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Teacher’s Corner

I Hear, I Forget. I Do, I Understand: A Modified Moore-Method
Mathematical Statistics Course

Nicholas J. HORTON

Moore introduced a method for graduate mathematics in-
struction that consisted primarily of individual student work on
challenging proofs. Cohen described an adaptation with less ex-
plicit competition suitable for undergraduate students at a liberal
arts college. This article details an adaptation of this modified
Moore method to teach mathematical statistics, and describes
ways that such an approach helps engage students and foster
the teaching of statistics. Groups of students worked a set of
three difficult problems (some theoretical, some applied) ev-
ery two weeks. Class time was devoted to coaching sessions
with the instructor, group meeting time, and class presentations.
R was used to estimate solutions empirically, where analytic
results were intractable, as well as to provide an environment
to undertake simulation studies with the aim of deepening un-
derstanding and complementing analytic solutions. Each group
presented comprehensive solutions to complement oral presen-
tations. Development of parallel techniques for empirical and
analytic problem solving was an explicit goal of the course,
which also attempted to communicate ways that statistics can
be used to tackle interesting problems. The group problem-
solving component and use of technology allowed students to
attempt much more challenging questions than they could other-
wise solve. Supplementary materials for this article are available
online.

KEY WORDS: Capstone course; Empirical problem solv-
ing; Intermediate statistics; R software; Reproducible analysis;
RStudio integrated development environment; Simulation stud-
ies; Statistical computing; Statistical education.

1. INTRODUCTION

In this article, an implementation of a mathematical statistics
course is described with the goal of developing a combination
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George Cobb, David Cohen, Daniel Kaplan, David Palmer, and Randall Pruim
for many useful discussions about pedagogy as well as helpful comments on an
earlier draft. I am also indebted to the Editor, Associate Editor, and anonymous
reviewers for many suggestions which led to improvements in the article.

of analytic and empirical problem-solving skills through the
solution of challenging problems and complex case studies. The
course, offered at the Department of Mathematics and Statistics
at Smith College in Spring 2007 and Spring 2011, adapted the
approach of R. L. Moore (Jones 1977), using modifications
suggested by Cohen (1992). A similar mathematical statistics
course was described by McLoughlin (2008).

In the next subsection, recent developments in statistics edu-
cation are described, followed by an overview of the modified
Moore–Cohen method. Section 2 describes specific details of
the course, Section 3 provides two example problems (with em-
pirical as well as analytic solutions), Section 4 describes grading
and assessment, while Section 5 provides additional discussion
and closing thoughts.

1.1 Developments in Statistical Education

Extensive curricular reforms in undergraduate statistics edu-
cation have transformed our programs and courses in recent
decades (Cobb 1992; Moore et al. 1995; Cobb 2011). The
Guidelines for Assessment and Instruction for Statistics Edu-
cation (GAISE) report (GAISE College Group 2005), which
succinctly described these changes, recommended that intro-
ductory statistics courses:

• emphasize statistical literacy and develop statistical thinking,
• use real data,
• stress conceptual understanding rather than mere knowledge

of procedures,
• foster active learning in the classroom,
• use technology for developing conceptual understanding and

analyzing data, and
• use assessments to improve and evaluate student learning.

Other related efforts have attempted to broaden the types of
questions that statistics students grapple with (Brown and Kass
2009; Gould 2010), increase the use of case studies (Barrows
and Tamblyn 1980; Nolan and Speed 2000; Nolan 2003), and
take advantage of sophisticated computing technologies and
environments such as R (Ihaka and Gentleman 1996) or Matlab
(Kaplan 2003) to buttress understanding of statistical concepts
(Buttrey, Nolan, and Temple Lang 2001; Nolan and Temple
Lang 2003, 2010; Horton, Brown, and Qian 2004; Froelich
2008; Lazar, Reeves, and Franklin 2011).
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The mathematical statistics course has undergone many trans-
formations during this same period. A lively panel in 2003 with
the provocative title “Is the Math Stat Course obsolete?” (Ross-
man and Chance 2003) provided a glimpse into ways that this
intermediate-level statistics course is adapting to a changing
landscape. One idea raised was that the math stat course (still
a common entry point to the field for many students studying
mathematics) should convey the excitement of the discipline
(“even if they don’t go on [in statistics], we want them to leave
thinking statistics is interesting”). Another was that modeling,
computing, and problem-solving are key components of such a
course.

Cobb (2011) provided a series of capsule summaries of inno-
vations in the teaching of mathematical statistics and discussed
key tensions that underlie our courses in terms of what we want
students to learn:

Surely the most common answer must be that we want our
students to learn to analyze data, and certainly I share that
goal. But for some students, particularly those with a strong
interest and ability in mathematics, I suggest a complemen-
tary goal, one that in my opinion has not received enough
explicit attention: We want these mathematically inclined
students to learn to solve methodological problems. I call the
two goals complementary because, as I shall argue in de-
tail, there are essential tensions between the goals of helping
students learn to analyze data and helping students learn to
solve methodological problems.

For a ready example of the tension, consider the role of
simple, artificial examples. For teaching data analysis, these
“toy” examples are often and deservedly regarded with con-
tempt. But for developing an understanding of a methodolog-
ical challenge, the ability to create a dialectical succession of
toy examples and exploit their evolution is critical (p. 32).

1.2 Moore and Cohen Methods

Moore was noted (Halmos 1985) for quoting the Chinese
proverb I hear, I forget. I see, I remember. I do, I understand. He
provided classes with a list of definitions and theorems which
they would subsequently prove individually and then share with
the rest of the class. Competition was a key driving force in the
course (Jones 1977), with efforts to ensure that student back-
ground was as homogeneous as possible. The overall goal was
to build student capacity to create structure from an axiomatic
basis and communicate this to others. Smith, Yoo, and Nichols
(2009) described possible evaluations and assessment of Moore
method mathematics courses.

Cohen (1992) modified Moore’s approach using three guiding
principles:

• students understand better and remember longer what they
discover themselves than what is told to them,

• people master an idea thoroughly when they teach it to some-
one else, and

• effective writing and clear thinking are inextricably linked (p.
474).

A fourth principle incorporated in this mathematical statistics
course involved the use of R (R Core Team 2013) and RStu-

dio (an open source integrated development environment for
R) to facilitate parallel empirical and analytic problem-solving
techniques.

Much of the class time is spent with students working as a
group and individually to solve sets of challenging problems,
writing up solutions, and presenting them to the class as a whole.
While each group tackled problems from each of the major units
of the course, group members would tend to learn their assigned
problems in more detail and rely on their classmates to convey
understanding of the other problems.

The Moore and Cohen approaches deal more with pedagogy
than with curriculum. Moore used his method to teach proofs in
topology. Cohen used his method for linear algebra. Here, we
borrow Cohen’s pedagogy for a course in mathematical statis-
tics. Students are not given theorems to prove as in Moore’s
courses; instead they are given challenging problems to solve.

These problems are chosen according to four criteria. The
first two are critical to the pedagogy: each problem should be
easy to grasp, and each should be hard enough that solving it
poses a genuine challenge. The first criterion helps ensure that
all students in a group can participate; the second helps ensure
that stronger students will not be able to cutoff discussion with
a quick solution.

A third criterion is that the problems should have links to
actual applications. This is in the spirit of the GAISE recom-
mendations.

Fourth, the problems should lend themselves to parallel and
complementary pairs of solutions, one based on simulation and
the other based on theory. The parallel solutions constitute a
recurring theme to the course, one that is central to the curricu-
lum. This criterion is in some ways incidental to the pedagogy,
although it helps ensure that students with different strengths
and backgrounds can contribute actively to group work.

2. DETAILS OF THE COURSE

For the sections (officially titled “Seminar in Mathematical
Statistics”) taught by the author in Spring 2007 and Spring 2011,
the class met three times per week for 80 min per session for 13
weeks.

While the only required prerequisite for the class was prob-
ability, most students in the course had also taken introductory
statistics and linear algebra. No specific knowledge of statis-
tics was assumed. At the beginning of the course, the students
took the 40 item multiple choice CAOS (Comprehensive As-
sessment of Outcomes in a first statistics course) test (delMas
et al. 2007). While designed to assess student reasoning after a
first course in statistics (and not a mathematical statistics class),
the CAOS focuses on conceptual understanding of variability
and uncertainty. The average score for the mathematical statis-
tics students on the CAOS pretest was 67.2% correct with a
standard deviation of 13.6% (values ranged from 43% to 90%).

The structure of the course included (almost) no lectures.
Instead, the material was broken down into a number of problem
sets. These questions were designed to be sufficiently difficult
to provide a challenge to students, but still amenable (with some
assistance) to solution.
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During the first offering, four groups of three students were
created, with seven groups of three students for the second of-
fering. Each group would work a different set of problems for
each problem set (with an occasional problem assigned to all
groups). Throughout the semester, these groups were reshuf-
fled twice, with no two individuals being in the same group
twice. The rebalancing helped to address issues with groups that
consisted of only weak students (as well as to provide a release
valve for problems with group dynamics).

Most class sessions consisted of a series of “coaching” ses-
sions several days after the initial presentation of the problems.
These coaching sessions, described in detail in Cohen (1992),
are critical in helping to guide students toward the desired so-
lution without providing the answer. All students in a group
attended a given coaching session and discussed their prelim-
inary attempts at the problems. In some cases, they may have
solved their problems. More commonly additional guidance was
needed for them to make progress or to elaborate on their so-
lutions. Early on in the course, much of this coaching involved
support and scaffolding for the use of computing (to allow them
to gradually build their skills in terms of simulation and explo-
ration).

Each student created a draft of their preliminary solution in
preparation for a second coaching session. To ensure that all
students were engaged and making good faith efforts, these
were reviewed by the instructor. One per group was graded in
detail to provide general feedback for all students.

The second coaching session was used to help answer any
remaining questions and assist with preparations of the solutions
(“weekly papers”). Other assistance was provided outside of the
regular class meeting times by email or during office hours.

Before the final class session for a given set of problems,
each group created a single clear and comprehensive solution,
which was made available to the class. Finally, each group gave
a 15 min oral presentation that reviewed their solution, with
questions and answers as needed.

2.1 Textbooks and Topics

The approach suggested by Cohen (1992) to teach analysis of
linear algebra provides students several pages of axioms, defi-
nitions, theorems, and problems. This serves as the foundation
from which all of the remaining material is derived. Because of
the need for more extensive material to support student work
in a range of mathematical statistical topics, the text by Rice
(1995) was used for background reading as well as the source of
many of the problems. In addition, several modules (including
case studies with advanced data analysis) were integrated from
Nolan and Speed (2000).

The course began with a series of challenging probability
problems, covering selected topics and highlights from Chap-
ters 1 to 5 of Rice (1995). The next set of problems related to
descriptive and graphical visualization (covering Chapter 10 of
Rice (1995) and the Maternal smoking and infant health module
from Nolan and Speed (2000)). Two sets of problems were de-
voted to estimation and the bootstrap (Chapter 8 of Rice (1995)
and the Patterns in DNA and Who plays video games? modules
from Nolan and Speed (2000)). Testing hypotheses and assess-

ing goodness of fit (Chapter 9 of Rice (1995)) comprised two
sets of problems, while Chapter 10 was used as a basis for a
set on two sample comparisons. The first time the course was
offered, it closed with a set of problems entitled Bayesian infer-
ence: a big idea, based loosely on Chapter 15 of Rice (1995) and
Section 2.5 of Lavine (2013), while the second offering closed
with precursors of informal inference and simulation studies of
inference rules (Wild et al. 2010).

2.2 Real Data and Mathematical Statistics

While the course did not focus on advanced analysis of mul-
tivariate datasets, real data was regularly incorporated into the
course, primarily as a component of problems assigned to the
students throughout the semester. The textbooks by Rice as well
as Nolan and Speed are notable for the number and variety of
motivating examples provided throughout, including the exer-
cises. As an example, students might be asked to find the method
of moments estimator for θ for a Pareto distribution with known
scale parameter x0 and compare this to the maximum likelihood
estimator for θ . After finding the analytic results, and simulat-
ing to compare the variance of the estimators, they would be
asked to calculate and interpret the sample statistic using data
from an economic survey. Another set of problems related to
the analysis of cell probabilities expected by genetic theories,
through estimation of underlying parameters. Students were as-
sessed both on their ability to report in context on the underlying
applied statistical question, as well as on the relevant statistical
derivations or simulations that they carried out.

As outlined by the GAISE guidelines, use of real data is es-
sential to the introductory course, and central also to any statis-
tics curriculum as a whole. Nevertheless, for certain individual
courses that serve as elements of a larger statistics curriculum,
real data may be less essential. There is an inherent complemen-
tarity between analysis of data using existing methods and the
development of new methods (Cobb 2011). We need a curricu-
lum that teaches students to engage, appreciate, and enjoy both
data analytic and methodological challenges. In a course such
as the one described here, although connections to real data are
important, the balance is weighted toward problems of a more
abstract sort.

2.3 Technology

This approach would not be feasible without the use of com-
puting technology to facilitate analysis and simulation. R (Ihaka
and Gentleman 1996) and RStudio (http://rstudio.org) provided
a flexible and adaptable environment for exploration (Horton,
Brown, and Qian 2004; Pruim 2011).

RStudio is an open-source integrated development envi-
ronment that provides a consistent and powerful interface
for R (an open source general purpose statistical package,
http://r-project.org) that is easier to install, learn, and run than
standard R. LaTeX (Lamport 2011) within the Sweave (Leisch
2002) system was used as the formatting environment for the
solutions, with an annotated example distributed to all students
during the initial class meeting. This included examples of ta-
bles, figures, cross referencing, bibliography, and other useful
attributes. Submissions were made available to students as both
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Figure 1. R code to generate empirical estimates using Approach (B).

Sweave source and PDF files to allow students to borrow work-
ing code. RStudio is particularly attractive because it simplifies
the user interface and has tightly integrated support for Sweave
(including a single button click to Compile PDF from the source
document). In future offerings, the Markdown system within the
knitr package (Xie 2012) will be used, as it provides simplified
functionality and does not require knowledge of LATEX.

The course intentionally introduced students to concepts of
reproducible analysis (Gentleman and Temple Lang 2007),
where computation, code, and results of an analysis are inte-
grated. Being able to rerun a set of simulations and regenerate
a report with a single click is a powerful motivator for students
used to error-prone processes of cutting and pasting output and
figures. Reproducible analysis systems are becoming standard
in industry and academia, have the potential to help ensure better
statistical analysis, and should be incorporated in the statistics
curriculum.

To help simplify the learning curve for these somewhat com-
plex systems, a number of examples and idioms were provided
by the instructor, to help build students’ repertoire of useful tech-
niques to attack problems. Students were encouraged to write
their initial solutions using pseudo-code (an informal descrip-
tion that could later be turned into working R code). These were
also posted to the course management system to facilitate reuse
in other problems and settings.

3. EXAMPLE PROBLEMS AND SOLUTIONS

To give a better sense of the course, we describe two problems
that were completed by the students, along with model solutions
and commentary (additional examples are found in the online
supplement). Each group would generally work three or four
problems per assignment.

These problems feature both empirical (simulations in R) and
analytic (closed-form) solutions by the groups. They range from
easier to more challenging, but illustrate the approaches taken

by students in three separate application areas. The general level
of difficulty is similar to that of Rice (1995).1

3.1 Pooled Blood Sera Sampling

It is known that 5% of the members of a population have
disease X, which can be discovered by a blood test (that is
assumed to perfectly identify both diseased and nondiseased
populations). Suppose that N people are to be tested, and the
cost of the test is nontrivial. The testing can be done in two ways:
(A) Everyone can be tested separately; or (B) the blood samples
of k people are pooled to be analyzed. Assume that N = nk with
n being an integer. If the test is negative, all the people tested
are healthy (that is, just this one test is needed). If the test result
is positive, each of the k people must be tested separately (that
is, a total of k + 1 tests are needed for that group).2

Questions:

i. For fixed k what is the expected number of tests needed in
(B)?

ii. Find the k that will minimize the expected number of tests
in (B).

iii. Using the k that minimizes the number of tests, on average
how many tests does (B) save in comparison with (A)? Be
sure to check your answer using an empirical simulation.

3.1.1 Empirical (Simulation-Based) Solution

We attempted to gain a better understanding of the problem
by simulation. First, we set k = 10, n = 500, and P (infected) =
p = 0.05 (refer to Figure 1 for code). Given these specific values
for each of the variables, we found the expected number of tests

1 Rice states on page xi that This book includes a fairly large number of prob-
lems, some of which will be quite difficult for students. My students confirmed
this assertion.

2 This assumes that all of the tests are run at the same time. Otherwise, if the
pool tested positive and the first k − 1 tests were negative, there would be no
need to test the final member of the pool.
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Figure 2. Display of expected number of blood tests required as a
function of pool-size (k), with N = 5000, p = 0.05.

to be approximately 2501.9. We then used this value to help us
check our analytic solution.

Next, we tried different values of k and n such that N (the
number of people to be tested) equaled 5000. We did this to
find the value of k that minimized the expected number of tests.
Given that N = 5000, possible integer values for k were 2, 4,
5, 8, and 10. We found the expected number of tests for each
of these k values, respectively, were 2988.7, 2178.9, 2126.5,
2306.2, and 2501.9. For this example, the minimum value is
found when k = 5.

3.1.2 Analytic (Closed-Form) Solution

Approach (A): the expected number of tests needed is
E[TA] = N = n ∗ k, because we would be testing each indi-
vidual exactly once.

For Approach (B):

i. Let Y = the number of pools infected and TB = the to-
tal number of tests needed. Assuming independence, we
have that E[Y ] = n(1 − 0.95k) and E[TB] = n + kE[Y ] =
n + k(n(1 − 0.95k)). With N = 5000 people, this simplifies
to: E[TB] = 5000(1/k + (1 − 0.95k)). When k = 10, n =
500 and P (infected) = p = 0.05, E[TB] = 2506.3, which
closely matches the results from the simulation.

ii. We find the derivative of E[TB] with respect to k and solve
(using a symbolic mathematics package such as Maple or
Wolfram Alpha), which yields a positive solution of k =
5.022 (see Figure 2). When k = 5,

E[TB] = n + 5(n(1 − 0.955)) = n + 1.13n = 2.13n

= 2130.

This result is similar to that shown in the empirical simula-
tions.

iii. We compare the two expected number of tests needed for
each of the approaches when k = 5 and p = 0.05:

E[TA]/E[TB] = 5n/2.13n = 2.35.

Approach (A) requires an average of 2.35 times the number
of tests than Approach (B). Figure 2 demonstrates that this
ratio is greater than 1 for pool sizes between 2 and 10, given
a prevalence of 0.05.

3.1.3 Commentary

This problem was part of a series of probability questions at
the start of the course. While more efficient programming ap-
proaches could be used, the empirical solution features a number
of idioms and tricks of the trade that are repeated throughout
the class.

This example demonstrates a setting where the analytic so-
lution is straightforward using basic properties of expectations,
but where the empirical solution provides a useful check on the
results. This type of question helps students build confidence in
using knowledge from the prerequisite course in new ways.

3.2 Sampling From a Probability Distribution

Questions [from Evans and Rosenthal (2004)]:

i. Is it possible to find a tractable expression for the cdf
of a distribution with density given by f (y) = c(1 +
|y|)3 exp(−y4), where c is a normalizing constant and y
is defined on the whole real line? If not, can you find c?

ii. Show how to generate a sample of observations from this
distribution.

iii. Describe how this is useful in Bayesian inference.

3.2.1 Solution

i. While it is possible to find a closed-form solution for the
cdf of this distribution it is not easily solvable. Note that
because the density is a function of the absolute value of y,
the integral can be broken into two symmetric parts. To find
c, we evaluate twice the integral from [0,∞) in R:

> f = function(x){exp(-x^4)*(1+abs(x))^3}
> integral = integrate(f, 0, Inf)
> 2 * integral$value
[1] 6.809611

Hence c = 1/6.809611 ∼= 0.15.

ii. We created a Markov chain Monte Carlo sampler, using
the Metropolis-Hastings algorithm. The premise for this
algorithm is that it chooses proposal probabilities so that
after the process has converged draws are generated from
the desired distribution. A further discussion for enthusiasts
can be found on p. 610 of Evans and Rosenthal (2004).
We find the acceptance probability α(x, y) in terms of two
densities, our f (y) and q(x, y), a normal proposal density
with mean x and variance 1, so that

α(x, y) = min

{
1,

f (y)q(y, x)

f (x)q(x, y)

}

= min{1, (c exp (−y4)(1 + |y|)3(2π )−1/2

× exp (−(y − x)2/2))/(c exp (−x4)(1 + |x|)3

× (2π )−1/2 exp (−(x − y)2/2))}
= min

{
1,

exp (−y4 + x4)(1 + |y|)3

(1 + |x|)3

}
.
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Figure 3. R code to generate Metropolis-Hastings samples.

Pick an arbitrary value for X1. The Metropolis-Hastings
algorithm then computes the value Xn+1 as follows:
1. Generate Yn+1 from a normal(Xn, 1).
2. Let y = Yn+1, compute α(x, y) as before.
3. With probability α(x, y), let Xn+1 = Yn+1 = y (use pro-

posal value). Otherwise, with probability 1 − α(x, y), let
Xn+1 = Xn = x (keep previous value).

The code (displayed in Figure 3) uses the first 100,000 iter-
ations as a burn-in period, then generates 100,000 samples.
A histogram is displayed in Figure 4.

iii. The Metropolis-Hastings algorithm is a form of Markov
chain Monte Carlo (MCMC) and is particularly attractive
when the posterior density function does not have a familiar
integral (such as when f (x) is a posterior density that does
not correspond to a conjugate prior).
Simulation is a central part of applied Bayesian analysis,
because of the relative ease with which samples can be
generated from a probability distribution, even when the
density function cannot be explicitly integrated (see p. 25
of Gelman et al. 2004).

3.2.2 Commentary

This problem was taken from the final set of problems, entitled
Bayesian statistics: a big idea, which was intended to introduce
students to more sophisticated simulations that are necessary
to get answers for more complex models. Because the stu-

Figure 4. True density and simulated draws from probability
distribution.
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dents had no prior experience with MCMC, a preliminary mini-
lecture on the topic was provided along with supporting readings
from Lavine (2013). This included some classic examples with
conjugate priors. Throwing the nasty density function at stu-
dents was initially off-putting, but it helped to motivate MCMC
methods and introduce Bayesian ideas and methods. The goal
of this section was to give students a glimpse into a flexible and
sophisticated set of models that can tackle problems far outside
the realm of a traditional math stat class.

4. GRADING AND ASSESSMENT

Assessment of students in the course was done in several
ways. Students completed seven sets of problems over the course
of the semester (each one approximately 2 weeks apart). Grades
on preliminary solutions and weekly papers constituted 35%
of the grade, with class participation, attendance, and oral pre-
sentations an additional 20%. Two midterm exams accounted
for 40%, while 5% reflected good faith effort toward comple-
tion of low-stakes online assessments. The midterm exams had
in-class and take-home components. They included problems
similar to those undertaken by the groups, albeit with simpler
solutions.

An informal mid-semester evaluation was undertaken approx-
imately halfway through the course. For the first offering of the
course, a colleague met with the class during the last 15 min of
a class session (without the instructor present). Feedback from
this assessment indicated great worries about the structure of the
take-home midterm (would the problems be as hard as Rice?)
and queries about other forms of assessment.

For the second offering, a more formal evaluation was un-
dertaken where a staff member from the college learning center
spent the last 20 min of a class session with students in focus
groups. The students appreciated the structure of the course and
the opportunities for revision. They “like that we get lectures
on background, the collaboration, and group work” and “like
that we do analytic and empirical solutions.” Students sought
more input from the instructor, with a desire for more lectures
to “put things into perspective.” Some students suggested that
the instructor “tell us what are the key points to absolutely
know from each problem set.” The final question from the fo-
cus groups related to the students’ roles as learners. Students
revealed that they understand that they have to prepare more
thoroughly for class, improve their own class participation, and
assume additional responsibilities outside of class. The students
acknowledged that they should read the text more carefully,
read other groups’ problems before the presentations, and “try
harder” with Rice.

The outside evaluator summarized the report with the follow-
ing quote:

As you made clear to me in our discussion, although your
students may want you to tell them “the key points to ab-
solutely know,” you believe strongly that they must work
their way toward knowledge mastery in this course. To as-
sist them in achieving this end, you have structured the
course in ways that require them to work individually and

collaboratively—with guidance from you—as they become
more expert and reflective learners.

Many of your students are uneasy with this approach and un-
sure of themselves: they want to know the right answers, the
correct way to think, hence their request for more input from
you. Their unease marks them as less sophisticated about real
learning and/or timid about undertaking independent intel-
lectual journeys. You might have an explicit discussion with
your students about your pedagogy and your learning goals
for them. I suspect they would be quite responsive to this
kind of communication given their high regard for you and
this course: they know you believe in them. And, since their
answers to the third question reveal that they are aware of
their own responsibilities as students, you could also use this
discussion to reinforce their own good insights on becoming
more active and inquisitive learners.

The students also completed the CAOS post-test at the end of
the class, with a mean of 72.5% correct (sd = 13%, min = 43%,
max = 90%). There was a statistically significant increase in
scores compared to the pre-test (paired t-test p = 0.01, df = 30,
95% confidence interval from 1.4 to 9.2 point increase). Figure 5
displays the relationship between pre- and post-scores (with
a solid scatterplot smoother plus dashed POST = PRE line).
There is some indication of larger improvement for students
with lower pre-test scores, which is consistent with a ceiling
effect. Given that the CAOS test is intended to assess outcomes
from a first course, this is not surprising.

5. DISCUSSION

This article describes an implementation of a modified
Moore–Cohen method mathematical statistics course at an un-
dergraduate liberal arts college. The course featured a series
of challenging problems, some theoretical, others data-driven,
designed to help teach mathematical statistics using applica-
tions. A key idea is that the use of technology (R/RStudio and
reproducible analysis tools) has opened up new possibilities.

An attractive aspect of the proposed course was how it inten-
tionally dovetailed with the GAISE recommendations (GAISE
College Group 2005). In particular, it was designed to encour-
age statistical thinking through empirical problem solving, use
real data to motivate methods, stress conceptual understanding,
foster active learning, and use technology to develop concep-
tual understanding. The course is consistent with the American
Statistical Association guidelines for statistics programs (Work-
group on Undergraduate Statistics 2000), which call for students
to develop effective technical writing, presentation skills, team-
work and collaboration, in addition to knowledge of statistics.

5.1 Comparisons, Advantages, and Limitations

This approach differs significantly from the traditional
Moore-method, which was developed for a definition–theorem–
proof-type course and relies primarily on individual work and
competition as a motivator. The modified Moore– Cohen method
uses group work to facilitate engagement, with stronger stu-
dents able to plunge more deeply into their solutions while
still ensuring that weaker students can receive assistance as
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Figure 5. Relationship between student outcomes on the CAOS (Comprehensive Assessment of Outcomes in a first Statistics course) from the
class in 2007 and 2011 (plus smoothed line and POST = PRE line). The online version of this figure is in color.

needed. This modification might be better thought of as a
species split-off, where rather than competing, students are sup-
ported to go beyond their expectation and discover something in
themselves.

A primary challenge of teaching is to engage students in the
material being studied. Cohen (1992) noted that the method
effectively raises the level of communication between students
and that most students are stimulated by the change from pas-
sive to active learning. Lazar, Reeves, and Franklin (2011) de-
scribed the importance of capstone courses in statistics. Struc-
turing the class with multiple, challenging problems that were
not amenable to quick individual solution helped to achieve
the goals of a capstone. This includes getting students to grap-
ple with real-world problems, helping them develop capaci-
ties to work effectively in groups, augmenting their ability to
compute to extend their problem-solving abilities, and helping
them to sharpen their abilities to communicate the complex-
ity and power of statistical methods. The course also dove-
tails with other efforts to involve students in interdisciplinary
research projects (Legler et al. 2010), which tend to focus
on larger, more complex datasets in the context of a client
discipline.

While no formal assessment of the course was undertaken,
student feedback from less formal appraisals was generally posi-

tive. Students found the approach to be challenging, particularly
at the beginning of the semester when they were confronted with
simultaneously learning R/RStudio, LATEX/SWeave, empirical
problem-solving techniques as well as oral and written presen-
tation skills. The particular technical challenges of learning new
packages and systems quickly receded, and the primary chal-
lenge related to answering difficult questions and learning new
material, concepts, and statistical methods.

A limitation of problem or case-based courses is that they
typically cover fewer topics in more depth. That was true for
this course, which had more constrained coverage goals than
the traditional math stat class (though most of the typical key
concepts were covered). In addition, students would be expected
to have variable mastery of particular topics that were included,
since they engaged in the problems that their group was as-
signed at an intense level, but had more passive involvement
in the problems that other groups presented. The combination
of written and oral presentation of solutions from other groups
was designed to minimize these disparities. Ideally, students
would emerge from the course with useful capacities (such as
ability to compute with data, simulate to approximate answers,
and communicate orally and through their writing) that would
allow them to fill any gaps in their knowledge and succeed in a
graduate level course.
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Classes that include group work as a component of assess-
ments often have group dynamic issues, and this course was no
exception. In general, there was a positive sense of community
and engagement which flowed from the group-based workload.
Knowing that the groups would be reshuffled twice helped as
well. Focusing much of the work in groups allowed students
to tackle far more challenging questions than they could solve
individually and also modeled a common post-college work
environment. Several students have provided anecdotal reports
of the value of learning tools for statistical computing and re-
producible analysis.

There are other challenges to use of this method for teach-
ing the mathematical statistics courses. The enrollments were
12 and 20 students in Spring 2007 and Spring 2011, respec-
tively. While scaling to course sizes of 30–40 students would
be straightforward, larger class sizes would require different
systems and structures. These might include multiple sections
taught with some common mini-lectures, doubling up on prob-
lems or student support for computing. The time commitment
was comparable to a standard course, due to the extensive coach-
ing and preparation, despite the fact that formal lectures were
relatively short (generally at the start of each new topic).

5.2 Use of Technology

Empirical (simulation-based) estimation complements ana-
lytic solutions and can often allow approximate solution of ex-
tremely challenging problems. Besides providing a useful check
on analytic answers, these simulations can help with insights
into how to solve a problem. R and RStudio serve as a flexible
and powerful environment for such exploration.

A number of technologies were prominently featured in
the course. These included extensive use of LATEX and R.
Reproducible analysis (the Sweave system (Leisch 2002) as
implemented within RStudio) greatly facilitated integration
of commands, output, and graphics, and led to better facility
for students to undertake analyses outside the course. This
scaffolding also helped to move students from a “point-and-
click” approach to statistical analysis toward a more flexible
scripting interface. Further discussion of how to integrate
reproducible analysis and effective mechanisms to build
students’ ability to “compute with data” are important issues
but lie somewhat outside the scope of this article.

Other courses may find the use of R and RStudio for sim-
ulation and approximation of analytic solutions to be helpful,
without the Moore-method approach. The new text by Pruim
(2011) features such a presentation.

5.3 Closing Thoughts

Cobb (2011) argued that the profession needs two types of
statisticians: those with the capacity to appropriately analyze and
interpret data, as well as those with interest in devising novel
solutions to methodological challenges. Teaching mathematical
statistics in this manner has the potential to foster engagement
by presenting students with extended glimpses of the excitement
of developing statistical procedures to solve challenging prob-

lems (Nolan and Temple Lang 2010). This approach could also
serve as a model for other intermediate and advanced under-
graduate statistics classes. This method may also be relevant for
the teaching of similar quantitative courses in other disciplines.

SUPPLEMENTARY MATERIALS

Online appendix: additional example problems

[Received February 2012. Revised September 2013.]
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