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PREFACE TO THE FIRST EDITION.

The “Elements of the Method of Least Squares,” published
in 1877, was written with two objects in view : first, to present
the fundamental principles and processes of the subject in so
plain a manner, and to illustrate their application by such
simple and practical examples, as to render it accessible to
civil engineers who have not had the benefit of extended
mathematical training; and, secondly, to give an elementary
exposition of the theory which would be adapted to the needs
of a large and constantly increasing class of students.

In preparing the following pages the author has likewise
kept these two objects continually in mind. While the for-
mer work has been used as a basis, the alterations and
additions have been so numerous and radical as to render
this a new and distinct book rather than a second edition.
The arrangement of the theoretical and practical parts is
entirely different. In Chapters I to IV is presented the
mathematical development of the principles, methods, and
formulas; while in Chapters V to IX the application of these
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to the different classes of observations is made, and illus.
trated by numerous practical examples. For the use of both
students and engineers, it is believed that this plan will
prove more advantageous than the one previously followed.
Hagen’s deduction of the law of probability of error is given,
as well as that of Gauss. More attention is paid to the
laws of the propagation of error, the solution of normal equa-
tions, and the deduction of empirical formulas. Many new
illustrative examples of the adjustment and comparison of
observations have been selected from actual practice, and
are discussed in detail. At the end of each chapter are

given a few problems or queries; and in the Appendix are
eight tables for abridging computations. |
MANSFIELD MERRIMAN.

NOTE TO THE EIGHTH EDITION.

The seventh edition was the result of a thorough revision
and was enlarged by the addition of new matter on the solu-
tion of normal equations, on the uncertainty of the probable
error, and on the median. In this edition all known errors
have been corrected and an alphabetical index has been
added. ‘M. M.
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A TEXT-BOOK

ON THE

METHOD OF LEAST SQUARES.

CHAPTER L
INTRODUCTION,

1. The Method of Least Squares has for its object the
adjustment and comparison of observations. The adjustment
of observations is rendered necessary by the fact, that when
several precise measurements are made, even upon the same
quantity under apparently similar conditions, the results do not
agree. The absolutely true values of the observed quantities
cannot in general be found, but instead must be accepted and
used values, derived from the combination and adjustment of
the measurements, which are the most probable, and hence the
best. The comparison of observations is necessary in order to
determine the relative degrees of precision of different sets
of measurements made under different circumstances, either
for the purpose of properly combining and adjusting them, or
to ascertain the best methods of observation.
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2 INTRODUCTION. L

Classification of Observations.

2. Direct observations are those which are made directly
upon the quantity whose magnitude is to be determined. Such
are measurements of a line by direct chaining, or measurements
of an angle by direct reading with a transit. They occur in the
daily practice of every engineer.

Indirect observations are not made upon the quantity whose
size is to be measured, but upon some other quantity or quanti-
ties related to it. Such are measurements ol a line through
a triangulation by means of a base and observed angles, meas-
urements of an angle by regarding it as the sum or difference
of other angles, the determination of the difference of level of
points by readings upon graduated rods set up at different
places, the determination of latitude by observing the altitude
of stars, etc. In fact, the majority of observations in engineer-
ing and physical science generally belong to this class.

3. Conditioned observations may be either direct or indirect,
but are subject to some rigorous requirement or condition im-
posed in advance from theoretical considerations. As such
may be mentioned : the three measured angles in a plane tri-
angle must be so adjusted that their sum shall be exactly 180°;
the sum of all the percentages in a chemical analysis must
equal 100; and the sum of the northings must equal the sum
of the southings in any traverse which begins and ends at the
same point.

Independent observations may be either direct or indirect,
but are subject to no rigerous conditions. Measurements on
two of the angles of a triangle, for instance, are independent ;
for the observed quantities can have no necessary geometrical
dependence one upon the other.

4. As an illustration of these classes, consider the angles
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AOB and BOC, having their vertices at the same point, O
(Fig. 1). If a transit or theodolite be set at O, and the angle
AOB or BOC be measured, each of these measurements is
a direct observation. If, however, an auxiliary station A/ be
established, and the angles #0OA, MOB, and MOC be read,
the observations on AOB and BOC are indirect. Moreover,
whether observed di-
rectly or indirectly, the
values obtained for
AOB and BOC are
independent of each ™
other. But if the three

A

angles AOB,-BOC, and
AOC be measured,
) N
these observations are o
conditioned, or subject o
to the rigorous geomet- Fig.1.

rical requirement, that,

when finally adjusted, 408 plus BOC must equal A0C, and
no system of values can be adopted for these three angles which
does not exactly satisfy this condition.

Again : if the sides and angles of a field are measured, each
observation taken alone is direct. If its area is found from
the sides and angles, the measurement of that area is indirect,
Further: any two sides considered are independent of each
other; but, if all the sides and angles be regarded, they must
fulfil the condition, that, when plotted, they shall form a closed
figure.

Errors of Observations.

5. Constant errors are those produced by well understood
causes, and which may be removed from the observations by
the application of computed corrections. As such may be
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mentioned : theoretical corrections, like the effect of tempera-
ture upon the length of rods used in measuring a base-line;
instrumental corrections, like those arising from a known dis-
crepancy between the length of the rods and the standard of
measure ; and personal corrections, like those due to the habits
of the observer, who, in making a contact of the rods, might
err each time by the same constant quantity. Strictly speak-
ing, then, constant errors are not errors; since they can always
be eliminated from the observations, when the causes that pro-
duce them are understood. The first duty of an observer, after
taking his measurements, is to discuss them, and apply as far
as possible the computed corrections, to remove the constant
errors.

6. Mistakes are errors committed by inexperienced and occa-
sionally by the most skilled observers, arising from mental
confusion. As such may be mentioned: mistakes in reading
a compass-needle by noting 58° instead of 42°; or mistakes in
measuring an angle by sighting at the wrong signal. Such
errors often admit of correction by comparison with other sets
of observations.

7. Accidental errors are those that still remain after all con-
stant errors and all evident mistakes have been carefully inves-
tigated, and eliminated from the numerical results. Such, for
example, are the errors in levelling arising from sudden expan-
sions and contractions of the instrument, or from effects of
the wind, or from the anomalous and changing refraction of the
atmosphere. More than all, however, such errors arise from
the imperfections of the touch and sight of the observer; which
render it impossible for him to handle his instruments deli-
cately, estimate accurately bisections of signals and small divis-
ions of graduation, or keep them continually in adjustment.
These are the errors that appear in all numerical observations,
however carefully the measurements be made, and whose elimi-
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nation is the object of the Method of Least Squares. Al-
though at first sight it might seem that such irregular errors
could not come within the province of mathematical investiga-
tion, it will be seen in the sequel that they are governed by a
wonderful and very precise law, namely, the law of proba-
bility.

8. The word “error,” as used in the following pages, means
an accidental error produced by causes which are numerous, and
whose effects cannot be brought within the scope of physical
investigation. This error is the difference between the true
value of the observed quantity and the result of the measure-
ment upon it. Thus, if Z be the true value of an angle, and
M,, M, and M, be the results of measurements made upon it,
the differences 2 — M,, Z— M,, and Z— M, are the errors.
An error is denoted by the letter x, and subscripts are applied
to it for particular errors; thus, in the above case, Z— M, = x,,
Z—M, =z, and Z— M, = x,, or, in general, x is the error of
the observation /.

A residual is the difference between the most probable value
of the observed quantity and the measurement upon it. This
most probable value is that deduced by the application of the
Method of Least Squares to the observations; for instance, in
the simple case of direct measurements on a single quantity,
the arithmetical mean is the most probable value. The residual
is denoted in general by the letter . Thus, if # be the most
probable value of an angle derived from the measurements A7,
M, and M, the residuals are 5 — M, = v, 2— M, = v,, and
z— M, = v, Evidently the most probable value, z will ap-
proach more nearly to the true value Z, the greater the number
of observations, as likewise the residuals v to the errors z.
With an infinite number of precise observations, z should coin-
cide with Z, and each v with the corresponding x.. With a
large numter of observations, the differences between the resid-
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uals and the errors will be small, so that the laws governing the
two will be essentially the same. On this account residuals are
often called residual errors, or sometimes even errors.

Principles of Probability.

9. The word “probability,” as used in mathematical reasoning,
means a number less than unity, which is the ratio of the num-
ber of ways in which an event may happen or fail, to the total
number of possible ways; each of the ways being supposed
equally likely to occur. Thus, in throwing a coin, there are
two possible cases: either head or tail may turn up, and one is
as likely to occur as the other; hence the probability of throw-
ing a head is expressed by the fraction }, and the probability of
throwing a tail also by 3. So, in throwing a die, there are six
cases equally likely to occur, one of which may be the ace:
hence the probability of throwing the ace in one trial is },
and the probability of not throwing it is £.

In general, if an event may happen in a ways, and fail in &
ways, and each of these ways is equally likely to occur, the

probability of its happening is _'%7” and the probability of its
a

failing is > Thus probability is always expressed by an
abstract fraction, and is a numerical measure of the degree of
confidence which one has in the happening or failing of an
event. As this measure may range from o to 1, so mental con-
fidence may range from impossibility to certainty. If the frac-
tion is o, it denotes impossibility; if 3, it denotes that thc
chances are equal for and against the happening of the event;

and if 1, the event is certain to occur.

10. Unity is hence the mathematical symbol for certainty.
And, since an event must either happen or not happen, the sum
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of the probabilities of happening and failing is unity. Thus, if
P be the probability that an event will happen, 1 — 7 is the
probability of its failing. For example, if the probability of
drawing a prize in a lottery is 545, the probability of not draw-
ing a prize is }3§3, a large fraction. '

11. When an event may happen in different independent
ways, the probability of its happening is the sum of the separate
probabilities. For if it may happen in @ ways, and also in a'
ways, and there are ¢ total ways, the probability of its occur-
a—+a

¢

; and this is equal to the sum of the

rence (by Art. g) is

probabilities 2 and ‘f, of happening in the separate independent
¢ ¢

ways.
For example, if there be in a bag twenty red, sixteen white,
and fourteen black balls, and one is to be drawn out, the proba-

bility that it will be red is %, that it will be white is %, and
that it will be black is ;g If, however, there be asked the

probability of drawing either a red or black ball, the answer is

20 4 __ 34
5°+5o_50‘

12. A compound event is one produced by the concurrence
of several primary or simple events, each being independent of
the other. For instance, throwing three aces with three dice
in one trial is a compound event produced by the concurrence
of three simple events. An error of observation may be re-
garded as a compound event produced by the combination of
all the small independent errors of the numerous accidental
influences. '

The probability of the happening of a compound event is
the product of the probabilities of the several primary inde-
pendent events. To show this, consider two bags, one of which
contains seven black and nine white balls, and the other four
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black and eleven white balls. The probability of drawing a
black ball from the first bag is %, and that of drawing one from
the second ;. What, now, is the probability of the compound
event of securing two black balls when drawing from both bags
at once? Since each ball in the first bag may form a pair with
each one in the second, there are 16 X 15 possible ways of
drawing two balls; and, since each of the seven black balls may
be associated with each of the four black balls to form a pair,

there are 7 X 4 cases favorable to drawing two black balls.

IX4
16 X 15

The required probability is hence ; and this is equal to

% X ;5 or the product of the probabilities of the two primary
independent events.

To discuss the principle more generally, consider two primary
events, the first of which may happen in a, ways, and fail in 4,
ways, and the second happen in a,, and fail in 4, ways. Then
there are for the first event a, 4 &, possible cases, and for the
second a, + &,; and each case out of the a, + &, cases may be
associated with each case out of the a, 4 4, cases; and hence
there are for the two events (2, 4 8,) (@, + 6,) total cases, each
of which is equally likely to occur. In a,a, of these cases both
events happen; in 4,4, both fail; in @,0, the first happens, and
the second fails; and in 4,4, the first fails, and the second hap-
pens. Hence (by Art. 9) the probabilities of the compound
gevents are —

a.a,

" (4t b)) (2. + b))
b.b,

(a4 6) (2. + 8)
a,b,

(a, + &,) (a. + 65)
a,b,

(a,+6,)(a. + ;)

Probability that both happen .

Probability that both fail- .

Prob. that first happens, and second fails .

Prob. that first fails, and second happens .
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As each of these probabilities is the product of the proba-
bilities of the primary events, the principle is established for
the case of two primary events. And evidently its extension to
three or more is easy.

Thus, if there be four events, and 7, 7, P,, and P, be the
respective probabilities of happening, the probability that all
the events will happen is P, P, P, P,; and the probability that
all will fail is (1 — P) (1 — P,) (1 — P,) (1 — P,). The prob-
ability that the first happens and the other three fail is
P,(1—P,)(1—P,)(1—P,); and so on.

13. The most probable event among several is that which
has the greatest mathematical probability. Thus, if two coins
be thrown at the same time, there may arise the three follow-
ing compound cases, having the respective probabilities as
annexed :

Both may be heads . . .

One head, and the other tail
Both tails.

Bha N g

Here the case of one head and the other tail has the greatest
probability, and is hence the most probable of the three com-
pound events. The sum of the three probabilities, }, 4, and },
is unity; as should be the case, since one of these events is
certain to occur.

If four measurements of the length of a line give the values
720.2, 720.3, 720.4, and 720.5 feet, the arithmetical mean,
720.35 feet, is universally recognized as the most probable
value of the length of the line. It will be shown in the sequel
that the mathematical probability of this result is greater than
of any other.

14. A compound event, composed of any number of simple
events, will now be considered. Let P be the probability of
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the happening of an event in one trial, and Q the probability
of its failing, so that 4+ Q = 1: and let there be » such
events. Then (by Art. 12) the probability that all will happen
is P=; the probability that one assigned event will fail, and
n — 1 happen. is P»~1Q; and, since this may occur in » ways,
the probability that one will fail, and » — 1 happen, is #P*~'Q.
Similarly, the probability of two assigned events failing, and
n — 2 happening, is P*~2Q?; and, since this may be done in
_n(nz— D ways,* the probability that two out of the whole

n(n

D pr—sgn I,
then, (P 4 Q)" be expanded by the binomial formula, thus,

number will fail, and » — 2 happen, is

P+ Qr=PrtnPr-1Q 4+ 2= Dpuagny ...

Te2

_'_]ﬂ(ﬂ—l)(n_z) oo (n—m-*-l)Pn—QO.l.etc.,

1263 ... 7m

the first term is the probability that all will happen ; the second,
that » — 1 will happen, and 1 fail ; and the » 4 1*® term is the
probability that » — » will happen, and » fail. To determine,
then, the most probable case, it is only necessary to find the
term in this series which is greatest.

The particular instance when 2 = Q =} corresponds to the
case of throwing 7 coins. Then the series becomes

B+ a@)r + 2D ey 22 DB D) gy

1.2.3

in which the middle term is the greatest if » be even, and

* See the theory of combinations in any algebra.
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U

which has two equal middle terms if » be odd. Thus, if =6,
the series is .

1 6 15 20 15 6 I
64+64+64+64+64+64+64'

Hence, if six coins be thrown, the probabilities of the different
cases are the following :

All heads . .
Five heads and one tail
Four heads and two tails .
Three heads and three tails
Two heads and four tails .
One head and five tails

All tails .

%z st o

The sum of these seven probabilities is, of course, unity.

15. The following graphical illustration gives a clear view of
the relative values of the respective probabilities of the seven
cases that may arise in
throwing six coins. A
horizontal straight line
is divided into six equal
parts, and at the points
of division, ordinates are
erected proportional to ) Fig. 2.
the probabilities g, &,
etc., and through their extremities a curve is drawn. On the
same diagram is shown, by a broken curve, the probabilities of
the nine cases that may arise in throwing eight coins, or the
terms

I 8 28 56 70
— 2C 4 2 4 2 4 et
256 256 + 256 + 256 + 256 + ety

which are found by expanding the binomial (§ 4 })8
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It is one of the weaknesses of the human mind that large
and small numbers do not convey to it accurate ideas unless
aided by concrete analogy or representation. The above graphi-
cal illustration shows more clearly than the numbers them-
selves can do the relative probabilities in the two cases. These
curves, moreover, are very similar to a curve hereafter to be
discussed, which represents the law of probability of errors
of observations. _

Problems.

. 16. At the end of each chapter will be given a few questions
and problems. The following will serve to exemplify the above
principles of probability :

1. What is the probability of throwing an ace with a single die in
two trials? Ans. 3}

2. A bag contains three red, four white, and five black balls. Re-
quired the probability of drawing two red balls in two drawings, the ball
first drawn not being replaced before the second trial ?

3. Each student in a class of twenty is likely to solve one problem
out of every eight. What is the probability that a given problem will
be solved in the class?

4. What is the probability of throwing two aces, and no more, in a
single throw with six dice? What is the probability of throwing at least
two aces?

- 5. Let a hundred coins be thrown up each second by each of the
inhabitants of earth. How often will a hundred heads be thrown in a
million years?

6. A purse contains nine dimes and a nickel. A second purse con-
tains ten dimes. Nine coins are taken from the first purse and put into
the second, and then nine coins are taken from the second and put
into the first. Which purse has the highest probable value ?
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CHAPTER 1L

LAW OF PROBABILITY OF ERROR.

17. The probability of an assigned accidental error in a set
of measurements is the ratio of the number of errors of that
magnitude to the total number of errors. It is proposed, in this
chapter, to investigate the relation between the magnitude of
an error and its probability.

Axioms derived from Experience.

18. An analogy often referred to in the Method of Least
Squares is that between bullet-marks on a target and errors of
observations. The marksman answers to an observer; the posi-
tion of a bullet-mark, to an observation ; and its distance from
the centre, to an error. If the marksman be skilled, and all
constant errors, like the effect of gravitation, be eliminated in
the sighting of the rifle, it is recognized that the deviations of
the bullet-marks, or errors, are quite regular and symmetrical.
First, it is observed that small errors are more frequent than
large ones; secondly, that errors on one side are about as
frequent as on the other; and, thirdly, that very large errors do
not occur. Further: it is recognized, that, the greater the skill
of the marksman, the nearer are the marks to his point of aim,

For instance, in the Report of the Chief of Ordnance for
1878, Appendix S, Plate VI, is a record of one thousand shots
fired deliberately (that is, with precision) from a battery-gun, at
a target two hundred yards distant. The target was fifty-two
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feet long by cleven feet high, and the point of aim was its cen-
tral horizontal line. All of the shots struck the target; there
being few, however, near the upper and lower edges, and nearly
the same number above the central horizontal line as below it.
On the record, horizontal lines are drawn, dividing the target
into eleven equal divisions; and a count of the number of shots
in each of these divisions gives the following results :

Intop division . . . . . . . . . . . . 1shot
In second division . . . . . . . . . . . 4 shots
In third division . . . . . . . . . . . . 10shots
In fourth division. . . . . . . . . . . . 8gshots
In fifth division . . . . . . . . . . . . 190 shots
In middle division . . . . . . . . . . .°212shots
In seventh division . . .. . . . . . . . . 204 shots
In eighth division. . . . . . . . . . . . 193 shots
In ninth division . . . .. . . . . . . . 79 shots
In tenth division . . . . . . . . . . . . 16shots
In bottom division . . . . . . . . . . . 2shots
Total . . . . . . . . . . . . . 1,000 shots

On Fig. 3 is shown, by means of ordinates, the distribution of
these shots; A being the top

N division, B the middle, and C

the bottom division. It will be
observed that there is a slight
preponderance of shots below
the centre, and there is reason

to believe that this is due to

a constant error of gravitation
2 e
A

el 2l g gl s not entirely eliminated in the

2 sighting of the gun.

c B . . .
Fic. 3. 19. The distribution of the

errors or residuals in the case
of direct observations is similar to that of the deviations just



§ 21. THE PROBABILITY CURVE. 15

discussed. For instance, in the United States Coast Survey
Report for 1854, p. *g1, are given a hundred measurements of
angles of the primary triangulation in Massachusetts. The
residual errors (Art. 8) found by subtracting each measurement
~ from the most probable values are distributed as follows :

Between 4+6".0and +5”0 . . . . . . . . 1error
Between 45.0 and +4.0 . . 2 errors
Between +4.0 and +30. . . . . . . . . 2 e€rrors
Between +3.0 and +20. . . . . . . . . 3errors
Between +2.0 and +10. . . . . . . . . 13e€rrors
Between +1.0 and o0o0. . . . . . . . . 26errors
Between o0o0 and —10. .. . . . . . . 26errors
Between —1.0 and —20. . . . . . . . . 17errors
Between —2.0 and -30. . . . . . . . . §errors
Between —30 and =40 . . . . . . . . . 2errors

Total . . . . . . . . . . . . « 100 e€rITOIS

Here also it is recognized that small errors are more frequent
than large ones, that positive and negative errors are nearly
equal in number, and that very large errors do not occur. In
this case the largest residual error was 5”.2; but, with a less
precise method of observation, the limits of error would evi-
dently be wider.

20. The axioms derived from experience are, hence, the fol-
lowing :

Small errors are more frequent than large ones.

Positive and negative errors are equally frequent.
Very large errors do not occur.

These axioms are the foundation of all the subsequent reasoning.

The Probability Curve.

21. In precise observations, then, the probability of a small
error is greater than that of a large one, positive and negative
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errors are equally probable, and the probability of a very large
error is zero. The words “very large” may seem somewhat
vague when used in general, although in any particular case the
meaning is clear ; thus, with a theodolite reading to seconds, 20”
would be very large, and with a transit reading to minutes,
5" wouid be very large. Really, in every class of measure-
ments there is a limit, /, such that all the positive errors are
included between o and 4 /, and all the negative ones between
oand — /Z

22. Hence the probability of an error is a function of that
error ; so that, calling x any error and y its probability, the law
of probability of error is represented by an equation

Jy = S (x),

and will be determined, if the form of f(x) can be found. If,
then, y be taken as an ordinate, and x as an abscissa, this may
be regarded as the equation of a curve which must be of a form
to agree with the three fundamental axioms ; namely, its maxi-
mum ordinate OA must correspond to the error zero; it must
be symmetrical with respect to the axis of ¥, since positive and
negative errors of equal magnitude are equally probable; as x
increases numerically, the value of y must decrease, and, when
x becomes very large, y must be zero. Fig. 4 represents such
a curve, OP and OM being errors, and PB and MC their re-
spective probabilities. Further: since different measurements
have different degrees of accuracy, each class of observations
will have a distinct curve of its own.

The curve represented in Fig. 4 is called the probability curve.
In order to determine its equation, it is necessary to consider
y as a continuous function of ». This is evidently perfectly
allowable ; since, as the precision of observations is increased,
~ the successive values of x are separated by smaller and smaller
intervals. The requirement of the third axiom, that y must be
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zero for all values of x greater than the limit + /, is apparently
an embarrassing one, as it is impossible to determine a continu-
ous function of x which shall become zero for x = % /and also
be zero for all values of x from £/ to £ «. But, since this
limit / can never be accurately assigned, it will be best to extend
the limits to *+ o, and determine the curve in such a way th-t

o P M X
Figl 4-

the value of y, although not zero for large values of x, will be so
very small as to be practically inappreciable. The equation of
the probability curve will be the mathematical expression of the
law of probability of errors of observation. Two deductions of
this law will be given ; the first that of Hagen, and the second
that of Gauss.

First Deduction of the Law of Ervor.

23. Hagen’s demonstration rests on the following hypothesis
or axiom, derived from experience :

An error is the algebraic sum of an indefinitely great number
of small elementary errors which are all equal, and each of which
is equally likely to be positive or negative.

" To illustrate : suppose that, by several observations with a
levelling instrument and rod, the difference in elevation between
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two points has been determined. This value is greater or less
than the true difference of level by a small error, . This error
x is the result of numerous causes acting at every observation :
the instrument is not perfectly level, the wind shakes it, the
sun’s heat expands one side of it, the level-bubbles are not accu-
rately made, the glass gives an indistinct definition, the tripoc
is not firm, the eye of the observer is not in perfect order, there
is irregular refraction of the atmosphere, the man at the rod
does not hold it vertical, the turning-points are not always good
ones, the graduation of the rod is poor, the target is not prop-
erly clamped, the rod-man errs in taking the reading, and many
others. Again: each of these causes may be subdivided into
others ; for instance, the error in reading the rod may be due,
perhaps, to the accumulated result of hundreds of little causes.
The total error, x, may hence be fairly regarded as resulting
from the combination of an indefinitely great number of small
elementary errors ; and no reason can be assigned why one of
these should be more likely to be positive than negative, or
negative than positive. '

24. Now, it is. evident that it is more probable that the
number of positive elementary errors should be approximately
equal to the number of negative ones than that either should be
markedly in excess, and that the probability of the elementary
errors being either all positive or all negative is exceedingly
small. In the first case the actual error is small, and in the
second large ; and so the probabilities of small errors are the
greatest, and the probability of a very large error is practically
zero. These correspond to the properties which the proba-
bility curve must possess.

Let Ax represent the magnitude of an elementary error, and
m the number of those errors. The probability that any Ax
~will be positive is }, and that it will be negative is also . The
probability that all of the  elementary errors will be positive
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is hence (})™; the probability that » — 1 will be positive and
1 negative is »(3)™~*(3)*; and the probabilities of all the re-
spective cases will be given by the corresponding terms of the
binomial formula (Art. 14). When all of the » elementary
errors are positive, the resulting error of observation is 4 m.Ax;
when m — 1 are positive and 1 negative, the resulting error is
+ (m —1)Ax — Ax,or 4+ (m — 2)Ax. If m —n elementary
errors are positive and the remaining » are negative, the result-
ing error is 4 (m — #)Ax — n.Ax, or 4 (m — 2#)Ax, and the
probability of this particular combination is given by the
7 4 1 term of the expansion of the binomial (} 4 1)~ It is
easy then to write the following table :

Elementary Errors Ax. l%::g:':g Its Probability y.
If m are + and o are— max ()m
If m—1are+and1is— (m—2)ax m()m
If m—2 are + and 2 are— (m—4)ax ’”("’—')()”‘
1
_ d _ _ m(m-— 1)m —2) m
.Ifm 3 are +and 3 are (m—6)ax 723 ()

.................................

If m —» are + and » are— (m—2n)ax mim—1)m—2).. (’" "'H)()m
1.2.3.

If m—n—rtare +and n + 1are— | (m—2n—2)ax m(m—1)(m— 2) - (m— 'l)(;)m
1.23...7n+1

--------------------------------

25. In the curve y = f(x) let OM be any error x, and MC
its probability y, also let OP be an error x’ less in magnitude,
and PB its corresponding probability /. Then, from the figure,

limit 22 = fimit 2= = &
cD

x—x dx
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is the differential equation of the curve. To deduce, then, the

—a
law of probability of error, it is only necessary to find J — z 7
in terms of y and x, pass to the limit, place it equal to Z—i and

perform the integration.

If x’ be taken as the error next less in magnitude to x, the

difference x— %’ equals 2Ax, and the value of y y’ is the
. .. ady, . .
limit I if the curve is to be continuous.

Y
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26. For the two consecutive errors x and «x’ take (from Art.
24) the two general values

2= (m — 2n)Ax, and x' = (m — 2n — 2)Ax.

The ratio of the probabilitiés of these errors is

y_m—mn
y n+471
which, after inserting for » its value in terms of x, m, and Ax,
may be put into the form
. 2(Ax — x) — 2z

f y— y—y(m+2)Ax—x=ymAx'
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Here Ax in the numerator vanishes in comparison with ». In
the denominator, 2 vanishes compared with 2, and mAx is the
maximum positive error, which is so large that x vanishes in
comparison with it. The differential equation, then, is

Y _y=y _ __
dx 20% m(Ax)?’
or
&
;'; = —2/%x,

in which 242 has been written to represent the quantity m(av):

The integration of this equation gives
logy= —/A%x* + ¥,

in which # is the constant of integration, and the logarithm
is in the Napierian system. By passing from logatithms to

numbers
y = £ —Ic"‘xﬁ + k’: é —Iz’xz ek’,

in which e is the base of the Napierian system. Since ¢* is a
constant, this may be written

(1) Y= ke7H7,

and this is the equation of the probability curve, or the equa-
tion expressing the law of probability of errors of observation,

This equation satisfies the conditions imposed in Art. 22,
for y is a maximum when x is 0; it is symmetrical with respect
to the axis of ¥, since equal positive and negative values of x
give equal values of y, and when x» becomes very large, y is
very small. The constants £ and 4 will be particularly consid-
ered hereafter.
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Second Deduction of the Law of Error.

27. Gauss’s demonstration is based on the following hypoth.
esis dr axiom, established by experience :

The most probable value of a quantity which is observed
directly several times, with equal care, is the arithmetical mean
of the measurements.

The average or arithmetical mean has always been accepted
and used as the best rule for combining direct observations of
equal precision upon one and the same quantity. This universal
acceptance may be regarded as sufficient to justify the axiom
that it gives the most probable value, the words “most prob-
able” being used in the sense of Art. 13; for after all, as
Laplace has said, the theory of probability is nothing but com-
mon sense reduced to calculation. If the measurements be but
two in number, the arithmetical mean is undoubtedly the most
probable value ; and, for a greater number, mankind, from the
remotest antiquity, has been accustomed to regard it as such.

It is a characteristic of the arithmetical mean that it renders
the algebraic sum of the residual errors zero. To show this, let
M, M,...M,be n measurements of a quantity; then the
arithmetical mean of these is, ‘

_ Mo M+ M+ .+ M,
n

7

This equation may be written
ng= M+ M, + M, + ...+ M,
which by transposition becomes
(6 — M) + (s — M) + (s — M) + ...+ (s — M) = o5

that is to say, the arithmetical mean requires that the algebraic
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sum of the residual errors shall be zero. To take a numerical
illustration, let 730.4, 730.5, and 730.9 be three measure-
ments of the length of a line. The arithmetical mean is 730.6,
giving the residuals 4 0.2, 4~ 0.1, and — 0.3, whose algebraic
sum is ¢

28. Cousider the general case of indirect observations, in
which it is required to find the most probable values of quanti-
ties .y measurements on functions of those quantities. For
simplicity, only two quantities, 2, and z,, will be considered;
although the reasoning is general, and applies to any number.
Let 7 observations be made on functions of z, and z,, from which
it is required to find the most probable values of =, and 5, The
differences between the observations and the corresponding true
values of the functions are errors x,, x, . . . &, each of which is
also a function of z, and z,. The probabilities of these errors are

Yo =J(x), ¥ = S(%) « o o Iu = [(%n).

And by Art. 12 the probability of committing the given system
of errors is .
P =395« c.0n = Jf(x) S(22) oo . (%)

Applying logarithms to this expression, it becomes
log P = log f(x,) + log f(x,) + ... + log f(xx)-

Now, the most probable values of the unknown quantities 2,
and z, are those which render P a maximum (Art. 13), and
hence the derivative of P with respect to each of these variables
must be equal to zero. Indicating the differentiation, the follow-
ing equations result : '

P _ H(x) L x| AT
Phs,  flx)ds | faden T Axn)ds

WP _ dfx) |, dfiw) Hwn) _
i faydn T faydn T Aanydn S °

~
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Since in general df(x) = ¢(x)f(x)dr, these may be written

dx, dx, dx, _
¢(xl)22—, + ¢(x2)(l—z, + ..o+ o(x o o,
YO e P e R AT ES L P

a4z, az,

and, being as many in number as there are unknown quantities,
they will determine the values of those unknown quantities as
soon as the form of the function ¢ is known.

Since these equations are general, and applicable to any num-
ber of unknown quantities, the form of the function ¢ may be
determined from any special but known case. Such is that in
which there is but one unknown quantity, and the observations
are taken directly upon that quantity. Thus, if there be only
the quantity z, and the measurements give for it the values
M, M,... M, the errors are,

X, =5—-—M, x,=3—M,...%, =3 — M,

from which
(f’.f_, _ dx, dXy
az az az

and the first equation above becomes
¢(x) + ¢(x2) + ¢(x;) + ... + ¢(xs) = 0.

In this case, also, the arithmetical mean is the most probable
value, and the algebraic sum of the residuals will be zero, or, if
v denote any residual in general,

n+v,+v,4+...4 7, = 0.

Now, if the number of observations, #, is very large, the resid-
uals v will coincide with the errors » (Art. 8), and

X+ xt+a+ .04+ x0= 0.
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This equation can only agree with that above when ¢ signifies
multiplication by a constant, or when

o(x) + d(x) + ...+ P(x,) =cx, +ex, + ..+ exy.

Replacing in this the values of ¢(x,), ¢(z,), etc., it becomes

df(x,) + df(xz)
S(x,)dx, S(x,)dx,

and, since this is true whatever be the number of observations,
the corresponding terms in the two members are equal. Hence,
if x be any error, and y = f(z),

dx) _
S(x)dx ydx

+ etc. = cx, + cx, + etc.;

= (X.

Multiplying both members by 4, and integrating,
logy = = 4 ¥,
2
Passing from logarithms to numbers,
y — e&cx’ fk,.

Here the constant ¢ must be essentially negative. since the
probability ¥ should decrease as x increases numerically ; repla-
cing it, then, by —2/4?, and also putting ¢’ = 4, there results

(1) y = ke ¥,

which is the equation of the probability curve, or the equation
expressing the law of probability of errors of observation.

Discussion of the Curve y = ke —#* =2,

29. Since positive and negative values of x numerically equal
give equal values of y, the curve is symmetrical with respect to
the axis of ¥ The maximum value of y is for x =0, when
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y =k, k is, hence, the probability of the error o. As x in.
creases numerically, y decreases; and when ¥ = o, y becomes o.
The value of the first derivative is
ﬂl = —2kh2e— "7y,
dx
which becomes zero when » = 0 and when x = % o0, indicating
that the curve is horizontal over the origin, and that the axis of
x is an asymptote. The value of the second derivative is
azy
dx?

which becomes o when —2/2r2 4 1 = o, indicating that the

= —2kh?e#2 (— 2/?x* + 1),

curve has an inflection-point when »r = + ——I—.

hyz

To show further the form of the curve, the following values
have been computed, taking £ and % each as unity :

— p—x? I
y=e o=

x y x J

.0 1.0000 +1.8 0.0392
to.2 0.9608 *z2/0 0.0183
to.4 0.8521 t2.2 0.0079
+0.6 0.6977 t2.4 0.0032
to0.8 0.5273 2.6 0.0012
t10 0.3679 +2.8 0.0004
+t1.2 0.2370 t+3.0 0.0001
t1.4 0.1409
*+1.6 0.0773 T oo 0.0000
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The curve in Fig. 4 is constructed from these values, the ver-
tical scale being double the horizontal. ( is the inflection-
point, whose abscissa OM is 0.707.

* 30. The constant /2 is a quantity of the same kind as }r, since

the exponent %4%x* must be an abstract number. Methods will
be hereafter explained by which its value may be determined
for given observations. The probability of an assigned error 2/
decreases as £ increases; and hence, the more precise the ob-
servations, the greater is 2. For this reason /2 may be called
“the measure of precision.”

The constant 4 is an abstract number; and, since it is the
probability of the error o, it is larger for good observations than
for poor ones. The more precise the measurements, the larger
is 4.

" The Probability Integral,

31. To determine the value of the constant 4, and also to
investigate the probability of an error falling between assigned
-limits, the following reasoning may be employed:

- Let ¥, x,x,...x bea series of errors, 2/ being the smallest,
x, the next following, and x the last; the differences between
the successive values being equal, and 2’ being any error.
Then, by Art. 11, the probability of committing one’ of these
errors, that is, the probability of committing an error lying
between 2’ and =z, is the sum of the separate probabilities
ke #%7 fe— 45’ etc. ; or, if P denote this sum,

P=rl(e— W f o= Bl -’ 4 || e— W)

~ which may be written
P= k3, e~ B2

the notation 3% denoting summation from 4’ to x inclusive.
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To replace the sign of summation by that of integration, 4
must be the interval between the successive values of the
errors, and then the probability that an error will lie between
any two limits 2’ and r is

.

P= -k; f i e~ gy,

dx

Now, it is certain that the error will lie between — o and <= %,
and, as unity is the symbol for certainty,

k + o0
1 = — — k22,
dxf—oo ¢ *

A

The value of the definite integral in this expression is

™

Hence

_ A
= hdx

* The following method of determining this integral is nearly that presented by
Sturm in his Cours d’Analyse, Paris, 1857, vol. ii. p. 16.

The integral fe — 4227y expresses the area between the probability curve and

the axis of X, and, since the curve is symmetrical to the axis of ¥, that integral
between the limits — o0 and + o will be equal to double the integral between the
limits 0 and + «. Placing also /x = ¢,

f_+°; _.Ig2x2([x = ;ifme_ﬂdt,

-] o
and the integral in the second member is to be determined.

Take three co-ordinate rectangular axes 07, OU, and OV, and change ¢ into a4
then

00
4 = j; e~ P4t = area between curve V27 and axes,

00
A= _/; ~ %%4Ju = area between curve Yul and axes,

and A==_/:°j:°¢—f“f"dzdu.
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from which the value of % is

hdx
k= —

V'
The equation of the probability curve now becomes

(2) y = hdxr— ke #2

'

and the probability that an error lies between any two given
limits #’ and x becomes
h x

(3) P= — ) e #¥rgx,
v

Vv

Equations (1), (2), and (3) are the fundamental ones in the
theory of accidental errors of observation.

32. The probability that an error lies between the limits — »
and + x is double the probability that it lies between the limits
0 and + x, on account of the symmetry of the curve. Hence

(4) P= :T}_lfxe‘ A2y
wTYo

Now v = ¢ — # is the equation of the curve ¥#7, and v = ¢ —#* is the equation
of Vul, and, if either of these curves revolves about the axis of /it generates a
surface whose equation is # = ¢ —#2—#2. Hence the double integral 42 is one-
fourth of the volume included between that surface and the horizontal plane. If a
series of cylinders concentric with the axis #” form the volume, the area of the ring
included between two whose radii are » and » + @7 is 2n7d7, and the corresponding
height isv = ¢—# - »* — ¢— 72, Hence one-fourth of the volume is

A = ij:oe = anrdr,

. . — . ﬂ
which, since f e~ "2rdr = ¢~7,is equal to " Therefore

. -
a=f"c—ea=N",
S eeu=Y,
and hence, finally,
+ o 2 pu
f e~ Axidx = ;.Lwd—f’dt = v-/‘l
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expresses the probability that an error is numerically less than
x. This may be written in the form

hx
(3) P e~ 24 (kx),

_2
Vado

and is called the probability integral.

As the number of errors of the magnitude x is proportional
to the probability y, and as 7 in equation (4) is merely the
summation of the probabilities of all errors between — x and
+ x, the number of errors between these limits is also pro-
portional to P. Now, 2 is the area of the probability curve
between the limits — xr and 4 x, the whole area being unity.
Hence the number of errors between two assigned limits ought
to bear the same ratio to the whole number of errors as the
value of P between these limits does to unity.

By the usual methods of the integral calculus the value of
the probability integral corresponding to successive numerical
values of /Zr may be computed.* A table of these values is
given at the end of this volume (Table L.).

2 J4
* First put Ax = ¢, then \FL ¢ — 4t is the integral to be evaluated. By devel-
T

oping ¢— £ into a series by Maclaurin’s formula, the following results:

p 2 s + [ 1 7 ¥ et
= —F _—— —_— e = — . = c. ),
V7 d 3 1.2 § 123 7 ¢
#hich is convenient for small values of . For large values integrate by parts, thus
1 1 fe— 2
ft—f’a't = —,,—[t—f’— Ef-'za—a’t
e — 82

- U o el p 3,’/',4
== ;¢ T+ pe £+ ) n dt.
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To illustrate the use of this’table, consider the case of
hx = 1.24, for which P2 = 0.9205. Here 0.9205 is the proba-

bility that an error will be numerically less than %‘} ; or, in
: 2

other words, if there be 10,000 observations, it is to be expect-

ed that in 9,205 of them the errors would lie between — 17211

(4

‘and + I-’Zﬁ, and in the remaining 795 outside of these limits.

Comparison of Theory and Experience.

33. By means of Tablc I the theory employed in the deduc-
tions of equations (1), (2), (3), and (4) may be tested. To use
the table it is necessary to know thc value of the constant 4.
Granting for the present that it may be determined, the fol-
lowing examples will exemplify the accordance of theory and
experience.

For the one hundred residual errors discussed in Art. 19, the

value of /2 may be determined to be 77236

. T . .
And since j; Ce—tdr = 5238 shown in the preceding footnote,

¢ i T o
f e—tdr =" —f e — 24,
o 2 ?

fromwhxch}’—l——[ —_—— - 35+etc]

(zt“)2 (2£2)

From these two series the values of /2 can be found to any required degree Of
. accuracy for all values of ¢ or Ax.
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Then from the table the following values of P are taken:

forx = 1.0 with Ax = 0.447 the area P = 0.473
forx = 2.0 with Ax = 0.894 the area P = 0.794
forx = 3.0 with Ax = 1.341 the area = 0.942
forx = 4.0 with zx = 1.788 the area P = 0.989

forx = 5.0 with Ax = 2.235 the area 2 = 0.998
forx = o withAx = o the area P = 1.000

Now, these probabilities or areas 7 are proportional to the
number of errors less than the corresponding values of .
Hence multiplying them by 100, the total number of errors,
and subtracting each from that following, the number of theo-
retical errors between the successive values of x is found.
The following is a comparison of the number of actual and
theoretical errors::

Limits Actual Errors. T}E:::::tnl Differences.
0”.0 and 1”.0 52 47 +5
1.0and 2.0 30 32 -2
2.0and 3.0 11 15 -4
3.0and 4.0 4 5 -1
4.0 and ;5.0 2 I +1
s.oand 6.0 1 o +1
6.0 and oo o o o

The agreement between theory and experience, though not
exact, is very satisfactory when the small number of observa-
tions is considered.

34. Numerous comparisons like the above have been made
by different authors, and substantial agreement has always
been found between the actual distribution of errors and the
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theoretical distribution required by equations (2) and (4). The
following is a comparison by Bessel of the errors of three hun-

dred observations of the right ascensions of stars:

Limits. | Actual Errors. Theoretical Differences.
Er:ots. ‘
0%.0 and o°.1 114 107 +7
o.1 and o.2 84 87 -3
0.z and 0.3 53 57 —4
0.3 and o.4 24 30 —6
0.4 and o.5 14 13 +1
o.5 and 0.6 6 5 +1
0.6 and 0.7 3 I +2
o.7 and 0.8 I o +1
o.8 and o.9 I o +1
0.9 and o o o

The differences are here relatively smaller than in the previous _
case. And in general it is observed that the agreement be-
tween theory and experience is closer, the greater the number

of errors or residuals considered in the comparison.

Whatever may be thought of the theoretical deductions of
the law of probability of error, there can be no doubt but that

its practical demonstration by experience

tory.

is entirely satisfac-

Remarks on the . undamental Formulas.

35. The two equations of the probability curve,

(1)
(2)

y = ke B2,

y = hdx.a™ e B2

are identical, and the former has already been discussed at
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length. In the latter, dr for any special case is the interval
between successive values of x. For instance, if observations
of an angle be carried to tenths of seconds, dr is 0”.1; if to
hundredths of seconds, dr is 0”.01; and if a continuous curve
is considered, dr is the differential of x. As y is an abstract
number, /.dr must likewise be abstract, and hence Z must be a
quantity of the same kind as :;r' The probability of the error

0 is ; thus in measuring angles to hundredths of seconds,

T
o”.o1/k ..
——. As this in-

the probability that an error is 0”.00 is
m™

creases with %, the value of /2 may be regarded as a measure of
the precision of the observations. Methods of determining /
are given in Chap. IV.

36. The two probability integrals,

A px
(3) P= \/: » e~ B2y,

é hx
4) P=y f e~ Fr g,

are identical, except in their limits. The first gives the proba-
bility that an error will lie between any two limits 2" and x,; and
the second, the probability that it lies between the limits —
and 4 x, or that it is numerically less than 1. The second is
then a particular case of the first. Table I refers only to (4);
and from it by simple addition or subtraction the probability
can be found for any two assigned limits. For example, the
probability that an error lies between — 2”.0 and 4 4".0 is the
sum of the probabilities for the limits 0”.0 to 2”.0 and 0”.0 to
4”.0; and the probability that an error is between -4 2”.0 and
+ 4.0 is the difference of the probabilities of those limits.

The integral P is simply the summation of the val-es of »
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between the assigned limits, or 7 = 3y, as required by the
principle of Art. 11 to express the probability of an error lying
between those limits. '

37. Problems and Queries.

1. Can cases be imagined where positive and negative errors are not
equally probable ?

2. An angle is measured to tenths of seconds by two observers, and ¥
the value of /4 for the first observer is double that for the second. Draw
the two curves of probability of error. ‘

3. Show that the arithmetical mean of two measurements is the only®
value that can be logically chosen to represent the quantity.

4. The reciprocal of % for the bullet-marks in- Art. 18 is 2.33 feet.
Compare the actual distribution of errors with the theoretical.

5. Draw a curve for each of the equations y = 2¢~*° and y = ke~ +°,
assuming a convenient value for 2. Show that the value of 4 should K
have been taken different in the two equations.

6. Explain how the value of = might be determined by experiments v
with the help of equation (2).
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CHAPTEK IIL
THE ADJUSTMENT OF OBSERVATIONS.

38. The Method of Least Squares comprises two tolerably
distinct divisions. The first is the adjustment of observations,
or the determination of the most probable values of observed
quantities. The second is the investigation of the precision of
the observations and of the adjusted results. This chapter
contains the development of the rules and methods relating to
the first division.

Weights of Observations.

39. Weights are numbers expressing the relative practical
worth or value of observations. Thus, suppose a line to be
measured twenty times with the same chain, ten measurements
giving 934.2 feet, eight giving 934.0 feet, and two giving 934.6
feet ; then the numbers 10, 8, and 2 are the weights of the
respective observations 934.2, 934.0, and 934.6 feet. Or, since
weights cxpress only relative worth, the numbers 5, 4, and 1, or
any other numbers proportional to 10, 8, and 2, may be taken
as the weights. The observation 934.2 has cost five times as
much as the observation 934.6, and for combination with other
measurements it should be worth five times as much.

The weight of an observation expresses the number of stand-
ard observations of which it is the equivalent. Thus the aver-
age of » equally good direct measurements has a weight of #»
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the weight of each single measurement being unity. And
any observation having a weight of p* may be regarded as the
equivalent of p observations of the weight unity, and as having
a practical worth or value p times that of a single one. Hence
the use of weights may be considered as a convenient method
of abbreviation. Thus “934.2 with a weight of 10" expresses
the same as the number 934.2 written down ten times, and
regarded each time as a single observation. -

40. A weighted observation is an observation multiplied by
its weight. Thus if M,, M, ... M, represent observations, and -
Do P2 - . - pa their respective weights, the products p,M,, p,.M,
... o.M, represent weighted observations. If x, x,... x, are
the errors corresponding to M, M, ... M, the products p.x,,
D%, . . . put, may be called weighted errors. As an error x is
the difference between the true and measured value of the
quantity observed, the product px cannot occur without implying
that the corresponding observation A/ has a weight of p, and
the same is true for the residual error . Thus if there be two
unknown quartities z, ard z,, and a measurement 4/ be made
upon f{(s,, 2,), the residual error is .

v =f(zn zz) - M

if 2, and 2z, denote the most probable values of the unknown
quantities. Now, if the observation M be weighted with p, the
residual is '

v =p.f(z.,z,) -~ pM.
Hence a weighted observation always implies a weighted re-
sidual, and vice versa.

The weights should be carefully distinguished from the meas-
ures of precision introduced in the last chapter. The former

* » is the initial of “pondus.”
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are relative abstract numbers, usually so selected as to be free
from fractions, while the latter are absolute quantities. The
relation between them will be shown in Art. 43.

The Principle of Least Squa;'es.

41. The principle from which the term “Least Squares’
arises is the following :

In measurements of equal precision the most probable values
- of observed quantities are those that render the sum of the
squares of the residual errors a minimum.

To prove this, consider the general case of indirect observa-
tions, and let 7 equally good measurements be made upon func-
tions of two unknown quantities s, and z,, Let M, M, ... M,
be the results of the measurements of the functions f(s,, z,),
Sz 5) . .. ful2y 5). These measurements wiil not give ex-
actly the true values of the functions, and the difference between
the observed and true values will be small errors, x,, x, ... x,, or

.fn(zn zz) -M, = x,, f;(zu zz) -~-M,=x,.. -fn(zu zz) — M, = x,.

The respective probabilities of these errors are by the fun-
- damental law (1)

. 2,2 2. 2
Po= kef hz;ll’ ¥ = ke—% x|,  Yw = ke Ty

% being the same in all, since the observations are of equal
precision. Now, by Art. 12, the probability of the compound
event of committing the system of independent errors z,, z,
... x,is the product of these separate probabilities, or

’ - 2 2 2 4+ 2
Pl= e Rt taltad?+. .. x”).

Each of these errors is a function of the quantities z, and s,,
vhich are to be determined. Different values of z, and £, will
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give different values for /. The most probable system of
errors will be that for which 2’ is a maximum (Art. 13), and
the most probable values of 2, and z, will correspond to the
most probable system of errors. The probability 2’ will be a
maximum when the exponent of ¢ is a maximum ; that is when

x2 4+ 22+ 22+ ... + x,2 = a minimum.

Hence the most probable system of values for 2, and 2z, is that
which renders the sum .2 4 1,2 4+ 2,* 4+ . . . 4 x,* 2 minimum,
and the fundamental principle of Least Squares is thus proved.

The errors x,, x, ...z, have been thus far regarded as the
true er~rors'0f the observations. As soon, however, as they are
required to satisfy the condition that the sum of their squares
is a minimum, they become residual errors (Art. 8), so that the
condition for the most probable values of 2z, and 2, is really

(s) v24+9v2 4224+ ...+ 7,°= aminimum;

that is to say, if z, and 2, be the most probable values, the com-
puted residuals

) .fx(zn zz) - Ml = 7y, f;(zuzz) - Mz =7;.. -f;t(zu Zz) - M= Un

will be those that satisfy the condition for a minimum.

The above reasoning evidently applies to any number of
unknown quantities as well as to two.

42. The more general case of the Method of Least Squares,
however, is that when the observations have different degrees
of precision, or different weights. In that event the general
principle is the following : —

In measurements of unequal weight the most prebable values
of observed quantities are those that render the sum of the
weighted squares of the residual errors a minimum.
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As before, let # observations, M,, M, ... M,, be made upon
functions- of two unknown quantities, z, and 2z,; and let p,,
p.. ... be the respective weights of M;, M,... M, The
differences between the observations and the true values of
the functions are errors, x,, x,....x,; and the respective
probabilities of these errors are

h = klg_‘l’*"l’, Y= kze—ﬁ"'e'r’z e In= k,,e""n’-*’..’,

in which 4 and / are different for each observation. The prob-
ability of the system of independent errors, x,, x, . . . x,, then, is

P = kly ...l (A2x?+ halxg? + +kn23’n2);

and the most probable system of values is that for which /' is
a maximum, or that which renders

hix? 4+ A2x*+ ... + Asx,* = a minimum.

The values of x,, z, . .. x,, derived from this condition, are the
residual errors, v,, v, ... v,; so that it will be well to write at

once :
k2o 4+ k20,2 4 ... + A,20,° = a minimum.

This expression may be divided by /%?; / being a constant
standard measure of precision so selected, that

hi = phr, hp = phc. .. b= pit,
where p,, .. .. p, are whole numbers, which are the weights
of the observations M,, M, ... M,* Then it becomes

(6) .02 + 2.0 + . . . + pav, = a minimum ;

* To show that these numbers are the weights of M, M, . .. M,, consider that
the condition for the minimum will be fulfilled when
. dv, dv, dv,y _

A, ‘_i;x + 7%, 7z, + ...+ 4,%, s, o,

dv,,

dy, .. 972
) I E;-'— kot s, + ...+ Ak, Z;;=o,
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which is the principle that was to be proved. The term
“weighted square’” means simply #* multiplied by the weight
2, or the product p22.

The conditions expressed by (5) and (6) are the fundamental
ones for the establishment of the practical rules for the adjust-
ment of independent observations. If the observations are of
cqual weight, the general condition (6) reduces to the special

~one (5).

43. It is here seen that the squares of the measures of pre-
cision of observations are proportional to the weights, or that

(7) ki h? i pi g, p

The measure of precision is never used in the practical ap-
plication of the Method of Least Squares, while weights are
constantly employed. The quantity /%, however, is very con-
venient in the theoretical discussions, and will be needed often
in the next chapter: % represents an absolute quantity, while p
denotes always an abstract number.

Direct Observations on a Single Quantity.

44. When the observations are of equal precision, and made
directly on the quantity whose value is sought, it is universally
recognized that the arithmetical mean is the most probable

—p

which, after dividing by the standard /2%, become

dv dn dv
j’,z',d—z: + p.v, z;';: +..0F pu, ?z—,: =0,

dv dv, dv,
P17 Ez_; + v, iz, + ...+ p2, P
Here the residual 7, is repeated p, times, v, is repeated p, times, and v, is repeated

Px times, and hence g,, , . . . #5 are the weights of the corresponding observations
M, M, ... M, (Art. 40). ’
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value of the quantity. This may be also shown from the funda-
mental principle of Least Squares in the following manner :

Let M,, M, ... M, denote the direct observations which are
all of equal weight or precision. Let z be the most probable
value which is to be determined. Then the residual errors are

'z—ﬂl,, z—M,...z2— M,
and from the fundamental principle (5)
E—M)+(z—-—M)+ ...+ (2 — M,)? = a minimum.

To apply the usual method for maxima and minima, place the
first derivative of this expression equal to zero, thus

2z2—M,)+2—-—M)+ ...+ 2(—M,)=o.

Dividing this by 2, and solving for 2, gives

MM M.+ M,

)

8
() 2
that is, the most probable value z is the arithmetical mean of
the 7 observations.

The adjustment of direct observations of equal weight on
the same quantity is hence effected by taking the arithmetical
mean of the observations. ‘

45. When the measurements of a quantity are of unequal
weight or precision, the arithmetical mean does not apply.
Here the more general principle (6) will furnish the proper rule
to employ. Let the measurements be M,, ¥, ... M,, having
the weights p,, p, . . . .. Then, if 2 be the most probable value
of the observed quantity, the expression (6) becomes

28— M)+ p,(3 — M)* + ... + pa(s — M,)% = éminimum.
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Placing the first derivative of this equal to zero gives
22— M) + 2.2 — M) + ...+ pu.(2—M,) =0,
the solution of which is

T2 M oM A+ DM
DAt o+

(9)

that is, the most probable value of the unknown quantity z is
obtained by multiplying each observation by its weight, and
dividing the sum of the products by the sum of the weights.
In order to distinguish this process from that of the arithmeti-
cal mean, it is sometimes called the general mean, or the
weighted mean.

Granting that the arithmetical mean gives the most probable
value for observations of equal weight, the general mean (9)
for observations of unequal weight may be readily deduced from
the definitions of the word ““weight” in Art. 39.

The .adjustmeﬁ/t' of direct observations of unequal weight on
the same quantity is hence effected by taking the general mean
of the observations.

Independent Observations of Equal Weight.

46. The general case of independent observations comprises
several unknown quantities whose values are to be determined
from either direct or indirect measurements made upon them.

An ‘“observation equation” is an equation connecting the
observation with the quantities sought. Thus, if M/ be a meas-
urement of f(z,, z,), the equation M = f(z,, z,) is an observation
equation. The number of these equations is the same as the
number of observations, and generally greater than the number
of unknown quantities to be determined. Hence, in general,
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no system of values can be found which will exactly satisfy the
observation equations. They may, however, be approximately
satisfied by many systems of values; and the problem is to deter-
mine that system which is the most probable, or which has the
maximum probability (Art. 13).

8. Fig.5. To illustrate, consider the following practi-

i e 2 cal case. Let O represent a given bench-

e mark, and Z,, 2, Z, three points whose

b 2 5 elevations above O are to be determined.

g‘ ---- te 15 Let five lines of levels be run between
z, these points, giving the following results :

Observation 1. Z, above O = 10 feet.
Observation 2. Z, above Z, = 7 feet.
‘Observation 3. Z, above O = 18 feet.
Observation 4. Z, above Z;, = g feet.
Observation 5. Z; below Z, = 2 feet.

If the elevations of the points Z,, Z, and Z, be designated
by z, 2, and z,, the following observation equations may be
written :

2, = 10,
2, —=%,= 17

2, = 18,
%2, —2%2;= Q,
2y —2; = 2,

each one of which is an approximation to the truth, but all of
which cannot be correct. The number of these equations is
five, the number of the unknown quantities is three; and hence
an exact solution cannot be made. The problem is to find the
. most probable values of z, z, and z,.

The observation equations may be algebraic expressions of
the first, second, or higher degrees ; or they may contain circular
or logarithmic functions. Usually, however, they are of the
first degree, or linear, and these alone will be considered in the
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body of this work. In Art. 140 is given a method by whigh
non-linear equations, should they occur, may always be reduced
to linear ones. : '

47. Consider first the case of observations of equal precision
or of equal weight. Let there be ¢ unknown quantities z,
Z,... %, and let the equations between them and the measured
quantities be of the form

as, + 6z, + ... + &, =M,

in which @, 4. . . /are constants given by theory and absolutely
known, and M the measured quantity. For each observation,
there will be a similar equation, and, in all, the following #
approximate observation equations :

az + 6z, + ... 4+0b, =M,
@z + b5+ ...+l =M,
az 4+ b2, + ... + Lz, =M,

A2, +5nz2 +... +lnzq= Mm

the first of which arises from the first observation, the second
from the second, and the last from the 7th. ‘

Now, as the number of these observation equations is greater
than that of the unknown quantities, they will not be exactly
satisfied for any system of values that may be deduced. The
best that can be done is to find, from the fundamental principle
of Least Squares, the most probable system. Let s, z,... 5,
denote the most probable values, then, if these be substituted
in the observation equations, they will not reduce exactly to
zero, but leave small residuals, #,, v, . . . 7,; thus strictly

az +bz,+...+0z,— M, =v,
a2, +bzzz+--~+[zzq—jl[2=yzx

%+ Onz + . o L3, — My = Vs,

R
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The fundamental principle established in Art. 41 is, that the
most probable values, z,, 3, . . . 5, are those that render

v2+ 22492 +...+ v,2 = a minimum.

Consider first what is the most probable value of the un-
known quantity z,, and denote the terms in the above equa-
tions independent of z, by the letters NV, N, &V, etc. Then

they become
az + N, = Uy,
as, + NV, = v,,

@2, + Nn = Ux.
Squaring both terms of each of these equations, and adding the
results, gives

(2.2 + M) @zt V)2t .+ (@nts + Vo) o= + 02 F ...+ 2.

In order to make this sum a minimum, its first derivative must
be put equal to zero, giving

@ (2.5 + N) + a.(a2, + N,) + . . . + @n(@nz, + Ny) =03

and this is the condition for the most probable value of 2z,. In
like manner a similar condition may be found for each of the
other unknown quantities. The number of these conditions,
or “normal equations” as they are called, will be the same as
that of the unknown quantities, and their solution will furnish
the most probable values of z,, 5, . . . 2,

48. The following is, hence, the method for the adjustment

of independent indirect observations of equal weight:
— For each observation write an observation equation. Form
a normal equation for z, by multiplying each of the observation

equations by the.co-efficient of z, in that equation, and adding
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the results. And, for each unknown quantity, form a normal
equation by multiplying each observation equation by the co-
efficient of that unknown quantity in that equation, and adding
the results. The solution of these normal equations will fur-
nish the most probable values of the unknown quantities.

For example, let the five observation equations derived
from the five observations of Art. 46 be considered, namely,

2 = 10,
-3+ 2 =1,
22 = 18,

42— %= 9

2 — 2= 2

To form the normal equation for z, the first observation
equation is multiplied by -} 1, the second by — 1, the third by
o, the fourth by o, and the fifth by -+ 1; the addition of ‘the
products then glves

3% "32”23—5

The normal equatlon for z, is formed by multiplying the first
observation equation by o, the second by - 1, the third by +- 1,
the fourth by -} 1, and the fifth by o; the sum of the products
being

— 2z 1+ 3% — 33, = 34.

The normal equation for 2, is formed by multiplying the first,
second, and third observation equations by o, and the fourth
and fifth by — 1, the addition of which gives

— 2 — 3, + 23, = — IL

These three normal equations contain three unknown quanti-
ties, and their solution gives

=410}, 2=+ 17§, 2 =+ 84,
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which are the most probable values that can be obtained from
the five observations. If now these values be substituted in
the observation equationsthere will be found the five residuals,

v’=+%’ n=+4+1% rn=-—4 Z{,:—i—%, vsz—%r

and the sum of the squares of these is §. Of all the possible
values that might be assigned to z, 2, 2, those above found
give the minimum sum of squares of resxdual errors.

As a second example, let three observations on the two
quantities 2z, and 2, give the observation equations

32 — 52, = + 12.4,
— 22; + 42; = — 10.2,
2, — 2z, = -+ 8.0.

To form the normal equation for z, the observation equations
are multiplied by + 3, — 2, and +4- 1, respectively, and the re-
sults added. To form the normal equation for z, the multipliers
are — 5, + 4, and — 2, respectively. The two norma) equa-
tions thus are

+ 65.6,

— 118.8,

142 — 252,
- 252: + 452,

and the solution of these gives the most probable values
2z, = — 3.60 and 2, = — 4.64.

49. In order to put the above method for the formation of
normal equations into algebraic language, let there be 7 obser-
vations upon ¢ unknown quantities which lead to the following
observation equations:

an+ bz, ezt .+ bz, =M,
(10) a3, + b2, + c,z3 + .+ lzz,, M

a..z,+b..zz+ c,.za+ +1,.z., M
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‘The normal equation for 2, is formed by multiplying the first
of these by a,, the second by a,, the last by a,, and adding the
products, thus giving '

(a2t a2+ ...+ a2+ (@b +ab,+... +ab)ea ...
= (M, + a, M, + ... + a,M,);

and in like manner a normal equation for each of the other
unknown quantities may be written. To simplify the expres-
sion of these equations, let the following abbreviations for
summation be introduced:

- [aa] =a® +a® +a? ...+ as
lad] =ab, + abs + asbs + ...+ a.by,,
[¢f] =ad Hals +ads +...+ auln,
[66] =62 +8&* b2 ...+ 853
[aM] = aM, + a,. M.+ a3M3 +...+ anMﬂ»

and then the normal equations may be thus written:

[aalz: + [ab)2: + [ac)zs + ... + [al]z, = [aM ],
[6alz. + [66)z. + [bc)zy + ... + [60]2g = [641],
(11) [ca)z: + [¢B)z, + [cclzs + ...+ [el]2g = [eM],

[lalz. + [8])2. + [lelzs + ...+ [U]ee = [IM].
The co-efficients of the unknown quantities in these normal
equations present a curious symmetry ; those of the first hori-
zontal row being the same as those of the first vertical column,
those of the second row the same as those of the second col-

umn, and so on. This is due to the fact that [#a] is the same
as [ab], [ca] the same as [ac], ... and [/a] the same as [a/].

The notation for summation here indicated is that first used
by Gauss and since generally employed in works on the Method
of Least Squares in writing normal equations. ~The notation
Za?, Zab, used by a few writers, and in former editions of this
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book, has the same meaning as [aa], [@6]. The sum of the
squares of the residual errors may be written either 222 or
[vv], and in this book the former will be employed as it more
readily calls to mind its name.

50. Hence the method of adjustment of indirect observa-
tions of equal weight is to write for the # observations the
observation équations_(lo), then to form the ¢ normal equations
(11), and their solution will furnish the most probable values
of the unknown quantities. Numerous examples of the appli-
cation of this method will be found in Chap. VII.

As a simple illustration let three observation equations be

42 — 22, = + 6.1,
52, + 23, = + 3.8,

3% — 3% = — o0.9.

Here a, =+ 4, a, =+ 5. =43, b= — 2, b, = + 2,
by=—3, M, =461, M,=+ 3.8, M, = — 0.9. The forma-
tion of the sums is now made, carefully regarding the signs of
the co-efficients; thus,

[ec] =+ 445 +3° =+ 500,

[@¢6] =— 8410 —9 = — 7.,
[eM] =+ 24.4 + 19.0 — 2.7 = + 40.7,
[bb] = 2% 4 2?2 + 3’ = 4+ 17.0,
[bM] = — 1224 7.6 +2.7= — 1.9.

Here [6a] need not be computed, as its value is the same as
[af]; thus the two normal equations are

+ 50 — 72 = + 407,
— 75+ 173, = — 19,

the solution of which gives z, = 4 0.8472 and 2, = 4 0.2371 =s
the most probable values correct to the fourth decimal place.
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Independent Observations of Unequal Weight.

51. The more usual case in practice is where the observa-
tions have unequal weights. As weights are merely numbers
denoting repetition, it is plain that if each observation equa-
tion be written as many times as indicated by its weight, the
reasoning of Art. 47 and the rule of Art. 48 applies directly
to thc determination of the probable values of the unknown
quantities. Instead, however, of writing an observation equa-
tion as many times as indicated by its weight, it will be sufficient
to multiply it by its weight when forming the other products.

52. The following rule may hence be stated for the adjust-
ment of independent observations of unequal weight upon
several related quantities:

For each weighted observation write an observation equa-
tion, noting its weight. Form a normal equation for 2z by
multiplying each equation by the co-efficient of 2z, in that equa-
tion, and also by its weight, and adding the products. In like
manner form a normal equation for each of the other unknown
quantities by multiplying each observation equation by the co-
efficient of that unknown quantity in that equation, and also
by its weight, and adding the results. The solution of these
normal equations will furnish the most probable values of the
unknown quantities. |

For example, let three observations upon two unknown
quantities give the three observation equations,

— 2z -+ 33, = 4+ 6, weight 3,
+ 2z = 4 3, weight 7,*
- — 32, = 45, weight 2.

To form the normal equation for g, the first equation is multi-
plied by the co-efficient — 2 and by the weight 3, that is, by

v
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— 6; the second is multiplied by 4+ 2 and 7, that is, by 4 14;
the third is multiplied by 0 and 2, that is, by 0; the addition
of the products gives

+ 402z, — 182, = 4 6.
To form the normal equation for z,, the first equation is mul-

tiplied by + 3 and by 3, that is, 4 9 ; the second by o, and the
third by — 6; the sum of products being

— 18z, + 453, = + 24.

The solution of these two normal equations gives 2, = + 0.475
and 2z, = + 0.724 as the most probable values of the two
quantities which were indirectly observed.

53. In order to put this method into an algebraic algorithm
and at the same time review the general reasoning, let M,
M, ...M, be the results of the » observations which have been
made to determine the values of the ¢ quantities 2, 2,,... 2,
As before, let each observation be represented by an observa-

tion equation, thus:

@z + bzt oo+ 4Lz = Ml with weight g,
(12) a2 + 023, + .+ I,zq MM, with weight p,,

ax 1+ b,.z,+ + 1 % = Mn with weight p,.

Now, if 2, &,...2, denote the most probable values of the
quantities sought, and these values be substituted in (12), these
equations will not reduce to zero, but leave small residuals, v,
¥, ...vs. Thus strictly,

s + bzt ...+ Lz, — M, = v, with weight 2,
a,z: + bz, + + 122q M. = v, with welghtp,,

a,.z‘—{— b z,-l— + l,,z,, M,. =7, w1th welghtp.,

which may be called residual equations.
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Now, Vaccording to the general principle (6), the most probable
values of the ¢ unknown quantities z,, 2, . . . 5, are those that
render the expression

202 + pv2 + . . . + pav, = a minimum.

To abbreviate, designate this quantity by 3p72. Remembering
that #,2, 9,2 . . . 9,2 are functions of z,, z,... 2, it is plain that
the derivative of 3pv* with reference to each variable must be
zero, and that hence there are the following ¢ conditions for
the minimum :

(111, d 2 d ”
pa g + b d’; «+ Putn % =o,
av, dv,
Pl”l +Pz7)z 7 + oot Pa¥n ;,v—z =0,
dv, a’v, dv,,

y 2X/ ldg"*'ﬁzz"—‘l' +pnvn(zq‘—0

The values of the differential co-efficients in these conditions
are readily found by taking the derivatives of the residual
equations with reference to each variable, thus:

dv, _ av, @

——'_aZQ

a = &,, etc. ;
ds, Y ds, ds, 7

and the conditions then become

2:@.0, + 0,40, + . . . + Pa@nUn = 0O,
Plblvl +P2&27)2 +... +Pﬂbn7’ = 0,

pllxvl + pzlzvz + ... + pn nUn = O,

which are as many in number as there are unknown quantities
2y 2, ... 2, If in these the values of ,, 7,. .. v, be replaced



54 THE ADJUSTMENT OF OBSERVATIONS. IIL

from the residual equations, the final normal equations will
result. As before, the expression of the normal equations may
be abbreviated by using the square bracketed notation for
summation, namely,

[paa] = p.a? + D242 + e +p,.an’,
[pab] = pab; + pab: + ...+ putuba,
[2eM ] = pa M. + poau M +- . . . + pran My, ete,

and thus the normal equations are

[ paa]z, + [ pab)z + 4 [palls, = [par ],
[Pb‘i]zl + [ﬁbb]zz + [;50/]~., [pr],

[p/a]zx +[ﬂlfflzz + +[;w]z [ﬂM ]

(13)

by whose solution the most probable values of z,, 2, ... z, may
be found. The co-efficients in these equations show the same
symmetry as those in Art. 48, since, as before, [pba], [ /6],
etc., are the same as [ pabd], [ pb/], etc.

54. Thus, if there be » observations for determining ¢ un-
known quantities, the most probable values of the unknown
quantities are obtained by writing # observation equations as
in (12), and forming the ¢ normal equations as in (13); then
the solution of these normal equations will furnish the most
probable values of the ¢ unknown quantities. In the most
common cases the co-efficients in the observation equations
(12) are 4+ 1, — 1,0r 0, and, in the formation of the co-effi-
cients of the normal equations, the signs must be carefully
regarded. Many examples of adjustment by this method are
given in Chap. VII.

As a simple illustration let there be given the foliowing four
weighted observation equations upon the two quantities &,
and z,:
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No.1. 2 =o, weight p, = 8,
2. 4+ 2. =o, P2 = 10,
3 + 21 4 22: = 4 o.25, = 1,
4. + 2z, — 32. = — 0.92, 2= 5,

These co-efficients and weights, arranged in tabular form, are

No. a b M 2
I. +1 o o 8
2, o + 1 o 10
3. +1 + 2 -+ o.25 I
4. 41 -3 — 0.92 5

The products paa, pab, etc., are now formed as below, and
their summation furnishes the co-efficients for the two normal

equations; thus,

No. paa pab paM pob y 2274

1 + 8 o o o o

2 o o o + 10 o

3 + 1 + 2 -+ o.25 + 4 + o.5u

4 + 5 — 15 — 4.60 + 45 + 13.8¢
+ 14 — 13 — 435 + 59 + 14.30

Here [ pba] is the same as [ pab] and need not be computed.

The normal equations therefore are

+ 142, — 132 = — 4.35,
— 13% + 592; = + 14.30,

the solution of which gives 2, = — 0.102 and 2, = 4 0.225 as
the most probable values that can be derived from the four
observations. If these be substituted in the observation equa.
tions the adjusted values of the four observations are found to

be — 0.102, 4 0.225, + 0.348, and — 0.777.
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In the formation of the co-efficients of normal equations
tables of squares, multiplication tables, and calculating ma-
chines will often be found very useful. The method of using
the table of squares at the end of this volume for the forma-
tion of the products ab, ac, etc., is explained in Art. 172, and
a method for checking the correctness of the co-efficients [a6],
[ac], etc., is given in Art. 142.

Solution of Normal Equations.

55. The normal equations which arise in the adjustment of
observations may be solved by any algebraic process. When
the co-efficients consist of several digits, or when the number
of unknowns is greater than three, it is desitable to follow a
method by which checks may be constantly obtained upon
the accuracy of the numerical work. Such a method, devised
by Gauss, is presented in Chap. X.

When the number of unknown quantities is two, the obser-
vation equations furnish the two normal equations

[aa]z: + [ab)z. = [adL ],
[a8)z, + (20, = [647],

the solution of which may be directly effected by the formulas
_[86)[aM ] — [ab)[b6)

l [aa][66] — [ab):
. = |;cza][éM] - [ab][aM]
* = [aal[80) — [at)s

while checks upon the numerical work may be obtained by
substituting the computed values in the given normal equa-
tions which should be exactly or closely satisfied.

When logarithms are used it will generally be advantagebus
to write the formulas thus
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g, = [l[aM ]/ [ad] — [6M ]
[ea](66)/[6] — [ad] °
. _ [aal[620)/[a8] — [ad]
©7 [eal(#2]/[a8] — [a2]
as then the table need be entered only three times in finding
the numbers corresponding to two terms in the numerator and

one in the denominator, whereas by the former formulas six
entries are required.

As an example let the two normal equations be

90.07%; + 404.562; = 295.99,
404.563, 4 1934.102; = 1306.90.

- Here, by the use of either numbers or logarithms, the solution
gives the values '

21 = 4 4.1527, 2, = — 0.1929,

which, substituted in the normal equations, reduce the first to
-+ 0.004 =0 and the second to 4 0.028 =o0. The first is
satisfied as closely as the data admit, while the error in the
second can be reduced, if deemed necessary, by carrying the
values of z, and z, to five decimal places.

When the number of unknown quantities is three, general
formulas for solution are best derived in the determinant form
given in Art. 140. This determinant method is easily remem-
bered and may be advantageously used for the case of two
unknown quantities.

Conditioned Observations.

56. Thus far it has been considered that the quantities to
be determined by observation were independent of each other.
Although they have been related to each other through the
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observation equations, and have been required to satisfy ap-
proximately those equations, they have been so far independent,
that any one unknown quantity might be supposed to vary
without affecting the values of the others. All systems of values
of the unknown quantities have been regarded equally possible,
and the methods above developed show how to determine the
most probable system.

In the class of observations now to be discussed, all systems
of values are not equally possible, owing to the existence of
conditions which must be exactly satisfied. Thus, having
measured two angles of a triangle, the adjusted value of one
is entirely independent of that of the other; but, if the third
angle be measured, the three angles are subject to the rigor-
ous geometrical condition that their sum must be exactly 180°,
In conditioned observations there are, hence, two classes of
equations, observation equations and conditional equations;
the number of the first being generally greater than the number
. of unknown guantities, and that of the latter always less.*

57. Designate the number of observation equations by 7, the
number of unknown quantities by ¢, and the number of condi-
tional equations by 7/. If no conditional equations existed, the
principle of Least Squares (6) would require that the adjusted
system of values should be the most probable for the » inde-
pendent observations. The 7’ conditional equations, being less
in number than the ¢ unknown quantities. may be satisfied in
various ways; and, further, the final adjusted system of values
must exactly satisfy them. Hence it must be concluded, that,
of all the systems of values which exactly satisfy the 7’ condi-
tional equations, that one is to be chosen, which in the »

* In most books upon this subject, the term *equations of condition” is applied
indiscriminately to both of these very distinct classes, and is a cause of some per-
plexity to the student. The excellent distinction of the Germans, *“ Beobachtungs
gleichung ” and “ Bedingungsgleichung,” ought certainly to come into use.
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observation equations makes the sum of the weighted squares
of the residuals a minimum.

The problem of conditioned observations may be, then,
reduced to that of independent ones by finding from the 7’
conditional equations the values of 7’ unknown quantities in
terms of the remaining ¢ — »/ quantities, and substituting them
in the 2 observation equations. There will thus result 7 inde-
pendent observations upon ¢ — 7’ quantities. From these the
normal equations are to be formed, and the most probable
values of the ¢ — 7/ quantities deduced. Substituting these
values in the #’ conditional equations, the remaining 7’ quan-
tities become known. Thus the ¢ quantities exactly satisfy
the conditional equations, and at the same time are the most
probable values for the observation equations. This, therefore,
is a general solution of the problem.

For example, consider the measurement of the three angles
of a plane triangle. Let z, 2, and z, be the most probable
values of the angles, and let the observation equations be

5 =M, z=M, 23 =A[3)
which are subject to the rigorous condition
2, + 2, + 2, = 180°.

From the conditional equation take the value of z, and substi-
tute it in the observation equations, giving

=M, z2,=M, 3z 43 =180°— M,

The most probable values of z, and z, may be now obtained
by the method of Art. 47, since the three observation equa-
tions are independent. Then the most probable value of z is

180° — z, — z,.

58. Although the above method is perfectly general, and very
simple in theory, it gives rise in practice to tedious computa-
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tions whengver the number of conditional equations is large.
The process generally employed is the “ method of correlatives,”
due to Gauss, which will now be explained; the conditional
equations being considered as of the first degree, or linear,
and the number of observations being the same as that of the
quantities to be determined, or 2 = g¢4. :

Consider ¢ unknown quantities connected by the 7’ rigorous
conditions, 4
o6+ a2, +a2 +...+ 032, =0,
(14) ﬁo + Blzl + Bzzz + ﬂqzq - 0

,)\o+M. ’\'zzz quq—o

Let M,, M, . .. M, be the values found by the observations for
Zy 2, ... 8. If these be inserted in the conditional equations,
they will not reduce to zero, but leave small discrepancies,
d,d,...d, thus:

o + oM, + a, M, + .. +aqM—du

Bo+ BM, + B M, + . . +B¢Mq—- d;,

A(:;"|'/\11”1'*"Azjll-z"'- +AM d’-
Let v, v,... 7, be corrections, which when applied to M,
M, ... M, will render them the most probable values, and

cause the discrepancies to disappear; thus, if z, 2,... 2, be
the most probable values,

2, =M + v, zz=1,[z+7/z---zq=ﬁfq+7)g-

Then the insertion of these in (14) gives the reduced condi
tional equations

a2, + a0, + ...+ o0, + 4. = o,
(14)’ B.v, +Bz7jz+- +quq+a’ = 0,

Ao+ A0, + . + Aqvq + du’ = 0.
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For the sake of shortness, let these 7’ conditions be expressed
by the notation f(a), £(B) . . . f(N).

Let p,, #....p, be the weights of the observations A7,
M,... M, The corrections v,, 7, ... v, are the same as the
residual errors, and the sum of their weighted squares is repre-
sented by 3p72. The most probable values of 2, 2, ... z, are
those that render a minimum the expression

Spv: — 2K, f(a)— 2K/ (B)— ... — 2K/ (N),

where X, K, ... K, are multipliers, or “correlatives,” of the
conditional equations.*

The derivative of this expression with reference to each v is
to be put separately equal to zero, thus : —

]’;2’; - (axKx' + B;Kg + PRI +A1Kﬂ') — o’
P — (0K, + LK+ . . . + MKy) =0,

D0 — (0K, + B K.+ ... + NKy) = 0.
These ¢ equations together with the 7’ conditional equations

are sufficient for the determination of the ¢ residuals and the
n’ correlatives. The residuals may be written

vl=ﬁKl+&K,+...+)ﬂK,»,

20 A 2
Qaz Ba A;
3 — —K| —_— Kg RS _Kn’,
(a5)  mTRm TR

v,=“—’K.+/i’K,+...+)i”K,g,
q 9 q

—

#* It is shown in works on the differential calculus, that the maximum or mini
mum of a function, #(x, y,2), whose variables are connected by conditional equa-
tions, ¢(x, 3, 2) = o, 6(x,32) = o, is to be found by multiplying the conditional
equations by undetermined co-efficients, adding them to the function, and then,
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and, if these be substituted in the reduced conditional equa-
tions, they become

K23 apf al
- Kl — Kz ) e Kn’ d = »
P :I + [:p + + 7 + o

o [2Jer [t s [Blera =

-ﬂ]Kx'i-[ﬂ]Kz"l’-" Al]K +dn’=°o
? 2
in which the usual notation for sums is followed, for exampie :

[ _ tﬂx +a,ﬂ, o+ ;/:?q

The co-efficients in these equations have similar properties
to those in the normal equations derived for independent ob-
servations, those of the first row bheing the same as those of
the first column, and so on. Being 7’ in number they deter-
mine the »’ correlatives; and the residuals v are then known.
These residuals, applied as corrections to the observations,
give the most probable values of the quantities 2, z,... 2, and
these must exactly satisfy the ¢ conditional equations.

58a. As an illustrative example let there be five quantities
connected by the two conditional equations,

2, + 2z, — 2, = o, Z,—3,+3,=o0,
and let the results of five observations be

z, = 10.1, 2,=6.6, 2z, =18.0, 2, = 9.2, 2z, = 2.7 inches,

by the usual rule. determining the maximum or minimum of the new function,
F(x, 3, 2) + cplx, 3, 2) + O(x, y, 2).

The minimum Zp2? only gives the most probable values of th: unknown
quantities when these are independent. (See Art, 42)
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the weights of these observations being
H=L P=2, pH=1 p=1, H=1L
It is required to adjust the observations.
By comparing the conditional equations with (14) are found
ao=0’- a1=+1’ a2=+ta a, = —1, a,=o, a5 = o,
ﬂo=°; ﬂl’__o, ﬂ2=+l) ﬂ3=0, ﬂ4=—17 ﬁ5=

Also by substituting the observed values in the conditional
equations are derived 4, = — 1.3 and 4, = - o0.1. The co-
efficients of the equations (16) are next found; for example

ad’l _1 , 1 1 o o_
[7]_1-+;+1+1+1 T 25

The correlative normal equations themselves then are

2.5K, 4+ 05K, — 1.3 =0,
0.5K; + 2.5K, + o.1 = o,

whence K, = -+ 0.55 and K, = — o.15. From (15) the most
probable corrections to the observed values are found to be

=+ 0.55, 7= + o.20, v, = —0.55, 7, = +-0.15, V3= — 0.15,
anél the final adjusted~values are
2, = 10.65, 2, = 6.80, 2, =17.45 %,= 9.35 % = 2.55,
wﬁich exactly satisfy the two conditional cquations.

This problem may be reduced to one of independent obser-
vations by eliminating two of the unknowns by means of the
conditional equations. Thus, if 2, and z, be eliminated the
observation equations are z, = 10.1, 2, + 2, = 18.0, 2, = 9.2,
— 2 + 5, = 2.7, all with weight I, and 2, = 6.6 with weight 2.
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585. A valuable check upon the solution of the correlative
normal equations is given by the necessary relation,

2p*+ [Kd] = o,
which may be proved in the following manner:

Let the first equation in (14)" be multiplied by K, the second
by K, the last by X,,, and let the results be added, giving

(”xKl + ﬂle + LU + AlKl’)Wl + 'Kldl
+ (K + L.+ ... + LK,)o, + Kd,

F (K -+ BoKi+ oo + A Kn)v, + Kwdw = o,

Now, as shown on page 61, the coefficients of 7,, v,,.. . v, in

this equation are p,v,, p,v,, .. . p,v,, Hence

(P + 207 + oo+ 227) + (Kidi + Kids 4« o . + Kudu) = o,

which may be abbreviated as is done above. Thus, if the
residuals be computed from the observation equations, this
relation furnishes a check on the numerical work.

For instance, in the example of the preceding article, the
values of the residuals 7 have been found. Then

2p7* = 0.3025 + 0.0800 + 0.3025 + 0.0225 + 0.0225 = + 0.73
Further, the values of K and 4 are

K, = + o.55, K, = —o.1s,
d,= — 13, d, = + o.1.

and accordingly
[Kd] = + 0.55(— 1.3) — 0.15(+ &a1) = — 0.73.

The necessary relation Zp* 4 [Kd] = o is hence exactly sat-
isfied, and the numerical work may be regarded as correct.



§ 59- PROBLEMS. 65

59. Problems.

1. Six indirect observations upon two quantities furnish the fol-
lowing observation equations:
“+ 5 = + 3.01,
+ 222 = — 1.20,
-z 4 32; = — 4.6s,
<+ 221 — 22 =+ 6.51,
v st £ =+ 2.35,

2 — 2=+ 3.70.

Form the two normal equations and find the most probable values
of z, and z,.

2. The bearing of a line is taken five times with a solar compass,
giving the values

N 12 E, N.7E, N.10 W, N2 W.. N 2.9E.

What is the adjusted bearing of the line if the weight of the last
observation is five times that of each of the others?

3. Solve the following normal equations:

231 — 2 + o0.52 =0,
-1+ 45— 23— z — 0.26 = o,
— mt2z— z + o047 =0,

— %— 23+ 32— 2y — 1.08 = o0,
— 23+ 325+ 0.33 = 0.

4. A plane triangle has the angle 4 measured ten times, B meas-
ured five times, and C measured once. The sum of the three ob-

served values is found to differ 7 seconds from 180 degrees. How
shall this 4 be divided among the three angles?
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CHAPTER 1V.
THE PRECISION OF OBSERVATIONS.

6o. In the adjustment of ‘observations, it is often necessary
to combine measurements of different degrees of precision; and
for that purpose the determination of their weights is neces-
sary. When the most probable or adjusted values have been
obtained, it is also well to know what degree of confidence
may be placed in them, so that comparisons may be made with
values obtained under other circumstances. The comparison
of observations is a very important part of the Method of Least
Squares, since the knowledge of the value and precision of
measurements is required for their most advantageous use.
Moreover, the study of the precision of measurements is always
necessary to improve and perfect the methods of observation.

The Probable Error.

61 The quantity usually selected to compare the precision
of observations is the probable error, of which the following is
a definition :

In any series of errors the probable error has such a value
that the number of errors greater than it is the same as the
number less than it. Or, it is an even wager that an error
taken at random will be greater or less than the probable
ATTOT.
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The probable error is, then, the value of x in the probability
integral (4) when P =1, or it is the value of x given by the

equation
hx
f e—#2g hx.

xJo

| o

N -

<

By interpolation from Table I, Chap. X, it is found that
P=o0.5 when 4ix = 0.4769.
Hence, denoting this value of » by 7, the equation
(17) hr = 0.4769

gives the relation between the measure of precision % and the
probable error 7, and shows that / varies inversely as 7.

62. To render more definite the conception of the measure
of precision % and the probable error 7, consider the case of
two sets of observations made with different degrees of accu-
racy. Let the measure of precision of the first be /4,, and of
the second #4, ; then, from equation (2), the probability of errors
in the first set will be represented by a curve whose equation is

¥ = A.dx.r—te— "2,

and for the second set by a curve

¥ = hadx.r—le— Al
in which 4z is the constant difference between two consecutive
errors. Now, suppose that the second set is twice as precise
as the first, so that %, = /4, and /%, = 2/, then the equations
will be

y = ahe—H" and y = 2ahe— =

in whicn a represents the constant =~ 4dr. The curves corre-
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sponding to these equations are given in Fig. 6; XB,4,B,.X
being the one for the set of observations whose measure of
precision is /, or 4, and XB,4,B,X the one for the set whose
measure of precision is /4, or 24 These curves show at a
glance the relative probabilities of corresponding errors in the

] e

O T

X O R ¥ X

1

two sets: thus the probability of the error o is twice as much
in the second as in the first set; the probability of the error
OP, is nearly the same in each; while the probability of an
error twice as large as OP, is much smaller in the second than
in the first set. Now, if the lines P,B,, P,B, be drawn so that
the areas P,B,4,B,P, and P,B,A,B,P, are respectively one-
half of the total areas of their corresponding curves, the line
OP, will be the probable error of an observation in the first set,
and OP, the probable error of one in the second set. Repre-
senting these by the letters #», and 7, there must be in each
case the constant relation

hir: = 0.4769, 4.7 = 0.4769 ;
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and, since 4, is twice 4, it follows that 7, must be one-half
of »,.

The probable error, then, serves to compare the precision of
observations equally as well as measures of precision. The
smaller the probable error, the more precise are the measure-
ments. For instance, if two sets of observations give for the
length of a line in centimeters

L, = 427.32 £ 004 and Z,= 427.30 £ 0.16,

in which 0.04 and 0.16 are the respective probable errois, the
meaning is, that it is an even wager that the first is within 0.04
of the truth, and also an even wager that the second is within
0.16 of the true value; and the precision of the first result is
to be regarded four times that of the second. The probable
error thus serves as a means of comparison, and also gives an
absolute idea of the uncertainty of the result.

63. In Art. 43 it was shown that the squares of measures
of precision are directly proportional to weights; and in
Art. 61 it is established that measures of precision are in-
versely proportional to probable errors. Hence the important
relation :

Weights of observations are inversely proportional to the
squares of their probable errors; or, in algebraic language,

1 I 1

(18) Diipaipii— i — 1 —.

o2

Weights and probable errors are constantly employed in the
practical applications of the Method of Least Squares, while
/ is only needed in theoretic discussions. By means of the
relation just established, the weights of observed results of
different degrees of precision may be found from their computed
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probable errors, and the observations be thus prepared for
adjustment. For instance, in the two results

L, = 427.32 £ 0.04, L.= 427.30 % 0.16,

it is seen that the weight of 427.32 is sixteen times that of
427.30.

Probable Ervor of the Arithmetical Mean.

64. Let M, M, ... M, be n direct observations on the same
quantity. The weight of each is 1, and the weight of their
arithmetical mean is 2. Let » be the probable error of a single
observation, and 7, the probable error of the arithmetical mean.
The principle (18) of the last article gives

1 1
miri—: —,
r2: rn
from which
,
(19) o= -
Vn

or, the probable error of the arithmetical mean is equal to the
probable error of a single observation divided by the square
root of the number of observations.

The probable error of the mean, hence, decreases as Vi
increases. If ten observations give a certain probable error
for the mean, forty observations will be necessary in order to
reduce it to one-half that value.

65. To find », the probable error of a single observation,
consider the fundamental law of the probability of error (2), or

y = hdxa—le— A5,
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L 4
By Art. 12 the probability of the occurrence of the independent
errors x,, %, . . . x, is the product of the separate probabilities, or

P = h(dx)nm—re—#z2e,

Now, for a given system of errors, the most probable value of &
is that which has the greatest probability; or 2 must have

such a value as to render /' a maximum. Putting the first
/

derivative i equal to zero, and reducing, gives
' 2

n — 2A23x2 = 0, oOr }l=\/ 7 _.

232

Since, by Art. 61, 47 equals the constant 0.4769,

Sz

n

0.4769 /
=249 — 66
p 0.6745/

Here 322 is the sum of the squares of the true errors, which
are unknown. In a large number of observations the errors
closely agree with the residuals, and 32* may be taken as equal
to Sv2; but, for a limited number of errors, 37? is less than 32,
since, by the principle of Least Squares, the first is the mini-
mum value of tl}f: second ; so that

3x? = 3v2 + w?,

where #* is a quantity as yet undetermined. The absolute
value of #2 cannot be found; but it is known to decrease as #
increases, and for a given number of residuals to increase when
Sx* increases: as the best approximation, > may be taken as

equal to E_x’ Then
n

2x2=202+_2£’ or 5.x== Sz
”n

)
n n—1
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and, inserting this in the above value of 7, it becomes

Sv2

n—1

(20) 7 = 0.6745

This is the formula for the probable error of a single direct
observation, or of an observation of the weight unity. To use
it, the residuals are to be found by subtracting each measure-
ment from the arithmetical mean, and the surn of their squares
then formed. When 7 is known, the probable error 7_ of the
arithmetical mean is found by the formula (19), or it may be
written at once

(21) ro= 06745\/n(n z

which is the usual form for computation.

Probable Ervor of the General Mean.

66. Let M, M,... M, be n direct observations having the
weights 2, #,...p., The weight of the general mean is
2.+2.+ ...+ 2 0r3p. Let »be the probable error of an
observation of the weight unity, and #», the probable error
of the mean. Then, from the fundamental relation between
weights and probable errors, ‘

11

1: 3p:: R
o

from which the probable error of the mean is

(22) Vo =

and, in general, the probable error of any observation is equal
to » divided by the square root of its weight. To find #, an
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investigation like that in the preceding article could be em-
ployed ; but it may be well to give one of a different character.

67. Let Z be the measure of precision of an observation of

the weight unity, and 4, /%, ... 4, those of the observations
whose weights are p,, 2, . . . p.. By formula (7) the quantities
ky k. . ..k, may be expressed in terms of the weights, thus:

hi = pht, k= pht. . hat = pah;

and, in general, if ¥ be any error, p the weight of the corre-
sponding observation, and /% the measure of precision of an
observation of the weight unity, the probability y is, from (2),

y = hptr—Ydx.e—#pe2,
3px

7
such as p,r,%, occurs 7y, times in 7 observations ; and, for a con-

tinuous series of errors,

pr’ WP

Now, the quantity Sp+?y is the same as , since each term,

f pxie—#pxgx,

Taking in this 4n/p =¢ as the unit variable, it may be
written

e _ 1 e A/
n kZ T —
The value of the integral in this expression is !/-23,* and hence
3w 1
n 2k

* From the footnote to Art. 31,
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From Art. 61 the value of ;z; is ( )z: hence

0.4769

r = 0.6745 \/E‘sz

is the probable error of an observation of the weight unity.

Now, 32 is in terms of the true unknown errors, and is
greater than 3p7°. Place, then,

Spxr = 3pv2 + w,

in which #? is a quantity to be determined. The probability, /7,
of the system of errors, is

P = Ke #3x* = Ke—h*(30*+u?) = K¢~k

Here it is seen that the law of probability of z?is similar to
that of an error x; and, as in Art. 31, it may be shown that the
constant K’ is Z.x"!du. The mean of all the possible values
of 22 is, then,

+ oo
i_ _wre Ry = -1—,
Vr % 2k

Placing £ = t\/;, this becomes

I Ve

oe—fz:d[ = ZVS_'

Differentiating .his equation with reference to s, and regarding ¢ as constank

_ f'” o BsPdsdt = — \/;d_‘
° s

Dividing‘ this by —dfs, and making s = 1, it becomes

p
fm e — 824t = \{1: = one-half of the integral above.

o
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and this must be taken as the best attainable value of #2. But

it was shown that — is equal to ?p_xz Hence
2/ 7
2 pxz
prz = Epzﬁ + T’
trom which
Spxz  Spv
n - n—1 ?

and therefore the probable error » becomes

3pv?
n—1

(23) r = 0.6745
The probable error of the general mean is now, from (22),

S p2
(24) 7o = 0.6745 \/(”—_ij)‘g[‘,

If the observations be all of the weight unity, 3p becomes 7,
and the formulas (23) and (24) agree with (20) and (21). The
probable error of any observation whose weight is p is found
by dividing » by the square root of .

Laws of Propagation of Ervor.

68. Let 2, and 2z, be two independently measured quantities
whose probable errors are 7, and 7,. It is required to find the
probable error R of the sum z, 4 z,, or of the difference z, — z,.
Let Z = 2, & 7, and let the errors arising in the two cases be,

x', 2, 2", etc., for z,
x), x”, x,”, etc., for z,.
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Then the corresponding errors of Z are
X =x/2x/, X'=x"2x", X"=2x/"1x" etc.
Squaring each X, and adding the results, gives
3X? = 3x:2 + 23x,x, + 3x,2.

The products x.x, will be both positive and negative, and, on
the average, Sx,x, = 0: hence

EXz = Ex,’ + 2‘&‘3’;

and, if 7 be the number of errors,

EXz = E_x'f + Exz’.

n n n

Now, by Art. 65, it is known that 34 varies with »*: hence,
”

_ for the case in hand,

(25) CRr=r24 12

from which the probable error of Z is known.

In like manner, if Z be the sum or difference of several inde-
pendent quantities, namely, if

Z=23 2z 2z, %...% 2,
then the probable error of Z isvgiven by the relation,
(36) . R2=rtz+rzz+r3z+---+rmz-

This formula is very important in the discussion of linear
measurements.
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69. Secondly, consider Z to be a multiple of an observed
quantity s, so that Z = A4z, where 4 is a known number. Then
an error x in z produces an error 4x'in Z, and

X = Ax, X2 = A2x?, and 3X2 = A423x3,
Hence, as before, it is to be concluded that
(27) R = A2, or R = Ar.

By combining the principle of the last article with that just
deduced, it is seen, if

Z = Az * Bz, + Cz % etc,

and if the probable errors of z,, 2, 2, are 7, 7, 7,, that the prob-
able error of Z is given by

(28) R = A*r2 4+ B2r2 4+ Corg® + etc.,

which is a more general formula than (26).

It is interesting to note that formula (19) can be deduced
from (26), and also (22) from (28). Thus, if 2z, 2,... 2, are »
observed values of the same quantity, the probable error of
their sum is, by (26),

R=\r2+r24... 4+ r2 = ynr,

and by (27) the probable error of th of this sum is

\Vnr r.
7o = = —=
n Vﬂ

which is the probable error of the arithmetical mean, as in (19).
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70. Next, consider Z to be the product of two independently
observed quantities 2, and s,, whose probable errors are 7, and
#,, Let X be an error in Z corresponding to the errors x,
wd 7, in 2, and 2, : then

Z+ X = (5 + x) (5 + x2) = 2.2, + 205 + 2%, + 2.7,

Here Z = 2,2, and xx, vanishes in comparison with 2., and
2,%,; so that

X =325, + 2,%x,.
Squaring each error X, and taking the sums, gives
3X? = 33.2%,% + 32,2%,2 + 232,2:%:%5,

the last term of which vanishes, since the product zx, is as
likely to be positive as negative: hence

3X2 = z,.23x,2 + szx,’, .
and accordingly, as in Art. 68,
(29) R = 3272 4 2,272,

from which the probable error of Z may be computed.

71. Lastly, let Z be any function of the independently ob-
served quantities z,, 2,, 2, . . ., or Z =f{(z,, &, &, . . .), and let it
be required to find the probable error R of Z from the proba-
ble errors 7, 7, 7, ... of the observed quantities. Take x,
%, ¥, as any errors in z,, 2,, 2,, and X as the corresponding error
in Z: then '

Z+X=f[(a+=x), (2.+x), (54%;)...].

Now, if these errors are so small, that their second and higher
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powers may be neglected, the development of the function by
Taylor’s theorem gives

az az az
X—t;é—lx,+072;x,+@x3+...

Accordingly, by the same reasoning as in the previous articles,

(l’Z2 (l’Z’b’ a 2
(30) R—(z;)rx +(‘d_zz')rz +(;;z§>r3 +...,

which is a general formula appplicable to all functions.

The laws of propagation of error, given by formulas (25) to
(30), are very important in forming proper rules for taking
observations, as well as in discussing and comparing results.

The law R = V2 + 7,2, which gives the probable error of Z
when Z = z, 4+ 2, or when Z = 2z, — s,, has been likened by
Jordan to the celebrated geometrical theorem of Pythagoras.

Probable Ervors for Independent Observations.

72. In Arts. 46-50 are given methods of finding the most
probable values of independent quantities which are indirectly
observed. To determine the probable errors of any adjusted
value, z, let p, denote its weight, and 7, its probable error.
Then, if » be the probable error of an observation whose weight
is unity, the relation (18) gives

I I
Ps « I o ’; . -;,
from which
r
(31) r: — 4/;‘.

Hence, in order to find the probable errors of z;, 2, .. . z,, it is
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necessary to find » and their weights. And, in general, the
probable error of any observation is equal to » divided by
the square root of its weight.

73. To find the probable error of an observation whose
weight is unity, the following reasoning may be employed :

Suppose that the normal equations (13) have been solved, and
the most probable values z,, z, . . . 2, deduced. Let the corre-
sponding true values be represented by z, 4+ 8z, 5, + 82, ...
z, + 8z, in which 8z, 8z,... 8z, are small unknown correc-
tions. Now if, in the observation equations (12), the most
probable values be substituted, they will not reduce to zero,
but leave small residuals v,, v, ... v,; thus:

az + 62, + ...+ 4z, +m, = v, with weight p,,
az, + 6,2, + . + Z zq + m, = v,, with welght D2

a2, + &,,z, +. + l,,zq + My = Uy, w1th wexght D

while, if the corresponding true values be substituted, they will
give the true errors ; thus:

a,(z+8)+6(za+0)+...+m =2x,
@ (5, 4+82) +6,(2. 4+ 82) +...4m=x,

an(2, + 02,) + 0u(2. + 02,) + ... + my = x5
Subtracting each one of the former equations from the latter

gives the following residual equations :

U, + alszl + blazz + + 182 = xl’
v, + a8z, + 6,02, + ...+ lSz = x,,

Un + @nd2, + 8,02, + . + /, Sz, = X,.

Now, the principle of Least Squares (6) requires that 3pz* shall
be made a minimum to give the most probable values of 2,
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2, ... 2,; and, by the solution of the normal equations, its mini-
mum value is the sum 3p7*. From the residual equations a
relation connecting the two sums Zp2* and 3p2? may be found
by squaring both members of each of those equations, multi-
plying each by its corresponding weight, and then adding the
products. Without actually performing these operations, it is
evident, that if the squares and products of 3z, 8z, ... 8z, be
neglected as small in comparison with the ﬁrst powers, the
result will be of the form

Spre + kdz, + 82, + . . L + kP8, = 3pxae,

in which £, 4, ... 4, are co-efficients of the unknown correc-
tions, and dependent only upon the known co-efficients and
weights. If the number of unknown quantities is ¢, there will
be g of these terms. Placing

klszl = %3, kzazz =%2... k,b‘z, = uq’,
it becomes
Sprr 4 u2 + w2+ ...+ up = 3px.

Now, the probability of the occurrence of the error x,, whose
measure of precision is /%, and whose weight is ,, is, by (2)

and (7),
= ﬁp,& dx.n—Ye— 1‘2)14’ 1

in which /% is the measure of precision of an observation of
the weight 1. And hence, by exactly the same reasoning as
in Art. 67, it may be shown, that, when # is a large number,

”n
pr —;11—3

Further: if there be but one unknown quantity, there is but

. .1 .
one #*, whose value, as shown in Art. 67, is vy And, since
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this is true whichever unknown quantity be considered, the

I
value of each #* must be —; and, as there are ¢ of these

242
values, the above result becomes
2y L _ 2
2pv + 2k~ 2k
from which
— (/9
A= \/zEpvz

Therefore, from the constant relation (17) between % and #,
the probable error of an observation of the weight unity is

3
(32) 7 = 0.6745 \/n ]_w;.

74. The probable errors of the values 2, ,... 2, can now
be found from (31) as soon as their weights are known. These
will now be determined.

The observations M,, M, ... M, furnish the observation
equations (12) and the normal equations (13). The solution of
the latter gives the values of z, 2, ... z, in terms of M,
M,. ..M, and co-efficients independent of those quantities.
Suppose the general solution to give

2 =0'1M; +0'2M2 +°'3A[3 =+ . ~'+°'an

2, = TxM + Tzﬁfz + 1'3]‘[3, +.. -.+TnM;n

8 =CM, + LM, + GM, + . ..+ LM,
in which the co-efficients o, ... { depend only upon the con-
.stants @, .../ and the weights g, 2.... 2, Then,if R, is

the probable error of z,, and #»,, 7, . . . 7, are the probable errors
of M,, M, ... M, the formula (28) gives

R’ 2 = 0‘,’7’,3 + 0'3’7’33 + .« o0 + 0'”3”-’.
I
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Now, since the squares of probable errors are inversely pro-
portional to weights, this becomes

MR TR 4= []

from which the value of p,, is

1

= Fgo 1
7

In like manner it is easy to show that the weight of 2, is the

reciprocal of [17:—]’ and that the weight of z, is the reciprocal
[_CC :I |

meg, however, to the labor of finding the co-efficients
o, 7...G5, it is better to deduce these expressions under a
dlfferent form. Suppose the normal equations to be solved,

giving
: zl=a,[paM]+az[pr]+...+aq[le],

5, = Bl paM ] + Bl ppM] + ... + Bl oM ],
2, = Al paM ] + AfpoM] + ... +A[piM ],
in which a, 8. . . A are co-efficients independent of M,

M,... M. Then the respective weights of 2,, 2, .. . 2, will be

) S I
- ﬂ T To show thls, it will be sufficient to con51der
2

the quantlty 2,, and to prove that [;] = f,. By comparing

the above two expressions for 2, it is seen that

7, = ﬂlplal + ﬁz]’;bx + .- + ﬁq?ll"
7, = Bipa. + Ppb: + - -+ Papdn

T = ﬂanan + ﬂzbubn + s + ﬂ(!fnlm
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Squaring each of these equations, dividing each by its p, and
adding the results, gives

] = B.(Blraal + Bilpad) + ... + B[ pal))
+ BB pab] + Bu[pt6] + ... + Blpoi]) + ...
+ Be(BLpal] + BLpsl) + ...+ B 21]).

Now, if the normal equations (13) are solved by the method of
undetermined multipliers, the first is to be multiplied by a
number g,, the second by 8,, the ¢ by g,, and the products
added. Then, if upon these multipliers the following condi-
tions be imposed, '

Bilpaa] + B pad] + ...+ B,[pal] = o,
Bl pabl + Bl p68) + ...+ plpol] =1,

7

?

Bilgall + Blptl] + ...+ B[pll] = o,
all the terms except those involving 8, will reduce to zero, and
the value of @, will be the same as above expressed. Accord-

1 .
—: which was to be

ingly L%T] = g,, and the. weight of z, is z,

proved.

75. The following is hence a method of finding the weights
of the values of the unknown quantities. Preserve the abso-
lute terms of the normal equations in literal form during the
solution. Then the weight of any value, as z, is equal to
the reciprocal of the co-efficient of the absolute term which
belonged to the normal equation for z;.

For example, take the normal equations
3% — z2,— Z;= Au

—z.+3z,— Z3=Az)
—_— = 8,+223=A3.



§ 76. ERRORS OF INDEPENDENT OBSERVATIONS. 85

The solution of these by any method gives !

2, = ‘g’Ax + ’3/12 + éAy
Z, = %AI + ‘S'Az + %Ay
2y = 34, + %Az + As,

and hence the weight of z, is §, the weight of z, is §, and the
weight of 2z, is 1. It is evident, if it be only desired to find
the weight of z,, that 4, and 4, need not be retained in the
computation, but may be made zero. So, in finding the weight
of z,, only A, need be retained in the work.

76. As an illustration of the preceding principles, let there
be three observation equations of weight unity,

%, =0, 2% =0, % — % = +4 0.5
The normal equations are
2z, — 2, = + o0.51, — % -} 28, = — o.§1.

Writing 4, and A4, for the absolute terms the solution of these
equations gives

2 ¢ 1 2
35, =—4,+ -4, s, =—4,+—-4
b ¢ 3 + 3 9 2 3 + 3 29

from which the adjusted probable values are 2, = 4 0.17 and
z, = — 0.17, while the weight of each of these values is seen
to be 14. The sum of the squares of the residuals is 2'2* =
0.0867, and from (32) the probable error of an observation of
weight unity is + 0.20. This divided by V1.5 gives + 0.16 as
the probable error of the adjusted values of 2z, and z,. The
adjusted value of the third observation is z,—z, = +40.34, and
by (25) the probable error of this value is +0.23. It is seen
that the corrections to the three observed values are here
numerically equal.
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Probable Ervors for Conditioned Observations.

77. When conditioned observations are adjusted by the gen-
eral method of Art. 57, where the ¢ unknown quantities in
the n observation equations are reduced to ¢ —»’ independent
quantities by means of the n’ conditional equations, the proba-
ble error of an observation of the weight unity is evidently
given by the formula (32), if ¢ be replaced by ¢g—»/, or

3
(33) r = 0.6745 ﬂ—_—fvﬁ§
and the probable errors of observations or values whose weights

are p,, ps €tc., are, by (31),

r

r=— 7=
V2

L et

Ds

The weights of 2z, 2,...2, are to be found exactly as in
Art. 75.

For the case of direct observations on several quantities
adjusted by the method of Art. 58, the number of observation
equations is the same as that of the unknown quantities, or
n = ¢; and, if " be the number of conditional equations, the
probable error of an observation of the weight unity is

(34) r = 0.6745 \/ 2—5,32 ’

from which the probable error of any observation of given
weight can at once be deduced. In this case the residuals v
are merely the differences between the observed and the
adjusted values.
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78. Problems.

1. There are two series of observations of an angle, each taken to
hundredths of a second. The probable error of a single observation in
the first series is 0”.65, and in the second 1”.45. Compute the proba-
bilities of the error 0”.00 and of the error 2”.00 in the two cases.

2. It is required to determine the value of an angle with a proba-
ble error of 0”.25. Twenty measurements give a mean whose probable
error is 0”.38. How many additional measurements are necessary ?

3. Find the probable error of the mean of two observations which
differ by the amount a.

4. Let z,, 2z, and z; be independently observed quantities whose
probable errors are 7y, 7,,and 7;. If Z=2,24 2,2 4 ;2 find the proba-
ble error of Z.

5. Let » be the probable error in log @. What is the probable error in
the number a ?

6. Given the following observation equations : —

2; = 4.5, with weight 10,

2; = 1.6, with weight g,
2p = 2, = 2.7, with weight 3.
What are the most probable values of z, and 2z, with their probable
errors?

7. Given the observation equations (all of equal weight)

22, — 22+ z;= 3
It 33— =14,
4z, + z2 + 425, = 21,
—smt2t 3= s,

to find the best values of z,, z,, and z,, with their probable errors.
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CHAPTER V.

DIRECT OBSERVATIONS ON A SINGLE QUANTITY.

79. In the preceding pages the fundamental methods and
formulas for the adjustment and comparison of observations
have been deduced. In this and the three following chapters
the application of these methods to practical examples will be
presented. The most common case of observation is that of
direct measurements on a single quantity, and this will form
the subject of the present chapter.

Observations of Equal Weight.

80. When a quantity is measured several times with equal
care, so that there is no reason for preferring one observation
to another, the observations are of equal weight. From re-
mote antiquity the arithmetical mean of the measurements
has always been regarded as the best or most probable value
of the quantity sought ; and, as shown in Art. 44, this is con-
firmed by the fundamental principle of the Method of Least
Squares. -

Let z be the most probable value of the measured quantity,
7 the number of observations, and A/ any observation. Let 7
be the probable error of a single observation, and 7, the proba-
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ble error of the adjusted value 2. Let also v be any residual
obtained by subtracting M from z.

The most probable value of the quantity is the arithmetical
1nean, expressed, as in Art. 44, by formula (8),

M

g = —,

n

The probable error of a single observation, as shown in Art.
65, is, by formula (20),
o2

n—1I

r = 0.6745

Lastly, as shown in Art. 64, the probable error of the mean is,
by (19),

Vo = —-

”n

Formula (8) indicates the method of adjustment, while (20)
and (19) determine the precision of observation and of the
mean. After finding 2, each observation is subtracted from it,
giving 7 values of ». The squares of these are taken, and
their sum is 32?; then 7 is computed, and lastly, »,. If desired,
7, can be also found directly from formula (21),

7, = 0.6745 \/”(”

which is the same as (19).

81. As an example, consider the following twenty-four meas-
vrements of an angle of the primary triangulation of the
United-States Coast-Survey, made at the station Pocasset in
Massachusetts, and recorded in the Report for 1854 :
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Observations. 7. 72,
116°43'44" .45 5.19 26.94
50.55 —0.91 83
50.95 —1.31 1.72
48.90 0.74 -55
49.20 0.44 .19
438.85 0.79 .63
47.40 2.24 5.02
47-75 1.89 357
51.05 —1.41 2.00
47.85 1.79 3.20
50.60 —0.90 .92
48.45 1.19 .42
51.75 —2.11 4 45
49.00 0.64 41
52-35 —2.71 7-34
51.30 —1.66 2.75
51.05 —1.41 2.0
51.70 —2.06 4.24
49-05 0.59 -35
50.55 —0.91I 83
49.25 0.39 .15
46.75 2.89 8.35
49.25 0.39 .15
53-40 —3.76 14.14
z.= 116°43'49".64 32 = 92.15 '

The most probable value of the angle is found by adding the

observations, and dividing the sum by twenty-four.

1his is

116° 43’ 49”.64. Subtracting from this the first reading gives
9 g g£s
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5.19 for the first residual, which is placed in the column headed
2. The square of this is 26.94, which is placed in the column
headed 22. The sum of all these squares is 92.15. Then from
(20) the probable error of a single observation is

92.15 ”
= 0.6 2509 — 1”35 ;
r = 0.6745 \/ 23 17.35;
and the probable error of the mean is, from (19g),

= 575.

= 0".28:
V24

7o

hence the final value may be written 116° 43’ 49”.64 4 0”.28.

The precision of the mean of these twenty-four observations
is such that 0”.28 is to be regarded as the error to which it is
liable ; that is, it is an even wager that the mean differs from
the true value of the angle by less than 0”.28, and of course
also an even wager that it differs by more than 0”.28. The pre-
cision of a single observation is such that 1”.35 is the error to
which it is liable; that is, half the errors should be less, and
half greater, than 17.35 in a large number of ‘observations. It
will be noticed that twelve of the above residuals are less, and -
twelve greater, than 1”.35.

In Art. 27 it was shown that the algebraic sum of the residu-
als must always equal zero. This principle may be used to
furnish a check on the accuracy of the numerical work.

82. The tables in Chap. X will be found useful in abbreviat-
ing computations. By the help of Table VI the squares of
the residuals can be readily found. By Table III the compu-
tation of » and 7, can be much abridged; for instance, in the
case of the last article, » = 24, and

7 = 0.1406 {/g2.15 = 1".35,
7o = 0.0287 ¢ ,> 1, = 0 .28,

2



92 DIRECT OBSERVATIONS ON A SINGLE QUANTITY. V.

The table of four-figure logarithms will also prove useful in
extracting roots and performing multiplications.

When the tables are used, it will be found more convenient to
compute 7, from (21) than from (19). Formula (19), however, .
is very important in indicating that the probable error of the
mean decreases, and hence that its precision increases, with
the square root of the number of observations.

It should be borne in mind, that the method of the arithmeti-
cal mean only applies to equally good observations on a single
quantity, and that it cannot be used for the adjustment of ob-
servations on several related quantities. For instance, let an
angle be measured, and found to be 60% degrees, and again let
it be measured in two parts, one being found to be 40 degrees,
and the other 20 degrees. The proper adjusted value of the
angle is not, as might at first be supposed, the mean of 60% and
60, which is 601 degrees, but, as will be seen in the next chap-
ter, it is 60% degrees, — a result which requires the correction of
each observation by the same amount.

Shorter Formulas for Probable Errvor.

83. The method of computing probable errors by formula (20)
is that considered the best by all writers. Nevertheless, on
account of the labor of forming the squares of the residuals,
a simpler and less accurate formula is often employed, in which
only the residuals themselves are used. To deduce it, let » be
the number of observations, and Sv the sum of the residuals,
all taken with the positive sign, and S« the sum of all the errors

taken positively. Then 2% is the mean of the errors; and, by
4

the same reasoning as in Art. 67, this mean is

} 0
2z _ 2k [Cxe-rae = L

n Vo e
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Now since, by Art. 61, the product /47 is equal to the constant
0.4769, the value of 7 in terms of 3x is

3x
r = 0.8453 P

The sum of the errors 3x is in general different from the
sum of the residuals 3. Both in Art. 65 and Art. 67 it was

shown that
Sx2 S |

)
n n —1I

and it may hence be concluded, that, on the average, 2* is greater
than 22 in the ratio of 7 to » — 1, and that, on the average, x is

greater than v in the ratio of \ to y» — 1, or that

3x 3
V7 Vn —1
Accordingly the above value of » becomes
0.84533v
r= — - ’
(35) VO

which gives the probable error of a single observation. By
substituting this in (19), the value of 7, becomes ‘

(36) %o = 9'8—45320’
nn — 1

which is the probable error of the arithmetical mean.

84. Formulas (35) and (36) will be found much easier to use
than (20) and (21). In Table IV the co-efficients of 3v are
tabulated for values of » from 2 to 100, and by its use the
computations are much abridged.
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As an example, consider the following eight measurements
of a line made with a tape twenty meters long, graduated to
centimeters :

Observations. 2.
188.97 0.095
.88 .005
91 .035
.99 115
.83 .045
.80 .075
81 .065
81 .065
188.875 . 0.500

Here the arithmetical mean, or most probable value of the line,
is found to be 188.875 meters. The difference between this
and the single observations gives the residuals v, whose sum
3v = o0.5. Then, by the use of Table IV, for » =38,

7 = 0.1130 X 0.5 = 0.0505,
7o = 0.0399 X 0.5 = 0.0200.

By the more accurate formulas (20) and (21) these values are
r = 0.051 and 7, = 0.018 meters.

With a larger number of observations, a closer agreement
between the probable errors found by the two methods might
be expected.

85. The probable error » of a single observation should
always be computed, since it furnishes the means of comparing
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the accuracy of work done with different instruments, or by
different observers. Under similar conditions, » should be prac-
tically a constant for a given class of measurements; while for
different classes the different values of 7 indicate the relative
precision of the methods. For instance, suppose the same
observer to measure the same angle with two different transits,
and to find the probable error of a single observation with the
first to be 4”, and with the second 6”. The relative precision
of the instruments is, then, inversely as these probable errors,
oras 3 to 2; and the weights of a single observation in the two
cases are as 3* to 23 or as zi to 1; so that one measurement
made with the first instrument is worth 2} made with the
second. These results, in order to be satisfactory, must be
deduced from a large number of observations ; since the formu-
las for probable error suppose that enough observations are
made to exhibit the several residuals according to the law of
probability of error as given by equations (1) and (2).

Observations of Unequal Weight.

86. When the observations on a single quantity have differ-
ent weights, the most probable value of the quantity is to be
found by the use of the general arithmetical mean ; namely, by
multiplying each observation by its weight, and dividing the
sum of the products by the sum of the weights. Or if z be
that most probable value, #/ any observation, and p its weight,
then, as shown in Art. 45, formula (9) gives

_ SpM

= —0

3

The probable error of an observation of the weight unity, as
shown by formula (24), Art. 67, is

r = 0.6745 \/%,
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in which » denotes the number of observations, and v any
residual obtained by subtracting A/ from z. Lastly the proba-
ble error of z, as shown in Art. 66, is found by (22),

Formula (g) indicates the method of adjustment. Having
found the most probable value z, each observation is subtracted
from it, giving » residuals ». These are squared, and each 2?
multiplied by the corresponding weight p. The sum of these
products is Zp22. Then formula (24) gives the probable error
of an observation of the weight unity. Lastly, formula (22)
gives the probable error of 2. And in general the probable
error of an observation of given weight may be found by divid-
ing » by the square root of that weight.

87. As an example let the observations in the second column
of the following table be the results of the repetition of an angle
at different times, 18”.26 arising from five repetitions, 16”.30
from four, and so on, the weights of the observations being
taken the same as the number of repetitions. Then the general
mean z has the weight 21, the sum of the several weights or

2 M. 7. A, v
5 87° 51’ 18”.26 — o.10 0.010 0.05
4 16.30 + 1.86 3.460 13.84
I 21.06 — 2.90 8.410 8.41
4 17.95 + o.21 0.044 0.18
3 16.20 + 1.96 3.842 11.53
4 20.85 — 2.69 7.236 28.94
2p=21 |z2=87°51"18".16 Zpv* = 62.95
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the number of single measures. Subtracting each M from =2
gives the residuals in the column v; next from Table VI the
numbers in the column ¢* are found, and multiplying each of
these by the corresponding weight produces the quantities po*,
whose sum is 62.95. Then, since # is 6, formula (23) gives

7 = 0.6745 82.95 _ 2".39,

or, by the help of Table III,
7 = 0.3016 ¥62.95 = 2".39.

This is the probable error of an observation of the weight
unity. From (22) the probable error of the general mean is,

2.39 ”
— — O .§2
Va1 52

r, =

and the probable error of any given observation is found by
dividing 2”.39 by the square root of its weight.

88. The important relation (18) of Art. 63, that the weights
of observations are inversely as the squares of their probable
errors, furnishes, as already indicated in Art. 85, a ready means
of determining weights, if the probable errors can be obtained
with sufficient precision. When the weights are known, the
observations can be combined by (g), atd the most probable
value determined.

As an example, consider the two following series of meas-
urements of an angle; the first taken with a transit reading
to twenty seconds, and the second with a transit reading to
minutes. The angle was observed in each case ten times; the
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circle being used in eleven different positions to eliminate errors
of graduation, while each time the two verniers were rcad to
eliminate errors of eccentricity.

With First Transit. With Second Transit.
1
M. v. [ M. v. v
34° 55' 35" 2 4 || 34°56' 15" | 39 | 1521
35 2 4 55 30 6 . 36
20 13 169 54 30 66 4356
05 28 784 55 15 21 441
75 42 1764 56 oo 24 576
40 7 49 | 55 45 9 81
10 13 169 | 55 30 6 36
30 3 9 | 55 30 6 36
50 17 289 | 56 oo 24 576
30 3 9 | 55 45 9 81
34° 55" 33" 3250 | 34°55 36" 7740
By the method of Art. 80 it is easy to find
For first transit . . . . . . . . 34°55 33"+ 41
For second transit. . . . . . . 34 55 36 +£6 .3

Hence by (18) the weights of these means are in the ratio

2.1 orasizt 1
e 63 12 to § nearly.
The final adjusted value of the angle is, then,

12 4- 36 X 5
17

. X .
5= 34° 55" + 33 = 34° 55" 33”9,



§ 89. PROBLEMS. 99

and by (18) the probable error of that value is

12
o= 4.1y /"2 = 3"4.
s= 4/ = 5

As the pronable errors of a single observation in the two cases
are 13” and 20”, the corresponding weights are as 400 to 169;
so that one observation with the first instrument is worth about
2} with the second.

When observations upon the same quantity are known to be
of different precision, and there is no way of finding the proba-
ble errors, as in the example just discussed, weights should be
assigned corresponding to the confidence that is placed in
them, and then the general mean can be deduced. Of course,
the assignment of weights in such cases is a matter requiring
experience and judgment.

Problems.

89. The solutien ef the fellowing problems will serve to
exemplify the preceding principles.

1./ The latitude of station Bully Spring, on the United States northern
boundary, was found by sixty-four observations to be 49° o1’ 09”4t
+ 0”.051. What was the probable error of a single observation?

2. A line is measured five times, and the probable error of the mean
is 0.016 feet. How many additional measurements of the same pre-
cision are necessary in order that the probable error of the mean shall
be only o0.004 feet?

3. An angle is measured by a theodolite and by a transit with the
following results :

By theodolite. . . . . . « « . ¢ ¢ o . . 24°13° 36" £ 3"
Bytransit . . . . . . . B 24 1324 £13 8

Find *he most probable value of the angle and its probable error.
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» 4. A base-line is measured five times with a steel tape reading to
hundredths of a foot, and also five times with a chain reading to tenths
of a foot, with the following results : —

By the tape: 741.17 feet. By the chain: 741.2 feet.

741.09 feet. 741.4 feet.
741.22 feet. 741.0 feet.
741.12 feet. 741.3 feet.
741.10 feet. 741.1 feet.

Find the probable errors and weights for a single observation in the
two cases, and also the adjusted length of the line.
Ans. 741.146 £ o.o12.

5. Eight observations of a quantity give the results 769, 768, 767,
766, 765, 764, 763, and 762, whose relative weights are 1, 3, 5, 7, 8, 6,
4,and 2. What is the probable error of the general mean, and the
probable error of each observation? '

6. The length of a line is stated by one party as 683.4 + 0.3, and
by a second party as 684.9 £ 0.3. What is to be inferred from the two
results? '
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CHAPTER VI

FUNCTIONS OF OBSERVED QUANTITIES.

90. In this chapter will be discussed the determination of
the precision of quantities which are computed from other
measured quantities. For instance, the area of a field is a func-
tion of its sides and angles: when the most probable values
of these have been found by measurement, the most probable
value of the area is computed by the rules of geometry, and
the precision of that area will depend upon the precision of the
measured quantities. Linear measurements will first receive
attention ; for, although. they are direct observations when the
result alone is considered, yet really the length of a line is
a function of its several parts, namely the sum. So, too, an
observed value of an angle is a function (the difference) of two
readings. All the following reasoning is based upon the laws
of propagation of error deduced in Arts. 68-71.

Linear Measurements.

91. As a line is measured by the continued application of
a unit of measure, its probable error should increase with its
length. The law of this increase is given by formula (26). If
the parts are all equal, and each be taken as the unit of length,
the number of parts is the same as the length of the line. Let
» denote the probable error of a measurement a unit in length,
R the probable error of the total observed length, and / that
observed length. Then (26) reduces to
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that is, the probable error of a measurement of a line increases
with the square root of its length.

For example, the value of » for measurements with an
engineer’s tape on smooth ground is about 0.005: hence,
for a line 100 feet long, R is 0.05 feet, and for a line 1,000 feet
long, R is 0.16 feet.

Since, by (18), weights are inversely as the squares of probable
errors, and, by (37), the squares of probable errors are directly
as the lengths of lines, it follows that the weights of linear
measurements are inversely as their lengths, or

(]

I 1
(38) p..p,.p..z.z.l

Hence, if the weight of a measurement of a unit’s length be 1,

the weight of a measurement of the length / will be % This

principle is to be used in combining linear measurements for
which the value of 7 is the same.

92. The value of » may be found by measuring a line of the
length / many times, and computing R by the methods of
the last chapter. Then, by (37), the value of » is known. For
instance, take the eight measurements of a line about 189
meters long, which are discussed in Art. 84, for which the proba-
ble error of a single observation was found to be about 0.05

0.0
meters. Here R = 0.05, and then » = TS = 0.004 meters,
169

which is the probable error of a measurement of a line one
meter in length.

The most convenient way, however, of finding 7, is to make
duplicate measurements of several lines of different lengths.
Let the lengths of the lines be 7/, / .../, the differences
of the duplicate measurements be 4, 4, ... d,, and the num-
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ber of lines be ». These differences are the true errors of a
quantity whose true value is zero, and by Art. 67 the probable
error of an observed difference is

) Spd,
r' = 0.6745 \/ —
Now, from Art. 68, this probable error is also

r' = \/r2+r2= 7’\/;’

and, by equating these two values of #/, it is easy to find

S
(39) r = 0.4769 \/ Efl—’

which is the probable error of a measurement a unit long.
The weight p is to be taken as % in accordance with (38).
For example, the following duplicate measurements of the

sides of a mountain field, made with a Gunter’s chain, may be
considered.

No. of Side. By First Party. By Second Party.
I 17.21 chains. 17.18 chains.
2 348 ¢ 3.52 ¢
3 15.14 ¢ 15.19 “
4 1.27 ¢ .25«
5 20.06 ¢ 20.12 ¢
6 885 ¢ 8.92 ¢
7 o.jo ¢ o.jo0 ¢
8 6.75 ¢ 6.78 ¢




104 FUNCTIONS OF OBSERVED QUANTITIES. VL

Here for the first line

d, = 0.03, d; = 0.0009, p,d32= 1_1/,_2 = 0.0000523,
and similarly for each of the other lines. Then, by addition,
3pd* = 0.001855, and lastly, from (39), the probable error of a
measurement of a unit’s length (that is, of one chain) is 0.0073

chains, or 0.73 links.

93. The general formula (26) shows clearly how the pre-
cision of linear measurements depends upon the precision of
the parts. Evidently the fewer the parts, the smaller will be
R, and the greater the precision. Also the longer the chain,
the fewer will be the parts, and the greater the precision.

It must be carefully noted, however, that the preceding rea-
soning only applies to the accidental errors (Art. 7) of obser-
vation, and that all constant errors must be investigated, and
removed from the results, before the formulas (37) and (39) are
used. The effects of temperature on the length of the chain
or tape, for instance, may be removed by reading the ther-
mometer, and applying the proper computed corrections, and
the effects of side deviations may be removed by making the
chain sufficiently longer at thc start. In general, the constant
errors of linear measurements increase directly as the length
of the line; while only the accidental errors increase as the
square root of the length.

Angle Measurements.

94. The measurement of an angle is in general effected by
taking the difference of readings from a graduated limb; and
these readings, in their turn, may be the means of readings on
two or more verniers. By the use of the principle expressed
in formula (25) it is possible to determine the precision of
these readings from the probable errors of observed results.
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As an example, the following measurements of an angle made
with a transit having two verniers reading to minutes will be
discussed. The angle was chosen at about 35° in order that
eleven readings might approximately go around the circle, and
each reading is the mean of the two verniers.

On Vernier A. On Vernier B. Mean Reading. Angle.
5° 03 30" 5°03" 30" 5°03" 30" ot
39 59 30 39 60 0o 39 59 45 | 3+ 5915
74 55 00 74 55 30 74 55 15 35 39
109 49 30 109 50 00 109 49 45 >4 30
144 45 00 144 45 00 144 45 00 35 15
179 41 00 179 41 00 179 41 00 56 oo
214 37 0O 214 36 30 214 36 45 55 45
249 32 30 249 32 00 | 249 32 15 55 39
284 28 oo 284 27 30 284 27 45 55 30
319 24 00 319 23 30 | 319 23 45 56 oo
354 19 30 354 19 30 | 354 19 30 35 45

By the method of the last chapter it is easy to find that the
probable error of a single observation of an angle is nearly 20”.
Let 7, represent the probable error of a reading on one vernier,
and 7, that of the mean of the two verniers. Then by (25),
since each observation is the difference of two readings,

20 = \r;2 472, or r,=14".1.
Next for », the formula (19) gives

r
14.1 = -, or 7, = 20",
2

So it appears that the probable error of a single observation of
an angle taken in the above manner is the same as that of a
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single reading on one vernier. The reading of both verniers
not only eliminates the error of eccentricity, but adds much to
the precision of the results.

95. By the method of repetitions the precision of angle
measures can be further increased. The observations should
be conducted like those above described, except that the plate
is turned » times between the two readings. Let 7, be the
probable error of a mean reading, and 7, that of the observed

result, which is ~th of the difference of the two readings.
n

Then by (25) and (27), neglecting the error in pointing,
r, —

,3 = ZVZ.
By the method of the last article the mean of 7z readings
would give :
, .

ry = 'V_;‘- 2.
The precision of 7 repetitions is, hence, y» times greater than
the mean of » independent observations. However, the errors

in pointing, and other causes, render it doubtful if it is ever
aavantageous to make 7 exceed six or eight.

Precision of Areas.

g6. Let z, and z, be the measured sides of a rectangle, and
7, and 7, their probable errors. Then by (29) the probable
error of the computed area 2,2, is

R =Vz2r? + 5°rp

If » be the probable error of a measurement a unit in length,
the Jaw of (37) gives

r2=7%, and 7?2 = 7%,
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and hence the probable error in the area is

2.2,(3. + 2,).

For instance, let a lot 60 X 150 feet be laid out by an en-
gineer’s chain, for which » =o.01. Then, by the formula,
R = 13.75 square feet, which is the probable error of 9,000
square feet, the computed area.

97. By the application of formula (30) the probable error
of any computed area can be found from the known probable
errors of its sides and angles. As one of the simplest cases,
take a.triangle ABC, whose area is found from the angle 4 and
the two adjacent sides A5 and AC. The observed values are

AB = 252.52 *+ 0.06,
AC = 300.01 % 0.06,
A = 42°13 00" £ 30",
The area of this triangle is 245.4C.sin A = 25,453 square feet.
To compare with (30) let 48 =2, AC =z, and sin4 = z;;
also », = », = 0.06, and », = 0.00011 = tabular difference corre-
sponding to 30”. Then
42 _ 34C.sin 4,
dz,
dz

——= = 1A4B.sin A4,
az,

Z’_,Z = }A4B.4C.

23
By inserting all values in (30) it is easy to find & = 8.9 square
feet for the probable error of the area.

Remarks and Problems.

98. By the application of formulas (25) to (30) the precision
of many other functions of observed quantities than those
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above noticed may be investigated. A few of the simplest
«cases are included among the following problems.

1. The radius of a circle is observed as 1000 * 0.2. Find the
Pprobable errors of its circumference and area.

2. Find the maximum probable error of sin 4 4 cos 4 when the
probable error of A4 is 20”.

3. In order to determine the difference of level between two points
A and B, an instrument was set up halfway between them, and twenty
readings taken on rods held at each point, with the following results :

Rod at 4. Rod at B.
7 readings gave 7.229 feet. 3 readings gave 9.806 feet.
8 readings gave 7.230 feet. 12 readings gave 9.807 feet.
§ readings gave 7.231 feet. 5 readings gave 9,808 feet.

What is the most probable difference of level between the two points
and the probable error of the determination?
Ans. 2.5772 * o.00015.

4. A block of cast-iron weighing 100 pounds rests upon a horizontal
table, also of cast-iron. A horizontal force is applied to the block, and
it is observed that it begins to move when the force is 15.5 pounds. If
the probable error in the determination of this force is 0.5 pound, what
is the probable error of the co-efficient of ‘friction ?

5. A chronometer is rated at a certain date, and found to be 97 12%.3
fast, with a probable error of 05.3. Ten days afterwards it is again rated,
and found to be 9~ 215.4 fast, with the same probable error. What is
the probable error of the mean daily rate?

6. A line of levels is run in the following manner: the back and fore
sights are taken at distances of about 200 feet, so that there are thirteen
stations per mile, and at each sight the rod is read three times. If the
probable error of a single reading is o.001 feet, what is the probable
error of the difference of level of two points which are ten miles apart?
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CHAPTER VIL

INDEPENDENT OBSERVATIONS ON SEVERAL QUANTITIES.

99. Independent observations on several related quantities
are to be adjusted by the methods of Arts. 46-50, and thcir
precision determined by the methods of Arts. 72-76. The
following are the steps of the process:

ist, Let 2, 2, 5, etc, represent the quantities to be deter-
mined, and for each observation write an observation equation ;
or, if more convenient, let s, s, 2, etc., be corrections to
assumed approximate values of the unknown quantities.

2d, From the observation equations form the normal equa-
tions, which will be as many as there are unknown quantities.

3d, Solve the normal equations: the resulting values of the
unknown quantities will be their most probable values, that is,
the best values that can be deduced from the given observations.

4th, Find the residuals, and the probable error of an obser-
vation of the weight unity from formula (32).

sth, Find, if desired, the weights and probable errors of the
adjusted values of the unknown quantities.

When the number of unknown quantities exceeds four or
five, it will usually be found most convenient to use the algo-
rithm of formulas (10) and (11) for observations of equal weight,
and of (12) and (13) for those of unequal weight, and to solve
the normal equations by the method of Arts. 51-55. It will,
however, probably be best for a beginner to form the normal
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equations by the rules in Art. 48 and Art. 50, and to solve
them by his own algebraic method.

It will often be convenient to take the unknown quantities
as corrections, rather than as the real quantities themselves;
since thus the numbers entering the computation are much
smaller. The following practical examples will illustrate the
whole method of procedure.

Discussion of Level Lines.

100. The following observations are recorded in the Report of
the United States Geological and Geographical Survey for 1873,
and are here supposed to be of equal reliability or weight :

1. Z,above O, 573.08 feet, by Coast Survey and canal levels, via
New York and Albany.

2. Z,above Z,, 2.60 feet, by observations on surface of Lake Erie.

3. Z,above O, 575.27 feet, by Coast Survey and railroad levels, via
New York and Albany.

Z, above Z,, 167.33 feet, by railroad levels.

Z,above Z;, 3.80 feet, by railroad levels.

Z,above Z,, 170.28 feet, by railroad levels, via Alliance,

Z,above Z;, 425.00 feet, by railroad levels.

Zsabove O, 319.91 feet, by railroad and Coast Survey levels, via
Philadelphia.

9. Z;above O, 319.75 feet, by railroad levels, via Baltimore.

P N b

The letters here have the following meanings :

O is the mean surface of the Atlantic Ocean.
Z, is the mean surface of Lake Erie at Buffalo.
Z, is Cleveland city datum plane.

Z, is Depot track at Columbus, O.

Z, is Union Depot track at Pittsburg.

Z; is Depot track at Harrisburg.
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It is required to adjust these observations, and to find the
probable error of a single observation.

i1st, Represent the unknown heights of Z,, Z,, Z,, Z,, and Z;
by z,, 2., 2, 2, and 5. Then the observations give the obser-
vation equations

3, = 573.08,
L —3z2, = 2.600,
%, = 575-27,
2, — 2, = 107.33,
g, — 2z, = 3.80,

z, — 2, = 170.28,
3, — 35 = 425.00,
% = 31991,
%5 = 319-75-

2d, Form a normal equation for z, by multiplying each equa
tion in which z, occurs by its co-efficient in that equation, and
adding the products; and in the same way form a normal equa-
tion for each of the other unknown quantities. This gives

23, — 32, = 570.48,
-2 4+ 42, — 2z, — 3, = 240.26,
- %+ 2z, — 2, = 163.53,

~ %,— 2,4 33, — 2, = 599.08,

-~ 2, + 32, = 214.60.

3d, The solution of these normal equations furnishes the
following values:—

Z = 572.81, 2. = 575.14, 23 = 742.05,
2y = 745.43, %5 = 320.03,

~ which are the adjusted elevations of the five points above
the datum O.
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4th, Substitute these values in the observation equations,
and find the residuals and their squares; thus:

) No. 2. /e
1 0.27 0.073
2 .27 .073
3 13 017
4 42 .176
5 42 176
6 .0l .000
7 .40 .160
8 12 .014
9 .28 .078

S22 = 0.767

Here the number » of observations is 9, and the number ¢ of
unknown quantities is 5. The weights p are all unity. Then,
from (32), '

r= o.6745x/¥z = 0.295 feet,

which is the probable error of an observation of weight unity.

sth, To determine the probable errors of the above adjusted
values, it is necessary to find their weights by the method of
Art. 75. For instance, to find the weight of z, represent the
absolute term in the normal equation for 2z, by B, and put all
the other absolute terms equal to zero. Then the solution
gives z, = ;—:’B, and accordingly the weight of z, is %  Hence
the probable error of the value of z, is

0.295
r, = T—— =o0.211 feet;

V1.96
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so that the final elevation of Z, may be written
Z, = 575.14 £ o.21,

and it is an even wager that the actual error in the value §75.14
is less (or greater) than the amount o.21 feet.

1o1. For level lines of unequal precision the process of ad-
justment is the same, except, that, before forming the normal
equations, each observation equation should be multiplied by
the square root of its weight. To illustrate, regard the above
nine observations as of unequal weight. The least trustworthy
is No. 9; because it is not known that mean tide at Baltimore
is the same as the mean surface of the ocean, and its weight
may be taken as 1. Nos. 3 to 8 inclusive are ordinary railroad
levels, and may, with reference to No. g, be given a weight of 4.
Nos. 1 and 2, being the result of carefully conducted govern-
ment and canal levels extending over many years, are the most
reliable of all; and a weight of 25 may be assigned them. The
observation equations are the same as before; multiplying each
by the square root of its weight gives

53, = 2865.40,
52, — 52, = 13.00,
23, = 1150.54,
23, — 22, = 334.66,

2z, — 23, = 7.60,
2z, — 22, = 340.56,
2z, — 23, = 850.00,
2z, = 639.82,
% = 319-75-

The normal equations now are

502, — 252, = 14262.00,
- 2521 + 372, — 433 — 42, = 1015.64,
— 42+ 82— 4z, = 054.12,

— 4% — 423+ 122, — 435 = 2306.32,

— 42, + 923 = —100.01,
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and their solution gives

Z = 572.98, 2, =575.48, 2z = 742.36,
zZ, = 745.72, 2; = 320.25.
Inserting these in the observation equations, the remainders
or residuals v,, 7, etc., are found, and placed in the third column

below, their squares in the fourth, and the product of each
square by its corresponding weight in the fifth.

No. 2 2. 22, 27
I 25 0.10 0.010 0.250
2 25 1 .012 .300
3 4 .20 .040 .160
4 4 -44 194 776
5 4 43 .185 .720
6 4 .02 .000 .002
7 4 48 .210 .840
8 4 .34 116 464

.9 1 .50 .250 .250

3pvr = 3.762

Then by (32) the probable error of an observation of welght
unity, that is of No. 9, is

r= o.6745\/wE = 0.635 feet,
4

and the probable error of observations 1 and 2 is by (31)

and of those from 3 to 8 inclusive is 0635 _ 0.32 feet.
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In order, lastly, to find the probable errors of the above
adjusted values, their weights must be determined. For in-
stance, to find the weight of 2z, place the absolute term in
the fourth normal equation equal to A4, and those in the other

normal equations equal to zero. Then the solution gives
2, =324, and accordingly the weight of z, is 6.62. Hence
the probable error of the value of z, is

0.635
"= V662

= o.25 feet.

And in a similar way the probable error of the value of z, may
be found to be 0.15 feet.

102. For such simple cases as those just presented, the abso-
lute terms in the normal equations might be represented by
letters, A,, 4,, etc,, and a general solution easily effected, which
would give at once all the weights and unknown quantities.
For instance, if the normal equations of Art. 100 are thus
written

22, — 2, =A4,
-2, 4425, — z,— 2z, = A,,
— 2,4+ 23, — 3, = 4,,

- %, — z;+ 335, — 2z,= A4,

— 2,4+ 3%, =4,

the solution gives

512, = 324, 4+ 134, + 114, + 94, + 34,
512, = 134, + 264, 4+ 224, 4+ 184, 4+ 64,,
5123, = 114, + 224, 4+ 504, + 274, + 94,
172, = 34,4+ 64,4+ o9A;+ 124, + 44,
1725 = A 4+ 24, + 3A3 + 44, + 7‘45’

where all the weights are at once seen, and from which the
values of the unknown quantities can easily be found.
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As indicated in Art. 99, the numerical operations may be
somewhat simplified by taking the unknown quantities as cor-
rections to be applied to assumed elevations of Z,, Z, etc.
Thus it is seen from the observations that 573 and 575 feet are
approximate elevations for Z, and Z,. By writing, then, |

elevation of Z, = 5§73 + 3,,
elevation of Z, = 575 + 2,
elevation of Z;, = 742 + z,,
elevation of Z, = 745 + 2,,
elevation of Z; = 320 + z,,

the following simpler observation equations are obtained from
the given data:

3, = 0.08,
2, — 3, = 0.60,
2z, =  0.27,
2, —2, = 0.33,
g, — 2, = 0.80,
g, — 2, = 0.28,
Z,— 2, =  0.00,
3, = — 0.09,
2, = — 0.25.

From these the normal equations are formed, whose first mem-
bers are the same as written above, and whose second mem-
bers have the values 4, = —0.52, A,=40.26, A, = — 0.4},
A,=+ 108, A, = —o0.34. The solution of the normal equa-
tions gives

2, = —0.19, 2, =0.14, 3%, = 0.05, 2, = 0.43, %= 0.03;
and the final elevations are

Z, = 573.00 — 0.19 = 572.81,
Z, = 575.00 + 0.14 = 575.14, ectc,

which are the same as found in Art. 100.
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Angles at a Station.

103. When two angles and also their sum are observed at a
station, the observed sum usually differs from the sum of the
two measured single angles. Let the observation of the first
angle give the result J/,, of the second 47, and that of their
sum M, Then M, 4 M, is greater or less than M, by a cer
tain discrepancy 4. It is required to adjust the observations,
regarding the weights as equal, and to find the probable errors
of the adjusted values.

1st, Let 2, and 2z, be the most probable corrections to the
observed values M, and M,, so that M, 4 2, and M, 4 z, are
the most probable values of the first and second angles. The
observation equations then are
M +2z = Mr
M Az =M,
M +32)+ (M +2)=M,
which reduce to
=0,
2, =0,

g4z =M — (M + M) =4
2d, From these, the normal equations are

23, + 3, =d,
2, + 22, =d.

3d, The solution of the normal equations gives
2, = §d, and z, = {4,

for the most probable values of the corrections: hence the
adjusted values are '

M + id,

M. + id,

M, — id.
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4th, The residuals are evidently the three corrections, the
sum of whose squares is ;a” ; then, from (32),

7 = 0.6745V44* = 0.3894,

which is the probable error of a single observed value,

5th, By the method of Art. 75 it is easy to find that the
weights of the adjusted values of 2, and 2, are 1.5: hence
their probable errors are

and evidently the probable error of the adjusted value of
2, + z, is also 0.3184.

104. When several angles are observed at a station, several
sums and differences of simple angles are often taken. For
example, the following are the angles observed at the Station
Hillsdale, on the United States Lake Survey; each being the
mean of nearly the same number of readings, and hence re-
garded as of the same weight. (See Report of United States
Lake Survey, p. 449.)

No. Between Stations. Observation.
I Bunday and Wheatland 44° 25 40".613 '
2 Bunday and Pittsford 80 47 32.819
3 Wheatland and Pittsford 36 21 51.996
4 Pittsford and Reading 91 34 24.758
5 Pittsford and Bunday 279 12 27.619
6 Reading and Quincy 1 62 37 43.405%
7 Quincy and Bunday 125 oo 18.808
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The annexed figure shows the relative positions of the sta-
tions and of the seven observed angles. It is required to
adjust the observed results, and to find their probable errors.

Bunda

Reading
\Piﬂsford

ist, Let Z,, Z,, Z,, and Zs be the required most probable
values of four of the simple angles as indicated in Fig. 7;
then the observation equations are

Z, = 44° 25, 40”°613:
Z,+2Z, = 8 47 323819,
Z, = 36 21 51.996,
Z, = 91 34 24.758,

360° — (Z, + Z;) = 279 12 27.619,

Zy = 62 37 43.405,
360° —(Z,+Z,+ Z,+ Z) =125 oo 18.808.

Assume the measured values of 2, Z,, Z,, and Z; as approxi-
mate, and let z, z,, 2,, and 2z be the most probable corrections,
thus

Z, = 44° 25 40".613 + 2,

Z, =36 21 51.996 + 3z,

Zy=91 34 24.758 + 3,

Zs =62 37 43.405 + %
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Then, by inserting these values in the observation equations,
the following simpler observation equations are found :

2, = o,

% + 2; = + 0.210,
Z; = o,
z, = o,

2, + 83= — 0.228,
26 = o,

%+ 2, + 2, + 2 = + 0.420,

in which the right-hand members denote seconds only.

2d, The normal equations are now easily written, either by
the rule of Art. 48, or by the help of the algorithm of formulas
(10) and (11). They are '

4%, + 3%, + 3, + 2% = + 0.402,
3%+ 42, + 2, + 32 = 4 0.402,
2, + 2, + 22, + 2 = 4+ 0.420,
z, 4+ 2z, + 2,4+ 22, = 4 0.420.

3d, The solution of these equations gives
2z, = 2, = + 0".022, 2, = 2, = 0".126.

The addition of these corrections to the approximate values
gives the most probable values of the angles Nos. 1, 3, 4, and 6;
and from these, by simple addition, the most probable values of
Nos. 2, 5, and 7, are obtained. Thus, the adjusted values are

No. 1 = 44° 25’ 40".635 = Z,

No.3= 36 21 352018 =2,

No. 4= 91 34 24.884 =2,

No.6= 62 37 43.531 = Z,

No.2= 80 47 32653=2+ 2,

No.5=1279 12 27.347 = 360° — (Z, + %)),

No. 7=125 00 18.932 = 360° — (Z, + Z, + Z, + %).
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4th, The differences between the observed and the adjusted
values are the residuals, which, with their squares, are thus
arranged :

No. Observed. Adjusted. v. 77,

1 407,613 40".635 + 0022 | 0.0005
32.819 32.653 — 0.166 .0276
51.996 52.018 + 0.022 .0005
24.758 24.884 + 0.126 .0159
27.619 27.347 — 0.272 0740
43.405 43.531 + 0.126 .0159
18.808 18.932 + o0.124 .0154

5 AU AW N

The sum 327 is here 0.1498; and hence, by formula (32), the
probable error of a single observation is

r= 0.6745\/0'1498 = o".151.
3

5th, By writing 4 for the absolute term in the first normal
equation, and zero for the absolute terms in the other nor-
mal equations, the solution gives the value of z, as :—‘;A; and
hence the weight of z,is 1.7. In a similar way the weight of

z, is found to be 1.4. The probable errors of the adjusted
values of 2z, and z, are now

0.151
> = 0".116;

Vig

and those of the adjusted values of z, and 2 are

25T _ o128

Vig
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In order to find the probable errors of angles Nos. 2, 5, and 7,
it would be necessary to represent them by single letters, and
to form and solve another set of normal equations.

105. As an example of angles with unequal weights, the fol
lowing observations at North Base, Keweenaw Point, on the
United States Lake Survey, will next be considered :

No. Between Stations. Observed Angle. Weight.
1 | Crebassa and Middle 55° 57" 587.68 3
2 Middle and Quaquaming 48 49 13.64 19
3 Crebassa and Quaquaming 104 47 12.66 17
4 Quaquaming and South Base 54 38 15.53 13
5 Middle and South Base 103 27 28.99 6

Let Z,, Z, and Z, represent the angles Nos. 1, 2, and 4;
then the observation equations are

Z, = 55° 57 547.68, with weight 3,
Z, 48 49 13.64, with weight 19,
Z,+ Z, =104 47 12.66, with weight 17,
Z, 54 38 15.53, with weight 13,
Z,+ Z,= 103 27 2899, with weight 6.

Let 2z, 2, and 2z, be corrections to the measured values ot
Z, Z, and Z,; then the simpler observation equations are

z,= O, with weight 3,
z, = with weight 19,
5 + 2, with weight 17,
Z, = with weight 13,
%, + 2z, = — 0.18, with weight 6.

|
o

I
+
Lo
w
®
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From these, the normal equatioris are formed, either by the
rule of Art. 50, or by the help of the algorithm of formulas
(12) and (13). They are

20z, + 172, = + 5.78,
172, + 423, + 62z, = + 4.70,
62, + 192, = — 1.08.
The solution of these equations gives

2, = + 0".285, z, = + 0”.005, z, = — 0 .0§9.

Hence the following are the adjusted angles

No. 1 = 55° 57" 58".965,
No. 2 = 48 49 13.64s,
No. 3 =104 47 12.610,
No.4 = 54 38 15.471,
No. 5 = 103 27 29.116.

To find the probable errors, the residuals are next obtained.

v 2| pr

Q

No. T Observed. | Adjusted.

1| 587.68 58”.965 + 0.285 | o0.0812 3| 0.244
2 13.64 13.645 + 0.005 .0000 19 .000
3 12.66 12.610 — 0.050 .0025 17 .042
4 15.53 15.471 — 0.059 -0035 I3 -045
5 28.99 29.116 + 0.126 .0159 6 .095

The sum Zp7? is here 0.426; then, by (32),

0.426
r= 0-67451/9“:3— = o”.31,
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which is the probable error of an observation of the weight
unity. The probable error of the observed angle, No. 2, is,
then,

0.3I .
r,=——=0".07.

Vig

The probable error of the final value of No. 2 must be less
than 0”.07, since its weight is increased by the adjustment.

Empirical Constants.

106. One of the most important applications of the Method
of Least Squares is the deduction, from observations, of the
values of physical constants or co-efficients. In all such cases
a theoretical formula or law is first established, which contains
the co-efficients in a literal form; and this law serves to state
as many observation equations as there are observations. The
method of procedure is then exactly the same as that outlined
in the first article of this chapter. The precision of the values
deduced for the constants depends, of course, upon the precision
and number of the observations which enter the discussion.

As an example, take the determination of the ellipticity
of the earth by means of experiments on the length of the
seconds’ pendulum. In 1743 Clairaut deduced the following
remarkable law :

s =S8+ S(§%& — f)sin?,

in which S is the length of the seconds’ pendulum at the
equator, and s its length at any latitude / while £ is the ratio
of the centrifugal force at the equator to gravity, and f is the
fraction expressing the ellipticity of the earth. This may be
written

s =S 4 7sin/.



§ 106. EMPIRICAL CONSTANTS

Now, by measuring s at two different latitudes, two equations
would result, from which values of S and 7 could be found; .
and, by measuring s at many different latitudes, many equa-
tions would result, from which the most probable values of S
and 7 may be found. The following, for instance, are thisteen

observations, taken by Sabine in the years 1822-24:

) Length of Seconds’
Place. Latitude. Pendulum.

English Inches.
Spitzbergen +79° 49" 58" 39.21469
Greenland 74 32 19 39.20335
Hammerfest 70 40 5 39.19519
Drontheim 63 25 54 39.17456
London 51 31 8 39.13929
New York 40 42 43 39.10168
Jamaica 17 56 7 39.03510
Trinidad 10 38 56 39.01884
Sierra Leone 8 29 28 39.01997
St. Thomas 0 24 41 39.02074
Maranham —2 31 43 39.01214
Ascension 7 55 48 39.02410
Bahia 12 59 21 39.02425§

For each of these an observation equation is now to be

- written. Thus, for the first,

§ = 39.21469.

/= 179°49" 58"
sin/ = 0.9842965.
sin?/ = 0.9688402.

39.21469 = S + 0.96884027.




126 INDEPENDENT OBSERVATIONS. VII

And in like manner the following thirteen observation equations

are stated :
39.21469 = S 4+ 0.96884027.
39.20335 = .S 4+ 0.92893047.
39.19519 = S + 0.89041207.
39-17456 = S + 0.7999544 7.
39.13929 = S 4+ 0.61279667.
39.10168 = S + 0.42543857.
39.03510 = S + 0.09482867.
39.01884 = S + 0.03414737.
39.01997 = S 4+ 0.02180237.
39.02074 = .S 4 0.00005157.
39.01214 = .5 4+ 0.00194647.
39.02410 = .S 4 0.01903387.
39.02425 = S 4 0.05052017.

The normal equations formed from these are

508.18390 = 13.000000S + 4.8487027,
189.94447 = 4.848702S5 + 3.7043947,

whose solution gives

S = 39.01568 inches,
7 = o.20213 inches,

as the most probable values that can be deduced from the thir-
teen observations. Hence the length of the seconds’ pendulum
at any latitude, /, may be written

s = 39.01568 + 0.20213 sin?/.

The values thus deduced for S and 7 are empirical constants.
To find from them the ellipticity /£, it is easily seen that

T
f=%-=
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and, as the value of £ is known to be &, that of fis

I
Jf = 0.0086505 — 0.0051807 = T
If desired, the precision of the constants S and 7 may be
investigated by determining their weights and probable errors,
and from these the precision of the value of / may also be
inferred.

107. When two quantities x and y are connected by the
relation y = Sz 7 the method of the last article can, in
strictness, only be applied to find the most probable values of
S and 7 when the observed values of x are free from error. If
x is liable to error as well as y, the following method may be
used * First let the value of S be found, supposing that x is
without error, and let this be called S,. Secondly, let the
value of S be found regarding y as without error, and let this
be called S,. Let each observed value of x have the weight p,
and each observed value of y have the weight unity. Then
the most probable value of S is found by solving the quadratic
equation

s*-(s,——g) S—p=o,

1

and, if # be the number of pairs of observations, the formula
T = :T(Ey — S.Ex)

gives the most probable value of 7. The following numerical
example will illustrate the method.

In order to determine the most probable equation of a cer-

* Report U. S. Coast and Geodetic Survey, 1890, p. 687.
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tain straight line the abscissas and ordinates of four of its
points were measured with equal precision, giving

y = o.5, 0.8, 1.0, and 1.2,
X = 0.4, 0.6, 0.8, and 0.9.

First, supposing that the values of x are without error, the
four observation equations are written: —

0.5 =0.45+ 7,
0.8 =0.65+ 7,
1.0=10.85+ 7,
1.2 =0.95 + 7.

And then, forming and solving the normal equations, there is
found S, = 1.339. Secondly, supposing that the values of y
are without error, the equation of the line must be written in

the form

_y_7_

and the observation equations are
0.4 =05U0+4 V,
06 =08U+ 7V,
0.8 = 10U+ V,
' 09=1.2U+ V;
from which the normal equations are derived, and by their
solution U = 0.7385, or S, = 1.354.
These values of S, and S, give the quadratic equation
S? — 0.6075 — 1 =0, whence S = 1.348, and then 7 is found
to be — 0.035, and accordingly

¥ = 1.348x — 0.035
is the most probable equation of the line as derived from the
four pairs of observations.

107’. The determination of the elements of the orbit of a
comet or planet is another instance of the deduction of em-
pirical constants. Here the observed quantities are the right
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ascension and declination of the body at various points in its
orbit. Through any three of these points a curve may be
passed, and an orbit computed by the formulas of theoretical
astronomy. The problem, however, is to determin€ the most
probable orbit by the use of all the observations.

The first step, after collecting and reducing the observations,
is to select a few favorably situated, and from them to compute
the approximate elements of an elliptical or parabolic orbit, as the
case may require. With these approximate elements, the places
of the body are computed for as many dates as there are obser-
vations, and the differences between the computed and observed
places found. A theoretic differential formula is next estab-
lished for a difference in right ascension, and another for a
difference in declination, in terms of unknown corrections to
the assumed elements, and of co-efficients that may be com-
puted from the observations. Each observation thus furnishes
a difference, and each difference an observation equation, whose
unknown quantities are the corrections to the approximate ele-
ments of the orbit. From the observation equations the normal
equations are derived and solved, and the most probable set of
corrections found. Lastly, the application of these corrections
to the approximate elements furnishes the most probable ele
ments that can be deduced from the given observations.

The process thus briefly described is very lengthy in its
actual application. For instance, in Hall's determination of
the elements of the orbit of the outer satellite of Mars * there
are forty-nine observation equations, each containing seven
unknown corrections, and forty-nine others, each containing
six. From these the seven normal equations were formed, and
by their solution the most probable values found for the correc-
tions. The precision of the elements of the orbit was also
deduced by computing the probable errors of the corrections.

* Hall’s Observations and Orbits of the Satellites of Mars; Washington, 1878.
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Empirical Formulas.

108. The case of the last article is that of a rational formula
with empirical constants. An empirical formula, on the other
hand, is one assumed to represent certain observations, and
which is not known to express the law governing them. The
constants in such formulas are also best determined by the
application of the Method of Least Squares.

The first step in the establishment of an empirical formula
is to plot the given observations, taking one observed quantity
as abscissas, and the other as ordinates. Let y and x be the
two quantities between which an empirical formula is to be
established. The plot shows to the eye how y varies with .
If y is a continually increasing function of x, or if the curve
resembles a parabola, the general equation

(40) y=S8+ 7x + Ux? + Va? 4 etc,,

may be written to represent the relation between y and x. This
equation applies to a large class of physical phenomena, such
as relations between space and velocity, volume and tempera-
ture, stress and strain, and other similar related quantities.
The letters S, 7, U, etc., represent constants whose values are
to be determined from the observations.

Another large class of phenomena may be represented by
the general equation

ﬁx + 77 cos 3600.9::
m m

(41) y=S+4 Tsin
+ Usin 360° 2x + U’ cos 360° 2x + etc.,
m m

in which, as x increases, y passes through repeating cycles. As
such may be mentioned the variation of temperature through-
out the year, the changes of the barometer, the ebb and flow
of the tides, the distribution of heat on the surface of the earth
depending on latitude, and, in fact, all phenomena which repeat



§ 100. EMPIRICAL FORMULAS. 131

themselves like the oscillations of a pendulum. The letters
S, 7, U, etc., represent constants which are to be found from the
observations; while » is the number of equal parts into which
the whole cycle is divided, and must be taken in terms of the
same unit as . If the several cycles are similar and regular, only
the first three terms are required to represent the variation.

Other general empirical formulas than (40) and (41) are also
employed in discussing physical phenomena. Exactly what
formula will apply to a given set of observations, so as to agree
well with them, and at the same time be of use in other similar
cases, can only be determined by trial. The investigator must,
from his knowledge of physical laws, assume such an expression
as seems most plausible, and then deduce the most probable
values of the constants. The comparison of the observed and
calculated results furnishes the residuals, from which, if desired,
the probable errors may be deduced. When several empirical
formulas have been determined for the same observations, that
one is the best which furnishes the smallest value for the sum
of the squares of the residuals.

109. Consider as a first practical example the deduction of the
equation of the vertical velocity curve for the observations given
on p. 244 of the second edition of the ‘“Report on the Physics
and Hydraulics of the Mississippi River,” by Humphreys and
Abbot. The grand means of the measurements give the following
results for the velocities at different depths below the surface :

At surface, 3.1950 feet per second.
At o.1 depth, 3.2299 feet per second.
At o.z depth, 3.2532 feet per second.
At 0.3 depth, 3.2611 feet per second.
At 0.4 depth, 3.2516 feet per second.
At o.5 depth, 3.2282 feet per second.
At 0.6 depth, 3.1807 feet per second.
At 0.7 depth, 3.1266 feet per second.
At 0.8 depth, 3.0594 feet per second.
At 0.9 depth, 2.9759 feet per second.
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These observations may be plotted by dividing a vertical line
representing the depth of the river into ten equal parts, through
Fig.8. the points of division drawing
N horizontal lines, and laying

2.9 3.0 3.1 3.2 3.3

°oN off upon these the observed
01 \:& velocities. On the annexed

02 figure the points enclosed
within small circles represent
the observations. Each hori-

038

04

05 /! zontal division of the diagram
06 » is o.1 feet per second, and
o s each vertical division is one-
o8 - tenth of the depth.
_ Let y be the velocity at
0.9 o] . -
P any point whose depth below

A

the surface is x, the total
depth of the river being unity, and assume that three terms of
formula (40) will give the relation between y and x, or that

y=8+4 Tx + Ux.

This is equivalent to assuming that the curve of vertical veloci-
ties is a parabola, with its axis horizontal.

The observations furnish the values of y for ten values of x;
and thus, for determining S, 7, and U, there are the following

ten observation equations : — ¢
en I{]

3.1950 = S + 0.07" + o.00U.
3.2299 = S + 0.17 4+ o.01U.
3.2532 = S+ 0.27 + o.04 .
3.2611 = S+ 0.37 + 0.09T.
3.2516 = S 4+ 047 + 0.16U.
3.2282 = S+ 0.57 + o.25U.
3.1807 = S + 0.67 + 0.36T.
3.1266 = S 4+ 0.77 + 0.490.
3.0594 — S + 0.87 4 0.64U.
2.9759 = S+ 0.97 + 0.81U.
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From these the following three normal equationé are found :

31.761600 = 10.005 + 4.5007" + 2.85000.
14.089570 = 4.50S + 2.8507" + 2.02500.
8.828813 = 2.855 + 2.0257 + 1.53330.

And their solution gives
S= + 319513, 7= + 044253, U= —o0.7653.

Accordingly, the empirical formula of vertical velocities is

Y = 3.19513 + 0.44253% — 0.7653%,

where y is the velocity in feet per second at any decimal depth
2. The curve corresponding to this formula is drawn on the
above diagram.

The following is a comparison of the observed velocities
with those computed from this empirical formula:

x. Observed y. Computed y. 2. a8
0.0 3-1950 3.1951 — 0.0001 | ©0.000000
o.1 3.2299 3.2317 — 0.0018 3—
0.2 3.2532 3.2530 -+ 0.0002 o
0.3 3.2611 3-2590 <+ o.0021 4
0.4 3.2516 3.2497 -+ 0.0019 4
0.5 3.2282 3.2251 + 0.0031 10
0.6 3.1807 3.1851 — 0.0044 19
0.7 3.1266 3.1299 — 0.0033 II
0.8 3.0594 3.0594 0.0000 o
0.9 2.9759 2.9735 + 0.0024 6
1.0 2.8724
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The sum of the squares of the residuals is here 0.000057, and
hence

= 06745/ 2222957 — o001

is the probable value of a residual, or the probable difference
between an observed and computed velocity. The agreement
between the parabola and the observed points is very close.*

110. As a second example, consider the deduction of a
formula to express the magnetic declination at Hartford,
Conn., for which place the following observations are given
on p. 225 of the United States Coast and Geodetic Survey
Report for 1882:

Date. Declination.
1786 5° 25 W.
1810 4 46
1824 5 45
1828-29 6 03
27 July, 1859 717
16 Aug., 1867 7 49.3
25 July, 1879 8 34.0

From numerous records at various places, it is known that the
declination oscillates slowly to and fro, passing through a cycle
in a period varying, at different places, from two hundred and
fifty to four hundred years. The variation in New England

# See further, concerning this curve, in Journal Franklin Institute, 1877, vol. civ,
p. 233; also Van Nostrand’s Magazine, 1877, vol. xvii, p. 443, and 1878, vol. xviii,
p- 1. The reasoning of Hagen concerning the probable errors on p. 447 of the
second article is thought to be incorrect,
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may be roughly represented by the annexed figure, where the
ordinates to the curve show the relative values of the declina-
tion at the respective years. Formula (41) is hence applicable
to the discussion of the above observations.

Fig.9.

i
|

1600 1700 1800 1500

Let y be the magnetic declination at the time x, and assume
the empirical relation

y=S+ Tsinﬂ,x + T’c053—6£x.

m m

Here there are four constants, S, 7, 77, and », to be found by
the Method of Least Squares from the given observations.
The only practical way of procedure is to assume a plausible value
of m, and then to state the observation equations and normal
equations, from which values of S, 7, and 7’ may be deduced.
Again : assume another value of #, and repeat the computation,
thus finding other values for S, 7, and 7’. If necessary, the
computation is to be repeated for several values of #, and for
each formula thus deduced the residuals, or differences between
the observed and computed values of y, are to be found. Then
that value of »2 and that formula is the best which makes the
sum of the squares of the residuals a minimum.

360°

Take for » the value 288 years; then
m

is 1.25, and the

formula is
S + T'sint.2s5x + 7'cos1.25x6 = y.

Let x be the number of years counted from the epoch, Jan. I,
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1850, and let all angles be expressed in degrees and decimals;
then, for the first observation,

x = 1786.5 — 1850.0 = —63.5 years,
1.25x = — 79.4 degrees,
sin 1.254 = —0.983,
cos 1.25x = +0.184,
¥y = 5.42 degrees,

and hence the first observation equation is
S — 0.9837 + 0.1847" = 5.42.

In like manner the following tabulation is made

No. Date. x. 1.25x. Sin1.25x. | Cos1.25%. P2

-

1786.5 | —63.5 | —79°4 | —0.983 | +06.184 |+5°.42
1810.5 | —39.5 | —49.4 | —0.759 | +0.651 | +4.77
1824.5 | —25.5 | —31.9 | —0.528 | 40.849 | +5.75
1829.0 | —21.0 | —26.25| —0.442 | 4+0.897 | +6.05
1859.6 | + 9.6 | +12.0 | 4+0.208 | +0.978 | 47.29
187.6 | +17.6 | +22.0 | 4+0.375 | +0.927 | +7.82
1879.6 | +29.6 | +37.0 | 4+0.602 | 40.799 | +8.57

g O bW N

g

From the last three columns the seven observation equations
are written; and from these the three normal equations are
easily formed, either by the rule of Art. 48, or by the help of
the algorithm of formulas (10) and (11). They are

+7.00S — 1.537 + 5.287" — 45.67 = o,
—1.535S + 2567 — o517+ 5.03 = o,
+5.285 — 0.517 + 4.537" — 35.64 = o,

and their solution gives

S = 4806, 7T = 42°60, 7'= —1°29.
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Hence the empirical formula is
y = 8%06 + 2°.60sin 1.258 — 1°.29 COs 1.25%.
This may also be written
y = +8%06 4+ 2°.90sin (1°.25x — 26°.4),

which is a more convenient form for discussion.*

The following is a comparison of the observed declinations
with those computed from this formula:

Date. x. Observed y. | Computed y. .
1786.5 —63.5 +5°42 5°.28 +o0.14
1810.5 —39.5 4.77 5.25 —0.48
1824.5 —25.5 5.75 5.00 +o0.15
1829.0 —21.0 6.05 5.76 +o0.29
1859.6 + 9.6 7.29 7-34 —0.05
1867.6 +17.6 7.82 7.84 —0.02
1879.6 +29.6 8.57 8.59 —0.02

The sum of the squares of these residuals is 0.36, and hence,
by (32),

0.36
r = 0.674 \/—:0.1 ,
745 T —3 9

which gives the probable error of a single computed value if
the observations be regarded as exact, or the probable error
of an observation if the law expressed in the empirical formula
be regarded as exact.

* See the numerous valuable papers by Schott, in the Reports of the United
States Coast and Geodetic Survey, the latest of which is in the Report for 1882,
pp- 211-276. The above formula for the declination is the one there adopted, as
giving the best value of the period m.
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111. Lastly, consider the deduction of a formula to represent
certain experiments, made by Darcy and Bazin, on the flow of
water in a rectangular wooden trough lined with cement. The
width of the trough was 1.812 meters, and its slope 0.0049.
Water was allowed to run through it with varying depths; and
for each depth the mean velocity was measured, and the hydrau-
lic radius of the water-section computed by dividing the wetted
perimeter into the area of the section. The following are
the results, the hydraulic radius % being given in meters, and the
mean velocity » in meters per second :

No. k. m.
I 0.1144 1.731
2 1312 1.853
3 1445 1.984
4 .1579 2.081
5 .1701 2,171
6 1813 2.258
7 .1925 2.326
8 .2026 2.397
9 2123 2.460

Assume the expression
m = S]l‘,

and let it be required to find from the above experiments the
most probable values of s and z First reduce the expression
to a linear form by writing it thus:

logm = logs + tlogh.

Each observation furnishes an observation equation containing
log s and #. For example, the first is

0.2383 = logs — 0.94164
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The twelve observation equations furnish the two normal equa-
tions, and their solution gives

¢t = o572, logs = 0.7767, ..s = 5.98.
Therefore the empirical formula
m = 5.984%57

is the best of the assumed form that can be derived from the
nine experiments.

112. Problems.

1. The following levels were taken to determine the elevations of five
points, 7, U, W, X, and Y, above the datum O:

7 above O = 115.52. X above W = 632.25.
U above 7= 6o0.12. X above ¥V = 211.0I.
U above O = 177.04. Y above U = 596.12.
W above 7T = 234.12. Y above W = 427.18.

W above U = 171.00.
What are the adjusted elevations?
Ans. 7' = 115.61, U = 176.95, etc.
2. Four angles are observed at a station, and also their sum. The
observed sum differs from the sum of the four observed parts by the
discrepancy 4. What are the adjusted values?

3. Adjust the following angles, taken at the station Moodus, and find
the probable errors of the adjusted values.

No. Between Stations. Observed Angle. Weight.
1 | Big Rock and Small Rock | g¢g° 42 157.61 137

2 Small Rock and Tokus 133 39 05.07 22
3 Small Rock and Buzzard 40 12 §2.43 57

4 Buzzard and Tokus 93 26 13.14 50
5 Tokus and Big Rock 126 38 40.69 20

Ans. 99° 42" 15”.46, etc.
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4. The following observations of the temperature at different depths
were taken at the boring of the deep artesian well at Grenelle in France,
the mean yearly temperature at the surface being 10°.60 centigrade :

1. Temperature at a depth of 28 meters = 11.71 degrees.
2. Temperature at a depth of 66 meters = 12.90 degrees.
3. Temperature at a depth of 173 meters = 16.40 degrees.
4 Temperature at a depth of 248 meters = 20.00 degrees.
5. Temperature at a depth of 298 meters = 22.20 degrees.
6. Temperature at a depth of 400 meters = 23.75 degrees.
7. Temperature at a depth of 505 meters = 26.45 degrees.
8. Temperature at a depth of 548 meters = 27.70 degrees.

Deduce from these observations the empirical formula
! = 10°,6 4+ 0.0415x — 0.0000193x2,
where ¢ is the temperature at a depth of x meters.

5. Gordon’s formula for the ultimate strength of columns may be

written
Ky

‘= TET

in which ¢ is the crushing-load per unit of area of cross-section, ;s the
ratio of the length of the column to its least diameter, and .S and 7" are
constants to be found by experiment. Determine the best values of
these constants for the following four experiments on wrought-iron
Phceenix columns :

¢ = 34650, 35000, 36580, 37030.

J= 42, 33 24, 19.5.

6. From several census records of the pcpulation of the United

States deduce an empirical formula showing the population for any
year.
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CHAPTER VIIL

CONDITIONED OBSERVATIONS.

113. The general method of adjusting conditioned observa-
tions has been deduced in Arts. §6, 57, and that of investigating
the precision in Arts. 77, 78. The following is the process:

1st, Having given 7 observations upon ¢ quantities subject
to »’ rigorous conditions, the first step is to represent the quan-
tities by symbols, and state » observation equations and 7’ con-
ditional equations. Generally it will be found most convenient
to take the unknown quantities as representing corrections to
assumed approximate values, and to state the observation and
conditional equations in terms of these corrections.

2d, From the 7’ conditional equations find the values of »’
unknown quantities in terms of the remaining ¢ — #’ quanti-
ties, and substitute these values in the #» observation equations,
each of which then represents an independent observation.

3d, Adjust these » observation equations by the method of
Chap. VII, and find the most probable values of the ¢ — »’
quantities. Then, by substitution in the conditional equations,
the most probable values of the remaining 7’ quantities are
known.

4th, Insert the adjusted values in the 7 observation equa-
tions, and find the residuals, and then, from (33), the probable
error of an observation of the weight unity. If desired, the
weights of the adjusted values may be found by Art. 75, and
their probable errors by (31).
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114. The special method of correlatives, which is particu-
larly valuable in the adjustment of geodetic triangulations, has
been explained in Art. §8. In order to apply it, the local
adjustments should first be made; so that for each quantity,
2, 2,...8,avalue, M, M,... M, called the observed value,
is known. The numbers ¢ and » are hence equal. The fol-
lowing are the steps of the practical application :

1st, For the rigorous conditions write »’ conditional equa-
tions, as in (14). Substitute in these the observed values, /M,
M, ... M, for the quantities z,, 2,... 5,; and let d,,d, . . . 4,
be the differences or discrepancies that arise.

2d, Assume #' new unknown quantities, or correlatives,
K, K,...K,, and write the normal equations (16). Solve
these normal equations, and thus find the values of the
correlatives.

3d, From (15) find the corrections v,, v, . . . v, which, when
applied to the observed values M, M, ... M, give the most
probable adjusted values.

4th, Compute the sum 3p2?, and from (34) find the proba-
ble error of an observation of the weight unity. The probable
error of any observed J/ is then easily found from (31), and
that of the corresponding adjusted value is somewhat smaller,
since the weights are increased by the adjustment.

Angles of a Triangle.

115. When the three observed angles of a plane triangle are
of equal weight, it is easy to show that the correction to be
applied to each is one-third of the discrepancy between their
sum and 180°. The following is the proof by the method of
correlatives :

1st, Let M, M,, and M, be the observed values, and z,, z,
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and z, the required most probable values. The conditional
equation is

%, + 2, + 2z, — 180° = o.

Substitute in this the observed values, and it does not reduce
to zero, but leaves a small discrepancy &, thus

M, + M, + M, — 180° = d.

By comparison with (14) it is seen that a; = a, =a; =+ L.

2d, Take K as the single correlative. The weights are all
equal, or p = 1. From (16) the single normal equation is

[aa].K+a’=O, or 3K+d=o,
from which K:—g .

3d, From (15) the three corrections now are
vl=——’ vz=—"—, 2]3=—-—

and, accordingly, the most probable values of the three angles
are

N

n=M-%,  n=Ai-7 5= M, =2,

(£

4th, The sum of the squares of the residuals is a;, and hence

by (34) the probable error of a single cbserved angle is 0.394.
By working the problem according to the general method of
Art. 113, it may be shown (as in Art. 103) that the probable
error of an adjusted angle is 0.324.

116. When the three observed angles of a plane triangle are
of unequal weights, it is easy to show that the corrections to be
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applied are inversely as the weights. For instance, take the
following numerical case:

M, = 306° 25" 47”7, with weight 4
M,= go 36 28,  with weight 2
52 57 57, with weight 3

w

Sum = 180° oo’ 12”

1st, Take z,, 2,, and 2, as the most probable values; then,
as before, the conditional equation is

2.+ 2, + 2, — 180° = o.

The discrepancy is 12”. To compare with (14), (15), and (16),
@, =0, =a, =41, p, =4, p,=2, and p,=3.

2d, Only one correlative is necessary; and from (16) the
single normal equation is

G+3+HK+12=0,
and hence K = — %‘.—_ — 11.08.

3d, From (15) the corrections now are

]{ ” 7
nEG TR vn=—15"54, 3= —3"69,
and the adjusted angles are

36° 25" 44”.23
2, = 9O 36 22.46

%3 = 52 57 53-31
Sum = 180° 00 00”.00

K
I

4th, The residuals are the three corrections v,, v, and v,,
and the sum of their weighted squares is 3p7* = 132.92, from
which, by (34), » = 7”’.77 for the probable error of an observa-
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tion of the weight unity. By (31) the probable errors of the
observed values are found to be

ro=3"89, ra=5".50, ;= 4".49,

and the probable errors of the adjusted values are somewhat
less than these.

The adjustment of the angles of a spherical triangle differs
from that of a plane triangle only in the introducticn of the
spherical excess into the ccnditional equation ; thus s 4 2 4 #
= 180° 4 spherical excess.

Angles at a Station.

117. When 7 angles, and also their sum, are observed at a
station, and the weights are all equal, it is easy to show, as in
Art. 103, that the correction to be applied to each observed

I
n 41
and the sum of the observed single angles.

angle is th of the discrepancy between the observed sum

When # angles, which close the horizon, are observed at a
station, and the weights are equal, it is easy to show, as in
Art. 115, that the correction to be applied to each observed

angle is Lth of the discrepancy between 360° aad the sum of
7

the observed angles.

When angles at a station close the horizon, or are observed
by sums or differences, the adjustment may be effected, either
for equal or unequal weights, by the method of Art. 113, or by
that of Art. 114. The former will always reduce to the method
of independent observations, as exemplified in Arts. 103-105.

118. As an example of the application of the method of cor-
relatives, consider the observations of Art. 104. Represent the
most probable values of the seven angles by 2, 2,. .. 2z,
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From Fig. 7 the following conditions are seen :

2, — 2, + 2, =0,
2, — 2%+ 2 + 3, = 0,
z, + 2, + 2, + 26 + 3, — 360° = 0.

By substituting in these the observed values, the following dis-
crepancies are found :—

d, = — 0.210, d, = — 0.648, d, = — 0.420.

Take KX, K,, and K, as the correlatives to be determined.
By comparison with (14), it is seen that

o, =41, a,=—1, g=+1, a =a;=as=a,=0,
Bx=Bz=B3=or 4==:B6=B7=+I’ BS=_I’
N=V=NU=Y=Y,=+1, v.=y;=0.

All weights are unity. The three normal equations then are,
from (16),
3K, + 2K, — 0.210 = o,
+ 41(2 + 3K3 - 0648 =0,
2K, 4+ 3K, + 5K, — 0420 =0,

and their solution gives
K, = + 0.167, K,= +o0.271, K,= — o.145.
From (15) the corrections now are

v, =+ K, + K; = + 0".022,

v, = — K, = — 0.167,
v, =+ K, + K, = 4+ o.022,
v,=+ K, + K; = + o.126,
v, = — K, = — 0.27I,
%=+ K, + K, =+ o0.126,

+ K, + K, = + o0.126,

)
I
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and if these be applied to the observed values M, 7, ... M,
the adjusted values are found the same, within one or two thou-
sandths of a second, as in Art. 104, the slight difference being
due to the neglect of the fourth decimal places.

Angles of a Quadrilateral.

119. In a quadrilateral WXYVZ, the two single angles at
each corner are equally well measured. It is required to ad-
just them, so that the sum of the three angles in each triangle
shall equal 180° and the sum of
the four angles of the quadrilater-
al shall equal 360°. z

Y

Let the measured angles at the
corner W be denoted by W, and
W, and similarly for each of the
other corners, as shown in Fig. 10, .
Let w, and w, be corrections to
be applied to W, and W, in order L] 5
to give the most probable values,
W, + w, and W, + w,. Flg.10.

In order to avoid writing identical equations, select any
corner, as W, and take the three triangles, WXZ, ZWY, and
XYW which meet at that point, as the three triangles for cor-
rection. Evidently, if the angles of these triangles add up to
180° those of the fourth triangle will also. The three con-
ditional equations now are

w1+wz+xx+zz+dx=oy
W, +x +x+y+d=o0,
w1+_yz + 2, +Z,+d3=0,

.n which &, 4,, and 4, denote the differences or discrepancies
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between the sum of the measured angles of the triangles and
the theoretic sum 180°; thus, for example,

W:+ M+Xx+zz_l8oo=d1-

From the three conditional equations the values of the eight
corrections are to be found, either by the method of Art. 113
or by that of Art. 114. The latter will be the shorter. As-
sume, then, three correlatives, X,, KX,, and K,, and for each
correction write a correlative equation, thus

+ K, + K, = w,
+K1 +Kz = W,,
+ Kl + Kz = Xy
+ Kx + K3 = 3,
+Kz = X3
+-Kz> =Ju

+ K5 =y,

+ K3 =2z,

the co-efficients of K, being the co-efficients of the corre-
sponding unknown quantities in the first conditional equation,
and so on. From these equations the three normal equa-
tions are

4K, + 2K, 4+ 2K, + 4, = o,

2Kl + 4K2 + (l’z =0,

2K, + 4K, + 4; = o,

whose solution gives the values of X,, X,, and X; and, insert-
ing these in the correlative equations, the following values of
the corrections are found :

. W, =2, =3(—2d + &, — 4y),
w,=x,=4(—2d, — d, + ),
x=y=3%( 2di—3d,— 4,
H=2z=3%( 24 — d,—34),
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and the addition of these to the observed angles gives the
adjusted values.

For example, let the following angles be given : _

W:=4I° 58' 47”, K=49° 171 3°n’
W,=64 08 34, Y,=53 53 51,
X, =36 34 15, Z, =46 49 16,
X.,=29 59 351, Z,=37 18 18

Here the discrepancies are

di=W . +W,+ X, + 7, — 180° = -6,
1[2=;V2+X,+9(2+K-—180 = + 10,
=W+ Y,+ Z + Z,— 180 = +12.

Then, by the above formulas, the corrections are

w, =2, = + 1”.25, w, = x, = + 1”.75,
x, =y =— 6.5, Y2 = % = — 17.25,

so that the adjusted values are

W, 4+ w, = 41° 58 48" .25, Y4+ 5. = 49° 17 23".25,
W:+w, =64 08 3575, Y.+3.=353 53 43.75,
X, 4+ x, =36 34 16.75, Z, + 3, =46 49 08.75,
X, + x, =29 59 44.25, Z,+ 2, =37 18 19.25.

These angles now fulfil all the geometrical conditions required
in the statement of the problem, and are, furthermore, the
most probable angles.

120. If the large angles at the corners are measured as well
as the single angles, the most convenient method of procedure
is, first to make the station adjustment at each corner, and then,
with the eight single angles, to make a further adjustment, as in
the last article. The following is an example illustrating the
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steps of the process for the case of unequal weights. Let the
twelve measured angles be
103° 11’ 15”, weight 2,

49 17 30, weight 2,

53 53 51, weight 2,

84 o7 30, weight 4,

46 49 16, weight 1,

37 18 18, weight 2.

W = 106°07 27", weight 3,
41 58 47, weight 3,
64 o8 34, weight 3,
66 34 03, weight 1,
36 34 21, weight 1,
29 59 45, weight 1,

[

NXNIS
NNNNNN

n
i

First, by Art. 117, make the station adjustment at each corner,
and obtain the following results :

W, = 41° 58 49".0, weight §, ¥, = 49° 17’ 28".0, weight 3,

W,= 64 08 36.0,weight3, Y,= 53 53 49.0, weight 3,
X, = 36 34 200, weight3, Z, = 46 49 13.7, weight §,
X, = 29 59 44.0,weight 3}, Z, = 37 18 16.9, weight }t.

Next let w,, w,, etc., be corrections to these values in order to
satisfy the geometrical requirements of the figure. Then, as
in the preceding article, the three conditional equations are

w,+ w,+ x4+ 2+ 179 =0,
W, + x, + X+ )+ 8-°=°)
'w.+}’z + 2 + 2z + 8.6 = o.

From (15) the eight correlative equations are

w, = %(K; +K3),
w,= 2K + K, )s
x = (K + K, )s
xn= 3 +£& )
= 3 +K, )s
Ja = ':%( +K3)’
z = %( +K3),
5 = 75(&, +K3)°
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From (16) the three normal equations now are

F+3+3+D&+ GF+HK+ F+f)E+ 19=0,

F+HK+EF+3+3+DK, + 8.0 = o,
(3 + 15) K. + 3+3+3+H)K, + 86 =o0.

and their solution gives the values
K= +6.99, K,= —753 K= —943
from which the following corrections are found :

w, = —0.5, ¥y = _9-4) Y = —2.5, %, = —4.1,
= == —5.0, y2= —3-1, z:= _"0090

The final adjusted values of the single angles now are

W, = 41° 58 48", Yi= 49° 17" 25".5,
W,= 64 08 3s.9, Y.= 53 53 45.9,
X, = 36 34 19.6, Z,= 46 49 09.6,
X.= 29 59 39.0, Z,= 37 18 16.0.

The adjusted values of the large angles are now obtained by
simple addition of the single angles, and are

W = 106° o7 24".4, Y= 103° 11" 1174,
X = 66 33 58.6, Z= 84 o7 25,

whose sum is exactly 360 degrees.

121. In geodetic surveys where the sides of the quadrilateral
are many miles in length, the spherical excess must be con-
sidered in stating the conditional equations for the three tri-
angles. In such work a fourth conditional equation must also
be introduced in order to insure that the length of any side
shall be the same through whatever set of triangles it be com-
puted. The development of the calculations for such cases
belongs properly to works on geodesy, and will not here be dis-
cussed. Detailed examples of the method may be seen in
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Schott’s article on the adjustment of the horizontal angles of a
triangulation in the United States Coast Survey Report for
1854, in Clarke’s Geodesy (Oxford, 1880), and in many German
works on higher surveying.*

Stmple Triangulation.

122. In the adjustment of a simple triangulation the method
of procedure is essentially the same as for a quadrilateral.
First, the adjustment of the angles at each station should be
made, and then the resulting values further corrected, so as
to satisfy the geometrical requirements of the figure. This
method is not strictly in accordance with the fundamental
principle of Least Squares. By the station adjustment a cor-
rection, v, is found for each angle, and by the figure adjustment
another correction, v,; so that the total correction is v, + 7,.
The fundamental principle for observations of equal weight
requires that 2(v, 4 #,)* should be made a minimum in order to
cbtain the best values of the corrections, while by the method
pursued 37,2 is made a minimum
in the first adjustment, and 3,2
a minimum in the second. The
reason for deviating from the
strict letter of the law is, that
the general method of determin-
A ing the total equation at once is

too laborious, owing to the large
number of conditional equations involved. Usually also the
difference between the final results of the two methods will be
small. In the next article will be given a comparison of the
two methods as applied to a simple case.

Fig.11. A

* See also Merriman’s Elements of Precise Surveying and Geodesy.
New York, 1899.
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123. The following observations were made to determine
the distance between the non-intervisible stations C and D
by means of a measured base AB:

BAC = 27° o9’ 05”.5,
BAD= 51 34 355,
CAD = 24 25 27.8,
ABD = 170 08 32.1,
ABC = 128 29 07.5,
DBC= 58 20 384,
ACB = 24 21 46.0,
ADB = 58 16 50.8.

By the strict method of Art. 113 or Art. 114 the four conch
tional observations are written, one for each of the points A
and B, and one for each triangle, and the adjusted values found
as given in the second column of the following table :

Observed. Adjusted. 2. /a8
o5”.5 06.2 + 0.y 0.49
35.5 35.6 + o.1 0.01
27.8 20.4 + 1.6 2.56
32.1 32.0 — o.1 0.01
07.5 08.6 4 1.1 1.21
38.4 36.6 — 1.8 3-24
46.0 45.2 — 0.8 0.64
50.8 '52.4 + 1.6 2.56

The sum 327 is here 10.72, and by (34) the probable error of a
single observation is

r= 0.6745\/1—9'7—2 = 1".1.
4
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By the shorter method the local adjustment at A and B is
first made, giving the results

BAC = 2%° o9’ 06”.2, weight 1.5,
BAD = 51 34 34.8, weight 1.5,
ABD = 70 08 31.1, weight 1.5,
ABC = 128 29 08.5, weight 1.5.

The triangles ABC and BAD are next separately adjusted,
using these four angles and those at €' and 0. The results are

Observed. Adjusted. v, 772
0s5”.5 06.0 + o5 0.25
355 35-7 + 0.2 0.04
27.8 29.7 + 1.9 3.61
32.1 32.0 — oI 0.01I
07.5 08.3 + 0.8 0.64
. 384 36.3 — 2.1 4.41
46.0 45.7 — 0.3 0.09
50.8 52.3 + 1.5 2.25

The sum 322 is here 11.3, which is but slightly greater than
that of the stricter method. A comparison of the two sets of
adjusted values shows also that the differences are small.

Levelling.

124. A simple discussion of the precision of levelling observa-
tions involving but one conditional equation will here be given
as an illustration of the general method of treatment of Art. 113.

There are three points, 4, B, and C, situated at nearly equa:
distances apart, but upon different levels. In order to ascertain
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with accuracy thzir relative heights, a levelling instrument was
set up between 4 and B, and readings taken upon a rod held

at those points, with the results,

On rod at A4, 8.7342 feet, mean of 12 readings.
On rod at B, 2.3671 feet, mean of g readings.

The instrument was then moved to a point between B and C,
and the observations taken.

On rod at B, 5.0247 feet, mean of 7 readings,
On rod at C, 11.2069 feet, mean of 4 readings.

Lastly, the level was set up between C and A4, and the rods
observed.

On rod at C, o0.4672 feet, mean of 5 readings,
On rod at 4, o.6510 feet, mean of 3 readings.

It is required to find the adjusted values of these readings, the
most probable differences of level between the points, and the
probable error of a single reading on the rod.

First arrange these measurements as they would be written
in an engineer’s level-book, and, assuming the elevation of A
as 0.0, find the heights of the other points.

Height of i
Station. | Back Sight. | Fore Sight. Insifm:e(:)t. Ell;)‘:‘::t ’j;"
le 8.7342 0.0
By 5.0247 2.3671 ?'734; 6.3671
sC, 0.4672 11.2069 11.391 0.1849
4 o.6510 0.6521 0.0011

The number of readings or the weight of each sight is placed
in the first column preceding and following the name

of the
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station ; thus ,5, denotes that the back sight on B has a weight
of 7, and the fore sight one of 9. Regarding the elevation of
A as o, that of B comes out 6.3671 feet, that of C, 0.1849 feet ;
and, on returning to the starting-point, it is found that A is
0.0011 feet, instead of o as it ought to be.

Represent the back sights upon 4, B, and C by Z,, Z,, and
Z,, and the fore sights upon B, (, and 4 by Z,, Z,, and Z,
and let 3, z, 2, 2, 5, and 5, be corrections to be applied to
those observed values. The observation equations then are

2, = o, weight 12, 2, = o, weight 9,
2, = o, weight 7, z, = o, weight 4,
2 = o, weight g, % = 0, weight 3,

and the conditional equation is
%+ 2, + 2 — 2, — 2, — 2, = — 0.00I1I.

From the conditional equation take the value of z,, and insert
it in the observation equations, which, after multiplication by
the square roots of their respective weights, become

Vizz, =
Vie=
\/525

32 =

) \/3 %6 o,
22, + 22; 4+ 22, — 22, — 23, = — 0.0022,

b

I
o090

I
o

From these the normal equations (Art. 48) are

162, + 42, + 42, — 42, — 4% = — 0.0044,
42, + 113, + 42, — 43, — 4% = — 0.0044,
42, + 42, + 93, — 4%, — 4% = — 0.0044,

= 4%, — 43; — 475 + 132, + 4% = -+ 0.0044,
— 48, — 4%, — 4%+ 4% + 7% = + 0.0044,
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the first being the normal equation for z,, the second for z,, the
third for z,, the fourth for 2, and the fifth for z. The solu-
tion gives the following results :

2,.= — 0.00008, %, = — 0.00014, %, = — 0.00020,
%, = - 0.00011, %, = 4+ 0.00024, %, = 4+ 0.00033.

Applying these to the observed values, the adjusted results are

) ) . Elevation
Station. | Back Sight. [ Fore Sight. above 4.
8.73412 0.0

5.02456 2.36721 6.36691
0.46700 | 11.20714 | 0.18433

ENE S REN

0.65133 0.0

The residuals are in this case the corrections z, 2, etc.
Squaring these, multiplying each square by its weight, and add-
ing, gives '

3pv* = 0.000001079.

From formula (34) then
7 = 0,6745y/0.000001079 = 0.0007 feet,
‘which is the probable error of a single reading on the rod.

125. The adjustment of a network of level lines may also
be effected by the method of conditioned observations. When
‘the levelling is of the same precision throughout, the probable
errors of differences of level should be taken as varying with
the square root of the lengths of lines, being governed, in short;
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by the same law of propagation of error as linear measure.

ments (see Art. 91). Each difference
of level should hence be assigned a
weight inversely proportional to the
length of the line between the two
points. For each triangle or polygon
of the network, there is the rigorous
condition that the sum of the differ-
ences of level shall be zero. From
these conditional equations, corrections
to the observed differences of level are
determined by the method of Art. 114.

As an example, consider the follow-
ing eight differences of level forming
three closed figures, ABE, BCFE, and
CDF: :

No. Stations. Diff. Level. | Distance. | Weight.
Feet. Miles.
1 B above 4 120.2 4.0 0.25
2 C above B 230.6 7.2 0.14
3 D above C 143.0 5.0 0.20
4 D above F 294.4 6.3 0.16
5 C above F 150.2 2.0 0.50
6 £ above £ 93-4 4.8 0.21
7 B above £ 14.5 3.5 0.29
8 £ above 4 106.7 8.3 0.12

It is required to find the

most probable corrections to the above

differences of level in order to cause the discrepancies in the

three polygons to vanish,
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Let %, %, etc., represent the most prob“e differences of
level. Then the three conditions are

for ABE, hy—h,— hg=o0,
for BCFE, by, — hg — ho + k, = o,
for CDF, hy — hy+ kg =o.

Let v,, 9,, etc., be the most probable corrections to the observed
differences of level, so that

A, = 120.2 + z;,; k, = 230.6 + v,, etc.

Then the three conditional equations become

V9, —9,—9%—10=0,
v, —U— U+ 7,4+ 1.5 =0,

From these the correlative equations are written, the weight
of each v being taken as the reciprocal of the corresponding
distance :

7, = + 4.0K,,
v, = + 7.2K,,
o5 = + 5.0K,,
0, = — 6.3K,
v, = — 2.0K, + 2.0K;,
Vg — — 4.8K2,
v, = — 3.5K, + 3.5K,,
U — — 8.3K,.

Next the three normal equations are

15.8K, — 3.5K. —1.0=0p0
— 3.5K, + 17.5K, — 2.0K;+ 1.5 =0,
—2.0K,+4+ 13.3K;, — 1.2 =0,

and the solution of these gives

K, = -+ 0.04848, K; = — 0.066855, K, = + o.08017y
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Lastly, by substituting these in the correlative equations, the
corrections are found, which are given in the third column of
the following table, while in the fourth are the adjusted results.

N Observed | Adjusted

| Diff. Level. & Diff. Level.
I 120.2 + o.19 120.39
2 230.6 — 0.48 230.12
3 143.0 <+ o.40 143.40
4 294.4 —os51 | 293.89
5 150.2 + o0.29 150.49
6 934 + 0.32 93 72
7 14.5 — 0.40 14.10
8 106.7 — 0.40 106.30

|

In order to ascertain the precision of the work, the correc-
tions are squared, and each square multiplied by its respective
weight, and the sums of these products taken. This sum is
about 0.246; and then by (34) the probable error of an obser-
vation of the weight unity, that is, the probable error of the
difference of level of the ends of a line one mile in length, is

r= o.6745\/°;23i§ = o.19 feet,

a result that indicates a low degree of precision.

126. Problems.

1. Adjust the following angles taken at the station O¢
AOB = 40° 52" 377, weight 16,
BOC = 92 25 41, weighty,
COD = 80 6 15  weight 3,
DOA =146 35 20, weight1.
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2. In a spherical triangle XY Z the three measured angles are
X =093° 48 15".22, with weight 30,
Y=51 55 o0.18, with weight 19,
Z =34 16 49.72, with weight 13.

The spherical excess is 4”.05. What are the adjusted angles?

3. In a quadrilateral WXYZ, the following angles, all of equal weight,
are measured, and it is required to adjust them.

W = 106° o7’ 307, Vi =49° 177 237,
Wi= a1 8 47, Y;=53 53 50
W.= 64 o8 34, Z =84 o7 18,
X = 66 3¢ 09 Z; =37 18 12,

Xt= 36 34 zi,
4. Adjust the level observations in Art. 100 by the method of condi-
tioned observations, taking the weights as equal.

5. Discuss the method of correcting the latitudes and departures in
a compass survey of a field.

6. Two bases, 48 and DE, are connected by three triangles, 45C,
BCD, and CDE. The bases are measured, and also the three angles
of each triangle. State the four conditional equations, and explain in
detail the process of adjustment.
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CHAPTER IX.
THE DISCUSSION OF OBSERVATIONS.

127. In the preceding pages it has been shown how to adjust
observations, and how to ascertain their precision by means of
the probable error. By thus treating series or sets of measure-
ments, a comparison or discussion may be instituted concern-
ing the relative degrees of precision, the presence of constant
errors, and the best way to improve the methods of observa-
tion. In this chapter it is proposed to present some further
remarks relating to the discussion ot observations by the use of
the fundamental law of probability of error, and to indicate that
this law is also applicable to social statistics, and that it really
governs the way in which the laws of nature are executed.

Probability of Errors.

128. In Chap. IT a method of investigating the probability of
errors, and comparing theory with experience, was given, in
which it was necessary to assume the value of the measure of
precision /%. For instance, in Arts. 19 and 33 there are dis-
cussed one hundred residual errors, for which the value of % is
stated to be —7—. It is now easy to see that this value may
be found at once from the probable error » by means of the
formula (17), while » is deduced from the formula (20). To



§ 128. PROBABILITY OF ERRORS. 163

compare, then, the theoretical and actual distribution of errors
for such cases by the use of Table I it is only necessary to
deduce the value of » in the usual way, and from it to find 4,
which enters as an argument in the table.

It is evident, then, that, in undertaking such discussions, it is
more convenient to have a table of the values of the probability
integral in terms of » as an argument. Such is Table II at

the end of this book, which gives, for successive values of ’f, the
r

probability that a given error is less numerically than x, or that
it lies between the limits — 2 and 4 z.

To illustrate the use of Table II consider an angle for which
the mean value is found to be

37° 42" 137.92 £ 0".25.

Now, from the definition of probable error, it is known that the
probability is ; that the actual error of the result is less than
0”.25. Let it be asked what are the respective probabilities that
the actual error is less than the amounts 0”.5 and 1”.0. From
the table

for — = —— = 2, P = 0.823,
r o0.25
x 1.00
= T = P = o. .
for p, o235 4, 0.993

Hence the probability that the error in the result’is less than
0”.5 is 0.823, or it is a fair wager of 823 to 177 that such is
the case. And the probability that the error is less than 1”.0
is 0.993, or it is a fair wager of 993 to 7 that such is the
case. o

As the number of errors is proportional to the probability,
the values of the integral need only to be multiplied by the
total number of errors to give the theoretical number less than
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"certain limits. For example, in one thousand errors or residu-
als, there should be :
\ 264 less than 47, and 736 greater,

500 less than 7, and 500 greater,

823 less than 27, and 177 greater,

957 less than 37, and 43 greater,

993 less than 47, and 7 greater,

999 less than 57, and 1 greater.

Table II gives only four decimal places, which suffice for
any ordinary investigation. By the methods of calculation
explained in Chap. II more decimals may be deduced, and the
following results be found for the theoretical distribution of
errors when the -total number of errors is one hundred thou-

sand :
95698 are less than 37, and 4302 greater,

99302 are less than 47, and 698 greater,
99926 are less than 57, and 74 greater,
99995 are less than 67, and 5 greater.

As the frequency with which an error occurs is expressed by
its probability, it is evident that errors greater than five or six
times the probable error should be very rare.

129. As shown in Art. 35, the probability of the error o is

k._a’._r, or, introducing for / its value 0.47 69, it may be written

Vr r

Yo = 0.26 Id—x
o= 0.2691 —.

Here dr is the interval between successive values of z. If
there be AV errors in a series, the number having the value ¢
should hence be

(42) N, = 0.2691 ‘éxj\/',

where 7 is the probable error of a single observation.
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Formula (42) affords a rough comparison of theory and ex-
perience without the use of tables. For instance, let the
target-shots described in Art. 18 be again considered, and
regard those in the middle division as having the error o, those
in the next division above as having the error 4 1, and so
on. Then the errors, without regard to sign, are as in the first
column below, their squares in the second, their weights or the
number of shots in the third, and the weighted squares in the
fourth. '

x. 2 2 Jral 2
o o 212 o 261
I I 394 394 382
2 4 282 1,128 232
3 9 89 8ot 93
4 16 20 320 26
5 25 3 75 6

Spxr = 2,718 1,000

Now, the probable error of a single observation is

r= o6745\/2718

1000

and, by formula (42), the number of errors having the value o is

0.2601 X 1 X IOOO
N, = 2 245,

I.I

which is a satisfactory agreement with the actual number 212.
In the last column of the above table are given the theoretical
numbers of errors as computed from Table II.
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The Rejection of Doubtful Observations.

130. The theoretical distribution of errors, according to the
fundamental formula (1), is shown by the values of the proba-
bility integral given in Table II; and from these it is seen, as
in Art. 128, that the number of errors greater than 4 or 57 is
very small. It becomes, then, a question, whether the probabil-
ity of an error might not be so small that it would be justifiable
to reject entirely the corresponding observation. For instance,
if one thousand direct observations be taken, the probability
that there will be one error greater than 5»is = ; if, then, in
taking a series of, say, fifty observations, one error should exceed
57, the probability of its occurrence would be very much smaller
than ., and the observer would be tempted to reject that
observation. But undoubtedly it would be a dangerous thing
to allow an observer to decide upon his own limit of rejection.
It has accordingly been proposed to attempt to establish a cri-
terion by which the limit may be legitimately established from
the principles of the probability of error. The criteron pro-
posed by Chauvenet is the simplest of those deduced for this
purpose, and is the following :

Let 7 be the number of direct observations, and also the
number of errors. Let » denote the probable error of a single
observation as found from the » residuals by formula (20).

Let x be the limiting error, and let Z be called . Lef P be the
(4

value of the integral in Table II corresponding to £ Chen
2n — 1

(43) P= , and x=#&
2n

is the criterion for the rejection of the largest residual

To prove this, consider that the quantities in Table II need
only be multiplied by the total number of errors to show the
actual distribution ; so that ~2 indicates the number of errars
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less than x, and #» — 7»P indicates the number greater than .
Now, if
. n—nP= },

there is but half an error greater than x, and any error greater
than this x would be larger than allowed by the theoretical dis-
tribution. Hence the value of x corresponding to this value of
P is the limiting value, which indicates whether the greatest
residual in a series may be rejected or not.

131. In order to facilitate the use of this criterion, Table VII
has been computed, giving the value of ¢ directly for several
10 — 1

10
or 0.9; and from Table VII the corresponding value of 7 is 2.44.

values of #». For instance, if # is 5, the value of 2P is

The following particular example will illustrate the method
of procedure. Let there be given thirteen observations of an
angle, as in the first column below.

62° 12’ 51”7.75 2.69 7.24
48.45 0.01 0.37
50.60 1.54 2.37
47.85 1.21 1.46
51.05 1.99 3.96
47-75 L.31 1.72
47.40 1.66 2.76
48.85 0.21 0.04
49.20 0.14 0.02
48.90 0.16 0.03
5095 1.89 3-57
50.55 1.49 2.22
44.45 4.61 21.25
62° 12’ 49”.06 47.01
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Let the mean of these be found, the residuals placed in the
second column, and their squares in the third. The sum Xz?
is 47.01; and hence, from (20), the probable error 7 of a single
observation is 1"/.32. Table VII gives # = 3.07 when n»=13:
hence, by the criterion, the limiting error is

X = 3.07 X 1.32 = 4.05,

an.: accordingly the largest residual 4.61 should be rejected.
To ascertain if the next largest residual, 2.99, should ais> be
rejected, the mean of the twelve good observations should be
found, and a new » computed from the twelve new residuals.
But evidently the new sum 3222 will not differ greatly from the
former sum minus the square of the rejected residual, or

new J37° = 47.01 — 21.25 == 25.76,

from which the new 7 is found to be about 1”.03. Then the
limiting error’is
: x = 3.02 X 1.03 = 3".11,

which shows that the residual 2.99 is not to be rejected.

132. Hagen’s deduction of the law of probability of error,
given in Chap. I, suggests another method of finding the
limiting error of observation, and a new criterion for rejection.
In Art. 26 the maximum error is expressed by mAx, and the

quantity A x? is replaced by ?;1-2 It is hence easy, by the help

of (17), to find
r3
(44) mAx = 4.4 x

where dr is the constant interval between successive values of
the errors. For the observations discussed in Art. 129 this
formula gives the limiting error mAx as 5.3, which seems
entirely satisiactory. It is not possible to apply it, however, to
angle measurements like these of the last article, on account of
the impossibility of assigning a proper value to the interval dx.
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The same difficulty prevents the practical use of formula (42),
except in cases where this constant interval is definitely known.

There i3 another criterion, due to Peirce, which may be
applied to the case of indirect observations involving several
unknown quantities, as well as to that of direct measurements; -
but its development cannot be given here. In general, it should
be borne in mind that the rejection of measurements for the
single reason of discordance with others is not usually justi-
fiable unless that discordance is considerably more than indi-
cated by the criterions. A mistake is to be rejected, and an
observation giving a residual greater than 4» or 57 is to be
regarded with suspicion, and be certainly rejected if the note-
book shows any thing unfavorable in the circumstances under
which it was taken. Usually, in practice, the number of large
errors is greater than should be the case, according to theory;
and this seems to indicate, either that the series is not suf-
ficiently extended to give a reliable value of 7, or that abnormal
causes of error affect certain observations. If it were possible
to increase the number of measurements, it would undoubtedly
~ be found that the abnormal errors would be as often positive as
negative, and that, for a very great number, there would be few
that could be rejected by the criterion.

Constant Ervors.

133. In all that has preceded, it has been supposed that
the constant errors of observation have been eliminated from the
numerical results before discussing them by the Method of
Least Squares. If this is not done, and all the measurements
of a set are affected by the same constant error, that error
will also appear in the adjusted result. For instance, suppose
thirty shots to be fired with the intention of hitting the centre
of a target, and let their actual distribution be as shown in the
figure. The most probable location of the centre, according to
the records, is about two spaces to the right, and about half a
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space below the true centre. Each shot, then, has been subject
to these constant errors; the first due, perhaps, to the wind,
and the second to gravity. If, now, these marks on the target

represented observations for

Fig. 13. the purpose of locating the
centre, the result obtained by
their adjustment would be in
error by the amounts just

il stated. Therefore, if all the

: . L observations of a series are
é%.—,fjr affected by the same constant
error, the Method of Least
Squares can do nothing but
. adjust the accidental errors;
and the probable errors of the
adjusted results refer only to
them, and give no indication
whether constant causes of error affect the measurements or not.

134. The probability of the existence of a constant error in
a case like that just illustrated is evidently large, and the
numerical probability of its value lying between certain limits
may be found by the help of Table II. The following is an
example of such a discussion :

Suppose that an angle is laid out with very accurate instru-
ments, and tested in many ways, so that its true value may be
regarded as exactly go°. Let twenty-five observations be taken
upon it with a transit whose accuracy is to be tested, and let
the mean of those measurements be 89° 59" 57 & 0”.8. Then
it is extremely probable that a constant error of about — 3”
exists in the instrument. To find the numerical expression of
this probability, suppose that the true value of the angle was
unknown, and ask the probability that the mean is within 2” of

the truth. Then, for = 0_28 = 2.5, the value of the integral in
r )
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Table II is 0.908; so that it is a wager of 9o8 to 92, or of
almost 10 to 1, that the mean is between the limits 89° 59" 55"
and 89° 59’ 59”. Hence, since the angle is known to be go°, it
must be the same probability and the same wager that there
is a constant error lying between the limits — 1” and — 5"
So, also, if x = 3”, it may be shown that it is a wager of 39 to I
that there is a constant error between 0” and — 6”.

135. In case that several sources of constant error exist, the
adjustment by the Method of Least Squares tends to elimi-
nate them, and to give results nearer and nearer to-the actual
values, as the number of observations is increased. This will
be rendered evident by considering again the illustration of
the target. One marksman fires thirty balls, which are subject
to a constant error, as in Fig. 13. Another marksman fires
thirty more, which have a different constant error, owing to the
peculiarities in his aim. A third marksman has a third con-
stant error, in a still different direction. The shots of each
marksman are distributed around their most probable centre
in accordance with the law of probability of accidental errors.
And undoubtedly these constant errors will be grouped around
the true centre according to the same law; and, as the number
of marksmen increases, the constant errors will thus tend to
annul each other, and ultimately make the most probable centre
coincide with the true one.

And so it must be in angle observations, when great pre-
cision is demanded. On one day certain constant errors, due
to atmospheric influences, affect all results in a certain direc-
tion; while on a second day, under different influences, new
constant errors act in another direction. If the measurements
be continued over many days, the number and magnitude of
positive constant errors will be likely to equal the negative
ones; so that the adjustment by the Method of Least Squares
will balance them, and give results near to the true values.
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Here may be seen the reason why the number of large residuals
is usually greater than the theory demands, ana also a reason
why a criterion for rejection cannot generally be safely applied
to series of observations consisting of few measurements.

Social Statistics.

136. It is found that the law of probability of error applies
to many phenomena of social and political science. If men
be arranged in groups, according to their heights, there will be
found few dwarfs and few giants; and the numbers in the dif-
ferent groups will closely agree with the theoretical distribu-
tion required by the curve of probability. The following table,
which is taken from Gould's Statistics (New York, 1869),

. Proportional Number in 10,000.

Height. Actual .

Inches. Number. Observed. | Calculated. | Calc.— Obs.
61 197 105 100 - 5
62 317 169 171 + 2
63 692 369 . 368 - 1
64 1289 686 675 — I1I
65 1961 1044 1051 + 7
66 2613 1391 1399 4+ 8
67 2974 1584 1584 o
68 3017 1607 1531 — 76
69 2287 1218 1260 + 42
70 1599 852 884 + 32
71 878 467 531 + 64
72 520 277 267 — 10
73 262 139 118 — 21
74 174 92 61 — 31
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gives a comparison of the theoretical and observed heights of
18,780 white soldiers, including men of all nativities and ages.
In the second column are recorded the actual number measured
of each height, and, in the third, the proportional number in
10,000. The mean height as found by formula (9) is 57.24
inches, from this the residuals are formed; and the probable
error . a single determination, by formula (23), is 1.676 inches.
The theoretical numbers between the several limits are next
derived by the help of Table II, and recorded in the fourth
column, while the differences between the calculated and ob-
served numbers are given in the last.

137. Numerous comparisons of this kind, made by Quetelet
and others, have clearly established that stature and the other
proportions of the body are governed by the law of probability
of error. Nature, in fact, aims to produce certain mean pro-
portions; and the various groups into which mankind may be
classified deviate from the mean according to the law of the
probability curve. And the same is true of intellect. By the
discussion of social statistics, then, it is possible to discover
the mean type of humanity, not merely in physical proportion,
but in intellect, capacity, judgment, and desires. ‘“The aver-
age man,” says Quetelet, “is for a nation what the centre of
gravity is for a body : to the consideration of this are referred
all the phenomena of equilibrium.”

In fact, the distribution of social phenomena seems strictly
analogous to that of the rifle-shots discussed in Art. 135. Each
shot may represent a person, or some property of a person, to
be investigated. For all the shots there is a mean, showing
the most probable result; and also, for each group, there is a
secondary mean, depending on the particular race or nation to
which the person belongs. There is a type for soldiers, and
another for sailors; one for Americans, and another for Euro-
peans ; one for men, and another for women ; one for the period
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of youth, and another for that of maturity. The individuals of
each type are clustered around its mean, according to the law
of probability; "and the several types are clustered around a
general mean, according to the same law. This is true for all
statistical data in which equal positive and negative deviations
from the mean are equally probable; in other cases an unsym-
metric distribution may occur.

138. Problems.

1. An angle is measured by an instrument graduated to quarter-
minutes, the probable error of a single reading being 12 seconds. How
many observations are necessary, that it may be a wager of 5 to 1 that
the mean is within one second of the truth?

2. A line is measured 500 times. If the probable error of each
observation is 0.6 centimeters, how many errors will be less than 1 cen-
timeter, and greater than 0.4 centimeters?

3. The capacity of a certain large vessel is unknown: 1,600 persons
guess at the number of gallons of water which it will hold, and the
average of their guesses is 289 gallons. The vessel is then measured
by a committee, and found to hold 297 gallons. If the probable error
of a single guess be 5o gallons, and it be impossible that there can be
any constant source of error in guessing, what is the probability that the
committee have an error in their measurement of between 3 and 13
gallons?

4. Determine from the data in Art. 136 the number of men per
million who are more than seven feet tall.

5. Two observations differ by the amount @. A third observation
differs from the mean of the first two by the amount #. Find, by
Chauvenet’s criterion, the value of # necessary to reject the third
observation.
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CHAPTER X,

SOLUTION OF NORMAL EQUATIONS.

139. In the preceding pages the student has been left to
solve normal equations by any common algebraic process. It
is usual in computing offices, however, to require them to be
formed and solved by a definite method for the sake of uni-
formity in making comparisons. This is, indeed, absolutely
necessary when the number of unknown quantities is greater
than three or four, or when the co-efficients are large, in order
that checks upon the numerical work may be constantly had
and the accuracy of the results be ensured. The methods in
most common use will now be explained.

Three Normal Equations.

140. The method of elimination, due to Gauss, which is de-
scribed below, is probably the best for this case except when
the co-efficients are small numbers. In that event the determi-
nant formulas for solution may be advantageously employed.
These will be here written for the general case of three linear
equations,

Ax + Bly + txz = .D,,
Ax 4+ By + Cz = D,
Ax 4 By + Gz D,,

il
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the solution of which gives the formulas,

D, B, 4, B, G
. x=\D, B, C, | +14, B, C, }
D3 BS CS A3 'BS C3
A; Dx Cx -41 -Bl CI
y= Az-DzCz ':_Aszczv
A4, D, C, A, B, C,
Al Bl -Dl Al Bl CI
g=14, 8B, D, |+|A4, B, C, |
A, B, D, 4, B, C,

These are readily kept in mind by noticing that the denom-
inator is the same for each, and that in the numerator the
absolute terms D replace the co-efficients of the unknown quan-
tity to be found. <If (.=C=(C=o0and 4,=B8,=D,=o0,
this solution reduces to that given in Art. 55.")

I141. As an illustration of this method let the three normal
equations be A :
| 3x —y+ 22 =3,

‘.-‘ - X + 4y + z = 6’
S 2x +y+ 52 = 3.
Then the determinant denominator, being developed, gives

4 I
1 5

2
I

-1 4 1
2 I 5

___3’ +I|—12

I 5

3 —1 2
I = 32.

— I
+2|
. 4

Similarly the values of the three determinant numerators are
found to be 110, 86, and — 42. Hence

x=+‘g£’ )’=+ﬁ', z=—ﬁ,

which exactly satisfy the three given normal equations.
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Checks upon the results of the solution may be also obtained
by writing the normal equations in another order, making for
instance the third the first one, and thus obtaining different
numerical determinants for development.

Formation of Normal Equations.

142. Let the z observation equations between three unknown
quantities be of equal weight, and let the observed quantities
M, M, ... M, be transposed to the first term, giving

ax + by + az + m = o,
ax + b,y + ¢z + m, = o,

[ 3 . . L] . . .

@xxX + bny -+ ¢ -+ m, = o,

and let there be formed the sums

a? + a2+ ...+ a? = [ad],
abi+ ab, ...+ a.b. = [ab).

Then the three normal equations are

[aal + [ad]y + [acls + [am] = o,

[2alx + [26]y + [bc)s + [bm] = o,

[calx + [c8]y + [ec)e + [em] = o.
Thus the formation of the normal equations consists in cora-
puting the co-efficients [aal, (26], etc. This may be done by
common arithmetic, by the help of Crelle’s multiplication
table, a logarithmic table, a table of squares, or a calculating

machire. The following method of arranging and checking
the work is frequently employed.

- Write the co-efficients and absolute terms of the observation
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equations in tabular form and add a column containing the °
algebraic sums of these for each equation. Thus for three

x y z

a b ¢ m s

unknown quantities the table has the above form, the last
column containing, for each horizontal row, the algebraic sum
at+bo+c+m=s.

A second table, which need not be here shown, contains
fifteen columns, headed aa, aé,. .. ss, and the summation of
the products in these columns gives the fifteen co-efficients and
absolute quantities which are arranged in a third table as be-
low. Itis to be noted that [éa], |ca], [¢&] are the same as [@4],
[ac], [éc], and hence need not be computed.

x ¥y z

. Check.
a] | 4] [c | =) | s]

Here the sum [bb] is placed at the right of [b and under b], the
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sum [¢s] at the right of [¢ and under 5], and so on. The last
column is used to record the results of the five checks, namely,

[aa] + [ab] + |ac] + [am] = [as],

[6a] + [28) + (8c] + [om] = [bs],

[ca] + [e8] + [ec] + [em] = [es),

[mal + [mbé) + [mc] + [mm] = [ms],

[se] + [6] + [sc] + [sm] = [ss].
If these checks are all fulfilled, the normal equations may be
regarded. as correctly formed. In filling out the table the

coefficients [ba], [mc], etc., need not be written, since they are
the same as [a0], [cm], etc.

143. As a simple example let five observations upon three
quantities give the five observation equations '

—-x +z — 2=o,
— X +.7 — . 9=0,
+J/ — 18 — o.

+J’ —& — ]7=0
+ %2 —10=o0.

The arrangement of the first table is then as follows:

x y z
No.

a b ¢ m s
I -1 +1| — 2| — 2
2 —1| 41 ol — 9| —
3 o| + o| —18| —17
4
5. o| +1 -1 | — 7| =17

o +1| —10| — 9
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Thé products aa, ab, etc., are next computed, and the sums
[aa], [ab], etc., are found. The table of co-efficients and ab-
solute quantities then is

x ¥y 5

Check.
a) 5] ] m) s]

(a + 2 -1 -1 + 11 + 11 + 1r .-

L4 +3 | —1 — 34| — 33| — 33

[ +3 | — 5| — 4| — 4

[ +558 | +530 | +530

[s + 504 | + 504

and the checks being all fulfilled the computations are satis-
factory. Thus the normal equations are

Fe2x— y— z4+11=0,
b ) <y

— *+3y— F—34=o

— x— y+32— 5=o,

and it will be shown in Art. 147 how these may be solved
so as to continue the above system of checks throughout the
entire numerical work. _ "

The advantage of the above system is more apparent in
cases where the co-efficients and absolute terms consist of
several digits and where the decimals must be rounded off.
In such cases the number of decimals to be retained in the
work should be at least sufficiert to cause the checks to be
fulfilled with an error not greater than one unit in the last
place. The additional labor required for these checks is fully
repaid by the assurance of correctness in the numerical work.
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Gauss's Mecthod of Solution. -

144. The method of solution due to Gauss, by which is
preserved throughout the work the symmetry that exists in
the coefficients of the normal equations, is extensively used
by computors. To illustrate it, three normal equations of
equal weight will be sufficient.

From the #» observation equations are derived, by the
method of Art. 142, the three normal equations

[aale + [a8]y + [acls + lam] = o,
[bae + [48]y + [4c)s + [bm] = o,
[calx - [cbly + [eclz + [em] = o.

From the first equation take the value of x and substitute it
in the second and third, giving

. ([51}] _ [6a][ 4] )y + ([bc] — M)z + ([bm] _'[_1’1[]_[“_”‘]) = o,

la4] [aa] aa)
(o~ oD, (1) — Lo, (o - Loy

For the sake of abbreviation the quantities within the paren-,
theses may be denoted by [66.1]. [6c. 1], [ém.1] for the first
equation, and by [¢b.1], [cc.1], [em.1] for the second equa-
tion. Then these two equations may be written

[66.1)y + [bc. 1)z + [ém. 1] = o
[¢b. 1]y +[cc.1)s + [em. 1] = o,

which are similar in form to the second and third normal equa-
tions, except that the terms containing x have disappeared
and each co-efficient is marked with a 1. These quantities,
[66.1], [6c.1], may be called “auxiliaries,” and the law of
their formation is evident.
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From the first of these equations take the value of y and
substitute it in the second, giving

([cc. 1] — [—d'[_;gp:] l])z -+ ([tm. 1] — Lirlb_]b_[b—:':'l_l]) =o,

which may be abbreviated into
[ecc. 2]z + [em.2] = o,

where [cc. 2] and [¢m. 2] may be called “second auxiliaries.”

-

The value of the quantity z now is

__[em. 2]

[ec. 2]’
while the values of y and x are
_ _[em.1] [be.1]
Y= T o] T[%6.1)

_ [am] _ [ac]z _ [a8] .
*= lae] [aa] [aa]y ’

Z =

and the correctness of these results may be tested by inserting
the computed values of %, », 2 in the second and third normal
equations. Or the order of computation may be reversed and
the value of x be first obtained, z being first eliminated and
then y; this will be necessary only in critical cases,

145. When the normal equations have been formed by the
method of Art. 142, the checks there explained should be con- »
tinued by the computation of the auxiliaries [mm. 1], [6s.1], |
etc.; thus, (ba]as]

ba]|as
[6s.1] = [45s] — “Tadl
And a second table should be formed for the two equations
containing y and 2, by which four numerical checks are ob.

tained.
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In the next step also the auxiliaries [mm.2], [cs. 2], etc,
are found ; for example,

_ [cb.1][4s. 1]
[es.2] =[es. 1] — .

and then the third table affords three numerical checks.

146. A valuable final check is obtained by computing the
third set of auxiliaries; thus,

m = [mm. 2 _[”“'-2][071.2]
[mm. 3]=[mm. 2] T

_ [ a]fes. 2]
[ms.3] = [ms. 2] [ 2] ,

—[ss.2] —Lse-2lles- 2]
[‘“'3]_[ * J [“_.2] ’

and these three values are equal. Each is also equal to the
quantity 277, or to the sum of the squares of the residuals ob-
tained by substituting in the observation equations the values
of x, y, and 2, found from the normal equations.

To prove this let an observation equation be
cax+ b+ cz+m=o.

Then the most probable values, z, ¥, 2, will not reduce it to
zero, but leave a small residual . Hence, strictly,

ax + by +cz+m=v.

By squaring each of the values of v, and adding the results,
the value of 277 is found; and if from this each normal equa-
tion, first multiplied by its unknown quantity, be subtracted, it

reduces to

[am]x + [bm]v + |em])s + [mm] = 20~
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If this be regarded as a fourth normal equation, it becomes,
after the elimination of z,

(bm. 1]y + [em. 1]z + [mm.1] = 203,
and after elim;natingy it is
lem. 2]z 4 [mm. 2] = 2v?;
and finally, after the elimination of z,
| [mm. 3] = 222

Hence the auxiliary [mm.3] is equal to the sum of the
squares of the residuals; and that [ms. 3] and [ss. 3] have the
same value is shown by the method of their formation.

147. As a simple numerical example let the following ob-
servation equations, all of weight unity, be taken:

— X +2z2— 2=o,
—x+y — 9=o
+}’ _18:07

+ y—2— 7=0
+%—10=0.
The normal equations for this case have already been formed in

Art. 143, and the values of its co-efficients and check numbers
will be taken from the table there given.

The computation of the auxiliaries for the two equations
containing y and z is now made, thus:

o) =) — By 51X — gy

[c.1] =[be] — [bgzi]z— 1—I>2<I = — 1.5,
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[bm. 1] = [bm] — [b—"[l%—”i]= -+ =,
o) =g - Hlelo i
feor] =[] — e
om.x] =[em] = Lol g xxr g

[es.1] =[es] — Lﬁ]Lai]:— 4+IX£=—|—1.5,

[aa] 2
[mm. 1] = [mm] — [—m—fig—‘]mij = 4558 — — fﬁ =+ 497.5,
[ms.1] =[ms] — [i[%[]a—s] = + 530 — = >2< Y= 4 4695,

[ss.1] =[s] — [—sf;]lEde=+5°4—u>:"=+443-5,

and the corresponding tabulation is as follows, the four checks
being exactly fulfilled:

7 # Check.
b.1] c.1] m. 1] s.1]
[6 | +25| —15 | —285 | —275 | — 275
[e + 2.5 | +o5 + 1.5 + 1.5
[m + 4975 | + 469.5 | + 469.5
[s + 443.5 | + 4435

The coefficient [cc. 2] and the auxiliaries for the final equa-
tion in 2 are next found; thus,

[cc.2] =[ecc.1] — [-cé[;b][éé—l] .= 4 1.6,
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[c6.1][6m.1]

[em.2] = [em.1] — 36 1] = — 16.6,
¢cb.1][bs . 1]
[cs.z}l = [es. 1] —[—[b%T— = — 15.0,
mb . 1])[bm.1]
[mm.2] = [mm.1] — [ [bb][x] = 4 172.6,
b.1)|bs. 1
[ms.2] =[ms.1] — [ [blblx] ] = + 156.0,
[ss.2] =[ss.1] — [Sb[;z][hb:—‘l—ﬂ = + 141.0,
and the corresponding table with its checks is:
2z ¢
‘2] .2 5. 2] Check.
[e + 1.6 — 166 | — 15,0 | — 150
[ + 1726 | 41560 | + 1560
[s + 1410 | + 1410

The value of the unknown quantity z now is

— 16.6
1.6

= — % = + ro.75,

and from the two equations containing y and z,
2;8";5 + %gz = + 17.625,
and finally, from the first normal equation,
‘ x = --3 4 §2 4 4y = 4 8.500.
These values also exactly satisfy. the second and third normal
equations,

Lastly, the final check of Art. 146 is applied by computing
the third set of auxiliaries and the sum of the squares of the

- y=
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residuals. There are found [mm.3] = 0.375, [ms.3] = 0.375,
and [ss. 3] = 0.375. Also, by substituting the values of 1, y, 2,
in the observation equations,

7,=—0.125, ¥,=-0.125, 7;=—0.375, ?,=-0.250, s,=-0.375,
the sum of whose squares is 27* = 0.375. Hence the correct-
ness of all the numerical work is assured.

When the coefficients of the normal equations contain
decimals these are to be rounded off as the work progresses,
so that the checks may be sufficiently satisfied.

Weighted Observations.

148. The method of Gauss is also directly applicable to
normal equations derived from independent weighted observa-
tion equations. The process will be illustrated for three
unknown quantities. Let the observation equations be

+=x =o, p= 8,
“+y = o, P2 = 108,
+ 2 =0, 23 = 49,
+x—y + 0.92 = o, ps = 165,
—y+z+135=0  p= 718
—-x + 2 4 1.00 = 0, ps = 6o.
The first table is then as follows :
No. * 7 :
2 a b < ] s
I 8s +1 o "o ‘ o +1
2 108 o +1 o o + 1
3 49 o ) 4+ 1 o + 1
4 165 +1 —1 © | +0.92 | 4+ 092
5 78 o e | +1 + 1.35 | + 1.35
6 6o -1 —o0 T 1 + 1 +1
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Next the co-efficients [ paa], [ pab], etc., are computed and
the table of normal equations is formed, the co-efficients below
the diagonal line' being omitted, since [pba] is the same as
[ pab], and so on.

x ¥ z
- Check.
a] 6] ] m] 5]
[ pa +310| —165 | ~— 60 | 4+ 91.8| +176.8| +176.8
[ 26 +35t | — 78 | —257.1] —140.1| —149.1
[ #¢ + 187 | +165.3| +214.3] +214.3 |
[pm +341.8| +341.8| 43419
[2s +583.8| +583.8

This shows by its checks that the computations are correct,
the discrepancy between 341.8 and 341.9 being due to the
rounding off of decimals. Thus,
310x — 165y — 60z 4+ ¢1.8 = o,

— 165x 4 351y — 78z — 257.1 = o,

— 6ox — 78y 418724 165.3 =o,
are the normal equations for determining the most probable
values of z, y, and 2.

149. The auxiliaries [ pbd.1], [ pbc.1], etc., are computed
by exactly the same rules as before, and the table for the two

y 2z
Check.
5. 1] c. 1] m. 1] s.1]
[#6 |+ 263.2| —109.9| — 208.2| -— 550 — 54.9
[ #¢ + 175.4| - 183.1 + 2485 + 2486
[pm + 314.5' + 289.4 + 289.4
[ £s + 483.0| + 482.9
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reduced normal equations containing y and 2 is formed, the
four checks being fulfilled within one unit in the last figure.

The second auxiliaries [ pec.2], [ pem. 2], etc., are computed
exactly as before and the table for the final equation in 2 is

’ Check.
c.2] m. 2] 5. 2]
[#¢ |+ 120.5| + 96.1|+ 225.5] + 225.6
[pm + 149.8| + 245.9 | + 2459
[2s + 4715 | + 4714
formed and its checks found to be satisfactory. The value of
£ now is '
g=— 96T _ _ 0.7421
- 129.5 - 7421,

which is carried to four decimals in order that y and x may be
found correct to two decimals.

From the first equations in the two tables preceding the
last, the values of y and » are now obtained, thus,

y=+ 5+ 20 % = 4 o480,
x:_gl_.S go—z—|—l—6§y=—o.18,
310 310 310
and hence the final results to two decimals are
x = —o0.18, y= 4 048, 2z = —o0.74,

which are the most probable values of the unknown quantities.

150. Inserting these values of x, 3, z in the six observation
equations, the residuals are found to be

7, =—o0.18, v,= -+ 048, v;= —o0.74, v, = + 0.26,

v = -+ 0.13, ¥¢ = -+ 0.44.
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Squaring these and multiplying each square by its correspond-
ing weight there results

2pr* = 718.57.

The computation of the third auxiliaries gives

[pmm.3] = 78.5, [pms.3] = 78.6, [pss.3] = 78.8,

~an agreement which is as close as is necessary for this case

Logarithmic Computations.

15I. The use of logarithms is often advantageous in forming
the products required in the solution of normal equations. A
systematic scheme for such solutions will now be presented in
which the four-place logarithmic table given at the end of this
volume will be employed. In general a five- or seven-place
table will be found easier to use when the co-efficients contain
more than four significant figures.

The scheme to be used will be as follows for three normal
equations, the space for checks being in a horizontal row at
the bottom and these checks referring to the auxiliaries instead
of to the normal equations themselves, which are supposed to
have been first formed and checked by the method of Art. 144.
The form is first to be filled out by writing the numbers [aa],
[ab], . . . [s] in the places indicated. The logarithms of [aa],
[ad], . . . [as] are next taken out and recorded. Then writing
log [@aa] on a strip of paper, it is subtracted in turn from
log [af], log [ac], log [am], log [as], and the differences are
written, thus filling out the top row of squares.

Log [a&] is now written on a slip of paper and added to the
logarithms at the foot of the first row, thus giving the loga-
rithms for the second row. Those in the third and fourth
rows are similarly found by adding log [ac] and log [am] to
the same ones as before. The numbers corresponding to
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x ¥y s m s
[aa]  [a2] [ac] [am] [as]
log [ea] | log [a4] log [ac] log [am] log [as]
[a8] o [e<] [am] o [as]
108 [2a] 108 2] %8 [44]  (aa]
[22] [4c] [6m] [45]
T U M P 2 T o
lg[ e | log gyledd lg[ el |log s [o4]
number number number number
[66.1] [6c. 1] [6m . 1] [6s. 1]
[ee] [em] [s]
log Il:_Z—?][ac] log [[ jl [ac] log {gi-]] [ac]
number number number
[ec. 1] [em. 1] [es. 1]
[m2m] [n5]
log [[ }[am] log %]][am]
number number
[mmm . 1] [ms. 1]
Checks. [s. 1] [es. 1] ! [ms. 1] Lss 2]
! [ss. 1]
I

these logarithms are then taken from the table, and each
number being subtracted from that at the top of the square,
the co-efficients [66 1], [bc.1],...
check [b&s.1] at the foot of the second column is found by

[ms . 1] result,

Lastly the
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adding together [64.1], [éc. 1], and [ém.1]; and in a similar
. manner [¢s.1] and [ms.1] are found. Here [ss.1].may be
determined in two ways, by the addition of the horizontal row
and also by the column above it.

A second similar tabulation is also made for the next opera-
tion, the auxiliaries [66. 1], éc.1], ... [ms. 1] being transferred
from the first table to the top of the squares in the seconc
one. The process will be now exemplified by a numerical
example,

152. Let there be given three normal equations which have
arisen from a case of conditioned observations, namely,

4+ 17.73x — 4.80y — 8.132 4+ 4.60 = o,
— 4.80x 4 17.60y — 2402+ 34.89 = o,
— 8.13x — 2.40y 4+ 13.932 — 7.75 = O.

Here the check sums [as], [6s], [¢s], [#2s] are to be formed
from the given co efficients ; for example,

[es] = —8.13 — 2.40+ 13.93 — 7.75 = — 4.35,

but [mm], [ms], and [ss] cannot be obtained. For the purpose
of carrying through the full system of checks, one of these,
say [mm]," may be assumed, and the others be computed;
assuming [mm] = o, the value of [ms] is 4 31.74. The
co-efficients and check numbers are then arranged in the upper

right-hand corners of the squares in the following table. The -

four-place logarithms of those in the upper row are taken out,
the letter » being affixed to the logarithm of a negative num-
ber. The subtractions and additions of these logarithms as
required by the scheme of the last article are then made, and
the corresponding numbers taken from the logarithmic table.
These subtracted from those in the upper corners give the
auxiliaries [6b.1]. [4c. 1]. etc., which are written in the lower

e

1
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The checks of these are then made, and

found to be verified to one unit of the last decimal.

F Y 4 m s
+ 17.73 — 4.80 — 8.13 -+ 4.60 + 9.40
1.2487 0.68127 0.91017 ' 0.6628 0.9731
T1.4325% 1.66147 T.4141 ‘f.7244
+ 17.60 | — 2.40 + 34.89 + 45.29
0.1137 0.3426 0.09537 0.405672
+ 1.30 4+ 2.20 - 1.25 — 2.54
-+ 16.30 — 4.60 + 36.14 + 47.83
+ 13.93 — 1775 —4-35
0.5715 0.32427 0.63457
“+ 3.73 — 2,11 — 4.31 |
<+ 10.20 — 5.64 — 0.04
<+ 0.00 + 31.74
0.0769 0.3872
+ 119 + 244
— I.19 -+ 29.30
.0
Checks + 47.84 — 0.05 + 29 31 ,+ 71-29
- + 77 10

The next operation is to write the values of the auxiliaries

[66. 1], [bc.1], ..

. [7ns. 1] in a second table of squares, and by

a similar process obtain the second set [cc.2],...[ms.2].
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The scheme shown in the twelve upper left-hand squares of
the table in Art. 151 will apply to this case if a, 4, ¢, m be
changed to 4, ¢, 1, s, and 1 added in all brackets except the

y 2 ” I 5
+ 16.30 — 4.60 -t 3C.14 -+ 47.83
1.2722 0.66287 1.5580 1.6797
T.4506 0.3458 0.4675
+ 10.20 — 5.64 — 0.04
0.1134 1.0036% 1.1303%
4+ 1.30 — 10.20 —~ 13.50
-+ 8.90 + 4.56 + 13 46
— 1.19 =+ z9.30
log 4.56 | = 0.6590 1.9o38 2.0255
log 8.90 | = 0.9494 -+ 80.13 -+ 106 06
log z | = 1.7096% — 81.32 — 76.76
— 63.30
Check. + 13.46 — 76.76 — 63.30

“lowest in each square where the 1 is changed to 2. The
operations are strictly analogous to those of the preceding
table.

A table for the computation of the third set of auxiliaries
need not be formed, these being of no use, as the sum [mwn]
was assumed at the start. The value of z now is

_ 456

5= 8.90

or 2= —log~'1.7096 = — o.512.
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From the logarithms in the upper squares of the last table,

y = —log™" (0.3458) — log~* (T.45067 -} 1.70967) = — 2.362,

and similarly from the logarithms in the upper squares of the
first table, according to the last formula of Art. 144,

x = — log™" (1.4141) — log™* (1.66147 -+ 1.7096%)
— log™' (1.43257 + 0.3731#) = — 1.134,

which are the values that closely satisfy the given normal
equations.

After becoming acquainted with this method by solving
several sets of normal equations the student will find it,
except when the coefficients are small integers, to be gener-
ally more expeditious than methods which do not employ
logarithms.

Probable Errors of Adjusted Values.

153. When the sum of the weighted squares of the residuals,
377, has been computed, the probable error of an independent
observation of weight unity is given by (32), namely,

2p0*

in which » is the number of independent observations and ¢
the number of unknown quantities. If p,, p,, p, be the
weights of the adjusted values of z, y, 2, the probable errors of
these adjusted values then are

r ’ r r
Vy = ——, y = =y ¥y = ——,
VPJ V L4

and thus these are known as soon as the weights have been
determined.
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154. To find these weights the methods of Arts. 74, 75 may
be conveniently emplcyed for three unknown quantities.
Using the solution in Art. 141, replacing 4,, B, C,, etc.,
by [aa], [ab], [ac], etc., and designating by D the determinant
denominator common to the three values, there are found,

. D _ D
= [ailec] — el 22 ™ [aallec] — [ac] 2"

D
[aa) (48] = [ab]" *
which are the weights of the adjusted values of #, 3, 2.

Referring again to Art. 74, and to the method of Gauss
.given in Art. 144, it is seen that the value of 8 is

[em. 2]
" [ec. 2]
The negative sign here results from the fact that the absolute
terms [am], [0m], etc., are taken positive in the first members
of the normal equations, and the numerator vanishes when
those terms are all zero. The quantity [cc. 2] is thus the
reciprocal of the co-efficient of the absolute terms which be-
longed to the normal equation for 2 and is hence the weight
of z, or p, = [cc. 2].

Z2 =

By equating this value of p, to that found above, D may be
eliminated from the three expressions, giving

_ __ [ec. 2][86. 1] _[ec.2][5. 1][aa]
p=lec.2], p= [ec.1] ° % [6b][ec] — [6c]

which are values of the weights expressed in terms of the
coefficients and auxiliaries used in finding the value of z, , 2.

155. For example, consider the six observation equations of
Art. 148, and let it be required to find the probable errors of
the adjusted values of x, y, 2. The normal equations are
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solved in Art. 149, giving ¥ = — 0.18, y = 4 0.48, 2= — 0.74,
and the value of 2p7* is found to be 78.6; thus,

78.6
r= 0-6745‘/57_—3 = 3-45

is the probable error of an observation of weight unity. The
weights of the adjusted values of x, 3, z are

_ _ I29.5 X 263.2 _
P =295 HE T LT T 1944
129.5 X 263.2 X 310
b= 9:5 3 S0 = 177-5s

351 X 187 — 78°
and the probable errors of the values of x, 5, z are

345 _ _ 345
Y1295

gy = 345
Y1775

Accordingly the adjusted values may be written

= 0.26, 7ry= = 0.30.

x= —o0.18 £ 0.26, y= -+ 048 025 z= —o0.74 £ 0.30,

which shows the degree of mental confidence that the ad-
justed values may claim.,

- 156. When the number of unknowns is large the expres-
sions for the weights of the adjusted values become quite
complex, and in order to find their values it may be some-
times advisable to deduce x, », 2, w, etc., by two or more dif-
ferent orders of elimination. The following are formulas for
the weights for the case of four unknown quantities, where w
is first determined and x last: '

_ [da’ 3]k 2] [ébl] _ [dd. 3][cc. 2][5. lj[aa
b= " [dd.2)fec. 1] <= [dd. 2].fcc. x]a[bb]J’
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in which the subscript quantities have the following values,

[ec.1]a = [ecc] — %;%:
[dd.2])s=[dd.1] — [f%z.
_ (2T _ ([6)(ed)/[48) — [cd])’
[dd. 2]4—[dd] - —b_b - [“', I]a *

These, by omitting all factors containing &, reduce to the
same expressions as above derived for the case of three un-
knowns, z, 3, 2.

157. Problems.

1. Three observations on a single quantity furnish the observation
equations 3x = 2.18, 2x = 1.44, 4x = 2.90. Find the most probable
value of x and its probable error.

2. Observations made in a deep well near Paris on the tempera-
ture at different depths below the surface of the earth gave the
following results, # being the temperature corresponding to the
depth &:

Ford = 28 meters, ¢ =11°.71 C,, for d = 298 meters, ¢ = 22°.20 C,
= 66 ¢t = 12.90 d = 400 1= 23.75
d =173 ¢ = 16.40 d = 505 t = 26.43
d = 248 ¢ = 20.00 d = 548 t=27.70

Assume the temperature at the surface (4 =0), to be the annual
mean /, = 10°.60, and also that the law of variation of 7 with & is
iven b

& y = to + Sd + 742,

State the observation equations, form the normal equations, solve
them by the method of Art. 154, and show that the most probable
values of S and 7" are + 0.04153 1 0.00165 and — 0,00001929 +
0.00000356.
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3. Given the three normal equations,

6.649x -+ 2.041y + 2.941z — 1.00 = O,
2.041x + 4.249y + 0.926z — 1.35 = O,
2.941x 4 0.926y - 5.382z — 0.92 = o,

199

Form the sums [as], [&s], [¢s], [7s], and then solve the equations

by the use of logarithms.

4. At a station O angles were measured as follows between the

five stations, 4, B, C, D, £ :

AOB = 15° 37 32".67,

AOC = 45
AOD = 156
AOE = 268
BOC = 29
BOD = 140
BOE = 253
COD = 111
COE = 223
DOE = 112

20
23
44
43

45
6

02
23
20

47.34,
28.76,
1g.84,
13.56,
57-13
45.03,
42.86,
30.94,
49.32,

weight 6,
weight 4,
weight 8,
weight 3,
weight 2,
weight 6,
weight 1,
weight 4,
weight 8,
weight 2.

Let x, , £, 2, be the most probable corrections to the observed
values of 4O0B, AOC, AOD, AOE. State the observation equa-
tions, form and solve the normal equations, show that w = + o”".51,
z =+ 2"".36, etc., and that the adjusted values of the observed
angles are A0B =15° 37’ 32”12, .... DOE = 112° 20’ 49”.135
Also show that the weight of the adjusted value of 4OFZ is 8.9 and
that its probable error is + o’’.g1.

5. Solve the following normal equations:

+ 380.95x 4 142.86y —
+ 142.86x + 428.57y + 30.96z

— 16.88x 4+ 30.96y + 208.34z —

— 68.63x -

and show that the value of x is 4 o.27s.

16 88z — 68.63w —

6 08z 4+ 80.53w +

36.67 = o,
+ 9s5.00 =0,
6.087 — 121.51 = o,

16.34 = o,
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CHAPTER XI.

APPENDIX AND TABLES. ,

158. The elementary principles and applications of the
Method of Least Squares have now been given and exempli-
fied. It remains to note a few points that have not found a
place in the preceding chapters, to present some remarks on
the history and literature of the subject, and to give several
tables that will be useful in abridging computations.

Observations Involving Non-Linear Equations.

<
159. It has been thus far assumed that the observations can

be represented by equations of the first degree. If this is not
the case, and higher equations are involved, they can be re-
duced to linear ones by the following method :

Let the ¢ quantities to be determined be fepresented by
Zy 2, ... &, and the » measured quantities by M,, M, ... M,
and let the 7z observation equations be of the form

b=f(3,2...3) =M.

Now, let approximate values of the unknown quantities be
found, either by trial, or by the solution of a-sufficient number
of equations, and let them be denoted by Z,, Z,... 2, Let
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2/, 2, ...z/ be the most probable corrections to these ap-
proximate values; so that

14 4 ’
3, =42, + 3/, z,=Z,+z,...z¢=Zq+zq.

If, now, each of the functlons ¢ be developed by Taylor’s
theorem, and the products and higher powers of the correc-
tions be neglected, there will be 7 expressions of the form

b=f(Z, 2. Z)—M+‘f'i’ ,'+_ib o+ %,

=
az, az, az,

Here the terms f(Z,, Z, ... Z,) are known, and may be desig-
nated by N, N, ... ,; so that the = expressions reduce to
the form- ‘

dp_, , do_,

@, =
dz,'+ zz+ -+ qq—M N,

where the differential co-efficients are to be found by differen-
tiating each of the observation equations with reference to
each variable, and then substituting the approximate values
ZywZ,... 2,y for 2, 2,...2, Denoting them, thep, by 4, §, ¢,
etc., the z equations are of the form

as, + 65, + s+ ...+ &= M~—N,

in which all the letters except z, z,... 2, denote known
quantities. These 7z equations are exactly like the observa-
tion equations (10) or (12), and from them the normal equa-
tions are formed, whose solution furnishes the most probable
values of the corrections.

If non-linear conditional equations are given, it is also neces-
sary to find approximate values for the unknown quantities,
and assume a system of corrections. Then the functional con-
ditional equations may be developed as above, and reduced to
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linear equations containing the corrections as unknowns, which
may be treated by the method of correlatives, and the most
probable system of corrections determined, which, applied to
the approximate values, will give the adjusted results. If these
do not satisfy the original equations with sufficient accuracy, a
new system of corrections should be assumed, and the process
be again repeated.

Certain expressions, like that in Art. 111, may be reduced to
the linear form by the help of logarithms; and, when this is
possible, it will be found a more convenient method of treat-
ment than the development by Taylor’s theorem.

160. As an illustration of the method, let 47 be the numbei
of millions of people under the age of = years, and let it be
required to find the most probable value of z in the empirical
formula

¢ = 50.16sin 7(0.996)™z = M,

which is supposed to give the relation between A and » for
the population of the United States in 1880. The data are
nine values of A/, from the census compendium, given in the
second column of the table below.

The first step is to find by trial that 1°.55 is an approximate
value of the angle . The second is to compute nine values of

the expression
50.16sin 72(0.996)™1°.55 = NV,

corresponding to the nine given values of »: these are put in
the third column of the table. In the fourth column are the
differences #/ — N between the observed and computed values.
The fifth column contains the values of the derivative

(—ldi) = 50.167(0.996)™ cos m(0.996)™1°.55,
Z

corresponding to the nine values of ».
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m. M. NV |\ m-n| =@
ds

10 13.39 12.0 | 4+ 0.49 | 466
20 24.12 24.06 + 0.06 814
30 33.29 33.07 + o0.22 1004

40 39.66 40.08 | — o042 | 1032
50 44.22 44.98 — 0.76 913
60 47.33 48.10 | — 0.77 674
70 | 49.16 | 49.74 | —o0.58 | 349
8o 49.94 50.14 | — 0.20 29

90 50.14 | 49.67 | + 0.47 447

Let 2 be the most probable correction to the assumed value
of 2. Then the last two columns furnish the nine observation

equations
4667 = + 0.49,
8147 = 4 0.06, etc.

From these the single normal equation is formed, and its solu-
tion gives
7 = — 0%.00025 = — 0°.014,

and hence the most probable value of z is

[}

z = 1°.55 — o%.014 = 1°.536;
so that the empirical formula may be written

M = 50.16 sin 7(0.996)™1°.536.

When z is 1°.55, the sum of the squares of the residuals is
about 2.25 ; and, when z is 1°.536, that sum is about 1.67; so that
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the precision of the formula has not been greatly increased by
the variation in the angle z. By slightly increasing the number
0.996, the formula can be made to more closely agree with the
" observations.

Mean Ervor and Probable Error.

161. The probable error is an error of such a value that any
given error is as likely to exceed it as be less than it, and it
hence seems to be the quantity that would most naturally be
selected for indicating the precision of observations. But there
is another error very commonly employed for the same purpose
called the “mean error,” whose definition is, the error whose
square is the mean of the squares of all the errors. Hence
the mean error is, for direct observations, the square root of the

2

quantity Ei, or, in terms of the residuals, the square root of
”n

2

the quantity In general, then, the mean error can be

n—1
determined from the formulas for probable error by changing
the co-efficient 0.6745 into unity. If » be the mean, and » the
probable error, the relation between them is

m = 1.48267.

" 0.6745
In the annexed figure, OP indicates the probable error, and
OM the mean error. It is seen, by Art. 29, that A/ is the
abscissa of the point of inflection of the probability curve.

In Table II, the value of the integral for the argument
1.48267 is 0.6826. Hence 0.6826 is the probability that an
error is less than the mean error, or in 1,000 errors there
should be 683 less than ». It is a fair wager of 1 to 1 that
an error taken at random is less than the probable error; but it
is a fair wager of 683 to 317, or about 2.15 to I, that it is less
than the mean error.
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The mean error is generally used in German books. In this
country the probable error is commonly employed ; and, being
the most natural unit of comparison, it is certainly to be desired
that it alone should be used, and the mean error be discarded.

1\

O\

c

u MP o b
Fig. 14..

162. Instead of the mean or probable error, a quantity
called the “huge error” might be employed to indicate the
precision of measurements. The huge error is defined to be
an error of such a magnitude that ggg errors out of 1,000 are
less than it, and only 1 greater; or, in other words, that the
probability of an error being less than it, is 0.999. If « be
the huge error, the relation of # to » is found from Table II

For P = 0.999, the argument “is 4.9: hence
: r
U = 4.97.

Accordingly, all formulas for probable error may be changed
into those for huge error by writing 3.3 in place of 0.6745.
For instance, the huge error of a single direct observation is
given by

pI/e
u=3.3\/ﬂ_l.

In Fig. 14 the abscissa OU represents the huge error, and the
area UDADU is 0.999 of the total area.
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Uncertainty of the Probable Error.

163. The value of the probable error 7, deduced in Art. 67,
is the best attainable value, or rather the most probable value.
The inquiry is now to be made as to what are the probable
limits of this value of 7, or what is the probable error of the
probable error. Or, if the probable error » be written in the
form

r(1 £ %),
the number # is the uncertainty of the probable error, that is,
it as likely that the value formed for » lies between the limits
r(1 —#) and »(1 4+ %) as that it lies outside those limits.
- Thus ur may properly be called th. probable error of the
probable error 7.

164. A series of observations having been made, all having
the same measure of precision %, the sum of the squares of the
errors is a constant, while the probability of any value 4
is, by Art. 65,

P’ = pr(dx)*m — ing — K'3es
and the value of Z which renders this a maximum is the most
probable value of 2. Now let % 4 x4 be a value greater than
this protable value; then

P = (k4 uh)"(dx)*m — tne — b+ uhnist
is the probability of the value %Z - #£. The ratio of these
probabilities is

”
and taking the logarithms of both sides of this equation,
144

% =nlog (1 + %) — (2u4 + w*)A*Zx?;

log
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also replacing log (1 + #) by # — 4«? the terms involving
higher powers of # being omitted, there results

14

log %— = (n — 22°2x*)u — (}n + 722x*) s’

The value of % deduced in Art. 65 causes the co-efficient of «
to become zero, whence

144 ’’
log > = nw* and ﬁ;—, ==,

Thus the probability of the variation #Z in the value of % is
expressed by the function

Pl = ce-m,
which is of the same form as the law of accidental error.

The probability that # is less than any assigned limit is
therefore, as in Art. 32, expressed by the integral

1 2 o
ﬁ/i f e~ "du = —= / e tal,
Yo Y o

and the value of this integral is §, as in Art. 61, when
t=u¥n=o0.4769.

Consequently the probable error of the measure of precision 4 is

0.4769
U = =
Vn'

and hence the probable limits of /% are

h(n + "—"1‘/1;16—9) and /z(l - %Z;?z’).

Thus the uncertainty in the probable value of %Z has been found.

Now, since 2r = 0.4769, the uncertainty in the value of 7 is
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the same as that in the value of 2. The probable limits of the
probable value of the probable error 7 are, therefore,

f(l - 95&122) and r(x =+ 0'4—7_69),

Vn Vn
and the uncertainty in » decreases directly as the square root
of the number of observations. Thus for four observations
the uncertainty in 7 is 24 per cent of its value, for 16 observa-
tions it is 12 per cent of its value.

165. The above supposes that the probable error is computed
by the sums of the squares of the residuals according to for-
mulas (20) and (21). If, however, formulas (35) and (36) be
employed, using the sum of the residuals only, then a similar
investigation will show that

r(r — o.5ci_9_§) and r(l 3@),
Vn Vn

are the probable limits of the probable error ». Here the

uncertainty is greater than in the former case, 114 observations

being necessary to give the same uncertainty in the probable

error as 100 observations give when (20) and (21) are used.

It may be noted, finally, that some writers state the above
expressions for the uncertainty so that 4z — 1 appears in the
denominator instead of ¥ 7.

The Median.

166. When an odd number of direct measurements are made
on a single quantity, the middle one in the order of numerical
magnitude is called the median. Thus, if the results of nine
direct observations are

103, 104, 105, 106, 106, 107, 108, 11O, TIIT,

the fifth one, counting from either end, is 106, which is the
median.
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If the number of observations be even, the median is the
mean of the two middle ones in the order of magnitude.
Thus, if to the above observations there be added 112, then
the median is $(106 4 107) = 1064. In the first case the
arithmetical mean is 106§ and in the second case it is 107.2.
The median in general differs from the arithmetical mean.

When observations are weighted these weights are to be
»sed in counting off the large and small observations until the
iniddle one or the two middle ones are found, and then an
interpolation is made to find the median. For example, let

Observation =1, 2, 3, 4, 5,
Weight = 2, 5, 16, 10, 7.

Here the sum of the weights is 40, which may be taken as the
total number of direct observations, and the median plainly lies
between 24 and 34. Seven observations are less than 24 and
seventeen are greater than 3%; thus sixteen observations may
be said to lie between 24 and 34, and this interval is to be
divided in the ratio of 20 — 7 to 20 — 17. The median hence is

23 4+ 13 = 3% or again 3§ — ¥ = 355

167. The probable error of a single observation is to be
found bv counting off one-fourth of the residual errors from
both ends, and if these are not equal their mean may be
taken. Thus, for the following case where the median is 33,

Observation = 31, 32, 32, 33, 33, 34 35 36
Residual =2 I 1, o O I, 2, 3

the probable error found by counting off two residuals from
the left is 1.0, while by counting off two from the right it is
I 5, the mean of these being 1.25, and then '

, __ L.25 = 0.44
° Vg -44,

is the probable error of the median itself,
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The median was first suggested by Galton in 1875* as a con-
venient method of obtaining a mean without the necessity of
making many measurements. For example, if it were desired
to obtain the mean height of the boys in a school they might
be arranged in a row in the order of height and then the
measurement of the middle boy would give the median.
Further, if the probable variation in height were required it
would be only necessary to measure the two boys standing at
the quarter points of the line, and then subtract the mean of
their heights from the median. This gives the probable error
of a single height, and by dividing it by the square root of the
number of boys the probable error of the median height is
obtained.

The median, when obtained by the process indicated by
Galton, may be regarded as a representative value of the
mean quantity which is desired. But when all the individual
measures are actually taken, the arithmetical mean and not
the median is the most probable value, provided that the law
of variation is the same as the law of facility of accidental
error. To take the median in the latter case, for the sake of
avoiding computation, can only be justified when the observa-
tions are rough ones, and then the median itself is liable to
differ considerably from the arithmetical mean. The use of
the median, except in the manner indicated by Galton, does
not seem warranted in cases of symmetric probability.

The uncertainty of the probable error of the median is
greater than that of the arithmetical mean, 217 observations
being necessary in the former case to give the same uncer-
tainty as 100 observations give in the latter case.}

* Statistics by Intercomparison, Philosophical Magazine, vol. xlix, p. 33.
t See Gauss, Werke, vol. iv, pp. 109-117. See also Scripture, On mean
values from direct measurements, in Studies from Yale Psychological Labora-

‘ory, 1894, vol. ii, pp. 1-39.
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History and Literature.

168. The average or arithmetical mean has, from the earliest
times, been employed for the determination of the most proba-
ble value of a quantity observed several times with equal care.
From this arises so naturally the idea of weights and of the
weighted mean, that undoubtedly both were in use long before
any attempt was made to deduce general laws based upon
mathematical principles. About the year 1750 certain indi-
rect observations in astronomy led to observation equations,
and the question as to the proper manner of their solution
arose. Boscovich in Italy, Mayer and Lambert in Germany,
Laplace in France, Euler in Russia, and Simpson in England,
proposed different methods for the solution of such cases, dis-
cussed the reasons for the arithmetical mean, and endeavored
to determine the law of facility of error. Simpson, in 1757, was
the first to state the axiom that positive and negative errors
are equally probable; and Laplace, in 1774, was the first to
apply the principles of probability to the discussion of errors
of observations. Laplace’s method for finding the values of ¢
unknown quantities from » observation equations consisted in
imposing the conditions that the algebraic sum of the residuals
should be zero, and that their sum, all taken with the positive
sign, should be a minimum. By introducing these conditions,
he was able to reduce the » equations to ¢, from which the ¢
unknowns were determined. This method he applied to the
deduction of the shape of the earth from measurements of arcs
of meridians, ana also from pendulum observations.

The honor of the first statement of the principle of Least
Squares is due to Legendre, who in 1805 proposed it as an
advantageous and convenient method of adjusting observations.
He called it ‘“Méthode des moindres quarrés,” showed that
the rule of the arithmetical mean is a particular case of the
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general principle, deduced the method of normal equations, and
gave examples of its application to the determination of the
orbit of a comet and to the form of a meridian section of
the earth. Although Legendre gave no demonstration that
the results thus determined were the most probable or best,
yet his remarks indicated that he recognized the advantages of
the method in equilibrating the errors.

The first deduction of the law of probability of error was
given in 1808 by Adrain, in “The Analyst,” a periodical pub-
lished by him at Philadelphia. From this law he showed that
the arithmetical mean followed, and that the most probable
position of an observed point in space is the centre of gravity
of all the given points. He also applied it to the discussion of
two practical problems in surveying and navigation.

In 1809 Gauss deduced the law of probability of error as in
Arts 27, 28, and from it gave a full development of the method.
- To Gauss is due the algorithru of the method, the determi-
nation of weights from normal equations, the investigation of
the precision of results, the method of correlatives for condi-
tional observations, and numerous practical applications. Few
branches of science owe so large a proportion of subject-matter
to the labors of one man. '

The method thus thoroughly established spread among as-
tronomers with rapidity. The theory was subjected during the
following fifty years to rigid analysis by Encke, Gauss, Hagen,
Ivory, and Laplace, while the labors of Bessel, Gerling, Hansen,
and Puissant, developed its practical applications to astronom-
ical and geodetical observations. During the period since 1850,
the literature of the subject has been greatly extended. The
writings of Airy and De Morgan in England, of Liagre and
Quetelet in Belgium, of Bienaymé in France, of Schiaparelli
in Italy, of Andri in Denmark, of Helmert and Jordan 1n
Germany, of Chauvenet and Schott in the United States, have
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brought the science to a high degree of perfection in all its
branches, and have caused it to be universally adopted by scien-
tific men as the only proper method for the discussion of
observations.

169. In 1877 the author published, in the “Transactions of
the Connecticut Academy,” a list of writings relating to the
Method of Least Squares and the theory of the accidental
errors of observation, which comprised 408 titles. These were
classified as 313 memoirs, 72 books, and 23 parts of books.
They were written by 193 authors, 127 of whom produced only
one book or paper each. The date of publication of the earliest
is 1722. From that time to 1805, the year of Legendre’s an-
nouncement of the principle of Least Squares, there are 22
titles ; since 1805 there is a continual yearly increase in the
number ; thus:

From 1805 to 1814 inclusive, there are 18 titles.
From 1815 to 1824 inclusive, there are 30 titles.
From 1825 to 1834 inclusive, there are 32 titles.
From 1835 to 1844 inclusive, there are 45 titles.
From 1845 to 1854 inclusive, there are 63 titles.
From 1855 to 1864 inclusive, there are 71 titles.
From 1865 to 1874 inclusive, there are g5 titles.

The books and memoirs are in eight languages; and, classified
according to the place of publication, they fall under twelve
countries. It may be interesting to note the number belonging
to each; thus:

Countries. Countries.
Germany . . . . . 153 Austria . . . . . . 10
France . . . . . . 148 Switzerland . . . . . g9
Great Britain . . . . 56 Holland . . . . . . 7
United States . . . . 34 Sweden . . . . . . %
Belgum . . . . . . 19 Denmark . . . . . 5
Russia . . . . . . 16 _

Italy . « « « . ¢« . 14 Total . . « « . 408
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Languages. Languages.
German . . 167 Dutch . . . .
French . . . . . 110 Danish . . . .
English . go | Swedish. . . .
Latin. . . . 16
Italian 9 Total

XI.

& N

. 408

The titles of papers and books issued since 1876 may be mostly
found in the excellent publication ¢ Jahrbuch iiber die Fort.
schritte der Mathematik.”*

Constant Numbers.

170. In the preceding pages the constant numbers entering
the formulas for probable error have been stated only to four
decimal places, which is entirely sufficient for any practical

computation.

As a matter of mathematical interest, however,

they are here given to seven decimals, together with a few other
related constants and their common logarithms.

Symbol. Constant. Logarithm.
hr 0.4769363 1.6784604
hr\fg 0.6744897 1.8289754
hryx 0.8453476 1.9270353
V2 1.4142136 0.1505150
'"' 3-1415927 0.4971499
Vr 1.7724539 0.2485749
T4 0.5641896 1.7514251
¢ 2.7182818 0.4342945
Mod. 0.4342945 1.6377843

* Gore’s Bibliography of Geodesy, published in the U. S. Coast and Geodetic
Survey Report for 1887, will be found excellent on the subject of the method of

least squares.
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Answers to Problems,; and Notes.

171. Below are given answers to a number of the problems
stated in the text and hints concerning the solution of others,
together with explanatory notes upon some of the more diffi-
cult points in the theory of the subject.

Article 16.—Problem 2: 4. Problem 3: 0.9308 by the
use o1 rable V. Problem 5: Find the probability of a hun-
dred heads in a single throw of a hundred coins, and multiply
this by the number of inhabitants and the number of seconds
to find the probability of the occurrence under the given data.
Problem 6: The probability that the nickel is in the first purse
is 1§.

Article 26.—The equation at the foot of page 20 may be
written in the form

y—=y __ 2(dx—x)
y  (m+t2)dx— X

and, in passing to the limit, y — »’ is infinitely small compared
to y, and dx vanishes with respect to . Hence in the second
member 2x is infinitely small compared to the denominator,
and accordingly x vanishes with respect to (m -+ 2)dx.

Article 37.—Problem 2: see Fig. 2 and Fig. 6. Problem 3:
Show this by the principle of sufficient reason. Problem g5:
because £ depends upon /% and £ is different in the two cases.
Problem 6: From formula (2) an expression for a+ is found,
then 4, dx, x, and y are derived by observation and # is com-
puted; thus for the case of Article 33 the probability of the
error 3”.5 may be roughly taken as that of the occurrence
between the limits 3”.0 and 4”.0, so that the observed value of
¥ is v$y» and as dx is 1.0, there results

hdx 100 X I

at = — = = 2.I1;
veh ' T 242,236 X 11.57 ?
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whence 7 = 4.48, a rude result indeed, but by increasing the
number of observations and decreasing th: interval between
the successive errors a closer accordance may be secured.

Article 59.—Problem 2: N, 2.4 E. Problem 3: 2z =
— 0.19, 2, = + 0.14, 2, = + 0.05, etc. Problem 4: {44 to A4,
# to B, and 1§ to C, the greater the weight the less Fing the
amount of correction.
2px

n
is sometimes not clear to students. If each term such as gz,
occurs zy, times in z observations, then

2% .ny, + p.x"ny, + etc. = Zpa’,

Article 67.—The reason why 2pzx’y is the same as

or
”(Plxlayl +Pax2ya + etc.) = pra ’
whence, dividing by #, follows the statement as given,

Article 89.—Problem 1: 0”.408. Problems 3 and 4: The
combination of observations differing widely in precision, as
in these examples, is not always safe in practice, because of
the constant errors which are liable to affect the less precise
series, so that the practical weight of the more precise series is
often greater than that derived from the probable errors.
Problem 6: It should be inferred that a constant source of
error exists.

Article g8.—Problem 2:0.000137, which occurs when A is
135 degrees. Problem 4: 0.005. Problem 6: The probable
error of the mean of the three readings is %(/)—8-1-, and that of

3
the difference of level of two stations is this multiplied by
¥/'2; then for the 130 stations there are 129 differences of level,
and the probable error of the final result is 0.0093 feet.

Article 107.—The proof of this method may be made in
the following manner: Let x,” and y,” be the adjusted values
of the observations x, and y,, so that the residual errors are
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x,/ — z,and y,” — »,. Then the most probable values of S and
T are to be found from the condition

2p(‘x.l’ - xl)’ + 2‘(})1’ _yl)’ =a minimum'

The adjusted points all lie upon the line whose equation is
y=3Sx~+ 7. Now let a second line be drawn through the
observed point whose co-ordinates are z, and y,, and the ad-
jisted point whose co-ordinates are x,” and y,”; its equati.n it
y —y,= S (¥ — ). By combining this with the equation of
the required line the values of the residual errors are deduced,
whence the above condition becomes

P+ Sn

(8" —8)
This is to be made a minimum for &, S, and 7 separately.
Taking the derivative with respect to S’ and equating to. zero
there is found S'S+ p = o0, which gives the inclination S’ in
terms of S. Again, differentiating with respect to S and 7
there are deduced two equations in S and 7, namely,
S Zxy — S*TSx — S2Y*+ 25Ty — nST*+pSZx— pZxy+ pTZx=o0,
SSr+nT—Zy=o,

2(Sx+ T —‘y)’ = a minimum.

and the solution of these gives values for S and 7 which agree
with the results stated in the text.

Article 112.—Problem 6: Let p represent the population in
millions and » the number of decades since 18c0. Then using
the ten censuses from 1790 to 1880, there is found

2 = 4.97 + 0.873x + o0.581x",
which gives 59 890 000 for 1890, while the actual enumeration
was 62 870 000. Again, taking the seven censuses from 1820
to 1880, there is found

2 = 7.29 — 0.280x + 0.689x",

which gives 60 579 00o for 1890, an accordance more satisfac-
tory. The sum of the squares of the residual errors for the
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latter formula is 1.35, while for the same seven census years
the former gives 3.34.

Article 113.—Whether observations shall be independent
or conditioned depends in general upon the selection of the
unknown quantities whose values are to be determined. Thus
if AOB, BOC, and AOC are angles measured at a station O,
the observation equations are independent if x and y be put
for two of these angles. But if x, y, and 2 are taken as the
three quantities, these are conditioned by the necessary rela-
tion that the sum of two of them is equal to the third.

Article 126.—Problem 1: Refer to problem 4 of Article
59. Problem 2: x =093° 48 14”7.99, y = 51° 54" 59".84, 2z =
34° 16’ 49".22. Problem §: This was the problem proposed
by Patterson in 1808, and by whose discussion Adrain was led
to the discovery of the principle of least squares.

Article 144.—The arithmetical mean of more than two ob-
servations is, in strictness, the most probable value only when
the results of the measurements are unknown. If the mind
knows the values of the measurements, it instinctively assigns
greater reliability to some than to others, and hence the weights
are not equal. For example, let M, = 40, M, = 51, M, = 52
be three observations of the same quantity: it is reasonable
to suppose that 47, is of less reliability than the others, while
the method of the mean assigns it the same weight. Theory
has not been able to determine what theoretical weighte
should be assigned in a case like this, but probably an ap
proach to them might be secured by taking the reciprocal of
M, — M) + (M, — M, as the weight of M, the reciprocal
of (M,— M)+ (M, — M) as the weight of M,, and that of
(M, — M,)* + (M, — M,y as the weight of M,. For the above
numerical example this gives y}¢ as the weight of 40, {35 as
the weight of 51, and {}z as the weight of 52, from which
results the general mean z = 49.18, whereas the arithmetical
mean is 47.67.
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Description of the Tables.

172. Tables I and II give values of the probability integral
(4) ; the first for the argument /xz, and the second for the argu-
, OT Z. In both cases the arrangement is like that
0.4769 7
of logarithmic tables, and needs no explanation. The use of
Table I is illustrated in Arts. 32 and 33, and that of Table II
in Art. 128. These tables were first given by Encke in 1832,
and were computed by him from a table of the values of fe~#d?,
which was published by Kramp in 1799.

ment

Tables III and IV give values of the co-efficients which
occur in the formulas for probable error for values of 2. Table
III applies to the usual formulas (20) and (21), and its use is
illustrated in Art. 82. Table IV applies to the shorter formulas
(35) and (36), and its use is illustrated in Art. 84. These tables
were computed by Wright, and first published in “ The Ana-
lyst” for 1882, vol. ix, p. 74.

Table V gives four-place logarithms of numbers, and Table
VI gives four-place squares of numbers. The latter will be
found very useful for obtaining the squares of residuals. It
may be also used in forming the co-efficients in normal equa-
tions, and for other purposes. For instance, the co-efficient
[@6] may be written -

(48] = $([(a + &1 — [] = DA,

and the sums [@'], [6'], and [(a + 4)'] may be easily formed with
the help of the table of squares. This method has the advan.
tage that no attention need be paid to the signs of & and 4,
except in forming the sums a 4 4.

Table VII is to be used in discussing doubtful observations
by Chauvenet’s criterion, and its use is explained in Art. 130.
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Table VIII gives the squares of reciprocals of numbers from
0.0 to 9.0, and may be used in the computation of weights from
probable errors.

TABLE L

¢
Values of the Probability Integral ;/2—_ f e~ 4t for Argument # or %x.
T o

hx. ) 1 2 3 4 5 6 7 8 9 | Diff.
0.0. {0.00000.0113 0.0226 0.0338 0.0451 [0.0564 0.0676 0.0789 0.0901 0.1013 | 113
o.1 1125 1236 1348 1459 1569| 1680 1790 1900 2009 2118 IiO
02 | 2227 2335 2443 2550 2057 2763 2869 2974 3079 3183 106
03 | 3286 3380 3491 3593 3694| 3794 3893 3902 4090 4187 | 100
04 | 4284 4380 4475 4569 4662 4755 4847 4937 s027 S5I17| 92
0.5 300505292053790 -5465 0.5549 |0.5633 0.5716 0.5798 0.5879 0. 3959 83
0.6 6117 6194 6270 6346 6420 6494 6566 6638 6708| 74
0.7 6778 6847 6914 6931 7047| 7112 7175 7238 7300 7361 | 64
08 | 7421 7480 7538 7505 7651 7707 7761 7814 7867 7918| 55§
09 | 7969 8o1g 8068 8116 8163| 8209 8254 8299 8342 8385| 45
1.0 |0.8427 0.8468035080854808586 0.8624 0.8661 0.8698 0.873308768 37
1.1 | 880z 8835 8900 8931 | 8961 8991 goz20 9o4 30
1.2 | 9103 9130 915 9181 9205} 9229 9252 9275 9297 9319| 2
L3 | 9340 93061 9331 0400 0419| 9438 9456 9473 9490 9507 I
L4 | 9523 9539 9554 9569 9583 | 9597 9611 9624 9637 9649| 14
1.5 0966109673096840969309706 0971609726097360974509755 10
1.6 | 9763 9772 978 9796| 9804 9311 9318 ¢82% g 7
17 | 9338 9344 9850 9856 o861 | 9867 9872 9877 9882 .9886| 5
1.8 | o891 9895 9899 9903 ggo7 | 9911 9915 9918 9922 9925| 4
1.9 | 9928 9931 9934 9937 9939| 9942 9944 9947 9949 9951 3
2.0 |0.99530.99550.9957 0.9959 0.9961 |2.9963 0.9964 0.9966 0.9967 0.9969| 2
2.1 | 9970 9972 9973 9974 9975| 9976 9917 9979 9980 9980| I
22 | 9981 9982 9983 9984 9985| 9985 6 9937 9987 9988 I
2.3 | 9989 9989 9990 9990 999I | 9Y99T 9992 9992 9992 9993
+24 | 9993 9993 9994 9994 9994| 9995 9995 9995 9995 9996

2. 10.9953 0.9970 0.9981 0.9989 0.9993 |0.9996 0.9998 0.9999 0.9999 0.9999

0 1.0000

hx. o I 2 3 4 [ 6 7 8 9 | Diff.
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‘ TABLE 1II.
Values of the Probability Integral -2—;f e¢~¥dt for Argument f _or%
Vo 0.4769 7
X .
p o I 2 3 4 5 6 7 8 9 | Diff.
0.0 [0.0000 0.0054 0.0108 0.0161 0.0215 [0.0269 0.0323 0.0377 0.0430 0.0484 | 54
o1 | 0538 o501 0645 0699 0752 0806 0859 0913 1020| 354
¢t oz | 1073 1126 1180 1233 1236 lg39 1392 1445 1498 1551 53
' 0.3 , i603 1656 1709 1761 1814 1866 1918 1971 2023 2075| s2
0.4 | 2127 2179 2230 2282 2334| 2385 2436 2438 2539 2590| st
0.5 {0.2641 0.2691 0.2742 0.2793 0.2843 [0.2893 0.2044 0.2994 0.3043 0.3093| 50
0.6 | 3143 3192 3242 3291 3340 3389 3438 3487 3535 3583 49
o7 | 3632 3680 3728 3775 3823| 3870 3918 3965 4012 4059 46
08 | 4105 4152 4198 4244 4290| 4330 4381 4427 4472 4517 45
0.9 | 4562 4606 4651 4695 4739| 4783 4827 4860 4914 4957 43
1.0 [0.50000.5043 0 5085 0.5128 0 5170 [0.5212 0.5254 0.5295 0.5337 0.5378 | 41
LI | 5419 5460 530 5540 5581 5620 5660 5700 §739 5778| 39
1.2 | 5817 35856 35894 5932 §970| 6008 6046 6083 OGizo 6157| 37 .
1.3 | 6194 6231 6267 6303 0339 6375 G410 6445 6480 6515 35
1.4 | 6550 6584 0618 6652 6686| 6719 6753 6786 6818 st| 32
1.5 [0.6883 0.6915 0.6947 0.6979 0.7011 [0.7042 0.7073 0.7104 0.7134 0.7165{ 30
1.6 | 7195 7225 7255 7284 7313| 7342 7371 7400 7428 7457| 28
L7 | 7435 7512 7g4o 7§67 7594 | 7621 7648 7675 7701 7727| 26
1.3 | 7753 7778 7304 7829 7354 7879 7904 7928 7952 7976| 24
1.9 | 8000 8023 8047 Boyo Bog3| 8116 3138 8161 8183 8205| 22
2.0 [0.8227 0.8248 0.8270 0.8291 0.8312 |0.8332 0.8353 0.83730.8394 0.8414| 19
2.1 | 8433 8453 8473 8492 8511} 8530 8549 8567 8585 860o4| 18
2.2 | 8622 8639 8657 8674 8692 8709 8726 8742 8759 8775| 17
2.3 | 8792 8808 8324 8840 8855| 870 8886 8gor 8916 8930 15
2.4 | 8945 8960 8974 8988 9ooz| 9016 goz9 9043 9056 gobY| 13
2.5 [0.90820.90950.9108 0.9121 0.9133 [0.9146 0.9158 0.9170 0.9182 0.9193 | 12
2.6 | 9205 9217 9228 0239 9250 926t 9272 9283 0293 Q304 IO
2.7 | 9314 9324 9334 9344 9354 | 9364 9373 9383 9392 9401 9
28 | 9410 9419 9428 9437 0446| 0454 0463 9471 0479 0487| 8
2.9 | 9495 9503 95IT 9519 9526 9534 9541 9548 9556 9563| 7
3.0 [0.95700.9577 0.9583 0.9500 0.9597 |0.0603 0.9610 0.9616 0.9622 0.9629 6
31 | 9635 9641 9647 9652 9058 | 9664 9675 9680 9636 5
32 | 9691 9696 gyo1 9706 97IT| 9716 9721 9726 9731 9735| §
33 | 9740 9744 9749 9753 9757| 970t 9766 9770 9774 9778| 4
34 | 9782 9786 9789 9793 9797| 9800 9804 9807 9811 9Br4f 4
3 [0.95700.96350.9691 0.9740 0.9782 [0.9818 0.9848 0.9874 0.9896 0.991 5
4 | 9930 9943 9954 9963 9970| 9976 9981 9985 9988 gggo
S| 9993 9994 9996 9997 9997 | 9998 9998 9999 9999 9999
o |r.0000
x .
-1 ° I 2 3 4 5 6 7 8 9 | Diff.
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TABLE III. _
For Computing Probable Errors by Formulas (20) and (21).
. | o515 ob4s_ 1, | oGus | _obns
| Vn— r \/u(n— 1) ) \/n—l \/n(n— 1)
40 o.1080 0.0171
41 1066 0167
2 0.6745 0.4769 42 1053 o163
3 47 2754 43 1041 o159
4 3804 1947 44 1029 o155
5 0.3372 0.1508 45 0.1017 0.0152
6 3016 1231 46 100§ o148
7 2754 1041 47 0994 o145
8 2549 ogot 48 0984 o142
9 2385 0795 49 0974 o139
10 0.2248 0.0711 50 0.0004 0.0136
I 2133 0643 5t 0954 o134
12 2029 0587 52 0944 o13t
13 1947 0540 53 0935 o128
14 1871 0500 54 0926 o126
1 0.1803 0.0465 5 0.0918 0.0124
I 1742 0435 S 0909 orzz
17 1686 0409 57 0yoi orig
18 1636 0386 58 0893 oriy
19 1590 0365 50 0886 oIl
20 0.1547 0.0346 60 0.0878 - 0.0113
21 1508 0329 61 0871 ort1
22 1472 o314 62 0864 o1rlo
23 1438 0300 63 0857 o108
24 1406 0287 64 o850 o106
2§ 0.1377 0.0275§ 65 0.0843 0.0105
26 1349 0265 66 0837 0103
27 132 0255 67 o830 orol
28 12 0245 68 o824 o100
29 1275 0237 69 o818 0098
30 0.1252 0.0229 70 0.0812 0.0097
31 1231 0221 71 0806 0096
2 1211 0214 72 o8oo 0094
33 1192 0208 73 0795 0093
34 1174 o201 74 0789 0092
35 0.1157 0.0196 75 0.0784 0.0091
36 1140 o190 8o 0759 0085
37 1124 0185 85 736 0080
38 1109 o180 9o o712 007
39 1094 o175 100 0678 0063
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TABLE 1V,

For Computing Probable Errors by Formulas (35) and (36).
0.8453 08453 0.8453 0.8453

n, . —=, . — ——,

\/n (2—1) nVn—1 Vr (n—1) n\/n —1
40 0.0214 0.0034
41 0209 0033
2 0.5978 0.4227 42 0204 od3I
3 345t 1993 43 o199 0030
4 2440 1220 44 0194 0029
5 0.1890 0.0845 45 0.0190 0.0028
6 1543 0630 46 0186 0027
7 1304 0493 47 o182 0027
8 1130 0399 48 o178 0026
9 0996 0332 49 o174 0025
10 0.0891 0.0282 50 0.0171 0.0024
I 0806 0243 51 0167 0023
12 0736 0212 52 o164 0023
13 0677 0188 53 0161 0022
14 0627 o167 54 o158 0022
I o.osSg 0.0L§1 55 0.0155 0.0021
1 ¢« 034 o136 56 o152 0020
17 o513 o124 57 o150 0020
18 0483 ori4 58 o147 0019
19 0457 o105 59 o145 0019
20 0.0434 0.0097 60 0.0142 0.0018
21 0412 61 o140 oo18
22 0393 ggg: 62 o137 oo17
23 0370 0078 63 o135 oo17
24 o360 0073 64 0133 0017
25 0.0345 0.0069 65 0.0131 0.0016
26 0332 0065 66 orzg 0016
27 0319 0061 67 o127 0016
28 0307 00358 63 o1z 0015
.29 0297 0055 69 o123 0oI5
30 0.0287 0.0052 70 o.0122 0.001§
31 0277 0050 71 0120 0014
32 0268 0047 72 o118 o014
33 0260 0045 73 orty oot4
34 - 0252 0043 74 o115 0013
35 0.024 0.0041 75 o.orI 0.0013
36 023; 0040 8o ol 0012
37 0232 0038 85 0100 ool1
38 0225 0037 9o 5 0010
39 0220 003§ JL 100 gggs 0008
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TABLE V.—Common Logarithms.
” o 1 2 3 4 5 6 7 8 9 | Diff.
10 [ 0000 0043 0086 0128 0170 0212 0253 0294 0334 0374 42
II |.0414 0453 0492 0531 0569|0607 00645 00682 0719 o755 38
12 | 0792 0828 0864 0899 0934|0969 1004 1038 1072 1106| 35
13 1139 1173 1200 1239 1271|1303 1335 1367 1399 1430/ 32
14 1461 1492 1523 1553 15841014 1044 1673 1703 1732| 30
15 | 1961 1790 1818 1847 1875|1903 1931 1959 1987 2014 28
16 | 2041 2068 2095 2122 2148 2175 2201 2227 2253 2279 27
17 |2304 2330 2355 2380 2405|2430 2455 2480 2504 2529| 25
18 | 2553 2577 2601 2625 2648|2672 2095 2718 2742 2765| 24
19 [.2788 2810 2833 2856 2878|2900 2923 2945 2967 2989 22
20 | 3010 3032 3054 3075 3096/ 3118 3139 3160 3181 3201 21
21 | 3222 3243 3263 3284 3304|3324 3345 3365 3385 3404 20
22 3424 3444 3464 3483 3502|3522 3541 3560 3579 3598] 19
23 | 3617 3636 3655 3674 3692|3711 3729 3747 3766 3784 18
24 | 380z 3820 3838 3856 3874 3892 3909 3927 3945 3962| 18
25 |3979 3997 4014 4031 4048 | 4065 4082 4099 4116 4133| 17
26 | 4150 4166 4183 4200 4216 4232 4249 4265 4281 4298 17
27 | 4314 4330 4346 4362 4378|4393 4409 4425 4440 4456 16
28 | 4472 4487 4502 4518 4533 | 4548 4564 4579 4594 4609| 15
29 | 4624 4639 4634 4069 4683|4698 4713 4728 4742 4757| 15
30 | 4771 4786 4800 4814 4829} 4843 4857 4871 4886 4900, 1y
31 | 4914 4928 4942 4955 4969|4983 4997 sOIT £024 5038| 14
32 | 5051 5005 5079 5092 5105|5119 5132 5145 5159 §172{ 13
33 |s5:85 5198 5211 5224 5237|5250 5263 5276 5289 5302 13
34 |[5315 5328 5340 5353 5360|5378 539r 5403 5416 5428| 13
35 | 5441 5453 5465 5478 5490|5502 5514 5527 5539 555I) 12
36 | 5563 5575 5587 5599 5611|5623 5635 5647 5658 5670 12
37 | 5682 5694 5705 5717 5729|5740 5752 5763 5775 5786 12
38 | 5798 5809 5821 5832 5843) 5855 5866 5877 5888 58g9| 11
39 | 5911 5922 5933 5944 5955|5966 5977 5988 s999 6010, 11
40 | 6021 6031 6042 6053 €0b64| 6075 6085 6096 6107 6117] 11
41 | 6128 6138 6149 6160 6170|6180 6191 6201 6212 6222| 11
42 | 6232 6243 6253 6263 6274|6284 6293 6304 6314 6325| 10
43 | 6335 6345 6355 6365 6375|6385 6395 6405 6415 6425| Io
44 6435 6344 6454 6464 64746481 6493 6503 6313 6:22| 10
45 | 6532 6542 6551 6561 6571| 6580 6590 6599 6609 6618 1O
46 | 6628 6637 6646 6656 6665|6675 6684 6693 6702 6712 9
47 |6721 6730 6739 6749 6758|6767 6776 6785 6794 6803| 9
48 | 6812 6821 6830 6839 6848 6857 6866 6875 6384 6893 9
49 [6go2 6911 6920 6928 6937|6946 6955 6964 6972 6981 9
50 | 6990 6998 7007 7016 7024|7033 7042 7050 7039 7067 9
51 {7076 7084 70093 7101 7110|7118 7126 7135 7143 7152 8
52 | 7160 7168 7177 7185 5193|7202 %7210 7218 7226 7235 8
53 | 7243 7251 7259 7267 7275|7284 7292 7300 7308 7316 8
54 | v324 7332 7340 7348 7356|7364 7372 7380 7388 7396{ 8
” ] o 1 2 3 4 5 6 7 8 9 | Diff
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” o I 2 3 4 5 6 7 8 9 | Diff.
55 | 7404 7412 7419 7427 7435|7443 7451 7459 7466 7474 8
56 7482 7490 7497 7505 7513|7520 7528 7536 7543 7551
57 | 7559 7566 7574 7582 7589|7597 7604 7612 7619 7627
s8 | 7634 7642 7649 7657 7664|7672 7679 7686 7694 7701
59 | 7709 7716 7723 7731 7738|7745 7752 7760 7767 7774
€c | 7782 7799 7796 7803 7810|7818 7825 7832 7839 7846 7
6r | 7853 78060 7868 7875 7882|7889 7896 7903 7910 7917
62 |7924 7931 7938 7945 7952|7959 7866 7973 7980 7987
62 | 7993 8coo 8007 8014 8021|8028 8035 8041 86048 8055
5, | 8062 8069 8075 8082 808g|8ugb 8102 8109 8116 8122
65 |8129 8136 8142 8149 B8156; 8162 8169 8176 8182 8i8g 7
66 | 8195 8202 8209 8215 8222|8228 8235 8241 8248 8254
67 | 8261 8267 8274 8260 8287|8293 8299 8306 8312 8319
68 |8325 8331 8338 8344 8351|8357 8363 8370 8376 8382
69 | 8388 8395 8jo1 8407 8414 8420 8420 8432 8439 8445
70 [8451 8457 8463 83170 8476|8482 8488 8494 8500 8506| 6
71 | 8513 8519 8525 8531 8537|8543 8549 8555 €561 8567
72 | 8573 8579 8585 8591 8597|8603 8609 8615 8621 8627
73 | 8633 8639 8645 8651 8657|8663 8669 8675 8681 8686
74 | 869z 8698 8704 8710 8716|8722 8727 8733 8739 8745
75 | 8751 8756 8762 8768 8774|8779 8785 8791 8797 8802 6
| 76 | 8808 8814 8820 8825 8831|8837 8842 8848 8854 88gg
77 | 8865 8871 8876 8882 8887(8893 8599 8quq 8910 89gij
78 | 8921 8927 8932 8938 8943|8919 89:4 8gbo 8gbs 8971
79 | 8976 8982 8987 8993 8998|900y quoyg goI5 Q020 QO25
80 |go3r 9036 goj2. 9047 9053|9058 Q063 Quég Qgo74 QO79| 5
81 19c8s qogo gogh gior gio6|g9ir2 9rI; gi2z 9:28 qQi33
82 19138 9143 9149 9154 9159|9165 9I170 9175 9180 Q186
83 | 9191 9196 9201 Q206 Q212| Q217 Q222 Q227 Q232 @238
84 | 9243 9248 9253 9258 9263|9269 9274 9279 9284 09289
| 85 [9204 9299 9304 9309 9315|9320 9325 0330 9335 9340 5
| 86 | 9345 9350 9355 9360 9365|9370 9375 9380 9385 9390
' 87 19395 0400 0405 Q410 9415|9420 9425 0430 Q435 Q440
[ 88 | 9445 09450 0455 0460 9465|9469 9474 9179 0484 0489
+ 89 19494 9499 9504 9509 9513|9518 9523 9528 9533 9538
' 90 | 9542 9547 9552 9557 9562|9566 9571 9576 9s8r gs586] §
i 91 19590 9595 9600 9605 qQbog| 9614 9b6IQ 9624 9628 g633
92 | 9638 9643 9647 9652 9657|9661 9666 9671 9675 9680
93 | 9685 9689 9694 9699 9703|9708 9713 9717 9722 Q727
1 94 (9731 9736 9741 9745 9750|9754 9759 9763 9768 9773
95 [9777 9782 9786 9791 9795|9800 9805 9809 9814 9818 4
96 | 9823 9827 9832 9836 9841|9845 9850 9854 9859 9863
97 | 9868 9872 9877 0881 9886|9890 9894 9899 9go3 9ggod
98 | 9912 9917 992I 9926 9930|9934 9939 9943 9948 9952
90 | 9956 996 9965 9969 9974|9978 9983 9987 9991 9996
” o I 2 3 4 5 6 7 8 g | Diff.
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TABLE VI.—Squares of Numbers.

d o I 2 3 4 | s 6 7 8 9

1.0 | 1.000 1.020 [.040 I.001 1.082 | 1.103 1.124 1.145 I1.166 1.188
1.1 | 1.210 1.232 1.254 1.277 1.300 | 1.323 1.346 1.369 1.392 1.416
1.2 | 1.440 1.464 1.488 1.513 1,538 | 1.563 1.588 1.613 1.638 1.664
1.3 | 1.690 1.716 1.742 1.769 1.796 | 1.823 1.850 1.877 1.go4 1.932
1.4 | 1.960 1.983 2.016 2.045 2.074 | 2.103 2.132 2.161 2.1g0 2,220
1.5 | 2.250 2.280 2.310 2.341 2.372 | 2.403 2.434 2.465 2.496 2.528
1.6 | 2.560 2.5092 2.624 2.657 2.690 | 2.723 2.756 2.789 2.822 2.856
1.7 | 2.890 2.924 2.958 2.993 3.028 | 3 063 3.008 2.133 3.168 3.204
1.8 | 3.240 3.276 3.312 3.349 3.386 | 3.423 3.460 3.497 3.534 3.572
1.9 | 3.610 3.648 3.686 3.725 3.764 | 3.803 3.842 3.881 3.920 3.960
2,0 | 4.000 4.040 4.080 4.121 4.162 | 4.203 4.244 4.285 4.326 4.368

2.1 | 4.410 4.452 4.494 4.537 4.580 | 4.623 4.666 4.709 4.752 4.7q6
2.2 | 4.840 4.884 4.928 4.973 5.018 | 5.063 5.108 5.153 5.198 5.244
2.3 | 5.290 5.336 5.382 5.429 5.476 | 5.523 5.570 5.617 5.664 5.712
2.4 | 5.760 5.808 5.856 5.905 5.954 | 6.003 6.052 6.101 6.150 6.200
2.5 | 6.250 6.300 6.350 6.401 6.452 | 6.503 6.554 6.605 6.656 6.708
2.6 | 6.760 6.812 6.864 6.917 6.970 | 7.023 7.076 7.129 7.182 7.236
2.7 | 7.290 7.344 7.398 7.453 7.508 | 7.563 7.618 7.673 7.728 7.784
2.8 | 7.840 7.896 7.952 8.009 8.066 | 8.123 8.180 8.237 8.294 6.352
2.9 | 8.410 8.468 8.526 8.585 8.644 | 8.703 8.762 8.821 8.880 8.940

3.0 | 9.000 9.060 9.120 9.181 9.2}2 | 9.303 9.364 9.425 9.486 9.548
3.1 | 9.610 9:672 9.734 9.797 9.860 | 9 923 9.986 10.05 10.11 I10.18
3.2 | 10.24 10.30 10.37 10.43 10.50 | 10.56 10.63 10.69 10.76 10.82
10.89 10.96 I11.02 I1.0Q II.16 | I1.22 11.29 I1.36 11.42 11.49
11.56 11,63 I11.70 11.76 11.83 | 11,90 11.97 12.04 I2.II 12.18
12.25 12.32 12.39 [2.46 12.53 | 12.60 12.67 12.74 12.82 12.89g
12.96 13.03 13.10 13.18 13 25 | 13 32 13.40 13.47 13.54 14.62
13.69 13.76 13.84 13.91 13.99 | 14.06 14.14 14 21 14.29 14.36
I4.44 14.52 14.59 14.67 14.75 | 14.82 14.90 14.98 15.05 15.13
15.21 15.29 15.37 I5.44 I5.52 [ 15.60 15.68 15.76 15.84 15.92
16.00 16.08 16.16 16.24 16.32 | 16 40 16.48 16.56 16.65 16.73
16.81 16.89 16.97 17.06 17.14 | 17.22 17.31 17.39 17.47 17.56
17.64 17.72 17.81 17.89 17.98 | 18.06 18.15 18.23 18.32 18.40
18.49 18.58 18 66 18 75 18.84 | 18.92 19.01 1g.10 IQ.18 19.27
19.36 19.45 19.54 19.62 I19.7I | 19.80 19.89 19.98 20.07 20.16
20.25 20.34 20.43 20.52 20.6I | 20.70 20.79 20.88 20.98.21.07
21.16 21.25 21.34 21.44 21.53 | 21.62 21.72 21.81 21.90 22.00
22.09 22.18 22.28 22.37 22.47 | 22.56 22,66 22.75 22.85 22 g4
23.04 23.14 23.23 23.33 23.43 | 23.52 23.62 23.72 23.81 23.91
24 OT 24.11 24.21 24.30 24 40 | 24.50 24 60 24.70 24.80 24.g0
25.00 25 10 25.20 25.30 25.40 | 25.50 25.60 25.70 25.81 25.9I
26.01 26.11 26.21 26.32 26.42 { 26.52" 26.63 26.73 26.83 26.94
27.04 27.14 27.25 27.35 27.46 | 27.56 27.67 27.77 27.88 27.98
28.09 28.20 28.30 28.41 28.52 | 28.62 28.73 28.84 28.94 29.05
29.16 29.27 29 38 29.48 29.59 | 20.70 2q.81 29.92 30.03 30.14
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TABLE VI.—Squares of Numbers.
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”n o X 2 3 4 5 6 7 °8 9 Diff.
5.5 | 30.25 30.36 30.47 30.58 30.69 | 30.80 30.91 31.02 3I.14 31.25 I
5.6 | 31.36 31.47 31.58 31.70 31.81 | 31.92 32.04 32.15 32.26 32.38 1I
5.7 | 32.49 32.60 32.72 32.83 32.95 | 33.06 33.18 33.20 33.41 33.52| 1I2
5.8 | 33.64 33.76 33.87 33.99 34.1I | 34.22 34.34 34.46 34.57 34.69, 12
5.9 | 34.81 34.93 35.05 35.16 35.28 | 35.40 35.52 35.64 35.76 35.88 | 12
6.0 | 36.00 36.12 36.24 36.36 36.48 | 36.60 36.72 36.84 36 97 37.09| 12
6.1 | 37.21 37.33 37.45 37.58 37.70 | 37.82 37.95 38 07 38.19 38.32| 12
6.2 | 38.44 38.56 38.69 38.81 38.93 | 39.06 39.19 39.3! 30.44 39.56| 13
6.3 | 39.69 39 82 39.94 40.07 40.20 | 40 32 40.45 40.58 J0.70 40.53 13
6.4 | 40.96 41.09 41.22 41.34 41.47 | 41.50 41.73 41.86 41.99 42.12 13
6.5 |42.25 42.38 42.51 42.64 42.77 | 42.90 43.03 43.16 43.30 43.43| 13
6.6 | 43.56 43.69 43.82 43.96 44.09 | 44.22 44 36 44.49 44.02 44.76 | 13
67 |44.89 45.02 45.16 45.29 45.43 | 45.56 45 70 45 83 45.97 46.10 | 14
6.8 | 46.24 46.38 46.51 46.65 46.79 | 46.92 47.06 47.20 47.33 47.47 14
6.9 | 47.61 47.75 47.89 48.02 48.16 | 48.30 48.44 48.58 48.72 48.86 | 14
7.0 | 49.00 49.14 49.28 49.42 49.56 | 49.70 49.84 49.98 s50.13 50.27 | 14
7.1 | 50.41 50.55 50.69 50.84 50.98 | 51.12 51.27 51.41 51.55 51.70 | 14
7.2 | 51.84 51.98 §2.13 52.27 52.42 | 52.56 52.71 52 85 53.00 53.14 15
7.3 | 53.29 53.44 53.58 53.73 53.88 | 54.02 54.77 54.32 54.46 54.61 | 15
7.4 | 54.76 54.91 55.06 55.20 55.35 | 55.50 55.65 55.80 55.95 56.10 | 1§
7.5 | 56.25 56.40 56.55 56.70 56.85 | 57.00 57.15 57.30 57.46 57.61 | 15
7.6 | 57.76 57.91 58.06 58.22 58.37 | 58.52 58.68 58 83 <8.98 s50.14 15
7.7 | 59.29 59.44 59.60 59.75 59.91 | 60.06 60.22. 60.37 60.53 60.68 [ 16
7.8 | 60.84 61.00 61.15 61.31 61.47 | 61.62 61.78 61.94 62.09 62.25 16
7.9 | 62.41 62.57 62.73 62.88 63.04 | 63.20 63.36 63.52 63.68 6384 | 16
8.0 | 64.00 64.16 64.32 64.48 64.64 | 64.80 64 g6 65.12 65.29 65.45 [ 16
8.1 | 65.61 65.77 65.93,66.10 66,26 | 66.42 66.59 66.75 66.91 67.08 | 16
8.2 | 67.24 67.40 67.57 67.73 67.90 [ 68.06 68.23 68.39 68.56 68.72 17
8.3 | 68.89 69.06 69.22 69.39 69.56 | 69.72 69.89 70.06 70.22 70.39 | 17
8.4 | 70.56 70.73 70.90 71.06 71.23 | 71.40 71.57 71.74 71.91 72.08 | 17
8.5 | 72.25 72.42 72.59 72.76 72.93 | 73.10 73.27 73.44 73.62 73.79 | 17
8.6 | 73.96 74.13 74.30 74.48 74.65 | 74.82 75.00 75.17 75 34 75.52 | 17
8.7 | 75.69 75.86 76.04 76.21 76.39 | 76.56 76.74 76.91 77.09 77.26 | 18
8.8 | 77.44 77.62 77.79 77.97 78.15 | 78.32 78.50 78.68 78.85 79.03 | 18
8.9 | 79.2I 79.39 79.57 79.74 79.92 | 80.10 80.28 80.46 80.64 80.82 18
9.0 | 8r.00 81.18 81.36 81.54 81.72 | 81.g0 82.08 82.26 B2.45 82.63 | 18
9.1 | 82.81 82.99 83.17 83.36 83.54 | 83.72 83.91 84.09 84.27 84.46 | 18
9.2 | 84.64 84.8~ 85.01 85.19 85.38 | 85.56 85.75 85.93 86.12 86.30 | 19
9.3 | 86.49 86.68 ¥6.86 87.05 87.24 | 87.42 87.61 87.80 87.98 88.1%7 19
9.4 | 88.36 88.55 88.74 88.92 89.11 | 89.30 89.49 89.68 8g.87 go.06 | 19
9.5 | 90.25 90.44 90.63 90.82 gI.0I | 91.20 9I.39 9I.58 QI.78 9I.97| 19
9.6 | 92.16 92.35 92.54 92.74 92.93 | 93.12 93.32 93.51 93.70 93.90 | 1I9
9.7 | 94.09 94.28 94.48 94.67 94.87 | 95.06 95.26 95.45 95.65 95.84 | 20
9.8 | 96.04 96.24 96.43 96.63 96.83 | 97 02 97.22 97.42 97.61 97.81 | 20
9.9 | g8.01 g8.21 ¢8.41 98.60 98.80 | 99.00 99.20 99.40 g9.60 g9.80 | 20
” o 1 2 3 4 5 6 7 8 9 Diff.
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TABLE VII.— For Applying Chauvenet’s Criterion.

”n. Z. ”. Z n, Z.
3 2.0§ 13 3.07 23 3-41
4 2.27 14 3.12 24 3-43
g 2.44 15 316 25 345
2.57 16 319 30 3-55
7 2.67 17 3.22 40 370
8 2.76 18 3.26. 50 3.82
9 2.84 19 329 75 4.02
10 2.91 20 3.32 100 4.16
11 2.96 21 3.3 200 4.48
12 3.02 ! 22 33 500 4.90
TABLE VIII. — Squares of Reciprocals.
I I I
”n. ; ”. ”—2 7. F
0.0 0 2. 0.1600 5.0 0.0400
o.1 100.000 2. 0.1479 5.1 0.0384
0.2 25.000 2.7 0.1372 5.2 0.0370
0.3 ILITI 2.8 0.1276 53 0.0356
0.4 6.250 2.9 0.1189 54 0.0343
0.5 4.000 3.0 O.ITIT 5.5 0.0331
0.6 2.778 3.1 0.1041 5.6 0.0319
0.7 2.041 3.2 0.0977 5.7 0.0308
08 1.562 3.3 0.0918 58 0.0297
0.9 1.235 3.4 0.0865 5.9 0.0287
1.0 1.000 3.5 0.0816 6.0 0.0278
I 0.8264 3.6 0.0772 6.1 0.0269
1.2 0.6944 3.7 0.0730 6.2 0.0260
1.3 0.5917 3.8 0.0093 6.3 0.0252
1.4 0.5102 39 0.0657 6.4 0.0244
1. 0.4444 4.0 0.0625 6.5 0.0237
I 0.3906 4.1 0.0595 6.6 0.0230
1.7 0.3460 4.2 0.0567 6.7 0.022
1.8 0.3086 4.3 0.0541 6.8 0.021
1.9 0.2770 4.4 0.0§17 6.9 0.0210
2.0 0.2500 4.5 0.0494 7.0 0.0204
2.1 0.2268 4.6 0.0473 7.5 0.0178
2.2 0.2066 4.7 0.0453 8.0 0.0156
2.3 0.1890 4.8 0.0434 8.5 0.0138
2.4 0.1736 4.9 0.0416 9.0 0.0123
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INDE X.

Accidental errors, 4
Adjustment, 1, 36, 51, 88, 10I, 109,
141, 187
Angle measurements, 104, I71
repetition, 106
Angles, 3, 90, 98, 122, 163
at a station, 117, 145
in a quadrilateral, 147, 150
in a triangle, 142
Areas, 3, 106
Arithmetical mean, 42, 70, 211, 218
Axioms, 13

Base lines, 100, 102
Binomial formula, 10
Borings, 140

Certainty, 6

Chaining, 103

Chauvenet’s criterion, 166, 228

Coins, throwing of, 9

Comparison of observations, 1, 66

Conditioned observations, 2, 57, 86,
141, 192

Constant errors, 3, 169

Constants, 214

Correlatives, 60

Criterion for rejection, 166

Curve of probability, 15, 25, 204

Declination, magnetic, 134
Direct observations, 2, 41, 88
Doubtful observations, 166

Earth, temperature of, 140
Empirical constants, 124
formulas, 130
Equal weights, 88
Equations, non-linear, 200
normal, 46, 56, 175
observation, §8
solution of, 175
Error, definition of, 5
law of, 13, 17, 22
probability of, 13, 162
propagation of, 75
Experience, axioms from, 13

Functions of observations, go

Gauss'’s discussions, 22,
212

General mean, 42, 72

Geodesy, 151, 214

Guessing, problem on, 174

175, 181,

Hagen’s proof. 17, 168
History of Least Squares, 211
Huge error, 205

Impossibility, 6

Independent observations, 2, 51, 79,
100

Indirect observations, 2, 43

Instrumental errors, 4

Level lines, 44, 110, 157
Levelling, 154
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Linear measurements, I0I
Literature of Least Squares, 213
Logarithmic computation, 190
Logarithms, 219, 224

Magnetic declination, 134
Mean error, 204

Measure of precision, 34, 68
Median, 208

Mistakes, 4, 169

Most probable value, 2, 9, 38

Non-linear equations, 200
Normal equations, 46, 56, 175

Observation equations, 58
Observations, adjustment of, 1, 36,
88, 101, 109, 141

classification of, 2
discussion of, 162
errors of, 3, 5, I3
precision of, 66
rejection of, 166
weights of, 36

Orbit of a planet, 129

Peirce’s criterion, 169
Pendulum, 124
Population of United States, 202, 217
Principle of Least Squares, 38, 21T
Probability, 6, 9.
Probability curve, 13, 25, 68
integral, 27, 220, 221
of error, 13, 162, 212
Probable error, 66, 70, 72, 79, 86, 92,
195, 204
Propagation of error, 75

INDEX.

Quadrilateral, 147
Quetelet’s statistics, 175

Reciprocals, squares of, 228
Rejection of observations, 166
Repetition of angles, 106
Residual, 5, 39

Rivers, velocity in, 131

Shooting at target, 13, 165

Social statistics, 172

Solution of equations, 56, 175

Squares of numbers, 227
reciprocals, 228

Station adjustment, 118, 145

Statistics, 162, 172

Tables, 220-228

Target shots, 13, 165, 170
Theory and experience, 3I
Triangle adjustment, 59, 142
Triangulation, 152

Uncertainty of median, 210
probable error, 206
Unequal weights, 51, 95, 122

Velocity observations, 131, 138

Weighted mean, 43
observations, 37, 51, 187
residuals, 39
Weights, 36, 69, 196
Wright's probabléoerror tables, 219,
222, 223 -
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