ON THE ‘BEST’ VALUES OF THE GONSTANTS
IN FREQUENCY DISTRIBUTIONS.

By KIRSTINE SMITH.

(1) [If we attempt to fit the normal or Gaussian curve to a system of observa-
tions, we almost invariably determine the constants Z and ¢ of the equation

N l(z—if
Y- e 3
vVino

by the method of moments. This method of moments has been extended by Thiele,
Pearson, Lipps and others to obtain the constants involved in various skew
frequency curves and series. It is an undoubtedly utile and accurate method;
but the question of whether it gives the ‘best’ values of the constants has not been
very fully studied. It is perfectly true that if we deal with individual observations
then the method of moments gives, with a somewhat arbitrary definition of what
is to be a maximum, the ‘best’ values for o and Z in the above equation to the
Gaussian. Pearson* has shown that the method of moments agrees with the
method of least squares in the case where the distribution is given by a high
order parabola, and accordingly the method of moments is likely to give a very
good result, when an expansion by Maclaurin’s Theorem would closely give &
frequency function. But the method of least squares itself can now-a-days hardly
be spoken of as more than a utile and accurate method of fit, indeed ita utility,
owing to the cumbersome nature of the equations which frequently arise, is often
far less than that of the method of moments.

Gauss’ original proof that the probability of the observed individusl resulte
was & maximum when Z and o have been determined by moments has led to the
extension of the conception that for grouped data, and for other results than the
Gaussian curve, the ‘best’ values of the constants must be given by the lowest
possible moments. This is of course not true For example, if we had a3 fre-

quency curve
Lz
ymgoe *
and used individual observations, then the Gaussian ‘best’ value for  would be
that found by determining the point for which the third moment coefficient

* Biometrika, Vol. 1. pp. 267-70.
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KIRSTINE SMITH 263

vanished, and the ‘best’ value of o would be determined by o = /u,, where y is
to be taken about the point for which uy = 0*.

From another standpoint, however, the ‘best values’ of the frequency constants

may be said to be those for which
8 (n, — 7,)?
- ( - )

is @ minimum, whers n, is the observed frequency and 7, the theoretical frequency
of the sth groupt. For when x*is a minimum then P, the probability of occurrence
of a result as divergent as or more divergent than the observed, will be a maximum,
or the frequency constants will have been so chosen as to meake the probability
P of results, as divergent from theory as the observed data occurring, a maximum.

It sounds somewhat paradoxical, but it is none the less true to say that the
‘best value’ of the mean is not necessarily the mean value, nor the ‘best value’ of
the mean square deviation necessarily the mean square deviation]. I shall illus-
trate this in the following five cases:

I.  TFit of & normal curve to unilateral data.

II. TFit of a normal curve to bilateral data.

III. Fit of a Poisson limit to the binomial.

IV. Fit of a binomial to binomial data.

V. TFit of regression lines.

The general method is as follows. Suppose f to be any independent frequency
constant; then x*is to be & maximnom with the variation of f. Accordingly we have
from

eal)

* University of Loodon, Honours B.Sc., Papers in Statistics, Thursday, Oct. 28, 1915,

t PAd. Mag. Vol . p. 157, 1800. .

1 There is & point of some philosophicsl interest here which deserves further consideration. As is
well known the Gaussian demonstration depends on making the product

1 jo®
A

4 being taken 0 as to include each individual observation, a maximum by varying ¢ and Z, the result
being that the ‘best’ values are found from the first two moments. Now it will be observed that this
is not the same ides as lien in the x? test of goodness of fit. The conception of ‘goodness’ in that case
is that we should measure the probability of a drawing from a certain populstion giving cs divergent
or ¢ more diverpent result than that. observed. In other words while the Gaussian test makes o single
ordinats of a generalised frequency surface s maximum, the x* test makes a real probahility, namely
the whols volume lying outside a cortain contour surface defined by x* a maximum. Logically this seems
the maore reascnable, for the above product used in the Gaussian proof is not a probability at all. To
make it a probability it must be multiplied by the product {3z,}, and then the probability of the actually
observed result, namely x,, =, ... z,, ... 7, will of course be infinitely small, and what is made » maximum
is an infinitely small probability. The exact meaning of P {&r,} when z, is an actual observution is
obecure, but it appears that the probability for constant indefinitely small ranges of the variates in the
neighbourhood of the observed valoes is made & maximum. But probability means the frequency of
recurrence in & repeated series of trials and this probability is in the case supposed indefinilely small.
It seams far more reasonsble to make a finite probability, i.e. the probability of a divergenoe as great or
greater than the observed & maximum, i.e. to use the x* test and not the Gaussian principle.
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264 On ‘Best’ Values of Constants in Frequency Distributions

a number of equations of type

, S(’ﬁ—'::%)no e (1),

These equations will generally be far too involved to be directly solved. Accord-
ingly we proceed thus: We suppose that the values of the frequency constants
given by the method of moments are good starting-points, and we put, if £ denote
the moment value of a frequency constant, f = f + Af. Accordingly if there be
a number f;, f4, ... f, of independent frequency constants, we shall have a series
of equations to find Af;, Af,, ... Af, of the type

o-s{547) 5 E(52) - 21 on

(55 )

................................................

dn, dn,
P A s 2 a),
S AEAREE +4) T
where a square bracket round the differential coefficients signifies that the frequency

constants f;, fy ... f, therein are to be glven their moment values f;, £, ... f,. These
values are of course also to be used in 7,.

Since S(%,}) = N, it is clear that

an,) _
Accordingly the above equations may be reduced to the type

o-s (] o5 ]2 ) o

nt— 7 2n dr, dn
g [rd =T [ .] 2, [ s .]} A
v P 7, &)
— a2 &7, 2a2[d7,dA
s gg] -5 (7 7l
AR v A el A el
It might reasonably be anticipated that terms involving the product of Af
and (n} — 7,Y/A% could be neglected in the first place and accordingly that we
should have as approximate type

s ()} - s RG] e s[5 5] o

+. +S{ [‘;}l‘é}]}m ............... (2b),

but this approximation has not in every case numerically justified itself, and thus
1t cannot be invariably used as more than a reasonable starting-off point.

(2) F+t of a Normal Curve.

l(z-m
N (""e-r?"'az

Differentiating P, o vl
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KIBSTINE SMITH 265

and then putting .
N lEoar

z,ume 27 A and z,/o=h,,

we have on substituting the differentials in (24):

1
0=35 [Pl — 2}
2
+ 07 ({2 unza = B} + 288 {20 - 7))
+ 85 (321 font 2t Bz, 2} + 28 8 {22 (11 = 2 (hsrten — b}
o

_S { 2 [ha+lza+l h,z,]}

3
+ Aﬁ (S {ﬁ_'i [— Zn + 2, + h’l+lzl+l_ hl:zl]} + 2N S {:—%' [Zl+1 - z:][hl+lzl+l - h,z,]})

—{afn? s n,?
+A4d (S {ﬁ_i (A% 112ss2— B,22,) — 2 (hs+lzn+1 - h,z,)]} +2N 8§ {‘,—Tg (A Zea— htzn]’})
£ ] s
the differential coefficients of x* being
(_r: N o [n
= S {ﬂ (znﬂ u)}

and M - E S {“l’ (h,+12,+1 hozn)}
IMlustration I. Fit of Normal Curve to Unilateral Data.

Our first illustration treats a series of measurements by Bradley discussed
by Bessel*. The mean of the observations is fixed, for in dealing with the observa-
tions Bessel has added positive and negative variations together.

TABLE 1. Measurements of Right Ascension.

Gm‘ cm 'e
Limits Observed | Gsumian curve improved b

by moments minimum x{'
0"-0—0"-1 114 101-61 98-63
0"-1—0°-2 84 84-12 82-59
0°-2—0"-3 63 5765 57-91
0"-3—0"4 24 3271 34-00
0°4—0"5 14 15-36 16-72
0"-5—0"-6 8 5874 6-881
0°-6—0"-7 3 1-923 2-372
0"-1—0"-8 1 -5122 -6843
0"-8—0"9 1 -1370 -2053

* Emanuel Czuber, TAeorie der Beobachtungsfehler, p. 192. Search has been made in vain in the
FPund ta Astr iae for the original data in order to remove the unilateral limitation.
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266 On ‘Best’ Values of Constants in Frequency Distributions
@ was found equal to 2-282542 and the second formula of (3) gave the value
2:341735 for 0. As Ao was found so large that the approximation could not be

expected to be very good, the following values of % were calculated from the
second formula of (4):

d(x"

. )
2.289542 - 32.53

.415 = 2.326581 - 181
'4_'2 = 2380052 + 806

By interpolation in this table ¢ = 2-355860 was found as the value for which
‘%D equals zero, and this is the o of the improved Gaussian given above.

From yx* the ‘goodness of fit’ P was found:

d
x P £
Gsussian 10-833 0-211 - 3253
Impr. Gnussian 9-720 0-285 + 0-20

As will be seen the better fit is obtained by making o bigger than the Gaussian
value, the improvement therefore cannot be looked upon as a correction for grouping.
On the contrary the Sheppard correction would have given ¢ = 2-264214 and
have raised x* to 11-52. Thus we see that although the two methods give close
values for P, the ‘better value’ is obtained as it should be from the lesser value
of d (x*)/do.

(3) IQustration II. Fit of a Normal Curve to Biateral Data.

For the next illustration I have used a table giving frequencies of cephalic
index in Bavarian skulls*. Both ¢ and m have here been varied. As the formulae
(3) are somewhat laborious to work with, the approximations were used roughly
suggested by the process on p. 264, but the results were not satisfactoryt and these

approximate results are therefore not given here. But éd%‘) and é% for the two

* J. Ranke, Beitrdge zur physischen Antropologie der Baiern, Minchen, 1883. The tsble includes
the material from Tables I-VI and VITI-X inclusive which may be treated as typically * Alt-Baierisch.’
t In fact the calculation of tJ:loexu:i;\mluoofd%"—x.3 showed that the part of it neglected in
formula (2 ) was about 4y of the whole value. It essentiully arose from the one tail group, this being
114 of the whole neglected part. As ﬂl‘g—:,ﬁ—" for this group was only as big as 10348, the approximate

formula (2 b) cannot be expected to be of great value for the normal curve.
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KIRSTINE SMITH 267

Gaussians found in this way were used for interpolation purposes and their constanta
are therefore given in the following table under (b) and (c). By (a) is indicated
the Gaussian from which we started, namely that found by moments, Sheppard’s
correction being used.

Assuming C—ZZ%:—) and dﬁ.‘(ﬁj to be linear functions of o and m, we determined

from the cases (a), (b) and (c) values of o and m, given under.(d), 8o as to make
the differential coefficients zero. In the same way we found at last from the cases
(a), (b) and (d) the constants of the Gaussian (e), the constants of which will be
found in the following table. As will be seen we have succeeded in bringing the

dix) 5 dix) : :
values of v and o, bear to ero, certainly close enough for all practical
purposes.
TABLE II.
d
m I x® P d]%:—) (x?)
(@) £3-08889 3-431833 10-205 -895 - & + 1442
(b) 8301498 3-358380 10-301 -891 - 10-58 - 9
(c) 82-98832 3-331365 11-048 854 - 15-89 - 20-76
(d) 83-05329 3-349421 10-108 899 - 489 -.12-10
{e) 83-07774 3-385091 9-858 -909 + 07 + T
TABLE III.
Observed .b im :
ocurve
momeats | mbmm
75 and under 9-5 12-3387 11-3504
76 12-5 12-6842 12-0767
77 17 220702 21-3463
78 37 35-2042 34-6008
79 55 51-8794 51-4323
80 71-5 70-0925 70-1100
81 82 87-0421 87-6432
82 116 99-3519 100-4734
83 08 104-2329 105-6275
84 107 100-5128 101-8352
85 82 89-0879 90-0352
86 74 72-5781 72-0998
87 58 54-3468 54-2778
88 34-5 37-4049 37-0099
89 19 23-6625 23-1422
920 10 13-7588 13-2703
91 8 7-3532 6-9782
92 and over 9 6-3093 5-7910

(4) Fit of a Poisson Limit to the Binomial. For a Poisson limit with the
" we find

‘f{%’)ns(&'ﬁ") ................................. (5),

general term e«

s!
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268 On ‘Best’ Values of Constants in Frequency Distributions

and putting m = + Am,
s(30 )
A
L]
8 (2 (e—-my+ )
Starting with # equal to the mean of the observations I have found the

improved values in the following two numerical examples.

IMustration III. The first table given by L. Whitaker® contains the number
of deaths per day of women over 85 years, published in the T'imes newspaper
during the years 1910-1912.

Am =

TABLE IV.

Number Poisson
of deaths | Observed | Poisson by first improved by
per day moment minimom x*

0 364 336-250 331-133

1 376 897-302 396-334

2 218 £34-720 237-188

3 89 92-448 094-630

4 33 27-308 28-318

5 13 8-4532 8-7782

8 2 1-2708 1-3521

7 1 0-2508 0-2715

The m, x*, P and %—(;—,) calculated from (5) were determined for the two distri-

butions as given in Table V.

TABLE V.
d
- x P l e ‘
Poisson ... 1-181569 15-226 0332 - 36-61
- Poisson improved 1-196903 14-043 0361 - 075

Illustration IV. As our second illustration we have taken a table of phagocytic
frequencies published by Major McKendrick .

TABLE VI.
No. . Poisson
Poisson b; .

bl 0% | oy momens | improved
0 620 605-924 606-676

1 282 303-568 306-164

2 79 76-0d4 78-026

3 16 12-699 13-257
4 2 1-5006 1-6892
5 1 -1738 -1881

* Biometrika, Vol. x. p. 67.

1 Proceedings of the London Mathkematical Society, Vol. xom. 1913, p. 401.
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KIRrsSTINE SMITH 269

The numerical values of the constanta of the series and of the ‘goodness of
fit’ are

TABLE VII
- X S -
Poimson ... -501000 6-8685 -231 - 41-868
Poisson improved 509700 6-672 -246 - 121

This table is of interest because it illustrates the apparent paradox, already seen
in the case of the second Gaussian curve illustration, that the ‘mean’ is not neces-
sarily the ‘best value’ of the constant termed the ‘mean.’

(6) Fit of a Binomial to Binomial Data.

Let 7, be equal to the (84 1)th term of the binomial (p+ ¢)’, where
p+qg=1, or to
i—1..(0—-s+ 1)
sl

71—y

we then find
dn, _l—pl—s _ m-—g¢

T MpA=p pU-p)
where m is the mean or stand for (1 — p),

dn, X
EF P(l ):{( —pl—23) —(l—pl_s)(1_2p)_lp(l_p)}

{(m — ) + (m — ) (1 - 2p) + mp},

P’(l P
dn, _ 1 1 1
_m_—_—.n.(log‘})i-ql—-l-z__—]+...+l_3+1)»
din, 1,1 1 y_L__1 1
ﬁ':'nc{(loglp'*_f-'-r_l-{—"'+I._3+1) —Ii_(l—l):—.“_(l“a"'l)‘},

d*n, n, 1 1 1
T s - (ep+ T+ g+ b ) ra - )
Hence we have
d(Xrlu_ nl m-—3s 1
dp S[ﬁ.p(l—p)]

n?

‘%ﬂm—S[ﬁ—. log,p+%—+lfll—+...+l—_—8171)]J
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270 On ‘ Best’ Valucs of Constants in Frequency Distributions

and the equations (2 a) take the form

S G - S(prplm = m— -+ mpl) ap )
s(ﬁ) [(m—s) (log.p+ L 2—_1_]+ ot z??l;—l) - —p)])AI

S(';i: [log,p+%+l-i—i+...+l_—:+—l]> &(3).
=8 (5o [(m- ) (log p+ gy + o+ iy )~ (1 —p)]) Ap
+ S(:_:—: [(Iog,p+ll+i_il+ ---+ﬁ)a+zl‘s+zﬁ:+"-+(t—:1Ty])N

while the approximate formulae of the type (2b) are
n? m-—s n?
= "ZT% Voeg( T — &)

S(ﬁ, p(l —p)) S(ﬁ,p'(l—p)'[m 8])Ap

+28 (ﬁ_,?(pl"— 5 [(,n - 8) (log.p+ %+ T-lfl + .. +’l:%)]) Al

n,? 1 1 1
e iy ——— 9).
S5 [l°g"’+z+z—1+"'+z-s+1]) }”
n} 1.1 _1
mzs(ﬁ-P(I—P) l:(m—s)(log.p+ 1=t "'+l—s+1)]) Ap

n,Y 1, 1 1
+ 28(—1_:[10&}14- S e BRCRa ey 1])Al
Ilustration V. Weldon’s Dice Data
For illustration are used the following data due to the late Professor W. F. R.

Weldon*. They give the observed frequencies of dice with five or six points when
a throw of twelve dice was made 26306 times.

TABLE VIIIL.
Number of dice Binomial b Improved binomial Improved binomial
: N Observed J
in cast with § method a) by x* s (4) s
or 8 points frequency momenta (mtnﬂnnm mh‘z:num
0 185 189-679 190-851 180-6859
1 1149 1154-441 1157-607 1157-600
2 3285 3223426 3226-085 3225-959
3 5475 546101 5458-07 5457-78
4 6114 6253-64 6245-88 6245-71
5 5104 5101-31 5095-82 5005-79
6 3067 3041-04 3041-47 3041-69
7 1331 1335-82 1339-55 1389-81
8 403 429-627 432-815 432-984
8 105 08-865 100-351 100-419
10 14 15-5133 15-9413 15-8585
11 4 1-57640 1-85879 1-66210

* PAiL Mag. July, 1900, p. 167.
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KIBSTINE SMITH 271

Fitting the frequencies from the end by means of two moments we obtain the
binomial
(6658208 + 334179g)118607,
the terms of which are given in the table above under the head Binomial

From these starting values of p and I we found by the equations (8) the constants
of the improved binomial (a) p = ‘6674922 and ] = 12-188945.

A comparison between the coefficients of the two sets of formulae (8) and (9)
gave the result that they only diverged by between 1-4 and 5 per mille of their
value. As -’!i—ﬂ—' for the tail group was as big as 5-44, wearefromthm;ushﬁed

in expecting the approximate formulae (9) to be useful for binomial data.
Btarting from the improved binomisl (a) snother improved binomial (b) was
found by means of the formulae (9). As will be seen I only succeeded in

diminishing %) by raising %2 and x* came out with exactly the same value

as by the former formula. The constants for the improved binomial (b) are
p = -6675432 and ! = 12-191141.

The constants illustrating the ‘goodness of fit’ were found as follows:

TABLE IX
d - {0%
- R ] 0 (x)
Binomial 11-643 -390 ! 159-47 - 815
Improved Binomial (a) 11-513 -40} ' 28-02 - -84
» (%) 11-513 -401 -2 + 1-08

It will be seen from the above illustrations that the probability of happening
a8 determined by the x*® test of ‘goodness of fit’ being a maximum can always be
made somewhat greater than the same probability deduced from a fit by the
method of moments, which at any rate for the Gaussian curve is usnally assumed
to be the ‘best.’

(6) On the ‘Best’ Values of the Constants of Regression Curves.

If we apply the test of ‘ goodness of fit’ to regression curves as recently indicated
by Pearson* modifying Shatsky’s methodst, we shall experience the same divergence
between the curves of regression found by the method of least squares and the
curves calculated so as to make x* a minimum, as we found when dealing with
frequency distributions.

In the paper cited x? for a regression curve is given as

B=5 (’hi’%’".l’) .............................. (10),

* Biomatriba, Vol. XI. pp. 230 e seq.
t Jowrnal of the Royal Statistical Society, Vol. LXXVIX. pp. T8-84.
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272 On ‘Best’ Values of Constants in Frequency Distributions

where m is the mean of the pth array of the sample of size M from a population
of size N, while m, is the “heoretical mean as found from the regression curve,
ny, = A, M/N, is the mean frequency and oy, the mean standard deviation of the
pth array in the samples. The difficulty in applying the ‘goodness of fit’ test
lies in finding adequate values for n, and oz,. Let us assume them to be found.

The ‘best’ values of the constants fj, f;, ... of the regression curve, i.e. the values

which make y* & minimum, will then be found from equations of the type

0=—28 {_"L ) 9 { 0 d(—ﬂ-’— }
¢« 0=— e (my, — my) EfT} + 8 |(m,— M —g 2| ... (11).

Ty 1
As will be seen these equations fall into the equations resulting from using
the method of least squares if a—’:{— is independent of the constants of the regression
ﬂ,

curve and at the same time for the different arrays proportional to the m, of the
sample. Even if our sample be derived from truly Gaussian data, these conditions
will only approximately be satisfied, the oz, although constant, being dependent
upon the constants of the regression «urve and the s, of the formula not being
really the sample value.

ny

Supposing a—‘—’_" to be independent of the constants of the regression line

i, =az+ b, the equations (11) take the form
S{v,(m,—az—b):v}:—O,
S{v,(m,—az—b)}no,
i3
G’L
when we put v, for —_—

Do
S(%)
From these equations we find
o = S(v,mz). S (v)) — S (vym,) S ()
S (e,2% 8 (v,) — (8 (w2
8 (v,m,) 8 (v3)
b o= - ,
and 5w "8k
formulae agreeing with those derived from the method of least squares if v, equals
the marginal frequencies of the sample. But not agreeing with them if, for example,
the material be heteroscedastic.
() IlUustration VI. Auricular Height of School Girls.
This example was first used by I'earson in the memoir on skew correlation*
and later as an illustration of the test of ‘gooduness of fit’ of regression curvest.

* Drapers’ Company Research Memoirs, Biometrio Series m. p. 34.
t Biometriks, Vol x1. p. 253,
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KmsTINE SMITH 273

For the present use theoretical values of n, and o5 s were determined, from which the
values of v, given in Table X are calculated. Then, and v, of the table represent the
weights given to the means of arrays respectively by the method of least squares and
by our method of making x* & minimum. It will be seen that our method throws

TABLE X.
™y
*» ot from x? ﬁ-omm;:ut

Age observed hed observed » minimam i

3—4 1 5-3790 115-25 11776 117-95

45 ki 18-7170 116-96 118-44 118-61

] 18 28-5973 117-47 118-13 119-27

6—7 40 56-0527 118-10 118-81 119-94

7—8 76 095-3828 120-30 12049 120-60

8—9 125 146-023 121-63 12117 121-26

9—-10 177 199-783 121-72 121-86 121-92
10—11 235 243414 122-82 122-54 122-59
1112 261 271-704 123-14 123-22 123-26
12—13 309 277-232 123-89 123-90 123-01
13—14 263 259-386 124-86 124-59 124-58
1415 198 223-505 125-71 125-27 125-24
15—16 214 172-851 126-16 125-96 125-90
16—17 162 121-865 126-53 126-63 126-67
17—18 25 75-7308 126-91 127-32 127-23
18—19 61 43-U926 127-02 128-00 127-89
19—-20 13 21-2448 129-568 128-68 128-55
2021 7 8-09110 123-82 129-36 129-22
2122 8 6-423268 126-50 13005 120-88
2223 2 2-42653 125-28 130-73 130-54

the weight more to the first half part of the groupe of ages than the method of
least squares. This is due to the heteroecedesticity of the material, the o5,
varying from 27-2776 in the youngest group to 60-4676 in the eldest. The two
last columns of Table X contain the m, calculated from our regression formula
and from the usual formula; as might be expected our m,’s are closer to the
means of the observations for the younger groups of ages and differ more for the
higher ages than do the m, values obtained by the method of least squares. The
x* calculated by (10) are for the two cases 18-45 and 18-67 and we have only raised
the ‘goodness of fit’ P from ‘543 to -558 although the weighting in the two
methods appeared sensibly different.
The usual regression line is

m, = 124-0467 + -662979 (z, — 12-7007),
124-0467 and 12-7007 being the general means, and regression line from the y?
formula may be written

my, = 124-0411 + -682455 (z, — 12-7007)
from which is seen that it passes not far from the mean.

In a similar way I have treated the regression of ages on height of head. Also
I have here calculated the heteroscedasticity and have had to use a parabola to
Biometrika 1 18
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Age in Years

Duoemam I. Comparison of Regression Straight Lines found by method of

Least Squares and by x* Test.
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Kmstine SMITH 275

represent o , the squared standard deviation of the arrays of same height, to
obtain a reasonable description; this is shown on the diagram. The marginal
frequencies of the height variate could be expressed fairly well by a Gaussian curve.
These theoretical values of o%;: and n,’ are given in Table XI together with the
weights

’

ity

9 = —a-,ﬁL"_

s(zz)

5/

calculated from them.
TABLE XI.
o= ’ ’ , my / from
Millime oy * v d ™ | tromys | least
thearetical | thearetical observed | ocbeerved inimam | sq

102-25—104-25 8456 473 4-7123 2 500 9-92 9-99
104-25—106-25 8748 6-62 6-3809 10 10-40 10-18 10-25
106-25—108-25 8-887 13-89 13-0282 10 11-10 10-45 10-51
108-25—110-25 9172 26-80 24-6339 27 11-54 10-72 10-77
110-25—112-25 9-304 47-59 43-1217 56 1171 10-89 11-03
112-26—114-25 9-382 T1-18 69-8648 89 11.81 11-26 11-20

114-25—116-25 0-408 116-80 104-750 118 11-62 11-53 11-656
116-25—118-25 9-380 161-71 145-332 142 1170 | 11-80 11-81
118-26—120-25 9-208 206-83 188-397 244 11-80 | 12-08 12-08
- 120-25—122-285 6-164 24108 221-744 285 12-15 12-33 12-34
122-26—124-25 8-976 25978 243-960 261 12-52 12-60 12-60
124-25—126-25 8-735 257-59 248-380 285 12-83 12-87 12-86
128-25—128-25 8-441 23502 234-710 219 12-88 13-14 13-12
128-25--130-25 8008 197-30 205508 197 13-78 13-41 13-38
130-25—132-25 7-692 15241 167-023 131 .| 1385 13-67 13-64

132-25—134-25 7-238 108-33 126-167 88 13-78 13-4 13-00
134-25—-138-25 6-730 70-88 88-7381 17 14-28 14-21 14-16
136-25—138-25 6-170 42-64 58-2529 52 14-40 14-48 14-42
138-25—140-25 5-6568 23-61 35-8204 20 14-05 1478 14:69
140-25—142-25 4-888 12-03 20-7416 18 14-56 15-02 1405
142-25—144-25 4-168 564 114040 11 14-85 15-29 15-21
144-25—146-26 3-304 2-43 8-0407 4 | 18-00 | 1556 1547
146-25~—148-25 2-5687 149 4-8835 1 18-50 15-82 1573

The usual regression line is
m,’ = 12-T007 + 130489 (y, — 124-0467),
and the line for which x? is 8 minimum is
m,’ = 12-7071 + 1342345 (y, — 124-0467).
For x* were found in the two cases the values 44-411 and 44-109 and for the
‘goodness of fit’ P the values 0047 and -0051%*.

* A case was purposely chosen in which the regreesion was known to be far from linear, in order to
sscertein whether this fact itself would separste st all widely the lesst square and x* regreesion lines.
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The intersection point of the two x* regression lines is m = 124-0453,
m’ = 127070, which is seen to be very near to the generzl means. Introducing
that point into the equations of the lines, they take the form

my’ = 127070 + -1342345 (y, — 124-0453),
m, = 124-0453 + -682455 (z, — 12-7070).

From the slopes of the lines we find the value 3027 for the correlation coefficient.
whereas the method of least squares gives the value -2941.

Although we have found the material to be decidedly heteroscedastic and the
weighting of the two series of means rather different from that of the marginal
frequencies, we nevertheless see that the resulting regression lines differ very little
from the ordinary regression lines, both the deviations of the means and the
correlation coefficient derived from them being less than their probable errors.

(8) The conclusions to be drawn from the present investigation are:

(1) The definition of ‘best,” which leads to the method of moments being con-
sidered ‘best’ and incidentslly to the method of least squares being considered
‘best,” is undoubtedly somewhat arbitrary. If we use Pearson’s ‘ Goodness of Fit’
test, then the method of moments is8 not necessarily the ‘best,’ the best value of
the constant termed the mean is not necessarily the mean, nor generally the best
value of the correlation coefficient between two variates that calculated by the
moments and product moment method.

(i) On the other hand the present numerical illustrations appear to indicate
that but little practical advantage is gained by a great deal of additional labour,
the values of P are only slightly raised—probably always within their range of
probable error. In other words the investigation justifies the method of moments
as giving excellent values of the constants with nearly the maximum value of P or
it justifies the use of the method of moments, if the definition of best’ by which
that method is reached must at least be considered somewhat arbitrary.

The present paper was worked out.in the Biometric Laboratory and I have
to thank Professor Pearson for his aid throughout the work.
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