had n = 10, 6 and 2, he “conclude(d) with an example which
comes beyond the range of the tables, there being eleven experiments.”

For this, he uses the approximation ∆ ∼ N(d̄, s/
√
n− 3) to arrive at the

statement that there is a 0.934 probability “that kiln-dried barley seed gives
a higher barley yield than non-kiln-dried seed.” [i.e. that ∆ > 0 – see below]

i. Use today’s packages/functions (e.g. the pt function in R or tdist

function in Excel, or probt in SAS) to check how accurate his ap-
proximation was in this case.15 Note that he calculated each SD as
{(1/11)×

∑
(Diff−Diff)2}1/2.

ii. Do likewise with his other 3 p values (notice the typo in the mean differ-
ence in crop value in the last column).

Excerpts from section IX of Student’s 1908 paper... To test whether it is of advantage to
kiln-dry barley seed before sowing, seven varieties of barley were sown (both kiln-dried [KD] and
not kiln-dried [NKD]) in 1899 and four in 1900; the results are given in the table. (corn price is
in shillings per quarter and the value of the crop is in shillings per acre).

It will he noticed that the kiln-dried seed gave on an average the larger yield of corn and straw,
but that the quality was almost always inferior. At first sight this might be supposed to be due to
superior germinating power in the kiln-dried seed, but my farming friends tell me that the effect
of this would be that the kiln-dried seed would produce the better quality barley. Dr Voelcker
draws the conclusion: “In such seasons as 1899 and 1900 there is no particular advantage in
kiln-drying before mowing.” Our examination completely justifies this and adds “and the quality
of the resulting barley is inferior though the yield may be greater.”

In this case I propose to use the approximation given by the normal curve with standard deviation
s/
√
n− 3 and therefore use Sheppard’s (Normal) tables, looking up the difference divided by

s/
√

8. The probability in the case of yield of corn per acre is given by looking up 33.7/22.3 =

15Others had to wait for his extended z table published in 1917, in order to obtain the
exact probability.

1.51 in Sheppard’s tables. This gives p = 0.934, or the odds are about 14 to 1 that kiln-dried
corn gives the higher yield.

Similarly 0.91/0.28 = 3.25, corresponding to p = 0.999416 so that the odds are very great that
kiln-dried seed gives barley of a worse quality than seed which has not been kiln-dried.

Similarly, it is about 11 to 1 that kiln-dried seed gives more straw and about 2 to 1 that the total
value of the crop is less with kiln-dried seed.

16As pointed out in §V, the normal curve gives too large a value for p when the probability
is large. I find the true value in this case to be p = 0.9976. It matters little, however, to a
conclusion of this kind whether the odds in its favour are 1660 to 1 or merely 416 to 1.
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Figure 5: The cartoon, from the textbook Statistics by Freedman, Pisani and
Purves, refers to switching from the ratio (ȳ−µY )/(σ/

√
n) (where σ is known)

to the ratio (ȳ − µY )/(s/
√
n) (where s is an estimate of the unknown σ).

Ironically, there is another z as well: in 1908 Student derived and tabulated the
distribution of the ratio: z = (ȳ−µY )/s∗, with s∗ obtained using a divisor of n.
Later, in the mid 1920s, Fisher got him to switch to the ratio (ȳ−µY )/(s/

√
n),

with s obtained using a divisor of n− 1. It appears that Student was the one
who made the name change from Student′s z to Student′s t, and Fisher who
did the heavy math lifting, and who saw the much wider applicability of the
t distribution. Fisher saw a t r.v. as (proportional to) the ratio of a Gaussian
r.v. to the square root of an independent r.v. with a chi-squared distribution,
and the centrality of the concept of ‘degrees of freedom’. For more, see 2008
article by JH MJ and EM under Resources.
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Figure 6: from http://www.york.ac.uk/depts/maths/histstat/people/

0.9 Experiments to Determine the Density of the Earth.
By Henry Cavendish, Esq. F.R.S. and A. S.

The 29 measurements (cf. an earlier assignment sheet) are repeated here:

5.5 5.61 4.88 5.07 5.26 5.55 5.36 5.29 5.58 5.65 5.57 5.53 5.62 5.29 5.44 5.34
5.79 5.1 5.27 5.39 5.42 5.47 5.63 5.34 5.46 5.3 5.75 5.68 5.85

The following is from pp 521-522 of his report.

From this table it appears, that though the experiments agree pretty
well together, yet the difference between them, both in the quantity
of motion of the arm and in the time of vibration, is greater than can
proceed merely from the error of observation. As to the difference
in the motion of the arm, it may very well be accounted for, from
the current of air produced by the difference of temperature; but,
whether this can accounted for the difference in the time of vibra-
tion, is doubtful. If the current of air was regular, and of the same
swiftness in all parts of the vibration of the ball, I think it could not;
but, as there will most likely be much irregularity in the current, it
may very likely be sufficient to account for the difference.

By a mean of the experiments rnade with the wire first used, the
density of the earth comes out 5.48 times greater than that of water;
and by a mean of those made with tire latter wire, it comes out the
same; and the extreme difference of the results of the 23 observations
made with this wire, is only .75; so that the extreme results do not
differ from the mean by more than .38, or 1

14 of the whole, and
therefore the density should seen to be deterimined hereby, to great
exactness.

It, indeed, may be objected, that as the result appears to be influ-
enced by the current of air, or some other cause, the laws of which we
are not well acquainted with, this cause may perhaps act always, or
commonly, in the same direction, and thereby make a considerable
error in the result. But yet, as the experiments were tried in various
weathers, and with considerable variety in the difference of temper-
ature of the weights and air, and with the arm resting at different
distances from the sides of the case, it seems very unlikely that this
cause should act so uniformly in the same way, as to make the error
of the mean result nearly equal to the difference between this and
the extreme; and, therefore, it seem very unlikely that the density
of the earth should differ from 5.48 by so much as 1

14 of the whole.

Another objection, perhaps, may be made to these experiments,
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namely, that it is uncertain whether, in these small distances, the
force of gravity follows exactiy the same law as in greater distances.
There is no reason, however, to think that any irregularity of this
kind takes pIace, until the bodies come within the action of what is
called the attraction of cohesion, and which seems to extend only to
very minute distances. With a view to see whether the result could
be affected by this attraction, I made the 9th, 10th, 11th and 15th
experiments, in which the balls were made to rest as clese to the sides
of the case as they could; but there is no diflerence to be depended
on, between the results under that circumstance, and when the balls
are placed in any other part of the case.

According to the experiments made by Dr. MASKELYNE on the
attraction of the hill Schehallien, the density of the earth is 4 1

2 times
that of water; which differs rather more from the preceding determi-
nation than I should have expected. But I forbear entering into any
consideration of which determination is most to be depended on, till
1 have examined more carefully how much the preceding determina-
tion is affected by irregularities whose quaantity I cannot measure.

Exercise

i. Find the mean of the 29 values.

ii. Calculate a 95% CI to accompany it.

iii. What ‘fraction of the whole’ (i.e., what fraction of the point estimate)
does the margin of error in this CI represent?

iv. Would a “trimmed mean” be useful here?
(see http://en.wikipedia.org/wiki/Truncated mean ).

0.10 Power and sample size calculations -1

Refer to the exercises in Section 6.4 of Moore and McCabe’s text (see Re-
sources).

i. Exercise 6.82.

ii. Exercise 6.84. In addition, calculate the n that yields a power of 80%
against a shortfall of 5, 2 and 1 cc, respectively.

iii. Exercise 6.86. In addition, calculate the n that yields a power of 50%,
and a power of 80%, against a mean of 130, 135, and 140 respectively.

0.11 Power and sample size calculations - 2

Suppose we wished to assess, via a formal statistical test, whether [at an
population, rather than an individual, level] a step-counting device or app is
unbiased (H0) or under-counts (H1). Suppose we will do so the way Case et
al. did, but measuring n persons just once each. We observe the device count
when the true count on the treadmill reaches 500. The statistical test will
declare the test ‘positive’ (the departure from 500 is statistically significant)
if the mean of the n observations is below 500− 1.96× s/n1/2, where s is the
SD of the n observations, and the 1.9617 is chosen to give the test a type I
error of 5% 18 Since each person is only being measured once, we will not be
able to distinguish the genuine between-person variance, σ2

B from the within-
person variance, σ2

W .
19 Thus the sample variance, s2 will be an estimate of

σ2 = σ2
B + σ2

W .

i. Using a planned sample size of n = 25, and σ = 60 steps as a pre-study
best-guess as to the s that might be observed in them, calculate the
critical value 500− 1.96× s/n1/2.

ii. Now imagine that in an infinite sample, the mean would not be the null
500, but µ = 470. Calculate the probability that the mean in the sample of
25 will be less than this critical value. [Use the same s for the alternative
that you used for the null.]

iii. By trial and error, or better still by deriving a general formula, adjust the
n until this probability (i.e., the power) is 80%. Show the 2 probabilities
in a diagram, as was done in Figure 4 in section 4.3.2 of the notes.20

iv. Show that this n satisfies the equality

1.96× SEnull[ȳ] + 0.84× SEalt[ȳ] = 30.

17Assume the ultimate n will be large enough that the t and z distributions are inter-
changeable.

18The way the task is phrased, it looks like a 1-sided alternative, but – even if interest
is only in 1 direction – grant review panels and journal editors often insist on a 2-tailed
p-value. This insistence on a 2-tailed test might be appropriate if, even though the interest
is in a drug reducing the death rate, an increased death rate would be of concern and
not considered the same as a null ‘no difference’. If you find this made-up example a bit
un-natural, imagine instead that you were a regulator who had to ensure that a company’s
claim (H0) that its soft-drink bottles contained (at least) 500 ml was in fact true [ versus
the alternative (H1) that it was under-filling them].

19With 2 replicates on each subject, Case et al. could have obtained separate estimates
of the two variance components.

20Note that there, the concern was with a µ that is greater than µ0.
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0.12 Unsure if a z-SE’s confidence interval is appropri-
ate: bootstrap!

i. At the bottom of the Oceanography webpage is a personalized dataset
(.csv) with your name on it, consisting of the ocean depths (or land
heights, i.e., altitudes) at 200 randomly selected locations on the earth.
First, calculate a z-based 95% CI for µ, the mean depth of the ocean.
Then, use the R code from the next question (or ‘roll your own’) to in-
vestigate (via bootstrap21 ) whether your n of ocean-depth measurements
is large enough, and the ‘parent’ distribution well-behaved (CLT-friendly)
enough to assure that a Gaussian- and SE-based CI for µ (the mean ocean
depth) is reasonably accurate.

ii. Refer to the On Time data for the first 1/2 million U.S. airline flights in
2013, along with the R code supplied (these can be found in the Resources
for Statistical models [mean/quantile], under Data / Data Analysis). Use
the R code (or ‘roll your own’) to investigate (via bootstrap) whether
n = 30 is large enough, and the ‘parent’ distribution is sufficiently CLT-
friendly to assure that a Gaussian- and SE-based CI for µ (the mean
delay) is reasonably accurate. Even though you might be tempted in this
case to ‘peek’ at the universe of (1/2 million) observations, in practice you
won’t have this luxury (you will have spent your entire budget getting
the n observations).

What if you had a budget for a sample of n = 200?

Yes! we know, it is just the cost of a fraction of a second of your time,
and that of R, in this toy example, and a minimal battery or electricity
charge for the extra milliseconds of computer time; but imagine that each
observation – as it might in a medical trial of how much a certain treat-
ment delays some event – costs several thousand dollars? or this is how
many new eligible patients in your city develop the condition of interest
in a 2-year window!

The basis for the bootstrap: A few years ago, one student investigated
question i by taking many samples of the same size (n was 140) from the
oceanography database – and found that indeed the sampling variability
of the sample mean was close to Gaussian. BUT, in practice, one would
not have this luxury. So, instead of sampling from the actual universe of
N, Efron decided to ‘photocopy’ or ‘clone’ the n many many many times,
and pretended that this was like having the universe of all N – from which
he could then sample as often as he wanted, just like that student did.

21Thanks to your fellow student, with the same initials B.S. we sometimes use for boot-
strap, for suggesting this.

Of course, if we have a computer, we don’t need to make physical copies.
We can sample n with replacement from the n, and do so enough times
until the histogram of sample means (or sample medians, or whatever
statistic) becomes smooth enough to trust. Then we can take the central
(say) 95% portion of this as the 95% CI for µ (or whatever parameter –
generically θ – we are interested in.

On average, any specific one of the n observed values will appear in the
bootstrap sample 1 time... sometimes it won’t appear at all, sometimes
the sample will have 1 copy of it, sometimes 2 copies, etc.

You might be interested in a trick we came up with for not having to make
physical copies.. see the paper by Hanley JA and Macgibbon B. Creating
non-parametric bootstrap samples using Poisson frequencies. Computer
Methods and Programs in Biomedicine. 2006 Jul;83(1):57-62. Epub 2006
May 30. It is available under JH’s R E P R I N T S page.

0.13 Planning ahead – the (2015) sequel

Recently, JH has an appointment for 2pm, one door away from the Vendome Metro station, and
consulted the STM website http://www.stm.info/en/info/networks/metro to find out how much
time it would take if he took the Metro from the Peel to the Vendome Metro station. It said 20
minutes.

How far ahead should he be at Peel metro station in order to be on time? (as it turned out, he
had to wait over an hour once he got to his destination!)

He doesn’t know when the next Green Line train will be, but (for this exercise) assume that they
also arrive every 10 minutes at this time of day.

Lionel Groulx station, where he will switch to the Orange Line, is the 3rd stop (count on 1 minute
per stop). Again, he does not know, when planning ahead, when the trains depart from there,
but does know (lets assume) that they come every 12 minutes at this time of day. Vendome
station is the second stop.

i. What is the probability that if he arrives at the Peel Metro platform at 1.40pm, he will be
on the Vendome platform by 1.57 at the latest? State any assumptions made.22

ii. What if the trip involved 3 Lines, involving 9 stops?

22 This problem is similar to one by Laplace, discussed in Chap-
ter 5 of a book we will meet in the next question.
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0.14 BC – Before [electronic] Computers

McGill library has the ebook A History of the Central Limit Theorem: From
Classical to Modern Probability by Hans Fischer. Section 2.1.1 (Sums of
Independent Random Variables) appears in the chapter entitled The Central
Limit Theorem from Laplace to Cauchy, and page 19 is reproduced overleaf.

If you Google ‘Laplace comets central limit theorem’ you will find Chapter
4 in an older book The Life and Times of the Central Limit Theorem, by
William J. Adams (McGill Library has a physical copy)

And you can use Google to find Chapter 5 ‘Distribution of Comets’ in
Pierre-Simon Laplace, 1749-1827: A Life in Exact Science by Charles
Coulston Gillispie and I. Grattan-Guinness. This chapter discusses Laplace’s
treatment of the sum of 2 or 3 Uniform random variables. As the authors
explained in a p41 footnote, while they say they got the algebra correct, they
drew parts of Figure 6 (the ‘sum of 3’ case) with ‘curvature the reverse of
that shown.’

All three books tell of how Laplace tried to submit to statistical “analysis
the probabilities that the mean inclination of the comets (...) will fall within
certain limits, under the assumption that they have been orbited by chance.”

Their sum (or mean) involves the angles of each of 63 comets, measured
against the ecliptic, and assumed to be distributed randomly according to a
uniform distribution between 0 and 90 degrees, and stochastically independent
of each other.

2.1 Laplace’s Central “Limit” Theorem 19

2.1.1 Sums of Independent Random Variables

Sums of independent random variables had played an important role in Laplace’s
probabilistic work from the very beginning.3 In this context, the problem of calcu-
lating the probability distribution of the sum of angles of inclination, which were
assumed to be determined randomly, as well as the related problem of calculating
the probabilities of the deviations between the arithmetic mean of data which were
afflicted by observational errors and the underlying “true value,” became especially
important. In one of his first published papers, Laplace [1776] had already set out to
determine the probability that the sum of the angles of inclination of comet orbits (or
the arithmetic mean of these angles respectively) is within given limits. He assumed
that all angles, which had to be measured against the ecliptic, were distributed ran-
domly according to a uniform distribution between 0ı and 90ı (and also tacitly
presupposed that all angles were stochastically independent). Laplace succeeded in
calculating these probabilities for an arbitrary number of comets via induction (with
a minor mistake which was subsequently corrected in [Laplace 1781]). In this 1781
paper, Laplace even introduced a general—however very intricate—method, based
on convolutions of density functions, in order to exactly determine the probability
that a sum of independent random variables (“quantités variables,” as Laplace put it)
was within given limits.4 In the most simple case, each of the n variables had the
same rectangular distribution between 0 and h. For the probability P that the sum
of those variables was between a and b with 0 � a < b � nh, Laplace obtained (in
modern notation)

P D 1

hnnŠ
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n

i

!
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i

!

.�1/i .a � ih/n
!

; (2.1)

where N D min.n; Œb
h
�/ and M D min.n; Œa

h
�/. Formulae of this kind were too

complicated for a direct numerical evaluation if the number of random variables
exceeded a relatively small value. The arithmetic mean of the actual observed an-
gles of inclination of the then known 63 comets was 46ı160. Through the use of
(2.1) alone, Laplace was unable to address the hypothesis that the comets’ planes
of motion resulted at “random.” At this stage of his mathematical work, however,
Laplace could not develop usable approximations.

3 For a comprehensive biography also dealing with Laplace’s probabilistic work, see [Gillispie
1997]. Detailed discussions of Laplace’s contributions to probability and statistics can be found
in [Sheynin 1976; 1977; 2005b; Stigler 1986; Hald 1998]. The web site already referred to in
footnote 1 contains English translations of most works in probability theory by Laplace.
4 See [Sheynin 1973, 219 f.] and [Hald 1998, 56–60] for descriptions of this method.
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i. Suggest a replacement (admittedly approximate) for the at-that-time-not-very-
practical Laplace formula (2.1 in Fischer’s book). Use it to judge whether the arith-
metic mean of the observed inclination of the then known 63 planets (46 degrees, 16
minutes), did indeed, as Laplace interpreted it, ‘deviate(d) but little’ from 45 degrees.

ii. (Before checking) how accurate do you think your formula is? Then check it against
formula 2.1, and against Monte Carlo simulation, in the n = 63 example.

iii. At the time, Laplace left it to others the calculation for n = 63 because ‘le calcul
serait pénible’ . What about the correctness of the actual n = 12 calculation he was
content to report on p. 301? Again, check it against formula 2.1, and by Monte Carlo
simulation. Also check further out in the tail.

The article ‘A note on the sum of uniform random variables by’ Buonocore, et al. in
Statistics & Probability Letters, Volume 79, Issue 19, 1 Oct 2009, pp 2092-97 shows equation
2.1 as a special case of a more general formula, which they established by induction.

Below is a quote from Laplace that explains the original context.

......... Laplace, quoted in pp 31 & 32 of The Life and Times

......... of the Central Limit Theorem, by William J. Adams.

From Laplace in the 1770s...
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0.15 Dice for Statistical Investigations

Stigler’s 1991 article Stochastic Simulation in the Nineteenth Century gives
a very interesting account of the era before we had tables of, or machine
generate-able’, random numbers.23

One of these methods is due to Francis Galton, published in
1890. You can find his description in a website devoted to him,
http://galton.org/bib/JournalItem.aspx action=view id=193 or from
the archives on the Nature website, or the link on the resources page.

i. What if you were to replace his dice with pentakisdodecahedrons, i.e.,
polyhedra with 60 faces, 90 edges, and 32 vertices? What values would
you write in the edges of Pentakisdodecahedron I and Pentakisdodecahe-
dron II?

ii. In Monte Carlo work, ‘back in the days when’ we had to program our
own and didn’t like to have to program the Inverse Gaussian CDF, many
statistical experimenters used the sum of 12 Uniform(0,1) independent
random variables, minus 6, as a reasonable way of generating N(0,1)
observations. (Box-Muller’s method was another, provided the trig func-
tions were built in).

Why do you think a sum of 12 , rather than say 10, or 30, was used?

iii. Can you suggest any time-savings or improvements when using Galton’s
dice?

23Gosset (aka ‘Student’) preferred to simulate from ‘real’ data: see Hanley website on
Gosset for pictures from his notebook.
“The measurements were written out on 3,000 pieces of cardboard, which were then very
thoroughly shuffled and drawn at random. As each card was drawn its numbers were
written down in a book, which thus contains the measurements of 3,000 criminals in a
random order. Finally, each consecutive set of 4 was taken as a sample – 750 in all – and
the mean, standard deviation, and correlation of each sample determined.”
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