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Computer-Intensive Methods 
in Statistics 

They replace standard assumptions about data with massive 

calculations. One method, the "bootstrap, " has revised many 
previous estimates of the reliability of scientific inferences 

by Persi Diaconis and Bradley Efron 

M
ost statistical methods in com­

mon use today were developed 
between 1800 and 1930, when 

computation was slow and expensive. 
Now computation is fast and cheap; the 
difference is measured in multiples of a 
million. In the past few years there has 
been a surge in the development of new 
statistical theories and methods that 
take advantage of the high-speed digital 
computer. The new methods are fantas­
tic computational spendthrifts; they can 
easily expend a million arithmetic oper­
ations on the analysis of 15 data points. 
The payoff for such intensive computa­
tion is freedom from two limiting fac­
tors that have dominated statistical the­
ory since its beginnings: the assumption 
that the data conform to a bell-shaped 
curve and the need to focus on statistical 
measures whose theoretical properties 
can be analyzed mathematically. 

These developments have profound 
implications throughout science, be­
cause statistical theory addresses a 
grand question: How is one to learn 
what is true? Suppose 15 measurements 
of some quantity yield 15 moderately 
different values. What is the best esti­
mate of the true value? The methods of 
statistics can answer such a question and 
can even give a quantitative indication 
of the estimate's reliability. Because em­
pirical observations are almost always 
prone to error, conclusions in the sci­
ences (and in many other fields) must 
often be based on statistical measures of 
truth. As a result any development that 
makes statistical inferences more accu­
rate or more versatile can be expected 
to have broad conseq uences. 

The two advantages of the new meth­
ods are best appreciated by compar­

ing them with older ones. First, in older 
methods it was generally necessary to 
make certain unverifiable assumptions 
about the data before statistical analysis 
could proceed. The assumptions often 
involved the bell-shaped curve, which is 
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also called the normal or Gaussian dis­
tribution, after the German mathemati­
cian Carl Friedrich Gauss. When the 
Gaussian distribution is employed, it is 
assumed that random fluctuations, or 
errors, in the experimentally observed 
values of some quantity are scattered 
symmetrically about the true value of 
the quantity. Moreover, it is assumed 
that the greater the error between the 
experimental value and the true value is, 
the less likely it is that the experimental 
value will be observed. Experience has 
shown that Gaussian theory works quite 
well even when the Gaussian distribu­
tion is only roughly approximated by 
the data, which is why statisticians can 
give reliable predictions even without 
computers. For sets of data that do 
not satisfy the Gaussian assumptions, 
however, the results of statistical meth­
ods based on such assumptions are ob­
viously less reliable. Computer-inten­
sive methods can solve most problems 
without assuming that the data have 
a Gaussian distribution. 

Freedom from the reliance on Gaussi­
an assumptions is a signal development 
in statistics, but the second advantage of 
the new techniques is even more liberat­
ing. In older practice the arithmetic op­
erations associated with statistical anal­
ysis had to be done by hand or with the 
aid of a desk calculator. Such calcula-

tions can often be simplified immensely 
if the formulas on which the calcula­
tions are based have a concise analytical 
form. Hence statistical theory tended to 
focus on only a few properties of a sta­
tistical sample, such as the mean, the 
standard deviation and the correlation 
coefficient, that can easily be manipulat­
ed analytically. Many other properties 
of a sample, however, are of interest to 
the statistician but are beyond the reach 
of exact mathematical analysis. The 
new computer-based methods make it 
possible to explore such properties nu­
merically, even though their exact anal­
ysis is currently impossible. Thus the 
new methods free the statistician to at­
tack more complicated problems, ex­
ploiting a wider array of statistical tools. 

To illustrate how the computer has 
been applied to statistical inference 

we have chosen a problem in which only 
15 data points appear. We shall apply a 
method called the bootstrap, invented 
by one of us (Efron) in 1977, which is 
quite simple to describe but is so depen­
dent on the computer that it would have 
been unthinkable 30 years ago. 

Consider a group of 15 law schools 
for which two overall characteristics of 
each entering freshman class are mea­
sured: the average undergraduate grade­
point average (G PA) and the average 

LARGE VARIABILITY of contour lines on a map is revealed by the statistical method called 
the bootstrap; the method requires so many numerical calculations that it is feasible only with 
the aid of a computer. The map at the upper left was constructed from 2,000 measurements of 
the acidity, or pH value,.of every rainfall recorded at uine weather stations over a period of two 
years. (The lower the value of the pH, the greater the acidity.) The contours were drawn accord­
ing to a procedure that can be proved optimal under certain conditions. Nevertheless, the 2,000 
data points are subject to considerable random variability: contours based on another sample 
of 2,000 measurements for the same region and time period might have looked quite different. 
The bootstrap, which was invented by one of the authors (Efron), can estimate from the single 
set of 2,000 data points the amount of variability the contours would show if many sets of 2,000 
data points could be compared. The results of five bootstrap calculations, done with the aid of 
a computer by Barry P. Eynon and Paul Switzer of Stanford University, are shown in the other 
five maps. The variability of the contours shows that the original map must be interpreted cau­
tiously: corridors of low acidity on the original map can become islands on subsequent maps. 
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CORRELATION COEFFICIENT is a measure of the tendency of data points plotted on a 
graph to cluster about a line. The coefficient is usually designated by the letter r and can have 
any value between 1 and -1. The more linear the clustering, the greater the absolute value of r. 
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TWO MEASURES for the potential academic performance of the students in the entering 
classes of 15 American law schools are graphed for each school. Each point on the graph repre­
sents the undergraduate grade-point averages (GPA) and the scores on the Law School Admis­
sion Test (LSAT), averaged over all the students in one entering class. The graph shows that 
for the sample of 15 law schools the two measures tend to be proportional: their correlation 
coefficient r is .776. One would like to know how accurately .776 approximates the true value 
of r for all American law schools. That is, one would like to know how much, on the average, 
the observed value of r for a random sample of 15 law schools differs from the true value of r. 
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score on the Law School Admission 
Test (LSA T). It seems reasonable to 
suppose the two measures ares roughly 
proportional to each other: the entering 
classes with a high average G PA tend to 
have a high average score on the LSA T. 
It is unlikely, however, that the propor­
tionality is exact: the entering classes of 
one or two law schools may show a high 
average G PA but a low average LSAT, 
whereas a few other schools may have a 
low average GPA but a high average 
LSA T. The statistician wants to know 
first of all how close the relation be­
tween the two measures is to propor­
tionality. Moreover, the statistician 
must try to estimate the degree to 
which the available data justify the ex­
trapolation of the first result to all oth­
er law schoolS. In short, how confident 
can one be that the sample of 15 law 
schools gives an accurate picture of the 
population of law schools as a whole? 

The standard measure of the tenden­
cy toward proportionality between two 
variables such as G P A and LSA T is the 
correlation coefficient; it is usually des­
ignated by the letter r. Suppose the data 
for the law schools are plotted on a 
graph where the vertical axis represents 
GPA and the horizontal axis represents 
LSA T. The correlation coefficient is a 
measure of the degree to which the 
points on such a graph tend to cluster 
along a line. The val ue of r is 0 if the 
points are scattered at random and gets 
increasingly close to 1 or -1 as the 
points tend to cluster along a line of pos­
itive or negative slope. (The slope of a 
line is positive if the line slopes up and to 
the right, and the slope is negative if the 
line slopes down and to the right.) The 
correlation between degrees Fahrenheit 
and degrees Celsius, for example, is 1 
because the two variables are directly 
proportional to each other. The correla­
tion between the height of fathers and 
the height of their sons is about .5. Tall 
fathers tend to have tall sons, but the 
correspondence is not exact. The corre­
lation between daily consumption of 
cigarettes and life expectancy has been 
shown to be negative; that is, the greater 
the daily consumption of cigarettes, the 
shorter the life expectancy . 

The observed correlation between 
GPA and LSAT for the 1973 enter­

ing classes of the 15 law schools is .776. 
In other words, there is a strong correla­
tion observed between the two variables 
and a strong tendency for the points de

'
­

fined by the coordinates of each school 
to cluster along a line of positive slope. 
A straightforward mathematical proce­
dure, which takes about five minutes 
with a desk calculator, was applied to 
determine the value of r: the details of 
the calculation are not important except 
that they give a well-defined value of r 
for any collection of data points. 

What grounds does one have, how-
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BOOTSTRAP METHOD is applied to the sample of 15 law schools 
shown in the illustration at the bottom of the opposite page in order 
to assess the accuracy of the correlation coefficient calculated for 
the sample. The data for each law school are copied perhaps a billion 
times and all 15 billion copies are thoroughly shuffled. Artificial sam-

pIes of 15 law schools, called bootstrap samples, are created by select­
ing sets of 15 data points at random from the 15 billion copies. The 
value of r is then calculated for each of the bootstrap samples. Al­
though it is simple in concept, the application of the bootstrap re­
quires so many calculations that it is not feasible without a computer. 
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CORRELATION COEFFICIENT 

FREQUENCY DISTRIBUTION of the' correlation coefficient r is plotted for 1,000 bootstrap 
samples. A widely accepted measure of the accuracy of a statistical estimator such as r is the 
width of the strip under the central part of its frequency distribution whose area is 68 percent 
of the area under the entire distribution. The central strip for the bootstrap distribution is shad­
ed in color; its width is .254. Half of the width of the interval, .127, is a good estimate of the av­
erage amount by which the observed valne of r for a sample differs from the true value of r. 

ever, for believing the true value of r is 
close to .776 for all law schools? After 
all, the sample could be highly atypical 
of law schools in general. The law of 
large numbers guarantees that in large 
samples the statistical estimate of r cal­
culated for the sample is very likely to 
approach the true value of r for the en­
tire population. A sample of only 15 law 
schools, however, is not a large sample. 
Hence some measure is needed that can 
assess the statistical accuracy of the val­
ue of r given by the sample, namely . 776. 
The bootstrap is intended to provide 
such a measure. 

To understand what statistical accu­
racy means for an estimate such as r, 
suppose data were available for addi­
tional sets of 15 law schools, different 
from the sets already sampled. For each 
set of 15 law schools the value of r could 
be calculated, and the amount of varia­
tion in the values of r for many samples 
could thereby be described. For exam­
ple, if 99 percent of the values of r calcu­
lated for the hypothetical samples were 
between .775 and .777, one would assign 
high accuracy to the estimate .776. On 
the other hand, if the values of r were 
spread out evenly from -1 to 1, the es­
timate of r given by the original sam­
ple would have no accuracy and would 
therefore be useless. In other words, the 
statistical accuracy of an estimated val-
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ue of r depends on the width of the inter­
val bracketing the estimated value that 
is associated with a certain percentage 
of all the samples. Unfortunately the 
data needed to calculate the value of r 
for many different samples are generally 
lacking. Thus, because the law school 
example is intended to reflect the condi­
tions of real statistical practice, we shall 
assume for the moment that the only 
data available are those for the origi­
nal sample of 15 law schools. Indeed, if 
more data were available, they could be 
employed to give a better estimate for 
the value of r than . 776. 

The bootstrap proced ure is a means of 
estimating the statistical accuracy of 

r from the data in a single sample. The 
idea is to mimic the process of selecting 
many samples of size 15 in order to find 
the probability that the values of their 
correlation coefficients fall within vari­
ous intervals. The samples are generated 
from the data in the original sample. 
The name bootstrap, which is derived 
from the old saying about pulling your­
self up by your own bootstraps, reflects 
the fact that the one available sample 
gives rise to many others. 

In effect, the bootstrap samples are 
generated as follows. The data for the 
first school are copied an enormous 
number of times, say a billion, and the 

data for each of the other 14 schools are 
copied an equal number of times. The 
resulting 15 billion copies are thorough­
ly mixed. Samples of size 15 are then 
selected at random and the correlation 
coefficient is calculated for each sample. 
On a computer the steps of copying, 
mixing and selecting new sets of data are 
all carried out by a procedure that is 
much faster but mathematically eq uiva­
lent: the computer assigns a number to 
each law school and then generates the 
samples by matching a string of ran­
dom numbers to the numbers that corre­
spond to the law schools. 

The samples generated in this way are 
called bootstrap samples. The distribu­
tion of the correl-ation coefficients for 
the bootstrap samples can be treated 
as if it were a distribution constructed 
from real samples: it gives an estimate 
of the statistical accuracy of the value 
of r that was calculated for the origi­
nal sample. We generated 1,000 boot­
strap samples from the data for the 15 
law schools in our sample. Of the 1,000 
samples there were 680, or 68 percent, 
whose correlation coefficients were be­
tween .654 and .908. The width of this 
interval, .254, is the bootstrap measure 
of accuracy of the value of r for the 
sample. Half of the width of the inter­
val, . 127, can be interpreted as the boot­
strap estimate of the average amount by 
which the observed value of r for a ran­
dom sample of size 15 differs from the 
true value of r. 

It is worth noting that the statistical 
accuracy cannot be defined simply as 
the accuracy of an individual estimate 
such as .776, that is, the difference be­
tween the estimate and the true value 
of r. In a real problem this difference 
can never be known; if it were known, 
the problem would vanish, because one 
could subtract the difference from the 
estimate and so obtain the true value 
exactly. Instead the statistical accuracy 
refers, as we have indicated, to the aver­
age magnitude of the deviation of the 
estimate from the true value. 

If the results of the bootstrap distribu­
tion can be taken as a measure of the 
statistical accuracy of the original esti­
mate, then .776 is a rough estimate but 
not entirely worthless. The true correla­
tion coefficient, that is, the value of r 
for the population of law schools as a 
whole, could well be .6 or .9, but it is 
almost certainly not zero. Our theoreti­
cal work shows that the bootstrap mea­
sure of statistical accuracy is depend­
able in a wide variety of situations. 

We can now abandon our self-im­
posed ignorance beca use in the la w 

school example the accuracy of the esti­
mated correlation coefficient can be test­
ed directly. Indeed, we chose the ex­
ample because all the data for aver­
age G PA and average LSAT scores of 
American law school students in 1973 
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have already been gathered. There were 
82 American law schools in 1973, and 
the correlation between G P A and LSA T 
for all the schools was .76 1. (Hence 
.76 1 is the true value of rwe referred to 
above, a quantity that would not be 
known in most situations.) More impor­
tant, the true statistical accuracy of the 
estimate given by the original sample 
can be calculated, because the distribu­
tion of the values of r for many real 
samples of size 15 can be determined. 
Samples of size 15 can be chosen at ran­
dom from the 82 law schools in 8215, 

a 

or about 5 X 1028, equally likely ways. 
In principle the value of r could be cal­
culated for each sample, and so the 
number of samples for which r lies with­
in a small interval could be plotted for 
intervals of equal size. The resulting 
graph is called a frequency distribution. 

In practice the frequency distribution 
for samples of size 15 selected from the 
82 law schools can only be approximat­
ed; a computer set to work at the begin­
ning of the big bang calculating r for 
each of the 8215 samples at a rate of a 
billion a second would still not have fin-

b 

ished the task. Instead r is calculated for 
a large but manageable number of ran­
domly selected samples of size 15, say a 
million samples. 

We found that 68 percent of the corre­
lation coefficients for a million samples 
were grouped between . 606 and .876, 
an interval whose width is .270. In oth­
er words, if a sample of 15 law schools 
is selected at random, the probability 
that its correlation coefficient lies be­
tween .606 and .876 is . 68. Note that the 
width of the interval is in good agree­
ment with that defined by 68 percent of 

BELL-SHAPED SURFACE was employed in 1915 by Sir Ronald 
Fisher in his method for estimating from a single sample how much 
the correlation coefficient varies from sample to sample. In order to 
make such an estimate by Fisher's method it is necessary to assume 
that all the data points in the sample are selected according to prob­
abilities given by the bell-shaped surface. The surface is constructed 
to fit the data in the sample. In the law school example the highest 
point of the surface must lie directly over the point on the plane where 
the GPA and the LSAT points both have their overall average values 
(open circle). The slope and orientation of the surface with respect 
to the plane of the graph depend on how the data points are scattered. 

The contours of equal height on the surface are elliptical, and the 
cross sections are bell-shaped curves of varying width; two cross sec­
tions are shown in the lower part of the illustration. Fisher's method 
can be interpreted as choosing bootstrap samples from among all the 
points on the plane of the graph. The probability of choosing a point 
fron. within a given region on the graph is equal to the volume that 
lies between that region and the bell-shaped surface (volume oj"hole") 
divided by the entire volume that lies between the surface and the 
graph. By carrying out the bootstrap sampling with a computer only 
for the discrete points in the original sample the probability distri­
bution that is given by the bell-shaped surface need not be assumed. 
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the bootstrap samples, even though 
the endpoints of the intervals coincide 
only roughly. 

It turns out that the agreement is 
no accident. Theoretical investigations 
done by Rudolph J. Beran, Peter J. Bick­
el and David A. Freedman of the Uni­
versity of California at Berkeley, by Ke­
sar Singh of Rutgers University and by 
us at Stanford University show that [or 
the correlation coefficient and for a wide 
variety of other statistics the interval as­
sociated with the bootstrap distribution 
and the interval associated with the dis­
tribution of the real samples usually 
have nearly the same width. (Intervals 
that include 68 percent of the samples 
are commonly cited for comparison be­
cause for a bell-shaped curve 68 percent 
of the samples lie within one standard 
deviation of the peak of the bell.) 

At first glance this theoretical result 
I\. seems paradoxical: it suggests that 
from the information in each sample 
one can derive a good approximation to 
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the frequency distribution of the corre­
lation coefficient for all real samples of 
the same size. It is as if statisticians had 
discovered the statistical analogue of 
the hologram, a pattern of light waves 
that is preserved on a surface. The scene 
from which the light waves are emitted 
can be reconstructed in great detail from 
the whole surface of a hologram, but 
if pieces of the surface are broken off 
the entire scene can still be reconstruct­
ed from each piece. Not every sample 
is like a broken piece of a hologram, 
however; the good properties of the 
bootstrap are good average properties. 
Like any other statistical procedure, 
the bootstrap will give misleading an­
swers for a small percentage of the pos­
sible samples. 

Suppose the correlation coefficient for 
the sample o[ 15 law schools had been 
nearly 1. That is, suppose all the data 
points in the sample lay almost perfectly 
along a straight line. The circumstance 
is extremely unlikely, given the real data 
for the 82 law schools, but it could hap-
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STATISTICAL ACCURACY of tbe observed value of r for a random sample can be known 
precisely only if it is known bow r varies for a large number of samples. Tbe 15 law schools 
for which the value of r has been calculated were selected at random from the total popqlation 
of 82 American law schools. Tbe data points in each of tbe four graphs represent the average 
GPA and average LSAT score for each of the 82 law scbools. There are 8215 ways to choose 
samples of 15 law scbools from the total population; four such samples bave been selected by 
circling the points in color. (It is possible to select a scbool more than once in a given sample; 
such scbools have been circled more than once.) The observed values of rfor samples a and bare 
roughly equal to the true correlation coefficient for all 82 schools. The value of r for sample c, 
however, is much too higb and tbe value of r for sample d is much too low. The true variability 
in the value of r for samples of 15 law schools can be determined by finding its value for many 
sucb samples because data for many more than 15 law scbools (in fact, for all 82 of them) are 
available. Additional data, however, are often impossible to obtain. The bootstrap can estimate 
the amount of variability that would be shown by all the samples on the basis of one sample. 
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pen. It would then follow that every 
sample generated by the bootstrap pro­
ced ure would also lie along the same 
straight line and so every bootstrap val­
ue of r would be nearly eq ual to 1. The 
width of the interval associated with 68 
percent of the bootstrap samples would 
therefore be approximately zero. Ac­
cording to the bootstrap proced ure, the 
statistical accuracy of the estimated val­
ue of r would be almost perfect, which 
is incorrect. 

The bootstrap does not always guar­
antee a true picture of the statistical ac­
curacy of a sample estimate. What has 
been proved is that the bootstrap gives a 
good picture of the accuracy of the esti­
mate most of the time. There are always 
a few samples for which the bootstrap 
does not work, and one cannot know in 
advance which they are. The limitation 
is not so much a failure of the bootstrap 
proced ure as it is a restatement of the 
conditions of uncertainty under which 
all statistical analyses must proceed. 

What are the advantages of applying 
the bootstrap? In order to appreci­

ate them it is useful to describe how the 
accuracy of the correlation coefficient 
(and of most other statistics) was calcu­
lated before the computer became wide­
ly available. The earlier procedure can 
be described in terms of the bootstrap, 
although it goes without saying that be­
fore the invention of the computer stat­
isticians did not characterize their meth­
ods in such terms. In 19 15 the British 
statistician Sir Ronald Fisher calculated 
the accuracy of r theoretically. Fisher 
had to assume that the data for the two 
variables, average G PA and average 
LSAT in our example, were drawn at 
random from a normal probability dis­
tribution, represented by a bell-shaped 
surface. The surface is a two-dimension­
al analogue of the one-dimensional bell­
shaped curve. There is a family of such 
surfaces whose shape and orientation 
can be chosen to fit the available set of 
data. The surface is fitted to the data in 
the law school sample by placing the top 
of the bell directly over the point on 
the graph where both the G PA and the 
LSA T points have their overall average 
values. The surface slopes downward to 
the graph at a rate that depends on how 
widely the data points are scattered [see 
illustration on preceding page]. 

The bell-shaped surface is interpreted 
as a probability distribution in the same 
way the graph of values of r for law 
school samples is a frequency distribu­
tion. The probability of selecting a point 
on the graph of G P A and LSA T scores 
from within a certain region is equal 
to the volume that lies under the bell­
shaped surface and directly above the 
region, divided by the entire volume of 
the space that lies between the surface 
and the graph. Fisher was then able to 
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generate a distribution for the values of 
r 9Y bootstrapping from the bell-shaped 
probability distribution. In effect, many 
samples of 15 data points are selected 
from the graph according to the proba­
bility given by their position under the 
bell-shaped surface. The value of r is 
calculated for each sample and a fre­
quency distribution for the values of r is 
plotted. According to Fisher's method, 
the width of the interval that includes 68 
percent of the values of r is .226, in good 
agreement with the true value of .270 
but not as close in this case as the boot­
strap estimate of .254. 

The bulk of Fisher's calculation can 
be done analytically because of the as­
sumption that the data in the sample are 
selected from a normal probability dis­
tribution. This assumption is a disad­
vantage of the method, however, be­
cause it might not be true. It is certainly 
not true in the law school example. 
Moreover, even if it is true, there is no 
easy way to check it; in most situations a 
much larger sample, with perhaps sever­
al hundred data points, would be needed 
to verify the shape of the surface. 

The calculations involved in the boot­
strap, in which there are no simplify­
ing assumptions about the probability 
distribution, would have been quite im­
practical 30 years ago. As we have men­
tioned, the calculation of a single corre­
lation coefficient takes about five min­
utes with a desk calculator, and one 
must carry out from 50 to 1,000 such 
calculations before a reasonably accu­
rate frequency distribution for the boot­
strap samples can be determined. 

Today the calculation of a single val­
ue of r takes a ten-thousandth of a sec­
ond with a medium-size computer; at 
such speed the bootstrap becomes fea­
sible for routine application. If 1,000 
bootstrap samples are generated, all the 
calculations necessary to estimate the 
width of the interval that includes 68 
percent of the samples take less than a 
second and cost less than a dollar. The 
cost estimate is based on performing 
about 100,000 arithmetic operations. 
More ambitious bootstrap analyses, 
which give more detailed information 
about the accuracy of r, require about a 
million arithmetic operations. 

The bootstrap is not limited to the 
analysis of the variability of statis­

tics, such as the correlation coefficient, 
that are mathematically simple. It has 
been applied to many problems for 
which the variability of a statistic can­
not be assessed analytically. Consider 
a family of statistics called principal 
components, which were introduced by 
Harold Hotelling of Columbia Univer­
sity in 1933. Principal components were 
devised to solve problems such as the 
following one, given in a textbook by 
Kantilal V. Mardia and John T. Kent 
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CORRELATION COEFFICIENT 

BOOTSTRAP DISTRIBUTION of the correlation coefficient r ("skyline" ill black) closely 
approximates the true distribution of r (smooth curve ill black). The true distribution is actual­
ly plotted for a million samples of size 15, chosen at random from the 8215 such samples that 
can be selected from the 82 law schools; differences between the distribution graphed here and 
the distribution that could in principle be plotted for all 8215 samples are not discernible. The 
shape of the bootstrap distribution also approximates the shape of the distribution that can be 
estimated according to the probabilities given by a bell-shaped surface (smooth curve ill color). 
The agreement suggests the bootstrap can be employed as a measure of the accuracy with which 
the correlation coefficient of the sample predicts the correlation coefficient of the population. 
The rather close agreement among the peaks of the distributions is an artifact of the sample. 

of the University of Leeds and John M. 
Bibby of the Open University. 

Eighty-eight college students each 
take two closed-book tests and three 
open-book tests. Suppose, for the pur­
pose of grading the students, one wants 
to find the weighted average of the five 
scores that generates the greatest differ­
ences among the students. (In order to 
make the ratios and not merely the dif­
ferences of the overall scores as variable 
as possible, the weights must be scaled 
so that the sum of their sq uares is eq ual 
to 1.) One set of weights arises if only the 
final test score is considered; the weights 
assigned would then be 0, 0, 0, 0 and 1. 
If all the students had high scores on 
the final test, however, the summary 
score generated by this set of weights 
would not be effective for differentiat­
ing the students. Another summary 
score arises if each test is given equal 
weight; the weights would then all be 
eq ual to 1 IVS, or about .45. The set of 
weights for the five tests that gives the 
greatest differences among the students 
is called the first principal component. 

The first principal component is im­
possible to describe in a mathematically 
closed form; it must be computed nu-

merically. When the calculation is done 
for the 88 students, the weights of the 
first principal component turn out to be 
roughly equal to one another. The great­
est distinctions can therefore be made 
among the students by finding the aver­
age of the five scores. 

The second principal component is 
the set of weights, subject to a mathe­
matical constraint of independence, that 
gives the second-greatest differences 
among the students. When the second 
principal component is calculated for 
the 88 students, the weights turn out to 
give the difference between an average 
of the open-book scores and an average 
of the closed-book scores. The principal 
components suggest useful and unex­
pected interpretations for the averages 
of the student scores. How reliable are 
the interpretations? If they are to be 
trusted, one must try to determine how 
much variation there is in the values of 
the two principal components for sam­
ples of 88 students selected at random. 

The problem of quantifying the varia­
bility of principal components for sam­
ples of a given size has preoccupied 
many statisticians for the past 50 years. 
If the appropriate normal distribution is 
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assumed, partial solutions to questions 
concerning the frequency distribution 
for the first principal component can be 
given; little is known, however, about 
the second component and higher ones. 
By applying the bootstrap method a 
computer can quickly give an estimate 
of variability for any principal compo-

FIRST PRINCIPAL COMPONENT 
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nent without assuming that the data 
have a normal distribution. 

In principle the bootstrap analysis is 
carried out just as it is for the correlation 
coefficient. Each student's set of five test 
scores is copied many times (that is, all 
five scores are written on the same piece 
of paper) and the copies are thorough-
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PRINCIPAL COMPONENTS are statistical estimators that have been widely applied for cal­
culating summary scores on standardized tests. Suppose 88 students take five tests each and 
suppose, in order to assign a snmmary score, one wants to find the weighted average of the five 
test scores that generates the greatest differences among the students. The first principal com­
ponent is the set of weights that solves the problem. The second principal component is the set 
of weights, subject to a mathematical constraint of independence, that generates the second 
most variable combination of the test scores. To assess the variability of the two principal com­
ponents for many additional samples of 88 students the bootstrap was applied to the single sam­
ple. Each student's score for the five tests was written on a piece of paper, and each set of five 
scores was copied many times. All the copies were then shuffled and bootstrap samples of size 
88 were selected at random. The principal components were calculated for each bootstrap sam­
ple. The variation in the weights for the first 10 bootstrap samples is shown by the black ticks 
on each graph; the red vertical lines indicate the observed values of the weights. The width of 
the central strip under the small bell-shaped curves indicates the variability of the weights. 
The fourth and fifth weights of the second principal component are particularly unstable. 
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ly shuffled. A new sample of size 88 is 
drawn at random and the principal com­
ponents are calculated for it. The sam­
pling is repeated many times and a fre­
quency distribution is plotted for each 
principal component. 

The results suggest that the weights 
associated with the first principal com­
ponent are quite stable: they vary only in 
the second decimal place. The weights 
associated with the second principal 
component are less stable, but in a struc­
tured way. Remember that the second 
principal component was interpreted as 
the difference between an average of the 
open-book tests and an average of the 
closed-book tests. The interpretation is 
confirmed by the bootstrap analysis, but 
the weights given to the open-book tests 
are quite variable. The distribution for 
the principal components generated by 
the bootstrap is a good estimate of the 
true distribution of the principal compo­
nents for samples of size 88. It takes only 
about two seconds for a large comput­
er to do 100 bootstrap replications. 

Not every statistical estimator is a 
number. Nine weather stations in 

the eastern and midwestern U.S. record­
ed the pH level, or acidity, of every rain­
fall from September, 1978, through Au­
gust, 1980. (A pH value of less than 7 
is acidic, and the lower the pH value, 
the greater the acidity.) During the two 
years 2,000 pH values were measured. 
To represent the data Barry P. Eynon 
and Paul Switzer of Stanford prepared 
a pH-contour map of the region; the 
pH values are constant along a contour 
line. Such a map can be generated from 
the data by a well-defined mathemati­
cal procedure called Kriging, after the 
South African mining engineer H. G. 
Krige. Although the contour map is 
strictly determined by the data, it repre­
sents an extrapolation from the data col­
lected at nine stations to many points in 
space and time (in fact, to an infinite 
number) that are not included in the 
original sample. One can therefore ask 
how variable the contours on the map 
would be if random variations yielded 
different samples of 2,000 pH values. 

In this example neither the true con­
tour map nor the true variability of all 
contour maps generated by samples of 
2,000 pH values can be known. Both es­
timates must be made from the original 
data alone if they are to be made at all. 
By bootstrapping the original sample of 
2,000 pH values in a way that preserves 
the geographic relations among the 
weather stations, Eynon and Switzer 
generated the maps shown in the illus­
tration on page 117. There is no general­
ly accepted measure of the variability of 
contour lines on a map, analogous to the 
width of an interval of a frequency dis­
tribution. Intuitively, however, the vari­
ability is readily perceived. It shows that 
the original contour map must be inter-
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LOG VALUE ADDED 
IN MANUFAC TURING 

E1961 

BOOTSTRAP SAMPLE 1 

DATA 

FIND CONSTANTS a, b, c, d, e AND' SO THAT 
THE DATA F I T  THE EQUATION AS CLOSELY AS POSSIBLE: 

0, = a + bC, + cH, + dP, + eV, + to, _ , 

CALCULATE DIFFERENCE E, BETWEEN THE EXACT VALUE OF 0, 
AND THE VALUE OF 0, THAT IS GIVEN BY THE EQUATION: 

= 0,9., - (a + bC'9.' + CH'9.' + dP'96' + eV'96' + '0'9.0) 

= 0,9.2 - (a + bC'9.2 + CH'962 + dP'962 + eV'962 + to'96') 

= 0,9., - (a + bC'9.' + CH'9.' + dP'9.' + eV'9.' + to'9.0) 

BOOTSTRAP SAMPLE 2 

+ a + bC"6' + CH'9.' + dP'96' + eV'96' +, 0'960 

+ a + bC'962 + CH'962 + dP'962 + eV'962 + , 

+ a + be'9.' + CH'9.' + dP'9.' + eV'9.' + ,  I 0;980 

FIND CONSTANTS a', b', c', d', e' AND ,. SO THAT 

LOG VALUE ADDED 
IN MANUFACTURING 

MODEL OF ENERGY DEMAND called RDFOR (Regional De­
mand Forecasting Model) was employed by the U.S. Department of 
Energy to analyze and forecast energy demand in 10 regions of the 
U.S. For each region the data are fitted as closely as possible to a 
mathematical model called a regression equation. The demand for 
energy in any given year is assumed to depend on the demand for en­
ergy the year before as well as on several other measures. Each error 
term E t is the difference between the predicted value of the energy 
demand in a given year and the observed value. Bootstrap samples of 

THE BOOTSTRAP DATA FI T THE EQUATION AS CLOSELY AS POSSIBLE: 

the error terms are selected at random and artificial data for ener­
gy demand are generated by the method shown in the diagram. The 
bootstrapped data are then fitted to a new regression equation, and 
the variability of the regression equations generated by the bootstrap 
gives an estimate of the expected accuracy of the model in predict­
ing energy demand. A bootstrap analysis done by David A. Freed­
man of the University of California at Berkeley and Stephen C. Pe­
ters of Stanford has shown that the variability of the regression equa­
tions is from two to three times greater than was previously thought. 
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preted cautiously. Corridors of relative­
ly low or relatively high acidity on the 
original map can shrink to become is­
lands on a bootstrap map, depending 
on the effects of random "noise." 

Statistical estimation is often carried 
out by making the available data con­
form as closely as possible to some pre­
determined form, or model. The sim­
plest models are the line, the plane and 
the higher-dimensional analogues of the 
plane. Consider the graph of the 15 data 
points that represent the 15 law schools. 
Intuitively there are many lines that 
could be drawn to represent the trend of 
the data points, and so it is reasonable to 
agree in advance on a precise method 
for fitting the points to a line. Probably 
the most widely used estimator in statis­
tics is a method for fitting points to a line 

AGE 

SEX 

PRESENCE OF STEROID? 

ANT
'
IVIR AL ADMINISTERED? 

FATIGUE? 

MALAISE? 

ANOREXI A? 

LARGE LIVER? 

FIRM LIVER? 

PALPABLE SPLEEN? 

PRESENCE OF SPIDERS? 

PRESENCE OF ASCITES? 

PRESENCE OF VARICES? 

CONCENTR ATION OF BILIRUBIN 

CONCENTRATION OF 
ALKALINE PHOSPH ATASE 

CONCENTR ATION OF SER U M  G LUTAMIC-
OXALOACETIC TRANSAMIN ASE ( SGOT) 

CONCENTR ATION OF ALBU MIN 

CONCENTR ATION OF PROTEIN 

PHYSICI AN'S PROGNOSIS 

OUTCOME 

called the least-squares method. The 
method was invented by Gauss and by 
Joseph Louis Lagrange in the early 19th 
century in order to make astronomical 
predictions. 

The least-squares line is the line that 
minimizes the sum of the squares of the 
vertical distances between the data 
points and the line. A straightforward 
calculation gives the equation of the 
least-sq uares line from the data points. 
If the bootstrap is applied to the data, 
fake data sets can be generated, and the 
least-squares method can be applied 
to each fake set of data points in order 
to fit them to a new line. The fluctua­
tion of the lines generated by the boot­
strap shows the variability of the least­
squares method as a statistical estimator 
for this set of data points. 
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MEDICAL DATA for seven out of 155 people witb acute or cbronic bepatitis give tbe values 
of 19 variables for eacb person tbat, taken togetber, could predict wbetber a patient will die or 
recover from tbe disease. (An asterisk indicates tbat information is missing.) It is common prac­
tice in statistics to inspect sucb data before a formal model is constructed; tbe aim of tbe inspec­
tion is to rule out all but four or five of tbe most important variables. Peter B. Gregory of tbe 
Stanford University Scbool of Medicine eliminated all tbe variables except tbe patient's mal­
aise, tbe presence of ascites (fluid in the abdominal cavity), the concentration of bilirubin and 
the physician's prognosis. Gregory developed a model based on the four variables that correct­
ly predicted whether or not the patient would die from the disease in 84 percent of tbe cases. 

1 ?6 

The least-squares method and its gen­
eralizations are particularly useful for 
complex problems in which an inves­
tigator must bring large amounts of di­
verse information to bear on a single 
question. The U.S. Department of Ener­
gy, for example, has developed a model 
called the Regional Demand Forecast­
ing Model (RDFOR), which attempts to 
forecast the demand for energy in 10 
regions of the U.S. In the model it is 
assumed that the energy demand for 
each region in a given year depends in 
a simple way on five variables: the 
amount of variation above 75 degrees F. 
in summer, the variation below 65 de­
grees in winter, the price of fuel, the val­
ue added in manufacturing (a measure 
of the economic conditions in the re­
gion) and the energy demand during the 
previous year. 

The five variables can be thought of 
as if they were plotted on a five­

dimensional graph, which is exactly 
analogous to a two-dimensional graph; 
every point on a five-dimensional graph 
corresponds to a possible combination 
of the five variables. The energy de­
mand in a given year associated with a 
known combination of variables can 
then be represented by the height of a 
point in a six-dimensional space above 
the corresponding point on the five­
dimensional graph. The representation 
of the data in a six-dimensional space 
is analogous to representing the depen­
dence of some quantity on two other 
variables as the height of a point in 
three-dimensional space above a two­
dimensional graph. Thus the energy 
data determine a set of points at various 
heights in the six-dimensional space. 

The least-squares method specifies a 
way of drawing a five-dimensional ana­
logue of a plane (called a hyperplane) as 
close as possible to all the points. Be­
cause of the dependence of the energy 
demand on the demand in previous 
years, the variables must be fitted to the 
hyperplane by a generalized version of 
the least-squares method. The gener­
alized method calls for minimizing a 
weighted sum of errors after the weights 
have been estimated from the data. In 
recent years an elaborate method of esti­
mating the accuracy of the procedure 
and the accuracy of its forecasts has 
been developed. 

Freedman and Stephen C. Peters of 
Stanford examined the conventional es­
timates of the accuracy of the procedure 
by applying the bootstrap. In their ap­
proach it is assumed that the . data lie 
close to an appropriate hyperplane,·\:}ut 
it is not assumed that the errors between 
the data points and points that lie on the 
hyperplane are independent of one an­
other. Instead the relation of the errors 
from point to point is allowed to have a 
complicated structure. The bootstrap­
ping of the data was done in a way that 
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Grand Touring. What does it mean? 
In  the new 1983 Toyota 

Cressida, Grand Touring means 
Grand Performa nce. With an amaz­
ing new 2.8 l iter Twi n  Cam engine 
that does to smooth ness and 
quietness of r ide,  what Michelan­
gelo did to a cei l i ng. Add that to 
Cressida's new independent rea r 
suspension , with coi l  spri ngs and 
stabi l izer bar, and its new elec­
tron ical ly  controlled 4-speed 
automatic overdrive transm ission 
and you start to see how grand a 

driving experience can be.  
Cressida's Grand Touring also 

means Grand Luxury. From the 
look of luxury outside - dashing,  
elegant,  refined - to the feel of lux­
ury inside - power windows and 
door locks. Automatic tempera­
ture control air  condition i ng. Varia­
ble assist power steering. Cruise 
control .  AM/FM/M PX stereo re­
ceiver with four speakers. And a 
driver's seat that adjusts to your 
body i n  four disti nct ways. 

What else does Grand 

Touring mean? 
In  the new Cressida,  it rep­

resents a feeling you get, wh i le 
touring town or country. A feel ing 
based on uncompromised per­
formance. And spirited drive. It's 
the i mage of the car you've chosen . 
And of yourself. 

Dash i ng. 
BUCKLE U P- ITS A GOOD FEELING ! 

CRESSIDA MOVES PROUDLY 
INTO THE GRAND TOURING CLASS. 
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preserves the evolution of the energy de­
mand from year to year. The variability 
of the hyperplanes generated by the 
bootstrap showed that the standard er­
ror previously assumed for the energy 
model is usually too small by a factor of 
two or three. The predictions of ener­
gy demand made by this aspect of the 
RDFOR model are therefore much less 
reliable than was once thought. 

The examples we have presented so 
far have involved clearly defined 

statistical properties of samples. In prac­
tice the data can be inspected, sort­
ed, graphed and preanalyzed in several 
ways before they are formally analyzed. 
Estimates of variability that do not take 
such informal practices into account 
may not give an accurate picture of sta­
tistical variability. 

Consider a group of 1 5 5 people with 
acute and chronic hepatitis, initially 
studied by Peter B. Gregory of the Stan­
ford University School of Medicine. Of 
the 1 5 5 patients 33 died and 122 sur­
vived, and for each patient there were 
data for 19 variables, such as age, sex 
and the results of standard biochemical 
measurements. Gregory's aim was to 
discover whether the data could be com­
bined in a model that could predict a 
patient's chance of survival. 

The analysis of the data was done in 
several steps. First, all but four of the 
most important variables were eliminat­
ed, because statistical experience sug­
gests it is unwise to fit a model that 
depends on 19 variables with only 1 5 5  
data points available. The elimination 
of the variables was done in two stages: 
each variable was inspected separately, 

BOOTSTRAP 

SAMPLE NUMBER 

whereupon six variables that appeared 
unrelated to the patients' survival were 
eliminated. A standard statistical proce­
dure was then carried out on the remain­
ing 13 variables, which further reduced 
the number to four. The variables that 
remained were the patient's malaise, as­
cites (the presence of a fluid in the ab­
domen), the concentration of bilirubin 
in the liver and the physician's progno­
sis for the patient. The variables were 
then fitted to a curve that predicts how 
the proportion of surviving patients de­
pends on the values of the variables. 

Such analysis is typical of scientific 
practice. In order to estimate its overall 
variability Gail Gong of Carnegie- Mel­
lon University carried out the entire 
proced ure from preliminary screening 
through the final curve fitting on boot­
strapped samples of the original 1 5 5 
data points. Her results were surprising 
and informative. The set of "important 
variables" generated during the initial 
stages of the analysis was itself quite er­
ratic. For some bootstrap samples only 
the prognosis of the physician was 
found to be important, whereas for oth­
ers such variables as sex, age, level of 
fatigue, concentration of albumin and 
concentration of protein were retained. 
No single variable emerged as signifi­
cant in as many as 60 percent of the 
bootstrap samples. 

Although the fitted curve is intended 
.to predict whether or not a patient will 
survive, it misclassifies 16 percent of the 
original 1 5 5 patients. The estimate of 16 
percent, however, is too small because 
the data on which it is based were also 
employed to generate the curve. The 
analysis generated by the bootstrap sug-

VARIABLES SELECTED 

491 ALBUMIN, PROGNOSIS, SEX 
- - -- . . . � 

492 ASCITES, BILIRUBIN, PROGNOSIS 
._ ..... _- -

493 BILIRUBIN, ASCITES 

494 BILIRUBIN, PROGNOSIS, MALAISE 

1-----
495 ASCITES 

, 496 BILIRUBIN 
-_ .. -

497 ASCITES, VARICES 

498 SPIDERS, PROGNOSIS, ALBUMIN 

499 AGE, PROGNOSIS, BILIRUBIN, MALAISE, PROTEIN, SPIDERS 
. _-

500 ASCITES, PROGNOSIS, BILIRUBIN, PROTEIN 

VARIABLES DESIGNATED IMPORTANT by informal analysis prior to the construction 
of a formal statistical model can show wide variation. In a bootstrap study that simulated both 
the formal and the informal aspects of the statistical analysis, Gail Gong of Carnegie-Mellon 
University programmed a computer to copy the set of 19 variables associated with each patient 
many times. The sets of data were thoroughly shuffled and bootstrap samples of ISS sets of 
data were drawn at random from the collection. Formal and informal techniques of data analy­
sis were then applied to each bootstrap sample, just as they had been for the original sample. 
The variables chosen as important are shown for 10 of the SOO bootstrap samples generated. 
Of the four variables originally chosen not one was selected in as many as 60 percent of the 
samples. Hence the variables identified in the original analysis cannot be taken very seriously. 

128 

gests a better estimate for the probabil­
ity that the fitted curve will misclassify 
a given patient is .20, 

The prospect of bootstrapping the en­
tire process of data analysis offers hope 
that an extremely difficult problem will 
begin to yield, namely the connection 
between the mathematical theory that 
underlies statistics and actual statisti­
cal practice. The effects of preliminary 
"data snooping" on the final results are 
usually ignored, for no better reason 
than that it is impossible to analyze 
them mathematically. It now appears 
that the bootstrap, applied with the aid 
of the computer, can begin to estimate 
such effects. 

The bootstrap is by no means the only 
statistical method that relies on the 

power of the computer. Several other 
methods such as the jackknife, cross­
validation and balanced repeated repli­
cations are similar in spirit to the boot­
strap but quite different in detail. Each 
of these procedures generates fake data 
sets from the original data and assesses 
the actual variability of a statistic from 
its variability over all the sets of fake 
data. The methods differ from the boot­
strap and from one another in the way 
the fake data sets are generated. 

The first such method was the jack­
knife, invented in 1949 by Maurice Que­
nouille and developed in the 1950's by 
John W. Tukey of Princeton University 
and the Bell Laboratories; it has been 
extensively investigated by Colin L. 
Mallows of Bell Laboratories, Louis 
Jaeckel of Berkeley, David V. Hinkley 
of the University of Texas at Austin, 
Rupert G. Miller of Stanford, William 
R. Schucany of Southern Methodist 
University and many others. The name 
jackknife was coined by Tukey to sug­
gest that the method is an all-purpose 
statistical tool. 

The jackknife proceeds by removing 
one observation at a time from the origi­
nal data and recalculating the statistic of 
interest for each of the resulting truncat­
ed data sets. The variability of the statis­
tic across all the truncated data sets can 
then be described. For the data from the 
15 law schools the jackknife assesses the 
statistical accuracy of the value of r by 
making 15 recalculations of r, one for 
every possible subsample of size 14. The 
jackknife calls for fewer calculations 
than the bootstrap but it also seems less 
flexible and at times less dependable . 

Cross-validation is an elaboration of a 
simple idea. The data are split in half 
and the second half is set aside; curves 
are fitted to the first half and then tested 
one by one for the best fit to the second 
half. The final testing is the cross-valida­
tion; it gives a reliable indication of how 
well the fitted curve would predict the 
values of new data. There is nothing spe­
cial about half splits; for example, the 
data can be split in the ratio 90 to 10 as 
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Exxon has the information processor. .. 

that really can be the start 
of something big. 

At Exxon Office Systems, we're bringing the high- and retrieve documents, all with the touch of a key. 
tech office down to earth, by designing office automa- There's a dictionary, an electronic mailbox, a pro-
tion to grow the way you grow. gram for keeping calendars and scheduling meetings, 

You can start an office automation system simply a tickler file and more. 
with just one of our remarkable EXXON 500 Series Start automating your office now with one of our 
Information Processors. EXXON 500 Series Information Processors. And step 

Then as you grow, we can grow with you, right into into the future without the shock of unnecessary costs 
our shared resource office automation system . . .  The from expanding inefficiently. 
EXXON 8400 Series System. For more information on the EXXON 500 or our new 

As a fully functioned system its capability is awe- office automation system, just send in the coupon 
some. Operators can create, edit, reformat, file, share below. Or call 800-327-6666. E�ON OFFICE r - - - - - - - --- - - - --- - ., 

IXXon Offlce Systems SAM 05 83 

SYST EMS P.O. Box 10184, Stamford, CT 06904 
I'd like to know more about 

o the EXXON 8400 Series System 

'111e ftItlre_ wItI10IIt tI1e sI1Ock. 0 the EXXON 500 Series Information Processor 

Please have your representative call. 

Name _____ TiUe ___ _ 

Company _________ _ 

Address _________ _ 

City __ State ___ Zip __ _ 

Telephone ________ _ 

800-327-6666. L __ IN CONNECTICUT, 800·942·2525. __ .. 
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Why has higher 
intelligence been 
sparked in only 
one species? 

Promethean 
Fire Reflections on the 

Origin of Mind 

Charles 1 Lumsden 
Edward O. WIlson 
I l lustrations by Whitney Powell 

"Promethean Fire ponders 
the virtually imponderable, the 
origin of our own minds, and 
comes out on top. Every page 
is an adventure, the concepts 
come at you like laser beams. 
A thoroughly provoking book." 

$17.50 !/Iustrated 
-Roger A. Caras 

1 30 

At bookstores or order direct. 
Harvard University Press 

Cambridge, MA 02138 

"If you read no other book 
in the next five years, 
read THE WARNING! " 

L.A. Times Book Review 

THE WARNING: ACCIDENT 
AT THREE MILE ISLAND 
was written by Mike Gray, 
author of the fil m  THE 
CHINA SYN DROME ,  and 
I ra Rosen , a producer of 
60 M I N UTES . 

Now available in paperback 
Contemporary Books. Inc. 

well. Moreover, there is no reason to 
carry out the cross-validation only once. 
The data can be randomly split many 
times in many ways. 

Cross-validation has been widely ap­
plied to situations in which a curve-fit­
ting procedure is well defined except in 
some crucial respect. For example, one 
might be willing to fit a polynomial to 
the data by the least-squares method, 
but the degree, or highest power, of the 
polynomial to be fitted might still be in 
doubt. (The higher the degree of the 
polynomial, the less smooth the fitted 
curve.) Given that half of the data have 
been fitted by polynomials of various 
degree, cross-validation can choose the 
degree of the polynomial that best fits 
the second half of the data. Seymour 
Geisser of the University of Minnesota, 
Mervyn Stone of the University of Lon­
don and Grace G. Wahba of the Univer­
sity of Wisconsin at Madison have been 
pioneers in this development. 

Instead of splitting the data in half at 
random a more systematic system of 
splits can be employed. The splits can be 
chosen in such a way that the results are 
optimal for certain simple situations 
that allow full theoretical analysis. The 
balanced repeated-replication method, 
developed by Philip J. McCarthy of 
Cornell University, makes splits in the 
data systematically in order to assess the 
variability of surveys and census sam­
ples. Random subsampling, a related 
method developed by John A. Hartigan 
of Yale University, is designed to yield 
dependable confidence intervals in cer­
tain situations. 

There are close theoretical connec­
tions among the methods. One line 

of thinking develops them all, as well 
as several others, from the bootstrap. 
Hence one must ask what assurance can 
be given that the bootstrap will work 
most of the time, and how much it can 
be generalized. To the first question the 
answer is simple. The bootstrap has 
been tried on a large number of prob­
lems such as the law school problem for 
which the correct answer is known. The 
estimate it gives is a good one for such 
problems, and it can be mathematically 
proved to work for similar problems. 

We have suggested the answer to the 
second question through the diversity of 
complex problems to which the boot­
strap has already been applied. What 
is needed for many of them, however, 
is independent theoretical justification 
that the bootstrap estimate of accuracy 
remains as valid as it is for simpler prob­
lems. Current theoretical work seeks to 
provide such justification and to give 
more precise statements of accuracy 
based on the bootstrap. Fisher was able 
to provide a statistical theory that took 
full advantage of the computational fa­
cilities of the 1920's. The goal now is to 
do the same for the 1980's. 
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Sixth in 
a series 
of how Delco 
Electronics 
and Bose 
technology 
contribute to 
your enjoy­
ment o' 
driving. 

Deceptive . . .  isn't it. 
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