Behind the Poisson distribution - and when is it appropriate?

(ii) "<u>Accidents</u>": To test if accidents are truly distributed "randomly" over drivers, consider one specific (but generic) bus driver. <u>If accidents are really that</u> (i.e. if accidents shouldn't be more likely to happen to any driver rather than any other), then each time one occurs, there is a small = 1/708 chance that it happens to the one driver we are considering. There are n=1623 such accidents to be 'distributed' so our driver has n "opportunities" to be dealt an accident [we ignore practical details such as whether the driver is still off work from the last one!].

We could therefore work out the binomial probability that the driver has 0, 1, 2, .. accidents. Now n is large enough and small enough that using the Poisson formula with $\mu =$ n = 1623 / 708 will be quite accurate and save a lot of calculation. We then use the probability that any one driver will have y accidents as a synonym for the proportion of all drivers that will have y accidents

We can now compare the observed distribution of accidents and see how well it agrees with this theoretical Poisson distribution. Colton (pages 16-17) examines the fit of the Poisson model to the actual data...

Colton Table 2.5 Observed and "expected" numbers of accidents during a 3-year period among 708 Ulster (Northern Ireland Transport Authority) bus drivers.

# accidents in 3- year period	Number of drivers with this many accidents		
(y)	<u>O</u> bserved	Expected †	$\underline{O} \times y$
0	117	71.5	0
1	157	164.0	157
2	158	187.9	316
3	115	143.6	345
4	78	82.3	312
5	44	37.7	220
6	21	14.4	126
7	7		49
8	6		48
9	1	(7-11 combined) 6.6	9
10	3		30
11	1		11
	708	708	1623
a #accidents 0×117 + 1×157 + 1623			

$$\hat{\mu} = \frac{\#\text{accidents}}{\#\text{drivers}} = \frac{0 \times 117 + 1 \times 157 + ..}{708} = \frac{1623}{708} = 2.29.$$

var(y) = 3.45 >> mean(y).

+Expected number = Poisson Prob(# accidents=y $|\hat{\mu}\rangle$) × 708

(e.g. prob(0) = exp[-2.29]= 0.101 ; expected # of 0's = $708 \times 0.101 = 71.5$)

"Comparison of observed and expected tabulations reveals more than the expected number of drivers with no accidents and with five or more accidents . <u>These data</u> <u>suggest that the accidents did not occur completely at</u> <u>random</u>; in fact it appears that there is some indication of accident proneness. From this example, what conclusions are justified concerning the random or nonrandom distribution of bus accidents?"