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In examining the uselulness of a conlidence interval, we arve concerr
both the level of conlidence and the margin ol error. The conhidence K
s how reliable the method is in repeated use. The margin of error
how sensitive the method s, that is, how closely the interval pins d
parameter being estimated. Fixed level a significance tests are closel
(o conlidence intervals—in lact, we saw that a two-sided test can be
out directly rom a conlidence interval. The significance level, like
fidence level, savs how reliable the method is in repeated use. I we
signilicance tests vepeatedly when Hy is in fact true, we will be wrong
will reject Hy) 5% ol the time and right (the test will fail to reject Hy
the time.

High conlidence is of little value it the interval is so wide that fe
of the parameter are excluded. Similarly, a test with a small level «
litile value if it almost never rejects Hy even when the true parame
is far from the hvpothesized value. We must be concerned with the
a test to detect that My is false, just as we are concerned with the v
error of a conlidence interval. This ability is measured by the probal
the test will reject Hy when an alternative is true. The higher this p

is, the more sensitive the test is.

Power

The probability that a lixed level « significance test will reject 1
particular alternative value of the parameter is true is called the f
the test to detect that alternative.

Can a 6-month exercise program increase the total body bone miners
(TBBMC) of voung women? A team of researchers is planning a study t
this question. Based on the results of a previous study, they are willing |
that o = 2 for the percent change in TBBMC over the 6-month period. A
TBBMC of 1% would be considered important, and the researchers wot
have a reasonable chance of detecting a change this large or lavger Is 25

large enough sample for this project?

We will answer this question by calculating the power of the's
test that will be used to evaluate the data to be collected. The
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Step 1

The null hypothesis is that the exercise program has no effect on TBBMC. In
other words, the mean percent change is zero. The alternative is that exercise
is beneficial; that is, the mean change is positive. Formally, we have

Ho:,LL=0
Hyp=>0

The alternative of interest is K = 1% increase in TBBMC. A 5% test of signif-
icance will be used.

Step 2

The z test rejects Hy at the a = 0.05 leve] whenever

X = ug x -0 -
L = 1.645
a/Jn  2//25

Be sure you understand why we use 1.645. Rewrite this in terms of ¥:

X = 1.645*2~
25
X = 0.658

Because the significance level is @ = 0.05, this event has probability 0.05
of occurring when the population mean nis0.

Step 3

The power against the alternative p = 1% is the probability that H, will be
rejected when in fact p = 1%. We calculate this probability by standardizing
X, using the value u = 1, the population standard deviation ¢ = 2, and the
sample size n = 25. The power is

P(x = 0.658 when p = 1) =P(x K 0'658—1)

o/yn  2//25
= P(Z = -0.855) = 0.80

Figure 6.13 illustrates the nower with the sarmnlineg dictrilveiom fo= .. L -
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FIGURE 6.13 The sampling distributions of v when g = 0 and when p = 1
with the @ and the power. Power is the probability that the test rejects Hy when
the alternative is true.

the funded studies be sufficient to detect important results 80% ol the time
using a 5% test of significance.

Increasing the power

Suppose vou have performed a power caleulation and found that the powe
is too small. What can vou do to increase it? Here are four ways:

Increase a. A 5% test of significance will have a greater chance ol
rejecting the alternative than a 19 test because the strength of evidence
required for rejection is less.

Consider a particular alternative that is farther away from o Vidues 0
w that are in H, but lie close to the hypothesized value p arc harder 10

detect (lower power) than values of u that are far from peo.
Increase the sample size. More data will provide more information
about © so we have a better chance of distinguishing values of u
Decrease o, This has the same effect as increasing the sample sz
. . . eeas an
more information about . Improving the measurement proces i
esiricting attention to a subpopulation are two commot! wavs 1o

decrease o.
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Power calculations are important in planning studies. Using a significance
test with low power makes it unlikelv that vou will find a significant effect
even if the truth is far from the null hypothesis. A null hypothesis that is in
fact false can become widely believed if repeated attempts to find evidence
against it fail because of low power. The following example illustrates this
point.

The “efficient market hvpothesis” {or the time series of stock prices savs that future
stock prices (when adjusted for inflation) show only random variation. No informa-
tion available now will help us predict stock prices in the future, because the offi-
cient working of the market has already incorporated all available information in
the present price. Many studies have tested the claim that one or another kind of
information is helpful. In these studies, the efficient market hypothesis is H,, and
the claim that prediction is possible is H,. Almost all the studies have failed to find
good evidence against Hy. As a result, the efficient market theory is quite popular.
But an examination of the significance tests employed finds that the power is gener-
ally low. Failure to reject Hy when using tests of low power is not evidence that H,
Is true. As one expert savs, “The widespread impression that there is strong evidence
for market efficiency may be due just to a lack of appreciation of the low power of
many statistical tesgs.”!?

Here is another example of a power calculation, this time for a two-sided
7 test.

Example 6.13 (page 448) presented a test of
[101 M= 0.86
H,: pn+0.86

at the 1% level of significance. What is the power of this test against the specific
alternative . = 0.845?
The test rejects Hy when |z = 2.576. The test statistic is
X —086
0.0068 /3

Some arithmetic shows that the test rejects when either of the following is true:

z = 2.576 (in other words, ¥ = 0.870)

o= ~2.576 {in other words, ¥ = 0.850)

These are disjoint events, so the power is the sum of their probabilities, computed
assuining thai the alternative 1 = 0.845 is true. We find that

P(T =

PT = 085)=p
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Reject Hy
Power = 0.8980 / \
\ f \\k\ Fail to reject Hy Reject Hy

\

// \

0.845  0.850 0.870
(alternative i)

FIGURE 6.14  The power for Example 6.19.

Figure 6.14 illustrates this caleulation. Because the power is about 0.9, we are quite
confident that the test will reject H when this alternative is true. )

Inference as decision”

We have presented tests of significance as methods for assessing the strengl
of evidence against the null hypothesis. This assessment is made by the P
value, which is a probability computed under the assumption that Hg is tru
The alternative hypothesis (the statement we seek evidence for) enters the tes
only to help us see what outcomes count against the null hypothesis. Suchi
the reasoning of tests of significance as advocated by Fisher and as practice
by many users of statistics.

But signs of another way of thinking were present in the discussion ¢
significance tests with fixed level a. A level of significance a chosen in advanc
points to the outcome of the test as a decision. 1f the P-value is less than a, %
reject Hy in favor of H,. Otherwise we fail to reject Ho. The transition {1oi
measuring the strength of evidence to making a decision is not a small ste]
Many statisticians agree with Fisher that making decisions is too grand a go?
especially in scientific inference. A decision is reached only after the evident
of many studies is weighed. Indeed, the goal of research is not “decision” bt
a gradually evolving understanding. Statistical inference should content its¢
with confidence intervals and tests of significance. Many users of statistics &
content with such methods. It is rare to set up a level o in advance as 2 W

- . . . . . . e . . g with @
“The purpose of this section is o clarify the reasoning ol significance tests by contrast

related tvpe of reasoning. It can be omitied without loss of continuity.
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for making a decision in a scientific problem. More commonly, users think
of significance at level 0.05 as a description of good evidence. This is made
clearer by giving the P-value.

Yet there are circumstances that call Tor a decision or action as the end
result of inference. Acceptance sampling is one such circumstance. A Pro-
ducer ol bearings and the consumer of the bearings agree that cach carload
lotshall meet certain quality standards. When a carload arrives, the consumer
chooses a sample of bearings (o be inspected. On the basis of the sample out-
come, the consumer will either accept or reject the carload. Fisher agreed that
this is a genuine decision problem. But he insisted that acceptance sampling
is completely different from scientific inference. Other eminent statisticians
have argued that if “decision” is given a broad meaning, almost all problems
ol statistical inference can be posed as problems of making decisions in the
presence of uncertainty. We will not venture further into the arguments over
how we ought to think about inference. We do want to show how a differ
ent concept—inference as decision—changes the reasoning used in tests of
significance.

fwo ty pes of error

Tests of significance concentrate on Hy, the null hypothesis. If a decision is
called for, however, there is no reason to single out Hy. There are simply two
hypotheses, and we must accept one and reject the other. It is convenient to
call the two hypotheses H, and H,, but Hy no longer has the special status (the
statement we try to find evidence against) that it had in tests of significance.
In the acceptance sampling problem, we must decide between

Hy: the lot of bearings meets standards

H,: the lot does not meet standards

on the basis of a sample of bearings.

We hope that our decision will be correct, but sometimes it will be wrong.
There are two types of incorrect decisions. We can accept a bad lot of bearings,
or we can reject a good lot. Accepting a bad lot injures the consumer, while
rejecting a good lot hurts the producer. To help distinguish these two types of
error, we give them specific names.

Type I and Type H Errors

If we reject Hy (accept H,) when in fact Hg 1s true, this is a Type I error. If
we accept fHg (reject H,) when in fact H, is true, this is a Type I error.

The possibilities are summed up in Figure 6.15. I Hy is true, our decision
either is correct (il we accept Hy) oris a Tvpe [ error. If H, is true, our
decision either is correct oris a Type I error. Only one error is possible at one
time. Figure 6.16 applies these ideas to the acceptance sampling example.
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Truth about
the population

Hj true H, true

Typel Correct
Reject Hy error decision
Decision
based on
sample Accept Hy Correct Type Ii
decision error

FIGURE 6.15 The two types of error in testing hypotheses.

Truth about the lot

Does meet  Does not
standards meet standards

. Reject Typel Correct
Decision the lot error decision
based on
‘a .\ .
sample  Accept Correct Type i

the lot decision error

FIGURE 6.16 ~ The two types of error in the acceptance sampling setting.

Error probabilities

Any rule for making decisions is assessed in terms of the probabilities of th
two types of error. This is in keeping with the idea that statistical inferencei
based on probability. We cannot (short of inspecting the whole lot) guarante
that good lots of bearings will never be rejected and bad lots never be acceptec
But by random sampling and the laws of probability, we can say what th
probabilities of both kinds of error are.

Significance tests with fixed level a give a rule for making decisions, bt
cause the test either rejects Ho or fails to reject it. If we adopt the decisiol
making way of thought, failing to reject Ho means deciding that Hp is tru
We can then describe the performance of a test by the probabilities of Type
and Type I errors.

The mean diameter of a type of bearing Is supposed to be 2.000 centimeters (cm)
The bearing diameters vary normally with siandard deviation ¢ = 0.010 o Wher
a lot of the bearings arrives, the consumer takes an SRS of 5 bearings from the lo
and measures their diameters. The consumer rejects the bearings if the sample meal
diameter is significantly different from 2 at the 5% significance level.

This is a test of the hypotheses

2]

j’i{)i o=
Hoop#

[
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Accept Hy Reject Hy

_ Reject Hj

/

Critical H=2 Critical p =2.015
valueof ¥ (Hy) valueof ¥  (H,)

FIGURE 6.17  The two error probabilities for Example 6.20. The probability of
a Type L error (light tan area) is the probability of rejecting Hy: 1 = 2 when in
fact u = 2. The probability of a Type Il error (dark tan area) is the probability of
accepting Hy when in fact u = 2.015.

To carry out the test, the consumer computes the z statistic:

T -2
T 0015

and rejects H, if

2 <—-196 or z > 1.96

A Type T error is to reject Hy when in fact w=2.

What about Type II errors? Because there are many values of u in H,, we will
concentrate on one value. The producer and the consumer agree that a lot of bearings
with mean 0.015 cm away from the desired mean 2.000 should be rejected. So a
particular Type II error is to accept Hy when in fact u = 2.015.

Figure 6.17 shows how the two probabilities of error are obtained from the two
sampling distributions of ¥, for u = 2 and for # = 2.015. When u = 2, Hy is true
and to reject Hy is a Type I error. When u = 2.015, accepting Hy is a Type 1I error,
We will now calculate these error probabilities.

The probability of a Type I error is the probability of rejecting H, when
it is really true. In Example 6.20, this is the probability that |z| = 1.96 when
# = 2. But this is exactly the significance level of the test. The critical value
1.96 was chosen to make this probability 0.05, so we do not have to compute
it again. The definition of “significant at level 0.05” is that sample outcomes
this extreme will occur with probability 0.05 when H, is true. !
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Significance and Type 1 Error
The significance level « of any fixed level test is the probability of a Tvpe
ervor. That is, « is the probability that the test will reject the null hypothesis

Hy when Hy is in fact true.

The probability of a Type IT error for the particular alternative p = 2.01
in Example 6.20 is the probability that the test will fail to reject Ho when p he
this alternative value. The power of the test against the alternative u = 2.01
is just the probability that the test does reject Hy. By following the method «
Example 6.19, we can calculate that the power is about 0.92. The probabili
of a Type Il error is therefore 1 — 0.92, or 0.08.

Power and Type 11 Error

The power of a fixed level test against a particular alternative is 1 minu
the probability of a Type Il error for that alternative.

The two types of error and their probabilities give another interpretatic
of the significance level and power of a test. The distinction between tests
significance and tests as rules for deciding between two hypotheses does n
lie in the calculations but in the reasoning that motivates the calculatior
In a test of significance we focus on a single hypothesis (Ho) and a sing
probability (the P-value). The goal is to measure the strength of the samy
evidence against Hy. Calculations of power are done to check the sensitiv:
of the test. If we cannot reject Hy, we conclude only that there is not sufficie
evidence against Hy, not that Ho is actually true. If the same inference proble
is thought of as a decision problem, we focus on two hypotheses and give
rule for deciding between them based on the sample evidence. We therefc
must focus equally on two probabilities, the probabilities of the two tyf
of error. We must choose one or the other hypothesis and cannot abstain
grounds of insufficient evidence.

The common practice of testing hypotheses

Such a clear distinction between the two ways of thinking is helpful for und
standing. In practice, the two approaches often merge. We continued tocallc
of the hypotheses in a decision problem Hy. The common practice of testing:
potheses mixes the reasoning of significance tests and decision rules as follor

State Hp and H, just as ina test of significance.
2. Think of the problem as a decision problem, so that the probabilities’
Type I and Type Il ervors are relevant.
hoose an &

3. Because of Step 1, Type [ errors are more serious. 50 ¢
ity of Type !

(significance level) and consider only tests with probabi
error no greater than a.
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4. Among these tests, select one that makes the probability of a Tvpe 11
error as small as possible (that is, power as large as possible). If (his
probability is (0o large, vou will have (o take a larger sample 1o reduce
the chance of an ervor:

Testing hvpotheses may seem to be a hybrid approach. It was, histori-
cally, the effective beginning of decision-oriented jdeas in statistics. An jm-
pressive mathematical theory of hypothesis testing was developed between
1928 and 1938 by Jerzy Nevman and the English statistician Egon Pearson.
The decision~nmking approach came later (1940s). Because decision theory
inits pure form leaves vou with two error probabilitjes and no simple rule on
how to balance them, it has been used less often than either tests of signifi-
cance or tests of hypotheses. Decision ideas have been applied in testing prob-
lems mainly by way of the Nevman-Pearson hypolhesis-lesling theory. That
theory asks you first to choose «, and the influence of Fisher often has led
users of hypothesis testing comfortably back (6 ¢ = 0.050ra = 0.01. Fisher,
who was exceedingly argumentative, violently attacked the Neyman-Pearson
decision-oriented ideas, and the argument still continues.

SUMMARY

The power of a significance test measures jts ability to detect an alternative
hypothesis. Power against a specific alternative is calculated as the probabil-
ity that the test will reject Hy when that alternative is tue. This calculation
requires knowledge of the sampling distribution of the test statistic under the
alternative hypothesis. Increasing the size of the sample increases (he power
when the significance level remains fixed,

An alternative 1o significance testing regards H; and H, as two statements of
equal status that we must decide between. This decisjon theory point of view
regards statistical inference in general as giving rules for making decisions in
the presence of uncertainty.

In the case of testing Hy versus H,, decision analysis chooses 2 decision rule
on the basis of the probabilities of two types of error. A Type I error occurs if
Hy is rejected when it is in fact true. A Type 1I error occurs if Hy is accepted
when in fact H, is true.

In a fixed level o significance test, the significance level « is the probability
of a Tvpe I error, and the bower against a specific alternative is I minus the
probability of a Type 11 error for that alternative.

SECTION 6.4 EXERCISES

You want (o see if a redesign of the cover of 2 mail-order catalog will
increase sales. A very large number of customers will receive the original
catalog, and a random sample of customers will receive the one with the
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new cover. For planning purposes, you are willing to assume that the sales
from the new catalog will be approximately normal with o = 50 dollars anc
that the mean for the original catalog will be o = 25 dollars. You decide to
use a sample size of n = 900. You wish to test

Hy: o = 25
Hy: p > 25

You decide to reject Hp if ¥ > 26 and to accept Hg otherwise.

(a) Find the probability of a Type I error, that is, the probability that your
test rejects Ho when in fact u = 25 dollars.

(b) Find the probability of a Type II error when u = 28 dollars. This is the
probability that your test accepts Ho when in fact g = 28.

(¢) Find the probability of a Type Il error when p = 30.

(d) The distribution of sales is not normal because many customers buy

nothing. Why is it nonetheless reasonable in this circumstance to
assume that the mean will be approximately normal?

6.83  Example 6.12 gives a test of a hypothesis about the SAT scores of Californi
high school students based on an SRS of 500 students. The hypotheses are
Hy: Mmoo 450
H,: p > 450
Assume that the population standard deviation is ¢ = 100. The test rejects
Hy at the 1% level of significance when z = 2.326, where
T -450
100, /500
Is this test sufficiently sensitive to usually detect an increase of 12 points
in the population mean SAT score? Answer this question by calculating th
power of the test against the alternative p = 462.
6.84  Example 6.16 discusses a test about the mean contents of cola bottles. The

hypotheses are
Hg: o = 300
Hy: < 300

The sample size isn = 6, and the population is assumed to have a norma
distribution with ¢ = 3. A 5% significance test rejects Hg if; = —1.645,
where the test statistic z is

. X —300

3/./6

Power calculations help us see how large a shortfall in the bottle contents
the test can be expecied 1o detect.
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(a) Find the power of this test against the alternative u = 298,

(b) Find the power against the alternative n o= 294,

(¢) Is the power against u = 296 higher or lower than the value vou found
in (b)? Explain why this result makes sense.

Increasing the sample size increases the power of a test when the level « is
unchanged. Suppose that in the previous exercise a sample of 17 bottles had
been measured. In that exercise, 1 = 6. The 5% significance test still rejects
Hy when 7 = —1.645, but the 2 statistic is now

X — 300

3 /n

where we substitute the sample size for n.

(a) Find the power of this test against the alternative 4 = 298 when n =
30.

(b) Find the power against p = 298 when n = 120.
In Example 6.11, a company medical director failed to find significant
evidence that the mean blood pressure of a population of executives differed
from the national mean # = 128. The medical director now wonders if the
test used would detect an important difference if one were present. For the
SRS of size 72 from a population with standard deviation ¢ = 15, the
7 statistic is

¥ - 128

15 J72

The two-sided test rejects
Ho e = 128

at the 5% level of significance when [z] = 1.96.
(a) Find the power of the test against the alternative p = 135,

(b) Find the power of the test against u = 121. Can the test be relied on to
detect a mean that differs from 128 by 7?

(¢) If the alternative were farther from Hy, say p = 138, would the power
be higher or lower than the values calculated in (a) and (b)?

You have an SRS of size n = 16 from a normal distribution with o = 1. You
wish to test

Hy p =0
Hp:pw >0

You decide to reject Hy if ¥ > 0 and to accept Hy otherwise.

(a) Find the probability of a Type L error, that is, the probability that vour
test rejects Hy when in fact & = 0.
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(b) Find the probability of a Type 1l ervor when g = 0.2. This is the
probability that vour test accepts Hy when in fact o = 0.2.

(¢) Find the probability of a Type IL ervor when p = 0.6.

Use the result of Exercise 6.84 to give the probabilities of Type I and Type
11 errors for the test discussed there. Take the alternative hypothesis to be
w o= 294,

Use the result of Exercise 6.83 to give the probability of a Type Lervor
and the probability of a Type I error for the test in that exercise when the
alternative is u = 462,

You must decide which of two discrete distributions a random variable X
has. We will call the distributions pg and p. Here are the probabilities the
assign to the values x of X:

X 0 1 2 3 4 5 6
po 0.1 01 01 01 02 01 03
py 02 01 01 02 02 01 0l

You have a single observation on X and wish to test
Hy: py is correct
H,: pyis correct

One possible decision procedure is to accept Hg it X = 4 or X = 6 and

reject Hy otherwise.

(a) Find the probability of a Type 1 error, that is, the probability that vot
reject Hy when py is the correct distribution.

(b) Find the probability of a Type 11 error.

You are designing a computerized medical diagnostic program. The
program will scan the results of routine medical tests (pulse rate, blood
pressure, urinalysis, etc.) and either clear the patient or refer the case to
doctor. The program will be used as part of a preventive-medicine svsten
1o screen many thousands of persons who do not have specific medical
complaints. The program makes a decision about each patient.

(2} What are the two hypotheses and the two types of error that the
program can make? Describe the two types of error in terms of “fals
positive” and “false-negative” test results.

(b} The program can be adjusted to decrease one error probability, at
the cost of an increase in the other error probability. Which error
probability would you choose to make smaller, and why? (This isa
matter of judgment. There is no single correct answer.)

(Optional) The acceptance sampling test in Example 6.20 has probabili

0.05 of rejecting a good lot of bearings and probability 0.08 of accepting

bad lot. The consumer of the bearings may imagine that acceptance
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sampling guarantees that most accepted lots are good. Alas, it is not so.

Suppose that 90% of all lots shipped by the producer are bad.

(a) Draw a tree diagram for shipping a lot (the branches are “bad” and
“good”) and then inspecting it (the branches at this stage are “accept”
and “reject”).

(b) Write the appropriate probabilities on the branches, and find the
probability that a lot shipped is accepted.

(c) Use the definition of conditional probability or Baves's formula (page
350) to find the probability that a lot is bad, given that the lot is
accepted. This is the proportion of bad lots among the lots that the
sampling plan accepts.

CHAPTER 6 EXERCISES

Patients with chronic kidney failure may be treated by dialysis, using a
machine that removes toxic wastes from the blood, a function normally
performed by the kidneys. Kidney failure and dialysis can cause other
changes, such as retention of phosphorus, that must be corrected by
changes in diet. A study of the nutrition of dialysis patients measured the
level of phosphorus in the blood of several patients on six occasions. Here

are the data for one patient (in milligrams of phosphorus per deciliter of
blood):

5.6 5.1 46 48 57 6.4

The measurements are separated in time and can be considered an SRS
of the patient’s blood phosphorus level. Assuming that this level varies
normally with ¢ = 0.9 mg/dl, give a 90% confidence interval for the mean
blood phosphorus level.

The normal range of phosphorus in the blood is considered to be 2.6 to 4.8
mg/dl. Is there strong evidence that the patient in the previous exercise has
a mean phosphorus level that exceeds 4.8?

Because sulfur compounds cause “off-odors” in wine, oenologists (wine
experts) have determined the odor threshold, the lowest concentration

of a compound that the human nose can detect. For example, the odor

threshold for dimethyl sulfide (DMS) is given in the oenology literature
as 25 micrograms per liter of wine (ug/l). Untrained noses may be less

sensitive, however. Here are the DMS odor thresholds lor 10 beginning

students of oenology:

31 31 43 36 23 34 32 30 20 24

Assume (this is not realistic) that the standard deviation of the odor
threshold for untrained noses is known tobe ¢ = 7 ug/l.

-
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(vt Caleulate the P-value.

Co s the result significant at the a = 0.05 level? Do vou think the study
gives strong evidence that the mean compensation of all CEOs

went up?

Sratisticians prefer large samples. Describe brieflv the effect of increasing

the size of a sample (or the number of subjects inan experiment) on cacl

the tollowing:

0 The width of alevel € confidence interval.

(3 The Pvalue of atest, when Hy is false and all facts about the
population remain unchanged as 17 increases.

(o1 The power ol a fixed lovel a test, when a, the alternative hyvpothesis,
and all facts about the population remain unchanged.

A rouletie wheel has 18 red slots among its 38 slots. You observe many s
and record the number of times that red occurs. Now you want to use ih
data to test whether the probability of a red has the value that is corvect
a fair roulette wheel. State the hvpotheses Hy and H, that vou will test (
will describe the test for this situation in Chapter 8.)

When asked to explain the meaning of “statistically significant at the «
0.05 level,” a student says, “This means there is only probability 0.05 the
the null hypothesis is true.” Is {his an essentialy correct explanation of
statistical significance? Explain vour answer

Another student, when asked why statistical significance appears so
often in research reports, says, “Because saying that results are signific
tells us that they cannot easily be explained by chance variation alone.
Do vou think that this statement is essentially correct? Explain vour
answer.

Use a computer to generate 12 = 9 observations from a normal distribu
with mean 15 and standard deviation 6: N (15, 6). Find the 95% conhide
interval for w. Repeat this process 100 times and then count the nuimbe
times that the confidence interval includes the value p = 15. Explainy
results.

Use a computer to generate i1 = 9 observations lrom a normal disiribu
with mean 15 and standard deviation 6: N (15, 6). Test the null hvpothe

that o = 15 using a rwo-sided significance test. Repeat this process 10
times and then count the number of times that vou reject Ho. E i

results,

Use the same procedure for generating data as in the previous caereise
Now test the null hvpothesis that g = 18. Explain vour results.

Figure 6.2 (page 420) demonstrates the behavior of a confidence iniet
repeated sampling by showing the results of 25 samples from the
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same population. Now vou will do a similar demonstration. Suppose that
(unknown to the researcher) the mean SATM score of all California high
school seniors is u = 475, and that the standard deviation is known to be
o = 100. The scores varv normally.

(a) Simulate the drawing of 50 SRSs of size 1 = 100 from this population.

(b) The 95% confidence interval for the population mean w has the form
X *= m. What is the margin of error m? (Remember that we know
o = 100.)

(¢) Use vour software to calculate the 95% confidence interval for u when
o = 100 for each of your 50 samples. Verify the computer’s calculations
by checking the interval given for the first sample against vour result in
(b). Use the ¥ reported by the software.,

(d) How many of the 50 confidence intervals contain the true mean o=
4752 1f you repeated the simulation, would you expect exactly the same
number of intervals to contain u? In a very large number of samples,
what percent of the confidence intervals would contain u?

In the previous exercise you simulated the SATM scores of 50 SRSs of 100
California seniors. Now use these samples to demonstrate the behavior of a
significance test. We know that the population of all SATM scores is normal
with standard deviation ¢ = 100.

(a) Use your software (o carry out a test of
Hp: = 475
H,: 475

for each of the 50 samples.

(b) Verify the computer’s calculations by using Table A to find the P-value
of the test for the first of your samples. Use the ¥ reported by your
software.

(¢) How many of your 50 tests reject the null hypothesis at the @ = 0.05
significance level? (That is, how many have P-value 0.05 or smaller?)
Because the simulation was done with p = 475, samples that lead to
rejecting Ho produce the wrong conclusion. In a very large number of
samples, what percent would falsely reject the hypothesis?

Suppose that in fact the mean SATM score of California high school seniors

is p = 500. Would the test in the previous exercise usually detect a mean

this far from the hypothesized value? This is a question about the power of

the test.

(a) Simulate the drawing of 50 SRSs from a normal population with mean
p = 500 and o ="100. These represent the results of sampling when in
fact the alternative u = 500 is true.
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(b) Repeat on these new data the test of

475

I

H(;Z M
H,: w # 475

that vou did in the previous exercise. How many of the 50 tests have
P-values 0.05 or smaller? These tests reject the null hypothesis at the
a = 0.05 significance level, which is the correct conclusion.

(¢) The power of the test against the alternative u = 500 is the probabili
that the test will reject Ho: g = 475 when in fact u = 500. Calculate
this power. In a very large number of samples from a population witt
mean 500, what percent would reject Hy?

Persons aged 55 and over represented 21.3% of the U.S. population in
the year 2000. This group is expected to increase to 30.5% by 2025. In
terms of actual numbers of people, the increase is from 58.6 million to
101.4 million. Restauranteurs have found this market to be important
and would like to make their businesses attractive to older customers. C
study used a questionnaire to collect data from people aged 50 and over
For one part of the analysis, individuals were classified into two age
groups: 50-64 and 65-79. There were 267 people in the first group and
263 in the second. One set of items concerned ambience, menu design,
and service. A series of questions were rated on a 1 to 5 scale with 1
representing “strongly disagree” and 5 representing “strongly agree.” I
some cases the wording of questions has been shortened in the table be
Here are the means:

Question 50-64 65-79
Ambience

Most restaurants are too dark 2.75 2.93
Most restaurants are too noisy 3.33 3.43
Background music is often too loud 3.27 3.55
Restaurants are too smoky 3.17 312
Tables are too small 3.00 3.19
Tables are too close together 3.79 3.81
Menu design

Print size is not large enough 3.68 3.77
Glare makes menus difficult to read 2.81 3.01
Colors of menus make them difficult to read  2.53 2,72
Service

1t is difficult to hear the service staff 2.65 3.00
I would rather be served than serve myself 4.23 4.14

[ would rather pay the server than a cashier  3.88 3.48
Service is too slow 313 310
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First examine the means of the people who are 50 10 64. Order the
statements according to the means and describe the results. Then do the
same for the older group. For each question compute the z statistic and the
associated P-value for the comparison between the two groups. For these
calculations you can assume that the standard deviation of the difference
is 0.08, so z is simply the difference in the means divided by 0.08. Note that
you are performing 13 significance tests in this exercise. Keep this in mind
when you interpret your results. Write a report summarizing your work.
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