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1. Least Squares and the Combination
of Observations

Adrien Marie Legendre (1752~ 1833)

THE METHOD of least squares was the dominant theme — the leitmotif
— of nineteenth-century mathematical statistics. In several respects
it was to statistics what the calculus had been to mathematics a century
earlier. “Proofs” of the method gave direction to the development of
statistical theory, handbooks explaining its use guided the application of
the higher methods, and disputes on the priority of its discovery signaled
the intellectual community’s recognition of the method’s value. Like the
calculus of mathematics, this “calculus of observations” did not spring into
existence without antecedents, and the exploration of its subtleties and
potential took over a century. Throughout much of this time statistical
methods were commonly referred to as “the combination of observa-
tions.” This phrase captures a key ingredient of the method of least
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squares and describes a concept whose evolution paced the method’s de-
velopment. The method itself first appeared in print in 1805,

Legendre in 1805

In March of 1805 political Europe focused its attention uneasily on
France. The 1801 Peace of Amiens was crumbling, and preparations were
under way for a new round of war, one that would begin that autumn with
the battle of Trafalgar and the opening of the Napoleonic campaigns with
victories at Ulm and Austerlitz. Scientific Europe also looked to France;
there the discipline was intellectual, not martial, and was subsequently
more sure and longer lived than that of the new emperor of the French.

In March of 1805 Laplace celebrated his fifty-sixth birthday, prepared
the fourth volume of his Traité de mécanique céleste for press, and, perhaps,
began to return his thoughts to the completion of a book on probability he
had first contemplated more than twenty years before. Also in March of
1805 another French mathematical scientist, Adrien Marie Legendre,
sent to press the final pages of a lengthy memoir that contained the first
publication of what is even today the most widely used nontrivial tech-
nique of mathematical statistics, the method of least squares.

Legendre (born 18 September 1752, died 10 January 1833) wasa math-
ermatician of great breadth and originality. He was three years Laplace’s
Jjunior and succeeded Laplace successively as professor of mathematics at
the Ecole Militaire and the Ecole Normale. Legendre’s best-known mathe-
matical work was on elliptic integrals (he pioneered this area forty years
before Abel and Jacobi), number theory (he discovered the law of qua-
dratic reciprocity), and geometry (his Fléments de géométrie was among the
most successtul of such texts of the nineteenth century). In addition, he
wrote important mermoirs on the theory of gravitational attraction. He was
amember of two French commissions, one that in 1787 geodetically joined
the observatories at Paris and Greenwich and one that in 1795 measured
the meridian arc from Barcelona to Dunkirk, the arc upon which the
length of the meter was based. It is at the nexus of these latter works in
theoretical and practical astronomy and geodesy that the method of least
squares appeared. .

In 1805 (the appendix we shall discuss is dated 6 March 1805) Legendre
published the work by which he is chiefly known in the history of statistics,
Nouvelles méthodes pour la détermination des orbites des cométes. At eighty
pages this work made a slim book, but it gained a fifty-five-page supple-
ment (and a reprinted title page) in January of 1806, and a second eighty-
page supplement in August of 1820, The appendix presenting the method
of least squares occupies nine of the first eighty pages; it is entitled “Sur la
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méthode des moindres quarrés.” For stark clarity of exposition the presen-
tation is unsurpassed; it must be counted as one of the clearest and fhost
elegant introductions of a new statistical method in the history of statistics.
In fact, statisticians in the succeeding century and three-quarters have
ff)ur?d so little to improve upor that, but for his use of [ instead of T to
signify summation, the explanation of the method could almost be from an
elementary text of the present day. Legendre began with a clear statement
of his objective:

On the Method of Least Squares

In most investigations where the object is to deduce the most accurate
possible results from observational measurements, we are led to a system of
equations of the form

E=a+bx+oy+ fr+ &,

in which, a, b, ¢, f, &c. are known coefficients, varying from one equation to

the other, and x, ¥, z, &¢. are unknown quantities, to be determined by the

condition that each value of E is reduced either to zero, or to a very small
_quantity. (Legendre, 1805, p. 72)

We might write this today as
E=a+bx+cy+fat ...

or
@=—bx—cy—fz— ...+E,

but we would probably join Legendre in calling the E’s “‘errors.” When the
number of equations equaled the number of unknowns, Legendre saw no
problem. But when there were more equations than unknowns, it became
impossible to choose values for the unknowns that would eliminate all the
errors. He noted that there was an element of arbitrariness in any way of,
ashe putit, “distributing the errors among the equations,” but that did not
stop him from dramatically proposing a single best solution:

i

Of all the principles that can be proposed for this purpose, I think there is
none more general, more exact, or easier to apply, than that which we have
used in this work; it consists of making the sum of the squares of the errors a
minimum. By this method, a kind of equilibrium is established among the
errors which, since it prevents the extremes from dominating, is appropriate
for revealing the state of the system which most nearly approaches the truth.
(Legendre, 1805, pp. 72-738)

Mi{ximize the sum of the squares of the errors! How simple — but was it
practical? Legendre wasted no time in writing down the equations he
derived by differentiating the sum of squared errors (a + bx + ¢y + fz +
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&c. with respect to x, ¥, . . ., namely,

O=fab+xfb2+yfbc+”fbf+&c'
0=fac+xfb(+yfci+zj’fc+&c‘
0=faf+xfbf+,vjff+sz’z+&c‘

imilar products ab + @b’ +
¢ ; re understand the sum of the simi 1 _
“’2)? i l;zc f‘:i;‘ gv fb2 the sum of the squares of the coefficients of x, that is,

22 + b2+ ll;”" + &c., and so on. (Legendre, 1805, p. 73)
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deviations from that center are as small as possible” (Legendre, 1805,
p- 75).

Legendre followed this explanation with a worked example using data
from the 1795 survey of the French meridian arc, an example involving
three unknowns in five equations. The clarity of the exposition no doubt
contributed to the fact that the method met with almost immediate suc-
cess. Before the year 1805 was over it had appeared in another book,
Puissant’s Traité de géodésie (Puissant, 1805, pp. 137 - 141 ; Puissant did use
2 for summation); and in August of the following year it was presented toa
German audience by von Lindenau in von Zach’s astronomical Jjournal,
Monatliche Correspondenz (Lindenau, 1806, p- 138-139). An unintended
consequence of Legendre’s publication was a protracted priority dispute
with Carl Friedrich Gauss, who claimed in 1809 that he had been using the
method since 1795 (Chapter 4).

Ten years after Legendre’s 1805 appendix, the method of least squares
wasa standard tool in astronomy and geodesy in France, Italy, and Prussia.
By 1825 the same was true in England.! The rapid geographic diffusion of
the method and its quick acceptance in these two fields, almost to the
exclusion of other methods, is a success story that has few parallels in the
history of scientific method. It does, however, raise a number of important
questions, including these: Did the introduction of the method create a
historical discontinuity inthe development of statistics, or was it a natural,
if inspired, outgrowth of previous approaches to similar problems? What
were the characteristics of the problems faced by eighteenth-century as-
tronomers and geodesists that led to the method’s introduction and easy
acceptance? In what follows I shall attempt to answer these questions by

- examining several key works in these fields, In particular, I shall argue that

least squares was but the last link in a chain of development that began

~about 1748, and that by the late 1780s methods were-widely known and

used that were, for practical purposes, adequate for the problems faced. I

~shall show how the deceptively simple concept that there was a potential
‘gain to be achieved through the combination of observational data gath-
~ered under differing circumstances proved to be a major stumbling block
in early work and how the development of these methods required the

combination of extensive empirical experience and mathematical or me-
chanical insight.

1. The earliest English translation was by George Harvey (1822), “On the Method of
Minimum Squares.” Before the mid 1820s, it was common for Legendre’s name for his

- method, “Moindres quarrés,” to be translated into English as “minimum squares’’ or “‘small

uares” rather than as “least squares.”
sq
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Cotes’s Rule

By the middle of the eighteenth century at Jeast one statistical technique
was in frequent use in astronomy and navigation: the taking of a simple
arithmetic mean among a small collection of measurements made under
essentially the same conditions and usually by the same observer (Plackett,
1958). But it is worth emphasizing that, widespread as the practice was, it
was followed only in a narrowly conceived set of problems. Astronomers
averaged measurements they considered to be equivalent, observations
they felt were of equal intrinsic accuracy because the measurements had
been made by the same observer, at the same time, in the same place, with
the same instrument, and so forth. Exceptions, instances in which mea-
surements not considered to be of equivalent accuracy were combined,
were rare before 1750.

One possible exception is a rule found in a work of Roger Cotes pub-
lished in 1722 (published posthumously, for Cotes died in 1716).

Let p be the place of some object defined by observation, ¢, 7, s the places of
the same object from subsequent ohservations. Let there also be weights P, Q.
R, § reciprocally proportional to the displacements which may arise from the
errors in the single observations, and whichare given from the given limits of
errvor; and the weights P, , R, § are conceived as being placedatp, ¢, 7,5, and
their centre of gravity Z is found: 1 say the point Z is the most probable place of
the object, and may be most safely had for its true place. (Cotes, 1722, p. 22;
hased on the translation by Gowing, 1983, p. 107)

Cotes’s rule can be (and has been) read as recommending a weighted
mean, or even as an early appearance of the method of least squares (De
Morgan, 1833 -1844, “"Least Squares”). However, it has about it a vague-
ness that could only be cleared up by one or more accompanying examples,
examples Cotes did not provide. To understand the genesis of the method
of least squares, we must look not just at what investigators say they are
doing (and how the statement might be most charitably interpreted in the
light of later developments) but also at what was actually done. Cotes's rule
had little or no influence on Cotes’s immediate posterity. In the literature
of the theory of errors its earliest citation seems to be that by Laplace

(1812, p. 346; 1814, p. 188).

Tobias Mayer and the Libration of the Moon

The development of the method of least squares was closely associated

with three of the major scientific problems of the eighteenth century: (1) to
determine and represent mathematically the motions of the moon; (2)to
account for an apparently secular (that is, nonperiodic) inequality that had
heen observed in the motions of the planets Jupiter and Saturn; and (3)to
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determmc? the shape or figure of the earth. These problems all involved
astronomical observations and the theory of gravitational attraction, and
they all presented intellectual challenges that engaged the attem;i«gn of
many of the ablest mathematical scientists of the period.

It seems most appropriate to begin with two works: “Recherches sur la
question des inégalités du mouvement de Saturne et de Jupiter,” written
by Leonhard Euler and published in 1749; and “Abhandluné uiber die
Umwalzung des Monds um seine Axe und die scheinbare Bewegung der
Mondsflecten,” written by Tobias Mayer and published in 1750. Al-
though thes'e works were not the first to consider their respective subjects
(the inequalities of the motions of Jupiter and Saturn and the libration of
the'moon), they were among the best of the early treatments of these
subjects. Because they were widely read, they greatly influenced later
workers and, from a statistical point of view, form a unique and dramatic
contrast in the handling of observational evidence. Together they tell a
story of statistical success (by a major astronomer, Mayer) and statistical
faxIL?re (by a leading mathematician, Euler). They show why the discovery
of the method of least squares was not possible in the intellectual climate of
1750, and they highlight the conceptual barriers that had to be crossed
before this climate became sufficiently tropical to support the later ad-
vances of Legendre, Gauss, and Laplace.

'Wc{ shall consider Mayer’s statistical success first. Notwithstanding the
principal “monthly” regularity in the motion of the moon about the earth
1ts detailed motion is extraordinarily complex. In the eighteenth century;
the prf)blem of accurately accounting for these minor perturbations in the
moon’s movements, either by a mathematical formula or by an empirically
determm:‘?d table describing future lunar positions, was of great scientific
commercial, and even military significance. Its scientific importance lay ir;
the general desire to show that Newtonian gravitational theory can ac-
count for the movements of our nearest celestial neighbor (within the
always decreasing limits of observational error) if allowance is made for the
attraction of other bodies (such as the sun), for periodic changes in the
earth’sand the moon’s orbits, and for the departures from sphericity of the
shfipes of the earth and moon.? But it was the potential commercial and
mlh}tary usefulness of a successful accounting of the moon (as an aid to
navigation) that was primarily responsible for the widespread attention the
problem received. Over the previous nineteen centuries, from Hippar-
chus and Ptolemy to Newton and Flamsteed, the linked development of
;hgroreticajl and practical astronomy had played the key role in freeing
shlp’s navigators from a dependence upon land sightings as a way of deter-
2. As eloquent testimony to the difﬁculty of the problem, we have Newton reportedly

telling Hfilley that lunar theory ‘‘made his head ache and kept him awake so often that he
would think of it no more” (Berry, 1898, p. 240).
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mining the ship’s position. The developments of better nautical
instruments-— including the sextant in 1731 —and a more accurate un-
derstanding of astronomical theory, increasingly enabled navigators to
map their ships’ courses across previously trackless seas. By 1700 it had
become possible to determine a ship’s latitude at sea with relative precision
by the fixed stars— simply by measuring the angular elevation of the
celestial pole above the horizon. The determination of longitude, how-
ever, was not so simple. Indeed, in 1714 England established the *“commis-
stoners for the discovery of longitude at sea,” a group that by 1815 had
disbursed £101,000 in prizes and grants to achieve its goal. The two most
promising methods of ascertaining longitude at sea were the development
of an accurate clock (so that Greenwich time could be maintained on
shipboard and longitude determined by the comparison of the fixed stars’
positions and Greenwich time) and the creation of lunar tables that per-
mitted the determination of Greenwich time (and thus of longitude) by
comparison of the moon’s position and the fixed stars.

Joharmn Tobias Mayer (1723 1762) had already made a name for him-
self as a cartographer and practical astronomer by the time he undertook a
study of the moon in 1747 (a study that eventually led to the preparation of
lunar tables that were to earn his widow £3,000 from the British commis-
sioners in 1765). The specific work of Mayer that most influenced statisti-
cal practice was his study, published in 1750, of the librations of the moon.

The popular notion that the moon always presents the same face to the
earth is not literally true. The moon in fact is subject to “libration’”: The
face viewed from earth varies, so that over an extended period of time
about 60 percent of the moon’s surface is visible from earth. Two sources
of this libration were known to Galileo: the apparent diurnal libration due
to the earth’s rotation and a libration in latitude due principally to the fact
that the moon’s axis of rotation is not perpendicular to the earth’s orbital
plane about the sun. By the time of Mayer’s work it was known that the
earth’s location was at a focus, not the center, of the moon’s elliptical orbit.
Thus the moon's rotation at a uniform speed produced a third type of
libration, one of longitude.

Over the period from April 1748 to March 1749, Mayer made numer-
ous observations of the positions of several prominent lunar features; and
in his 1750 memoir he showed how these data could be used to determine
various characteristics of the moon's orbit (Figure 1.1). His method of
handling the data was novel, and it is well worth considering this method in
detail, both for the light it sheds on his pioneering, if imited, understand-
ing of the problem and because his approach was widely circulated in the
major contemporary treatise on astronomy, having signal influence upon
later work.

THE COMBINATION OF OBSERVATIONS 19

Figure 1.1, Tobias Mayer’s original drawin, th
1750, table VI.) T g of the moon. (Fram Mayer,

' Mayer’s method for the resolution of inconsistent observational equa-
tions can be discerned in his discussion of the position of the crater Mani-
lius. Figure 1.2 represents the moon, which Mayer considered as a sphere.
The great circle QNL represents the moon’s true equator, and P is the
moon’s pole with respect to this equator, one end of its axis of revolution.
The great circle DNB is that circumference (or apparent equator) of the
moon that is seen from earth as parallel to the plane of the ecliptic, the
plane of the earth’s orbit about the sun, and A is the pole of the moon ;,vith
respect to DNB, its apparent pole as viewed by an earthbound astronomer
oriented by the ecliptic. The point y (the point on the circle DNB in the
direction from the moon’s center C toward the equinox) was taken as a
reference point. The circle DNB and the pole A will vary with time, as a
resuh‘of the libration of the moon, but they form the natural syste;fn of
coordinates ata given time. The equator QNL and the pole Pare fixed but
not observable from earth. Mayer's aim was to determine the relationship
between these coordinate systems and thus accurately determine QNL
and P. He accomplished this by making repeated observations of the crater
Mamhu; Now, in Figure 1.2, M is the position of Manilius, and PL and AB
are meridian quadrants through M with respect to the two polar coordi-
nate systems. Mayer was able to observe the position of M on several
occasions with respect to the constantly changing coordinate system deter-
mined by DNB and A; that is, subject to observational error he could at a
given ime measure the arcs AM = / and yB =g.

To determine the relationship between the coordinate systems, Mayer
sought to find the fixed, but unknown, arc length AP = q, the true
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Figure 1.2. The moon. M, The crater Manilius: NL, the moon’s equator; P,
the moon’s equatorial pole; NB, the civcumference pavallel to the plane o:f the
ecliptic; A, the pole of NB; Cy, the direction of the equinox Jrom the'moon s
center C; F, the node of the moon 's orbit and the plane of the ecliptic. See text
for more details.

latitude of Manilius = ML, and the distance # between the unknown
node or point of intersection of the two circles (N) and the known point of
intersection F of the plane of the orbit of the moon and the circle DNB. He
let k = yF be the observed longitude of ¥. Then g, h, and k were observable
and varied from observation to observationasa result of the motion of the
moon (and observational error); and o, 8, and f were fixed and unknown,
to be determined from the observations. Because NAP formsarightangle,
a basic identity of spherical trigonometry implies that these quantities are
related nonlinearly by the equation.

(A) sin f# = cos & cos h + sin & sin h sin(g — k — 0).

Now, Mayer knew that both ac and 8 were small (in the neighborhood of 2
or 3 fiegf:ees), and he prm:wdﬁ:d, via several triganometric identities, t‘o
derive an almost linear approximation to this equation under the supposi-
tion that cos @, cos 8, and cos(f — 90° + hy were approximately 1.0, and
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sin(f — 90° + k) = f— 90° + h. He was led? to the equation
G B—(90° — h) = a sin(g — k) — a sin 6 cos(g — k),

which provided at least an approximate relationship between the observa-
tions and the unknowns.

At this point Mayer was in sight of his goal. He only needed to take
observations for three different days, solve the resulting three linear equa-
tions for B, &, and & sin 6 (and then solve for ), and he would be done. His
problem, however, was that he suffered an embarrassment of riches— he
had twenty-seven days’ observations of Manilius. The resulting twenty-
seven equations are given in Table 1.1.

The form of Mayer’s problem is almost the same as that of Legendre;
Legendre might have written E for the discrepancy (due to the linear
approximation and observational error) between the two sides; he would
then have had

E=(90°—h)-ﬁ+asin(g*k)-asin@cos{g—k).

In Mayer’s form the equations came to be called the equations of condition
because they expressed a condition or relationship that would hold if no
errors were present. The modern tendency would be to write, say, (b —
90°) = —f + a sin(g — k) — a sin fcos(g — k) + E, treating h — 90° asthe
dependent variable and — f, &, and —« sin 6 as the parameters in a linear
regression model.

How did Mayer address his overdetermined system of equations? His
approach was a simple and straightforward one, so simple and straightfor-
ward that a twentieth-century reader might arrive at the very mistaken
opinion that the procedure was not remarkable at all. Mayer divided his
equations into three groups of nine equations each, added each of the
three groups separately, and solved the resulting three linear equations for
a, f, and @ sin 8 (and then solved for 6). His choice of which equations
belonged in which groups was based upon the coefficients of & and & sin 6.
The first group consisted of the nine equations with the largest positive
values for the coefficient of ¢, namely, equations 1, 2, 3, 6, 9, 10, 11, 12,
and 27. The second group were those with the nine largest negative values
for this coefficient: equations 8, 18, 19, 21, 29,28, 24, 25, and 26. The
remaining nine equations formed the third group, which he described as
having the largest values for the coefficient of a sin 6.

3. Mayer started with sin(g — & — 8) = sin(g ~ k)cos 8 — sin & cos(g — k) = sin(g — &} —
sin 6 cos(g — k). Then, setting cos = 1 in equation (A), he had equation (B)sin f — cosh =
sinasin hsin(g — k) — sin asin hsin # cos(g — k); letting x = § — (90° — A),a small quantity,
 he had sin # = cos(h — x) = cos  cos x + sin k sin x = c0s h + x sin b, which with (B) gives
. xsin b =sin sin hsin(g — k) — sina sin hsin 6 cos(g — k),and setting o = sinand dividing
- through by sin h gives (C).
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Table 1.1, Mayer’s twenty-seven equations o
ohservations of the crater Manilius from 11

£ condition, derived from
April 1748 through 4 March 1749.

Eg. no. Equation Group
1 B~ 13°10" = +0.88360 — 0.4682a sin ¢ 1
2 g 15°8" = +0.99960 — 0.0282¢ sin ¢ I
3 5“'*13°1‘2‘w'%i).9899a+0.1421a sin @ I
4 B 14°15" =+0.2221la+ 0.97500 sin 0 111
5 B — 14°42" = +0.0006c + 1.0000¢ sin 8 1
8 B 137V = -+ (.98080 — 036540 s%n 6 I
7 f— 14°31" = +0.06020 + 0.9982a sin g 111
8 g 14°57" = —0.1570c + 0.98760 sin & Il
9 f—18°5" =+0.9097c~ 0.4152¢ s%n g I

10 B~ 13°2 =+1.00000+ 0.0055¢ sin 8 1

11 g 1312 = +0.9689q + 0.24760 sin 6 I

12 £~ 13°117 = +0.8878¢ + 0.4602¢¢ sin g I

13 B~ 13°34’ = +0.754% + 0.6558¢ sin g 141
14 i 13°53 = -+0.5755a + 0.8178¢ sin 8 i
15 B~ 13°58" = +0.36080 + 0.93260 sin ¢ 131
16 B~ 14°14’ = +0.1302a -+ 0.9915a s%n@ 131
17 f— 14°56" = —0.1068a + 0.9943¢ sin 6 11
18 [ 14°47" = ~0.33630 + 0.9418a s%n@ 11
19 [ 15°56" = - (1.85600 + 0.5170c¢ s%n(? I
20 £ 13°29" = +0.8002c + 0.5997a sin g 1
21 B 15°55 = —0.9952a — 0.0982a sin 9 I
22 p—15°39 = —0.8409 + 0.54120 sin g i1
23 B~ 16°9" =—0.9429c+ 0.3330¢ sin 0 i}
24 £~ 16°22" = —0.97680 + 0.2141asin 0 i1
25 B~ 15°38" = —0.62620 — 0.7797a sin a i
26 B— 14754 = —0.4091a~ 0.9125a sin ] It
27 g—13°7 =+0.92840— 037160 sin ¢ I

Sourcer Mayer (1750, p. 153}, i
Note: One misprinted sign in equation % has been corrected.

Even though Mayer’s description of the th
(compare equation 8, in group 11, with eqg
specification of the three
situation and reveals that
motivated by at least dimly perceived notions of
coefficients of o and o sin 6 are sin(g — k), and
related by [sin(g — k) + [—cos(g — BE =1 The
ons whose coefficients of ¢ are ne
arest — 1.0, leaving the third group as those equations
" sero, that is, with large (although not without ex-
— kY's (which all happen, because of the choice

those nine equati
group of those ne
with sin{g — k) “‘near’
ception the largest) — cos(g

ird group is not fully accurate
uation 13 in group 111), his
groups shows insight into the geometry of the
his choice of the crater Manilius was perhaps
xperimental design. The
—cos(g — k), which are
first group consists of
arest 1.0, the second
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of crater, to be positive). This way of choosing equations for aggregation
tends, subject to the restriction to equal groups, to maximize the contrast
among the coefficients of a and produce good estimates of o, and, with the
present selection of crater, good estimates of & sin 6 as well. Mayer seems
to have understood this because he wrote, “These equations [Table 1.2]
can take the place of the foregoing totality of equations [Table 1.1] be-
cause each of these three equations has been formed in the most advanta-
geous manner (die vortheilhaftigste Art). The advantage consists in the fact
that through the above division into three classes, the differences between
the three sums are made as large as is possible. The greater these differ-
ences are, the more accurately (richtiger)one may determine the unknown
values of ¢, §, and 6" (Mayer, 1750, p. 154).

Mayer solved the three equations he found, getting & = 8990 = 1°307,
§=—3°45",and = 14°33’, and he went on to consider the accuracy of
these values. He noted that even under favorable conditions an individual
observation of an arc could only be counted as accurate to within 10 or 15
minutes, and he claimed that the effect of an error of this magnitude ing
and h on the final determinations could be traced through the formulas he
had given. He did not attempt this kind of nonstatistical error analysis,
however. Instead he presented an empirical assessment of accuracy.

Earlier in his paper Mayer had illustrated how ¢, f, and 8 were calculated
on the basis of only three observational equations (equations 9, 16,and 19
of Table 1.1). The value he had found for e based on those three equations
was o = 1°40’. Now, he noted, ‘“Because these last values [based on all
twenty-seven equations] were derived from nine times as many observa-
tions, one can therefore conclude that they are nine times more correct
(neunmal richtiger); therefore the error (F ehler)in each of the constants isin
inverse relationship to the number of their observations’ (Mayer, 1750, p.
155). Mayer turned this statement into an interval description of the most
important of the unknowns, ¢, as follows:

Let the true value (wakre Wehrt) be ¢ = 1°30’ & x; then x is the difference or
the error (der Unterschied oder Irrthum): how far the quantity ¢, determined

Table 1.2. Mayer's three equations, as derived from Table 1.1 by adding
equations 1, 2, 3, 6, 9,10, 11,12, and 27 in group 1, equations 8, 18, 19, 21,
99,28, 24, 25, and 26 in group II, and the rest in group II1.

Group Equation
1 98— 118°8" =-+8.4987a — 0.7932a sin 6
I 98— 140°17' = —6.1404a + 1.7443« sin 6
434 98— 127°32' = +2.7977a + 7.96490 sin 0

Source: Mayer (1750, p. 154).
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from the 27 observations, can deviate from the true value. Since from three
observations we found o = 1°407, the ervor (der Fehler) of that determination
is found to be = 10 & x; consequently we are led to conclude that

i 1
[ gt
b 59 IO_Wx,g,
from which we find x = % 1’ 4. The true value of ¢ can therefore be about 1°
or 2 smaller or larger than 1°30°. (Mayer, 1750, p. 155)

Thus Mayer introduced the symbol ®x for the error made in taking
o= 1°30"; and 10 = x was the error made by taking o = 1°40/. Because
the determination 1°30" was based on nine times as many observations as
1°40° (and was thus nine times more accurate), he supposed that
4%+ 27 = (10 £ x) - 3. His solution to this equation makes it clear that he
assumed both sides must have the same sign, for, setting e = Ly, he actu-
ally solves ¢ - 27 = (10 +¢) - 3 to get e = 30/24 = 1.25. Thus either he
misses the possibility of solving Je| + 27 =[10 +¢| - % 1o get e=—1 (the
error in taking & = 1°40 is nine times that of @ = 1°30’, albeit in a differ-
ent direction), or he has deliberately taken the larger of the two values, to
give a conservative bound to the error.

We now know that Mayer’s judgment of the inverse relationship be-
tween the number of equations used and the accuracy of the determina-
tion was too optimistic; statistical accuracy at most increases only as the
square root of the number of equations, subject to various assumptions on
the conditions under which the observations are made. It was to be several
years before that relationship emerged in the works of Laplace and, later,
CGauss, Thus, rather than be surprised at Mayer’s overly optimistic view of
his procedure’s accuracy, we should be surprised at how qualitatively cor-
rect this view was. In fact, even to attempt a numerical estimate of the
accuracy of an empirical determination was remarkable for the time.

We can express Mayer’s error assessment in modern notation, in the
special case of determining a mean as follows: Let e be the limit of accuracy
(analogous to Mayer's & x) for a mean X (analogous to his observed 1°30),
let X, be a single determination (analogous to his 1 °4(), and let n be the
ratio of the sample sizes entering into Xand X, (analogous tohis 9 = 27 /3).

Then |X, — X|is analogous to his 10, and he would take
e (l/my=(X, —X|+ea+1, or e=|X—X/(rn—1)

Of course, this represents a considerable formal extrapolation of Mayer’s
intention, but it shows that his approach was at least qualitatively sound,
even if far from the best we can do today. The point is not that he found a
particularly clever method of combining his twenty-seven equations but
that he found it useful to combine the equations at all, instead of, say, being
content with selecting three *‘good” ones and solving for the unknowns
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from thf&m, as he dic‘i by way of illustration. This aspect of Mayer’s ap-
p'roach is best appreciated by comparing Mayer’s work with Euler’s mem-
oir of a year earlier.

Sczturn,]upéter, and Euwler

Leonhgrd Euler (1707 -1783) was and is best known for his work in pure
analysis, but he worked in nearly every area of pure and applied mathemat-
ics known at the time (or invented in the succeeding century). Euler was
the most prolific mathematician of all time; his collected works now run to
nearly eighty quarto volumes and are still in the process of publication. If
the maxim “‘Publish or perish” held literally, Euler would be alive t()d;i
Yet for all this abundance, the quality of his work did not suffer; and o);;
several occasions he was honored by foreign academies for his solgtions to
outstanding problems. One such instance was the prize announced by the
Academy of Sciences in Paris for the year 1748, when Euler was in Berlin.
.Thf.f Academy problem of 1748 concerned the second of the major
scientific problems we shall consider in this chapter; entrants were invited
to prepare mémoirs giving A Theory of Saturn and of Jupiter, by which
one can explain the inequalities that the two planets appear to cause in each
other’s motion, principally near the time of their conjunction”’ (Euler
1749, p. 45). ’
In 1676 Halley had verified an earlier suspicion of Horrocks that the
motions of Jupiter and Saturn were subject to slight, apparently secular
Inequah.txes. When the actual positions of Jupiter and Saturn were com—l
pared with the? tabulated observations of many centuries, it appeared that
the mean motion of Jupiter was accelerating, whereas that of Saturn was
retax‘*d.mg. Halley was able to improve the accuracy of the tables by an
empirical adjustment, and he speculated that the irregularity was some-
how 'due to the mutual attraction of the planets. But he was unable to
provuje a mathematical theory that would account for this inequality.
This problem, like that of the motions of the moon, was an instance of
the three-body problem. Its appearance at this time was also due to im-
proved accuracy of astronomical observations revealing inadequacies of
simple two-body theories of attraction. Unlike the problem of the moon
however, that of Jupiter and Saturn was not commercially motivated;’;

. 4. Th.e motians of Jupiter and Saturn about the sun are too slow to be useful for determin-
ing longlt\{dc at sea. In 1737 W. Whiston suggested that if reflecting telescopes were made
part of a ship’s navigational equipment then longitude could be determined by observing the
eclipses of the moons of Jupiter. Although this method would work on land, the su eftion
2}:;2 }}lgv‘e zee: asource of some amusement to naval astronomers who knew,nhe instgagbilitics
4 shi . et 3 . * I3 §
Emmm}; ; Ielcthd:da? :b;gz;;monal platform (W. R. Martin, **Navigation,” in Eneyclopaedia
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rather it drew its major impetus from the philosophical implications f’f an
unstable solar system. If the observed trends were to f:aminue indefinitely,
Jupiter would crash into the sun as Saturn mc?eded into spacel T%xe.: prob-
lem posed by the Academy could be (and was) 1}1terpreted as requiring the
development of an extension of existing theories of attraction to incorpo-
rate the mutual attraction of three bodies, in order to see whether spch a
theory could account for at least the major observed inequalities as, it was
hoped, periodic in nature. Thus stability would be restored to the solar
wnian gravitational theory would have overcome an-

system, and Ne
other obstacle,

Euler’s memoir on this difficult subject was judged the winner of the
prize even though it fell far short of providing a complete resolution of the
problem. This 123-page memoir, “Researches on the question of the
inequalities in the movement of Saturn and of Jupiter,” was published
separately int Paris in 1749, and it may still be read tod:ay asa quel of‘clear
and orderly mathematical exposition. Euler focused his attention primar-
ily on Saturn (which as the smaller of the two is subject to more pro-
nounced perturbations) and developed an equation for the lqngxtudma}
position of Saturn that took into account the mutual attractions of the
three bodies. He began by assuming that Jupiter and Saturn followed
circular orbits about the sun and that the orbits lay in the same plane.
Finding that the simple theory that resulted from this assumption would
not adinit inequalities of the size actually observed, he f:onsxdered more
complicated hypotheses. He first permitted Saturn’s f)rblt to be an ellipse,
he then permitted Jupiter to follow an elliptical orbit also, and I}e ﬁna]ly
incorporated the fact that the planes of the two orbits are not coincident,
but at a slight inclination, into the caleulations. .

After he had completed his mathematical analysis, it remained for Euler
to check his results empirically. He wrote, “After having determined the
derangements that the action of Jupiter should cause in t;}}e: movement of
Saturn, I now pass to an examination of the degree of precision with which
they agree with the observations” (Euler, }’749t p. 111). To ‘make this
comparison, he de a formula for the heliocentric longitude ¢ of
Saturn in the following form (p. 121):

@ =g~ 28525" sin ¢ -+ 168" sin 2¢ — 32" sin 20
~ 287" sin{w ~ g) = 243" sin(2w — p) + m"”
- g gin g+ v sin B 27 sinde — p)
- (e + 360 v + pieos(ew — p) + Nn”
- (1, 114088 cosq 4+ (1/6000%" cos 2g.

Of this impressive array of symbols, some (¢, 7, ¢, @, p, N, v) were given by
ok cand varied from observation to observation, and some (x, ¥, m,
%, 08, Ry 1, 1)  unkonown corfections whose values were not speck-

E R e )
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fied by the theory. A full explanation of this equation is not required here,
Inessence it represents the observed heliocentric longitude of Saturn (@) as
equal to Saturn’s mean heliocentric longitude # (what Saturn’s longitude
would be if we ignored perturbations and assumed an elliptical orbit) and
correction terms. These terms depend on the difference between the
longitudes of the two planets (w), the number of years since 1582 (N), and
various orbital characteristics (the planet’s eccentric anomalies, p and g¢;
and the number of complete orbits by Jupiter since 1582, v).

The problem Euler faced was this: He had available seventy-five com-
plete sets of observations of ¢, 7, ¢, @, p, N, and v made in the years from
1582 through 1745. From these he first derived values of n and w in which
he had confidence. It remained to determine the six unknown corrections
%,9,m, z, &, and k and to check whether, when their values were substituted
inthe equation for ¢, the values derived for the right-hand side agreed well
enough with the observed values of ¢ to enable him to say that the theory
explained the observed motions of Saturn.

The problem was an extraordinarily difficult one for the time, and
Euler’s attempts to grope for a solution are most revealing. Euler’s work
was, in comparison with Mayer’s a year later, a statistical failure. After he
had found values for » and u, Euler had the data needed to produce
seventy-five equations, all linear in x, y, m, z, &, and k. He might have added
them together in six groups and solved for the unknowns, but he at-
tempted no such overall combination of the equations.

To see how Euler did work with his data, it is instructive to look at the
way he found the first two unknowns, # and u. He noted that the coeffi-
cients of all terms except those involving n and u were, to a close approxi-
mation, periodic, with a period of fiftysning years. He subtracted the
equation for 1703 from that for 1585 (2 X 59 years apart) and that for
1732 from that for 1673 (fifty-nine years apart), thereby getting two linear
“equations in n and % alone. He solved these equations and checked his
results by comparing them with another set derived from four other equa-
tions, similarly spaced in time.

Euler attempted to evaluate other correction factors by the same
method, that is, by looking at small sets of equations taken under astro-
nomically similar conditions, and thus creating a situation in which many
of the coefficients would be approximately equal and the difference of two
equations would annihilate most terms. But he did not succeed in finding
other situations (like that for n and u) where different sets of equations
gave the same results. Once he derived six inconsistent linear equations in
only two unknowns but stated that, “Now, from these equations we can
conclude nothing; and the reason, perhaps, is that I have tried to satisfy
several observations exactly, whereas I should have only satisfied them
approximately; and this error has then multiplied itself ” (Euler, 1749, p.
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136). Immediately after this, he presented twenty-one of the equations,
involving the six unknowns other than n and u, only to throw up his hands
with no real attempt at a solution. The furthest he went was to set five of
the unknowns equal to zero (all except the term whose coefficient was
unity in all equations, m). He adjusted this remaining term to be halfway
between the largest and smallest constants in the twenty-one equations,
thus making the maximum discrepancy as small as possible.

The comparison between the approaches of Euler and Mayer is dra-
matic. In 1750 Mayer, faced with a set of twenty-seven inconsistent equa-
tions in three unknowns, devised a sensible method of combining them
into three equations and solving for the unknowns. In 1749 Euler, faced
with up to seventy-five equations inup to eight unknowns, was reduced to
groping for solutions. Euler worked with small sets of equations (usually as
many as there were unknowns), and he only accepted numerical answers
when different small sets of equations yielded essentially the same results.
Euler’s problem was similar to Mayer’s, yet of the two only Mayer suc-
ceeded in finding a statistical solution to his “‘problem’: a “‘combination of
ohservations” that Euler could not devise (and, we shall argue, would not
have accepted).

The two men brought absolutely first-rate intellects to bear on their
respective problems, and both problems were in astronomy. Vet there was
an essential conceptual difference in their approaches that made itimpossi-
ble for Euler to adopt a statistical attitude and a subtle difference between
their problems that made it extremely unlikely that Euler would overcome
this conceptual barrier. The differences were these: Mayer approached his
problemasa practical astronomer, dealing with observations that he him-
self had made under what he considered essentially similar observational
conditions, despite the differing astronomical conditions. Euler, on the
other hand, approached his problem as a mathematician, dealing with
observations made by others over several centuries under unknown obser-
vational conditions. Mayer could regard errors or variation in his observa-
tions as random (even though no explicit probability considerations were

introduced), and he could take the step of aggregating equations without
fear that bad observations would contaminate good ones. In fact, he ap-
proached his problem with the conviction that a combination of observa-
tions increased the accuracy of the result in proportion to the number of
equations combined. Fuler could not bring himself to accept such a view
with respect to his data. He distrusted the combination of equations, tak-

ing the mathematician’s view that errors actually increase with aggrega-
tion rather than taking the statistician’s view that random errors tend to
cancel one another.

1t has long been the practice of mathematicians to think in terms of the
masimum error that could occur in a complex calculation rather than i
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terms of the likely error, to think in terms of absolute error bounds (which
would typically increase with aggregation) rather than in terms of likely
error sizes (which would not). For example, if a quantity is derived from
adding together four numbers, any one of which could be in error by two
units, then the sum could err by 4 - 2= 8 units, and any attempt at an
exact calculation would have to allow for 8 units of possible error. The
longer the chain of calculation, the greater the maximum possible error
— the more the potential error would tend to multiply. On the other
hand, later statistical theory would show that under some conditions the
likely error in such a sum could be much less (perhaps £ 2 units, if the likely
error in one number was half the maximum possible) and the likely error in
averages would actually decrease even though the mathematician’s error
bounds would not. Although that theory was yet to come (see Chapters 2
and ), practicing astronomers like Mayer already had, based upon experi-
ence, at least a qualitative sense of its results in simple situations. For
example, when Nevil Maskelyne wrote in 1762 that by examining the
error of the adjustment in this manner, by at least three trials, and taking a
medium of the results, one can scarce err above half a minute in determin-
ing the exact error of the quadrant; whereas one may be mistaken a
minute, or more, by a single trial”” (Maskelyne, 1762; 1763, p. 4), 1t was
based on his experience with his instrument, not his reading of the small
amount of theory available by that time. Euler lacked that kind of direct
experience. One bit of evidence supporting the idea that Euler took the
more conservative mathematician’s view is his previously quoted remark
that the error made by supposing the equations held exactly has “multi-
plied itself”” (cette Jfaute s'est ensuite augmentée) (Euler, 1749, p. 136). An
earlier statement was slightly more to the point: By the combination of
two or more equations, the errors of the observations and of the calcula-
tions can multiply themselves” (Euler, 1749, p. 135).

At one point Euler did combine two equations by averaging, but only
when all corresponding coefficients were approximately equal. By sub-
tracting three pairs of equations (and annihilating all terms except those
involving x, y, z, and ow), Euler found three equations for x. He averaged
 the first two:®

x= 683" — 0.153y" + 0.179z" + 0.9840w”
x=673"—0.153y" + 0.187z" + 0.983au’
x=678" — 0.153y" + 0.1832" + 0.9830w”".

But the third gave
x = 154" + 0.067y" + 0.1922" + 0.980cu”°,

5, This single instance of averaging seems to be the source of the occasional mistaken
attribution to Euler of Mayer's method, which was later called the “method of averages.”
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and he would conclude only that “the value of y is quite large” (Euler,

1749, pp. 130-131). Atno other point did he average or add equations

except to take advantage of an existing periodicity to cancel terms.

In calling attention to Fuler's statistical failure, I mean to imply no

criticism of Euler as a mathematical scientist. Rather by contrasting his

work with Mayer’s I want to highlight the extremely subtle conceptual

advance that was evident in Mayer’s work. Euler's memoir made a signifi-

cant contribution to the mathematical theory of attraction. Even his crude
empirical solution, setting most of the correction terms equal to z€ro,
provided him with an improvement over existing tables of Saturn’s mo-
tion. His inability to resolve the major inequalities in the planets’ motions
was in the end due to the inadequacy of his theory as well as to his lack of
statistical technique. Euler himself was satisfied, correctly, that no values
of his correction factors could adequately account for the planet’s motions,
but he suggested as a possible cause for this the failure of Newton’s inverse
square law of attraction to hold exactly over large distances! The problem
in fact withstood successive assaults by Lagrange, Lambert, and Laplace
before finally yielding to Laplace in 1787. The lesson Euler’s work has for
the history of statistics is that even though before 1750 mathematical
astronomers were willing to average simple measurements (combining
observational evidence from several days or observers into a single num-
ber), it was only after 1750 that the conceptual advance of combining
observational equations (with varying coefficients for several unknowns
testifying to the differing circumstances under which the observations had
been made) began to appear.

To what extent was Mayer’s approach a method that could be general-
ized and transferred to problems other than its original application? Did
his contemporaries or immediate followers attempt such generalizations?
Mayer himself used the approach three times in his 1750 memoir: on the
twenty-seven equations for Manilius, on nine equations for the crater
Dionysius, and on twelve equations for the crater Censorinus.® He made
no attempt, however, to describe his calculationasa method that would be
useful in other problems. He did not do what Legendre did, namely,
abstract the method from the application where it first appeared. His work

roved to be influential nonetheless.

In a widely read treatise, Astronomie (1771), Joseph jérome Lalande
presented an extensive discussion of Mayer’s work for the specific purpose
of explaining how large numbers of observational equations could be
combined to determine unknown quantities. Indeed, Lalande presented
virtually the whole of Mayer’s analysis of Manilius, in what amounts to an

6. We can speculate that the numbers of equations were chosen to permitan equal division -

into three groups, perhaps by discarding one or tWo equations. Mayer does not comment on
this point, however.
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only slightly abridged translation (Lalande, 1771, vol

saying, “‘I report Fhe following numbers only to ser"ve as ir’llzgaélpsle c?fi?l)é
method ,that I W{sh to explain” (p. 419). It seems plausible that it was
Lalande’s exposition that called the method to Laplace’s attention and that
it was Laplace who first developed it into the form in which it becam
widely known in the nineteenth century as “Mayer’s method.” )

Laplace’s Rescue of the Solar System

Pierre Simon Laplace was born in Normandy on 23 M i

life spanned the Napoleonic era. In what mos}t] would ag?”l;cehwlaz‘:}?’e 32?;;51
age of .French science, Laplace was France’s most illustrious scigentist

Upon his death on 5 March 1827, Poisson eulogized him as “the Newtor;
of France,” and the phrase seems apt: Laplace was Newtonian in outlook

breadth, and, at least in probability and statistics, in accomplishment. B ’
t}}e age of twenty his mathematical talent had won him the patrona ;: o}f,'
d {\lembert; by the end of 1773 he was a member of the Acadenf of
$c1epces. Atone time or another he was professor at the Ecole Mi]itairey (he
is said to have examined, and passed, Napoleon in 1785), member of the
BUI‘CE.IU des Longitudes, Professor at the Ecole Normale, Minister of the
Interior (for six weeks, in 1799, before being displacec’i by Napoleon’s
brother), and Chancellor of the Senate. Laplace’s scientific worlfxv)vas no
less varied than his public career. His scientific memoirs constitute seven of
the total of fourteen volumes of his (not quite complete) Oeuvres complétes

About half of them were concerned with celestial mechanics, nearl onci
quarter with mathematics exclusive of probability; and th; remzinder

_ were divided between probability and physics (Stigler, 1978b). He is best

known in the history of science for two major treatises that were distilled

* from this work: the Traité de mécanique céleste (four volumes, 17991805,

with a supplementary volume published in 1825)and the Théorie analytique

 des probabilités (1812). John Playfair called the first of these “‘the highest

point to which man has yet ascended in the scale of intellectual attai ”
) attainment
(Playfair, 1808, pp. 277 - 278), Augustus De Morgan described the second

“as “the Mont Blanc of mathematical analysis”” (De Morgan, 1837).

In 1787, in the course of a memoir on the inequalities in the motions of

‘Saturn and Jupiter, Laplace proposed what amounts to an extension of

Mayer’s method of reconciling inconsistent linear e uation i
ochal work, Laplace finally laid to rest what was b)fl then as.ctlr?lttxhr;sr-gg
problem by showing that the inequalities were in fact periodic (witha very
lr{ng perlot;i). In the course of his demonstration Laplace was confronted
with equations of the type that had stalled Euler’s drive toward a solution
‘Laplace’s success in this celebrated problem was in considerable part 2;

statistical triumph, 2 model of the ways in which analyses of data suggested
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by theory may in turn suggest hypotheses requiring further theoretical
development and then observational confirmation. In 1773 Lambert had
deduced, on the basis of an empirical investigation of contemporary ob-
servations, that the retardation in Saturn’s motion noticed by Halley had
apparently reversed — Saturn was accelerating and apparently had been
doing so at least since 1640. This observation suggested (but did not prove)
that the inequality was periodic rather than secular as Halley (and even
Fuler and Lagrange in early work) had thought. Laplace sought to account
for the motions within the constraints of Newtonian gravitational theory,
to within the limits of observational accuracy. The problem was an ex-
ceedingly difficult one. Even if the inequality was periodic, which of the
known planets or moons would he need to include in the theory to obtain
satisfactory agreement? Even if only two planets were needed, which of the
many ways of developing the equations of motion would both be tractable
and permit the desired empirical check?

Building upon his own and Lagrange’s earlier work on planetary mo-
tions, Laplace succeeded in first proving that a remarkably simple conser-
vation property held for the eccentricity of planetary orbits. This property
implied in particular that, given the known ratio of the masses of Jupiter
and Saturn, the ratio of the maximum retardation of the mean motion of
Saturn to the maximum acceleration of the mean motion of Jupiter should
be nearly in the ratio of 7 to 3 —if, in fact, only the mutual attractions of
these two planets and the sun needed to be taken into account. Laplace
found that two quantities in the correct ratio, namely, 9°16’ and 3°58’,
differed from the largest values given in Halley’s tables by only 9. Encour-
aged by this close agreement, he embarked upon the arduous mathemati-
cal development of a theoretical formula for Saturn’s motion.

1t had long been known that the average annual mean motions of Jupiter
(now known to be n = 30°349043) and of Saturn (now known to bem =
19°221183) were approximately in the ratio of 5 to 2; in fact bm — 2n =
0.40758. In his treatment of this problem, Euler had curtailed his expan-
sion of the longitude of Saturn, omitting terms that contributed less than
30" each on the principle that some of the observations he would be using
could only be counted as accurate to 1’ (Euler, 1749, p. 118). Euler, as we
have seen, seems not to have realized that unknown quantities could be
determined to greater precision than that of the individual observations,
and he was here oblivious to the possible cumulative effect of such terms.
Laplace, on the other hand, followed a different tack. Although 5m — 2n is
a very small quantity (only about 1/74 of Jupiter’s mean annual motion),
Laplace focused his attention on terms involving this difference because
work of Lagrange had shown that such near commensurability of plane-
tary motions could produce significant inequalities. Laplace noticed, first,
that the periodic inequality due to the planets’ motions corresponding to
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terms involving 5m — 2n would have a period of about 900 years (about
the right order of magnitude to explain the observed inequalities) and,
second, that whereas the coefficients of these terms are very small in the
d_ifferemial equations of the planets’ motions, they become potentially
significant after the successive integrations needed to derive formulas for
the planets’ longitudes.

Encouraged further by a sense of empirical agreement between these
theoretical observations and the known characteristics of the yet unex-
plained inequality, Laplace undertook to develop a formula for Saturn’s
longitude, in effect out of Euler’s discarded scraps— out of a selection of
the terms Euler had omitted as neither measurable nor likely to be impor-
tant. The results of this intricate analysis were assembled into a 127-page
memoir, “Théorie de Jupiter et de Saturne,” printed separately by the
Academy of Sciences in 1787 and reprinted the following year as part of
the Academy’s Mémoires for the year 1785.

'The capstone of Laplace’s investigation was his comparison of his theory
with observations. He made use of the best available data on the “ele-
ments” of the planets’ motions, but his theory required four quantities that

~ were not readily available with sufficient accuracy for his purposes; he had
to determine them from the observations themselves. These were, in La-

Rlace’s notation d¢€!, dn!, d¢!, and 8@ they denoted necessary “correc-
tions” (rates of change) for, respectively, the mean longitude of Saturn in

“ 1750,‘ its mean annual motion, its eccentricity, and the position of its
- aphelion (its most distant position from the sun). Laplace selected twenty-

four observations of Saturn, made at times of opposition (when the sun,

earth, and Saturn were aligned) over a 200-year period as being particu-
larly likely to be accurately made. In each case he expressed the difference
~between the observed longitude of Saturn and that given by his theory as

an “eguation of condition.” For example, the equation for the year 1672
- was given as

0 =—3'32.8" + de/ — 77.286n! — 28¢' 0.98890
— 2(6@ — 6e9)0.14858.

(The eccentricity ¢/ was considered as known and was given elsewhere in
the memoir). The entire data set is given in Table 1.3, in which —g; stands
for the first term of the ith equation (¢, = —3/32.8” in the equation for the
year 1672}, and b;, ¢;, d, are the coefficients of the unknowns on/, 2d¢', and
2¢/(0’ — d€). 1t should be noted that the coefficients ¢;and 4, are strongly
related, as were the coefficients in Mayer’s investigation, by ¢ + df = 1. In
fact, ¢, = —sin(g, — w;) and d; = cos(¢;, — w;), where ¢, — @, is the differ-
ence between Saturn’s observed longitude and its aphelion in the ith year;

~ b, is the number of years from the beginning of 1750 to the time the

observation was made.




o STATISTICS BEFORE 1827 THE COMBINATION OF OBSERVATIONS 35
Table 1.3, Laplace’s Saturn data. gquations I- 12 and the sum of equations 13 - 24; (jii) the linear combina-
— S ngn of equat}ons: - 1+3+4 - 7+10+11—-14+17+ 18— 20+
oo . ) . . e e 23 + 24; and (iv) the linear combination of equations: +2 — 5 — 6 + 8 +
q ; ; ; i 9-—}2~13+15+16-—19+21+22. He then solved equations
1 1591 1/11.97 —158.0 0.99041 ~0.97541 +1/33% —0/54" @)= (iv) a.nd checked the degree to which the resulting equations fit the
2 1598 3/32.7" —~151.78 099974 -0.02278 —0.07 +0.37 ng(?;Vatllons by computing each residual, defined as the “excess”” of the
3 1660 512,07 —89.87 079735 060852 ~—1.36 +2.58 —11 tted value over the observe i iti
4 1664 3'56.77 8554 0.04241 0.99910 —0.35 +3.20 0.2 of residual). dralue (the negative of the modern definition
5 1667 3'31.7" —82.45 w().f»’{?’ 994  0.81516 —0.21 +8.50 ~0.8 Laplace did not explain his selection of four linear combinations, but h
& 1672 %32.8"  —77.28 ~0.98890 ~—0.14858 (.58 +3.25 —10 seems to have based it upon their effect upon the coefficients of ,the urf
. 1679 39.97 —70.01 012591 —0.99204 —0.14 —~1.57  —0.0 k.nowns in equations (i)—(iv). Thus (i) and (ii) are natural linear combina-
8 1687 474997 —62.79  0.99476  0.10222 —1.09 ~4.54 —05 tions to consider: (i) maximizes the coefficient of the constant term
9 1680 $926.87 ~50.66  0.72248  0.69141 +0.25  —~7.59 +02 whereas (ii) eliminates it. Nearly the reverse is true for the coefficient 0);'
10 1694 249" ~—5552 ~—0.07303  0.99733 +1.29 -8.00 +12 dn’. Evidently, the choice of which equations were included in (iii) and
}3 Eg@? :‘2:%“1':&; ~‘3‘2:’i; —0.660945  0.74285 +0.256  —935 +02 which in (iv) was made according to whether |¢;| < |d;or [¢) > |d,|. The one
12 1701 274127 —48.29 —0.99902 —0.04435 +0.01  —8.00 —0J exception to this rule is the reversal of it with respect to eqt;atior;s 3and5,a
13 1731 3'81.4” —18.27 —0.98712 —0.15998 —0.47 —4.50 —03 mmor exception that may have been made to reduce the coeflicient of the
14 1738 465" —11.01 0.18756 —0.99049 ~—1.02 —7.49 constant term in (iv) by 2. Once the twenty-four equations were divided
1 V; EM{;‘; 4'58.87 - 37? 0.99848  0.11401 —1.07 ~4.21 between (iii) and (iv), the signs + and — were chosen according to the signs
16 1 749 4387 - 0.65  0.71410  0.70004 —0.12  —8.38 of d,[for equation (iii)] and ¢ [for equation (iv)], thus nearly maximizin %I?e
17 XE;}S 1'58.2" 3.48 —0.08518 0.99637 +1.54 —13.39 contrast between the coefficients of the last two unknowns §
18 1756 13527 6.58 —0.67859 073452 -+1.37 -—17.27 The subtle advance Laplace had made was this: Where Mayer had onl
19 1760 %°14.07 10.72 —0.99838 —0.05691 —0.23 —22.17 added his equations of condition together within disjoint groups, La lacz
20 1767 1740.27 17.98  0.03408 —0.99942 +1.29 —13.12 _ combined the same equations together in several different ways "’I‘heiela-
EZI 1775 5:4?0: ;‘2%% 0.99?% 0.0} 065 +0.19  +2.12 ionship between the methods of Mayer, Laplace, and Legerfd;“e and the
i@ 1778 4 212.9“ 38.% 0.‘?8%&?»5 0.62559 —0.5%4 +1.21 mportance of Laplace’s advance can be best understood if we interpret
28 1782 444 ?2.%&? 0.01794  0.99984 —0.23  —5.18 hem all in terms of a uniform notation. If we wri i i
2o e S 099930  0.80053 —056 —12.07 e write an equation of condi-

ion involving four unknowns including a constant term as

Source: Laplace (1788),
Note: Residuals are fitted values minus observed values.

O=a,+w+bx+cy+dg i=1,...,n,

wher? ag, by, G and d;are observable and w, x, y, and z are unknown, then
we might write the jth aggregated equation, j =1, 2, 8, 4, as

0"——’2%&;%‘Zk,-jw'i—Zk,-jbix“f"zkﬁciy-{"zkgdiz,

here (k;} form a system of multipliers.

_ All three of the schemes we have discussed fit this description, although
tshould be borne in mind that viewing them in terms of this notation is an
nachronism and that this unifying view was not to appear until later, in
aplace’s 1812 work on this subject.

Mayer treated the case where n = 27 and d; = 0 for all i (that is, only
ee unknowns appeared) and determined the multipliers (k) for ( j=1

) from the coefficient of the first unknown with a noncogstant coefﬁ:

Laplace was faced with twenty-four inconsistent equations of condition,
each linear in the four unknowns. It was a situation similar to one that
Euler had failed to resolve and to one that Mayer had resolved by breaking
the equations into disjoint groups and adding each group together. La-
place dealt with the problem by using a method that bears a superficial
resemblance to Mayer’s approach; yet it differed from that of Mayer in one
subtle respect that marks it as an important advance toward least squares.

Laplace did not provide an algebraic description of his solution, but he
did give a detailed description of the steps he followed. What he did, he
explained, was to reduce his twenty-four linear equations to four equa-
tions: (i) the sum of equations 1 — 24; (i) the difference between the sumof
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cient, that is, from the b/'s. If we let b < b be the ninth largest and ninth
smallest b;, respectively, then Mayer effectively took

1 ifth = [
0 otherwise
1 ifh=zb
by = 0 otherwise
}L -
0

bbb

otherwise.
Thus each equation of condition influences only one aggregated el:]quatlofﬁn,
and the question of which one is influenced was determined by t_” e coe t -
cient of a single unknown. Legendre’s “method of least squares” wentto

another extreme, taking

ki

kiﬁ

ka =1, kig = by, kis = Cis
and, if the fourth unknown is present,
kg = d;.

Here, unless a coefficient of an unknown is ZeTo, a}l equations olt; condxt;ir;
influence all aggregated equations and the coefficients of (all ux; d?owli)sund
important in the aggregation. Laplace’s appmai:h took a mf; idle gicm <
hetween these approaches and amounted to 2 }*ounded o ;fersnowed
the least squares aggregation, where the muh}phem {k;) are or;l yal e
1o take the values—1,0,+ 1. If we let B = median (F)‘,-) and noEe1 ;2 ::t solr;cm)
Laplace’s case Edi=1 (50 led “>~ 1d if and cmly if tc,&? 2} / = .atior;
then (with the single minor exception noted earlier) Laplace’s aggreg

Wak
b= 1 alld
[-1 ifp<B
ke=1 1 ifp,>B
—1 if—1=6<—0.707
hy=1{ 0 if—0.707<¢<0.707
" 1 if0.707<¢=1
—1  if—1=d,<~0.707
ho={ 0 if—0.707<d;<0.707

1 if0.707 <d;s 1.

Now, the point of this comparison is not Lo argue that Laplace'ebz‘ilmiz
arrived at the method of least squares. in the first place, even describing :
method in this algebraic form isa Considergble formal extrapo;aulontge
what he actually did, which was to present a single worked example. in
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second place, Legendre’s method, unlike Laplace’s, was formally derived
from an explicitly stated criterion of best fit. Rather the point is that
Laplace had moved forward from Mayer in treating the data setasa whole
and in allowing the values of all the coefficients of the unknowns to influ-
ence the aggregation. Mayer had broken his data set into disjoint sets
which, judged by the values of the coefficient of one unknown, were made
under similar circumstances. In this he went beyond Euler, who would
have insisted that the equations be alike in all coefficients before he would
combine them. Mayer nevertheless clung to the older tradition in that he
treated observations made under very different conditions separately, at
least until the final stage of his analysis. Laplace went further by combining
all the observational equations in the very first stage of his analysis, and
more important, by letting all coefficients influence the manner of combi-
nation.

Mayer had focused on the coefficient of only one unknown. Because it
was indeed the most important unknown in his application,” he arrived at
what was, for his situation, a good solution. But if we consider his approach
asa method to be applied in other situations, it has the serious shortcoming
of requiring that there be a single important unknown, that the investiga-
tor be able to tell which unknown is important, and that the coefficients of
the other unknowns be distributed so as not to confound the solution by,
for example, producing a nearly singular set of aggregated equations.
Mayer was successful because he knew what he was doing in his particular
application, but another investigator mimicking his procedure in another
application might not be so lucky. Laplace’s generalization of this ap-
proach, on the other hand, did not suffer from this drawback. All un-
knowns could be determined by his method with reasonable accuracy —at
least when there was sufficient information in the original equations of
condition to determine them accurately by any method. Another investi-
gator imitating Laplace’s method would not require the same degree of
“good luck” required by a follower of Mayer and usually would be re-
warded by greater accuracy as well.

The criterion minimized by the method of least squares— the sum of
squared residuals —is not an unexceptionable measure of the success of a
fit, but it provides one useful way of assessing these early efforts. When we
compare the square root of the sum of the squares of Mayer’s residuals to

the square root of the residual sum of squares given by least squares, we

7. In fact, because of the small size of @ (and thus of & sin 6) and the relatively large
measurement error in determining g — k (caused by the small angle between the moon’s orbit
and the ecliptic and the consequent difficulty of estimating the node F in Figure 1 .2), theterm
involving o sin # does not contribute significantly to the regression. Interestingly Mayer was
aware of this measurement problem and did not consider his determination of 0 to be
teliable.




38 STATISTICS BEFORE 1827

find that for the Manilius data Mayer’s method givesa value only 6 percent
larger, for the Dionysius data, 5.7 percent larger, and for the Censorinus
data, 66 percent larger. For Laplace’s Saturn data, the same comparison
has Laplace's method with a value only 5.5 percent larger than that for
least squares; whereas when Halley’s 1719 empirical adjustment is extrap-
olated to 1786, the square root of the sum of the twenty-four correspond-
ing squared residuals is 90 percent larger than Laplace’s. Note (Table
1.3) that the pattern of either Laplace’s or the least squares residuals hints
correctly that not all of the periodic inequalities in Saturn’s motion had
been accounted for, even though the most controversial one had been.

Laplace had come quite a bit closer to providing a general method than
Mayer had. Indeed, it was Laplace’s generalization that enjoyed popular-
ity throughout the first half of the nineteenth century, as a method that
provided some of the accuracy expected from least squares, with much less
labor. Because the multipliers were all—1, 0, or 1, no multiplication, only
addition, was required.

Among the writers to present Laplace’s version of the method as an
alternative to least squares was Mary Somerville, who described it in her
1831 book Mechanism of the Heavens and attributed it to Mayer. In telling
how a set of equations of condition of the form

Error = € + 073133P + 072969,

but with varying coefficients, could be combined to solve for three un-
knowns P, ¢, and €, Somerville wrote:

For example, in finding the value of P before the other two, the numerous
equations must be so combined, as to render the coefficient of P as great as
possible; and the coefficients of ¢ and € as small as may be; this may always be
accomplished by changing the signs of all the equations, so as to have the
terms containing P positive, and then adding them; for some of the other
terms will be positive, and some negative, as they may chance to be; therefore
the sum of their coefficients will be less than that of P.

Having determined this equation, in which P has the greatest coeflicient
possible, two others must be formed on the same principle, in which the
coefficients of the other two errors must be respectively as great as possible,
and from these three equations values of the three errors will be easily ob-
tained, and their accuracy will be in proportion to the number of abservations
employed. (Somerville, 1831, p. 409)

In this description, and in our abstraction of Laplace's extension of Mayer, -

there is an implicit assumption that the signs of the coefficients change, as

would be the case if they were centered at their means. In fact, in these .

early applications this was essentially the case because the unknowns repre-
sented corrections to a mean. We note in addition that Mary Somerville

follows Mayer in claiming that accuracy is proportional to the number of |

observations rather than to the square root of the number of observations.
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Other writers to mention Laplace’s version of the method, crediting it to
Mayer, included Francoeur (1830; 1840, p. 432), Bowditch (1832, p.
f185), Puissant (1842, vol. 2, p. 344; Puissant does not mention the method
in the first edition, 1805), Wolf (1869-1872, vol. 1, p. 279; vol. 2, p. 199)
and Whittaker and Robinson (1924, pp. 258 - 259). After about 1850 the’
references to the method were of a historical rather than a practical na-
ture, and they describe the method in terms of Mayer’s original formula-
tion, with disjoint groups being added.

Roger Boscovich and the Figure of the Earth

Thus far we have seen how problems involving Jupiter, Saturn, and the
moon led to the introduction and development of a method of combining
inconsistent linear equations in the half-century before the appearance of
the method of least squares. “Mayer’s method,” as it was known, was easy
touse and generally led to sensible results, two properties that conspired to

. keepitasan actively employed tool in astronomers’ and geodesists’ work-

shops for a half-century after least squares was introduced. But Mayer’s
method lacked one quality that the method of least squares was found to

; haYe in abundance; and it was this quality that contributed to the eventual
~ eclipse of Mayer’s method by the method of least squares. Mayer’s
~ method, unlike least squares, was not “‘best” in the sense that it appeared as
_ the solution to a mathematically posed problem of finding the “best”

combination of inconsistent equations. It was an ad hoc method, and its
acceptance depended upon its reputation for past successful use, its ease of

- application, and the investigator’s intuitive feeling that by combining the

equations in such a way that the coefficients of the unknowns are succes-

sively maximized, a mechanically stable (and hence reliable) solution

would result. The first of these —a reputation for successful use —was

- widely believed. Mayer’s tables of the moon’s motion and his map of the

face of the moon were commonly and justly seen as among the most
accurate such achievements of eighteenth-century observational astron-
‘omy. Even those who knew that the development of Mayer’s method intoa
‘more general tool was first found in Laplace’s work would not be dis-
suaded from its use — who could not feel confident using the method that

hftd reconciled the motions of Jupiter and Saturn with Newtonian gravita-
n9nal theory? As the years went by, the vivid impression of these past
triumphs faded, however, to be replaced by stories of the triumphs of least
squares. Then, as more experience and ways of simplifying computation
mad.e‘least squares easier to use and as succeeding generations of mathe-
maticians made no successful attempt to give formal statement to the
vague %ntuitive notions of the reasonableness of Mayer’s method, it faded
from view — or rather moved from the workshop of the practitioner to the

* display case of the statistical museum.
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Least squares was the most successful of the early methods of combining
inconsistent equations, and the fact that it was based on and derived from
an easily understood objective criterion was a major reason for its success.
Nevertheless, least squares missed being the first method to be so based by
nearly half a century. To trace the genesis and fate of its most famous
predecessor, “‘Boscovich’s method,”” we shall first consider a third major
eighteenth-century scientific problem — the problem of the figure of the
earth,

The first post-Columnbian hint that the earth was not a perfect sphere
seems to have been the discovery by Richer in 1672 that a pendulum near
the equator was less affected by gravitational attraction than was the same
pendulum at Paris. Newton, in the Principia (1687), showed how the rota-
tion of the earth could be expected to produce a flattening of the earth at
the poles and a bulging at the equator, a shape known as an oblate spher-
oid. Newton estimated the oblateness or ellipticity (the fraction by whicha
radius at the equator exceeds the radius at the pole) to be 1,/230. This
conclusion about the shape or figure of the earth did not go unchallenged,
however. Domenico Cassini, director of the Royal Observatory in Paris,
thought in fact that the earth was a prolate spheroid, flattened at the
equator, not the poles. Several attempts were made over the succeeding
century both to determine whether the earth was oblate or prolate and to
measure the departure of its shape from spherical.

The two principal methods of determining the figure of the earth were
pendulum experiments and arc measurements. We shall be concerned
primarily with arc measurements in this chapter, although the statistical
problems that arise in the two cases have striking similarities. The determi-
nation of the earth’s figure from arc measurements required the coopera-
tion of a team of scientists and months of labor under adverse circum-
stances; it was the perfect sort of challenge for the growing and
increasingly adventuresome French scientific community. The idea was to
measure the linear length of a degree of latitude at two (or more) widely
separated latitudes. If a degree near the equator is found to be shorter than
one nearer the pole, then the shape of the earth is oblate; and the differ-
ence between the two measurements can be used to calculate the oblate-
ness.

At first thought it may seem paradoxical that a shorter degree near the
equator would indicate a bulging at the equator, but only because there isa
common misapprehension of the definition of a degree of latitude. The
latitude of a point on the earth’s surface is not, as might be supposed, the
angle formed between two rays from the center of the earth, one to the
given point and the other at the intersection of the equatorial plane and
the point’s meridian plane. Indeed, the operational difficulties in taking
such a measurement would tax the resources of even the largest geodetical
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organization. Latitude in fact is measured as the angle between a ray to the
zenith of the given point and the equatorial plane or, alternatively, as the
complement of the angle between rays from the given point to the zenith
and to the Pole Star. Figure 1.3 shows arcs of 10° latitude for an exagger-
atedly oblate earth.

The relationship between arc length and latitude can be derived from
the geometry of conic sections, the exact relation being given by an elliptic

Figure 1.3. A side view of an exaggeratedly oblate earth, illustrating the
lengzhe@ing of degrees of arc toward the pole. The meridian quadrant AB is
broken into nine segments, each of 10° latitude. (Based upon Berry, 1898, p.
277.)
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integral. ‘Fm* short arcs, however (the only ones it was practical to mea-
sure), a simple approximation will do: If g is the length of 1° of latitude

centered at latitude 6, measured along a meridian, then toa good approxi-
mation,

a =z -+ ysin® 8,

where z is the length of a degree at the equator, and y is the excess (or
deficiency) of a degree at the North Pole over one at the equator. Some
early works expressed this as

a =gy % « versed sine 26,
where “‘versed sine’’ 26 =1 —~ cos 26. Then the identty 1 — cos 20 =
2 sin® § would save the bother of squaring sin § in any calculation.
Measurements of a French arc made by Domenico Cassini and his son

and successor Jacques before 1720 supported the hypothesis that the earth
was prolate, but the narrow range of latitude (9°) and the possibility of a
low accuracy in the measurements prevented this anti-Newtonian conclu-
sion from gaining wide acceptance, In 1735 the French Academy
launched expeditions by Bouguer to Peru and by Maupertuis to Lapland
to measure arcs near the equator and at about 66° latitude for comparison
with measurements near Paris. The results effectively refuted the Cassini
hypothesis and settled the matter in ch\?fmm“s favor: The earth was»obhlgte.
The only question remaining was the size of the oblateness or ellipticity,
because different pairs of arcs gave different values.

In 1755 the results of measuring a length of a meridian arc near Rome
were published by the English Jesuit Christopher Mai?rf: and the Dalmatian
Jesuit Roger Joseph Boscovich {or Rudjer [. B«E’)slkovxyc) under the txtﬁlg De'
Litteraria Expeditione per Pontificiam ditionem ad dimetiendas duas Meridiani
gradus. In successive analyses by Boscovich of thesc:.data we find the first
successful resolution of the inconsistency of the dlﬁ"erent‘ arc measure-
ments and the introduction of the statistical procedure that is our immedi-
ate concern. .

When Boscovich first addressed this problem in 1755 —ina chapter of
his joint work with Maire for which he took sole responsxbthty—-—be x;le(;
with only limited success. Boscovich was aware, as others before him hac
been, that to obtain an accurate determination of the figure of the garth it
would be necessary to compare measurements widely separated in lati-
tude, as even small errors made in proximate arc measurements w.ould be
greatly exaggerated in any pairwise combination of them. Boscovich thus
focused his attention on only five determinations that were made at W.eH-

separated locations and were likely to be accurate (Table 1.4). Boscovich
gave no analytic description of his handling of these data; here as else-
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Table 1.4. Boscovich’s data on meridian arcs.

Arc length Boscovich's
Location Latitude (£) (toises) sin? 6 X 10
(1) Quito g°0” 56,751 0
(2) Cape of Good Hope 33°18/ 57,087 2,987
(3) Rome 42°59 56,979 4,648
(4) Paris 49°2%/ 57,074 5,762
(5) Lapland 66°19 57,422 8,386

Source: Boscovich and Maire (1785, p. 500). Reprinted in Boscovich and Maire (1770,
p. 482).

Note: Arc lengths are given as toises per degree measured, where 1 toise = 6.39 feet.
The value for sin? 8 X 10* for the Cape of Good Hope is erroneous and is evidently based
on 33°8’. The correct figure would be 3,014.

where he followed in a2 Newtonian tradition of giving geometric descrip-
tions rather than analytic ones.® It will be easier, however, to relate Bosco-
vich’s different efforts to later work if we adopt an analytic formulation
from the beginning. In analytic terms, Boscovich was faced with the equiv-
alent of five observational equations,

a;=z+ysin® g,

where a;, and §, are the length of an arc (in toise per degree, 1 toise = 6.39
feet) and the latitude of the midpoint of the arc, both at location i. The
unknowns y and z are, respectively, the excess of a 1° arc at the pole over
one at the equator and the length of a degree at the equator.,

In principle any two of the five locations could be used to solve for the
polar excess y and the equatorial degree z or, equivalently, for the polar

8. Isaac Todhunter is among those who have experienced frustration because Boscovich
retained the cumbersome geometric apparatus of Newton instead of using the more ele-
gantly concise analytic formulations of Clairaut and Euler. Commenting on one of Bosco-
vich's proofs, Todhunter wrote, *‘Boscovich professes to use Geometry alone: but the Geom-
etry consists chiefly in denoting the length of every straight line by two capital letters instead
of a single small letter: this strange notion of Geometry has survived to our own times in the
University of Cambridge” (Todhunter 1873, vol. 1, p. 309). Todhunter later took another
opportunity to link sarcastically Boscovich and his own University of Cambridge, “In form-
ing an estimate of the treatise we must remember that the author had prescribed to himself
the condition of supplying geometricalinvestigations; so the Differential Calculus was not to be
introduced. We must consider the treatise rather as the work of a professor for the purposes
of instruction than of an investigator for the advancement of science; and then we may award
the praise that the task proposed is fairly accomplished. It would have been more desirable to
study Clairaut’s work than to be confined to Boscovich’s geometrical methods: but the
experience of our own university shews us that it is possible to find the methods used for
teaching occasionally some years in arrear of those used for investigation” (Todhunter,
1873, vol. 1, p. 319).
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excess y and the ellipticity (Boscovich computed? it here as 1 /ellipticity
= 32/y). And in fact this is exactly what Boscovich did: He calculated yand
the ellipticity based upon each of the (§) = 10 pairs and presented the
results shown in Table 1.5, This gave him not one, but ten solutions to his
problem, and in 1755 he showed himself not quite able to deal with this
embarrassment of riches. He did make a weak attempt to combine these
findings: He averaged the ten values of the excess'” and found, using the
equatorial degree at Quito (z = 56,751), the value 1/155 for the ellip-
ticity.

This value must have seemed too large, for he then recomputed the
ellipticity after rejecting the pairs (2, 4) and (2, 3) as “so different from the
others,” possibly because of the close proximity of their degrees of lati-
tude. The mean excess based on the remaining pairs gave, with the Quito
degree, an ellipticity of 1,198, but this still seemed unsatisfactory to Bo-
scovich, Instead of accepting either of these figures as a compromise, as an
average determination of the ellipticity, Boscovich focused on the discrep-
ancy between this average value and the ten (or eight) components that
had made up the average, taking what appeared to him to be large discrep-
ancies as evidence against an ellipsoidal shape for the earth.

Thus it is evident that the determinations of these degrees cannot be recon-
ciled with the ellipse of Newton, nor with any other ellipse, either more or less
oblate. Five degrees, taken arbitrarily, must always give the same ellipse, and
we have seen what little agreement there is between those we have chosen.
The differences between them are not proportional to the versed sine of
double the latitude [that is, versed sine 28 = 2 sin® 6], If they were, each
combination of degrees, as we have said, should give the same ellipticity.
(Boscovich and Maire, 1755, p. 501, 1770, p. 484)

A modern geodesist would not quarrel with Boscovich’s rejection of an
ellipsoidal hypothesis, but in the context of his own time he was wrong. If
the likely size of measurement SXTors, even as perceived by Boscovich and
his contemporaries, is taken into account and the observational evidence
combined in a reasonable way, then Boscovich’s data is not wholly incon-

9. A slightly betrer local approximation would be one Laplace used later, namely
| /ellipticity = 32/y + 5/3, but the difference between the two formulas is negligible in the

present application, Other workers used 1 Aellipticity = 32/y + 3/2, or = 3z/y+ 2. All
workers of the period wrote the ellipticity in reciprocal form (for example, 1/230), even
when it was first caleulated in decimal form. We would describe this practice as reparametri-
zation.

10 Actually the text (Boscovich and Maire, 1755, P 501; 1770, p. 484) gives the average
excess as 222 ( just one-third of the correct value) even though the ellipticities were correctly
calculated. Evidently Boscovich madvertenly inserted the average of the ren values of /3
into the text, a number he would perhaps have found as an intermediate step toward calculat-
ing 1 /ellipticity = z,/(y/3).
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Table 1.5. Boscovich's pairwise solutions, based on the data of Table 1.4, for the
polar excess y (the amount by which a degree at the pole exceeds a degree at
the equator) and the ellipticity (found from the formula 1/ ellipticity = 32/?;,
where zis the length of a degree at the equator as found from the pair of equations).

Polar excess Polar excess
Pair (3, in toises) Ellipticity Pair (3, in toises) Ellipticity
1,5 800 1/213 2,4 133 1/128
2,5 713 1/239 3,4 853 1/200
3,5 1,185 1/144 1,3 491 1/847
4,5 1,827 1/128 2,3 —350 ~1/486
1,4 542 1/314 1,2 957 1/78

Source: Boscovich and Maire (1755, p. 501). Reprinted in Boscovich and Maire (1770,
p. 483). -

Note: The ellipticities for pairs (2, 4) and (1, 2) were evidently misprinted in the
original; they should be 1/1282 and 1,/178. The figures for the pair (1, 4) are erroneous;
they should be 560 and 1,/304.

sistent with an ellipsoidal hypothesis. The arc at Paris was widely seen as
the most accurate of those measured before 1755, and even it was suscepti-
ble to large changes whenever it was carefully rescrutinized: From 1738 to
1740, estimates of the Paris degree changed from Picard’s original (1671)
figure of 57,060 toises to 56,926 toises (Maupertuis in 1738) to 57,183
toises (Maupertuis in 1740) to 57,074 toises (Cassini de Thury in 1740),
see Todhunter (1873, vol. 1, p. 127). These successive changes of over 100
toises in the most-studied arc would not justify confidence in much greater
accuracy than 100 toises, although individual investigators evidently had
higher opinions of their own arcs. Even forty years later, Laplace (1 79?,
vol. 2, p. 448) felt that an error of 97.20 toises “‘is exactly on the least limit
of those which might be considered as possible.” If Boscovich’s data {Table
1.4)is fitby least squares, the residuals are 13, 83, — 95, — 80, 78. A slightly
better fit is achieved if Boscovich’s error in the sin? 6 for the Cape is cor-
rected, that is, 15, 82, — 94, — 80, 78. The accuracy of the Lapland arc is
discussed by Todhunter (1879).

Boscovich himself must have felt some uneasiness at his own conclusion,
for he did not let the matter rest with his 1755 analysis. Two years later he
published a synopsis of the 1755 volume that included a brief statement of
aradically new principle for the combination of inconsistent arc measure-
ments. Andin 1760, ina prose supplement to a versified treatise on natural
philosophy by Benedict Stay, Boscovich gave a full description of his prin-
ciple, an explanation of how it could be used in practice and a worked
example based on the five degrees he had considered in 1755. This 1760
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version was later translated into French and appended to Boscovich and
Maire (1770) as a part of a note!’ (pp. 501 ~510}.

The principal novelty in Boscovich's approach was its novelty of princi-
ple. Where Mayer had proceeded ad hoc, his underlying motivation re-
maining unformulated, Boscovich began with a generalizable principle, a
list of properties that the mean based on a combination of arc measure-
ments should have; and he went on to derive an ingenious geometric
algorithm that would find such 2 mean. He introduced his principle as

follows (the italics are Boscovich’s):

The mean we will take will not be a stmple arithmetic mean, rather it will be
one tied by a certain law to the rules of fortuitous combination and the
calculus of probabilities. We are faced here with a problem I have discussed
toward the end of a Dissertation inserted in the proceedings of the Institute of
Bologna, volume 4 [that is, Boscovich’s 1757 summary], where 1 contented
myself with giving the result of its solution. Here is the problem: Being given a
certain number of degrees, find the correction that must be made to each of them,
supposing these three conditions are complied with: the fivst, that their differences
shall be pmporéwnaf to the differences between the versed sines of twice their latitudes;
the second, that the sum af the positive corrections shall be equal to the sum of the
negative ones; the third, that the sum of all the corrections, positive as well as negative,
shall be the least possible, for the case where the first two conditions will be Sfulfilled.
The first condition is called for by the law of equilibrium, which requires an
elliptical shape; the second, from the fact that deviations of a pendulum, or
errors by observers, that augment of diminish degrees have the same degree
of probability; the third is necessary in order to approximate the observations
as closely as possible, for, as we have observed above, it is clearly very probable
that the deviations are quite small, because the scrupulous exactitude of the
observers would not permit any suspicion of large errors in their observa-
tions. {Boscovich, 1760, as transkated from the French of Boscovich and

Maire, 1770, p. 501)

1f we introduce the symbols ¢, gz, - - - for the measured lengths, in
toises per degree, of the measured arcsat latitudes 8, 6, - ,and let dg;
stand for the “‘correction” that Boscovich would make to the degree a;,
then his first condition is that the corrected degrees, ¢; + da,, satisfy

a, + da, — (a; + da,) * versed sine 26, — versed sine 26;.

Since versed sine 26 = 2 sin? 6, this is equivalent to supposing

g, + da; = 2+ ysin? G,

{1.The 1776 rranslation also included an additional worked example based on nine arc
ditional material is preserved

measurements. Boscovich's original manuscript copy of this ad
i the Boscovich Archives at the Bancroft Library of the University of California, Berkeley

(folder 28).
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or
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=zt ysin® g, — aq,,
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Figure 1.4. Boscovich’s algorithm. The hovizontal axis AF gives ;‘inz 8, where
8 is the latitude of the midpoint of the are; the vertical axis AX gives the arc
length in toises per degree. The frue ares are indiw{ed bya,b,c, d, and &
G is the center of gravity. (From Boscovich and Maire, 1770, plate I.)

unit in length; Aas the origin; and A, B, C, D, fmd Eas representing the five
values of the sin? 8, as marked off on the unit interval. The Iengths Aa, Bb,
Ce, Dd, and Ee may be considered as representing the lengths (in toises per
degree) of the corresponding mmsur&fi arcs. The problem was to fmd{ a
straight line A'H such that the corrections aA’, b0, ¢k, dL, and e.M satis-
fied the second and third conditions. Boscovich began by observing that
the second condition, interpreted as describing a condition of mecham?al
equilibrium, implied that the line must pass through the center of gra;xty
(G) of the points. This reduced the' Pm'blem to one of finding that line
through G such that the third condition was satxsﬁed. ‘

To find the solution, Boscovich imagined a straight line SGT that was
rotated clockwise, kept anchored at (. As the line rotated, t}?e sum gf the
corrections (taken without regard to sign) would dec?ease until a minimum
was achieved, then increase again. Since the corrections for the individual
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arcs would change as the line rotated in proportion to the distances AS, BS,
SC, SD, and SE, it was only necessary to continue until the line had passed
{or just reached) a sufficient number of the five points so that at least half
the sum of these five distances, AS + BS + SC + SD + SE, was accounted
for by the distances corresponding to the points passed (or just reached).
Before such a point was reached, the sum of the corrections would de-
crease as the line rotated; after that point the sum would increase. He
further simplified the solution by noting that the rotating line would en-
counter the five points in the inverse order to the slopes of the five lines
from G to the five points: aX /AS, bo/BS, and so forth.

Boscovich clarified his geometric description of this algorithm by work-
ing through the details for the data of Table 1.4. He first located G by
calculating the mean of the values for 10 - sin® 6, (giving 10* AS =
4,356.6) and the mean of the arcs g, (giving SG = 57,052.6). He then
calculated the differences 10%(sin? §, — AS) (that is, AS, BS, . . . ; given
in column 2 of Table 1.6), the differences a; — SG (that is, aX, bo, . . . ;
given in column 3 of Table 1.6), and the ratios 10%(sin? 8, — AS)/(a; — SG)
(that is, AS/aX, BS/bo, . . . ; given in column 4 of Table 1.6). These
ratios are the inverses of the slopes described earlier. Thus the numbersin
column 4 of Table 1.6 told Boscovich that the rotating line would en-
counter the five points in the order e, a, d, b, and, finally, ¢. How far
through this list should Boscovich travel? The total of the distances AS, BS,
SC, SD, SE (X 10%, taken without regard to sign) was found from the
numbers in column 2 to be twice 5,726.2; thus he should continue until he
reached a point such that the sum of the values in column 2 (without regard
for sign) corresponding to the passed points reached 5,726.2. Since SE =
4,099.4 < 5,726.2 and SE + SA = 8,386.0 > 5,726.2, the line should be
allowed to rotate until it reached a. While the line rotated from e to a, the
correction to the point ¢ increased by an amount proportional to SE =
4,029.4 and the total decrease in the other corrections was proportional to
SA + SD + SB + SC.= 7,423.0. Once a was passed, the total increase was

Table 1.6. Intermediate calculations for Boscovich’s 1760 solution.

Arc length — SG

Arc 10%sin?  — AS) (toises) Ratio
=g —4,356.6 —301.6 14
2)y=15 —1,369.6 -~ 15.6 88
B)=c¢ 291.4 ~73.6 -4
4)=d 1,405.4 91.4 66
(3)=¢ 4,099.4 369.4 11

Source: Boscovich and Maire (1770, pp. 505~ 506).
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proportional to SE -+ SA = §,386.0, and thus more than counterbalanced
the decreasing corrections, proportional to 8D+ 8B + SC = 3,066.4.
The solution then was the line passing through G and al This he found
corresponded to z = 56,751 and y = 692, from which he calculated the
ellipticity as 1/248, Heve, in 1760, he used the formula 1 /ellipticity =
3z/y-+ 2. Perhaps encouraged by the close proximity of this value to
Newton's 1 /230 and by the fact that this new value emerged from his own
new method of combining observations, Boscovich did not repeat his
earlier doubts about the elliptical shape of the earth.

The verbal description quoted earlier and the worked example are
really all Boscovich ever wrote about his method. He added an updated
discussion of arc measurements to the 1770 wranslation of his work with
Maire, This discussion used his method on nine measured arcs and, after
successive reanalyses omitting the three most discordant of the measure-
ments, came to the conclusion that the evidence supported a hypothesis
that the earth was somewhat irregular but was formed around an ellipsoi-
dal core. Boscovich gave no further development of the method, no study
of its properties, no analytic formulation, and no application of the method
to problems other than the figure of the earth. He did briefly indicate the
possibility of other applications in 1760, in these words: “Now we see that
the method is generally for the correction of any terms which must be ina
given ratio, because in substituting this ratio for that of the versed sines, all
remains the same” (Boscovich, 1760; Boscovich and Maire, 1770, p. 505).
But he appears never to have followed up on this staternent by applying the
method elsewhere, and he made no further statements regarding its gen-
eralizability. In fact, it is rempting to suppose that the method might have
faded into obscurity had not a brief reference to its existence, ina 1772
review of the 1770 wranslation, caught the eye of Laplace.!?

Laplace and the Method of Situation

In 1789 Laplace took up the question of the figure of the earth for the
second time. He had previously approached the guestion of comparing arc
measurements with an ellipsoidal hypothesis in 1783, but on that earlier
oecasion he had ignored Boscovich’s work. He had considered only four of
the five arcs studied by Boscovich (omitting the one at Rome measured by
Boscovich and Maire), and he had been content to determine the best-fit-
ting ellipsoidal figure as that which minimized the maximum correction
needed, For that purpose he introduced an algorithm of his own invention

12. The review was in_jean Bernoulli III's Recueil powr les astronomes(Tome 11, 1772, pp.
245 - 249). The relevamt portions are gquoted, together with evidence that Laplace read the
review soon after it appeared, in Stigler (1978b).
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(Laplace, 1786a). In his 1789 return to this subject, however, he had
Boscovich very much in mind.

After admitting that his earlier approach of minimizing the maximum
correction would become too laborious (trés pénible) to use when many
degrees were to be considered, Laplace turned to other approaches to the
problem. He first derived an improved version of the earlier algorithm,
and he illustrated its use with a set of nine arc measurements (which now
included that at Rome); he then turned to Boscovich’s method. Laplace
felt that the elliptical figure that minimized the maximum correction was

not the one that the measurements indicated with the greatest likelihood.
This latter ellipse must, it appears to me, fulfil the following two conditions:
1° that the sum of the errors be zero; 2° that the sum of the errors taken all
with the sign + be a minimum. Boscovich has given an ingenious method of
achieving this; it is explained at the end of the French edition of his Voyage
astronomique et géographique [that is, Boscovich and Maire, 1770]. But since he
has unnecessarily complicated the method by the consideration of diagrams, I
shall present it here in its simplest analytical form. (Laplace, 1798, p. 32)

Laplace proceeded to do just that, giving a precise algebraic statement to
Boscovich’s algorithm and accompanying his description with a rigorous
analytic demonstration that the algorithm solved the problem as stated.
He also gave two numerical examples, one involving nine measured arcs,
the other involving thirteen observed lengths of seconds pendulums at
various latitudes.

In this 1789 treatment Laplace added only an analytic formulation to
Boscovich’s earlier presentation. Even though this step alone was to prove
crucial to Laplace’s (and others’) later studies of the method’s statistical
properties (he was to give it the name “Method of Situation”), it was
nonetheless only a small conceptual advance —a translation from the lan-
guage of Newton to the language of Euler. Ten years later, however,
Laplace took an additional step, a subtle development of Boscovich’s idea
that was a symptom perhaps of Laplace’s increasingly sharp statistical
intuition.

The occasion for Laplace’s renewed interest in the figure of the earth
was the preparation of the second volume of the Mécanique céleste. After
developing a mathematical theory of the figures of the heavenly bodies,
Laplace returned to the problem he had faced a decade before —that of
comparing measured arcs of the meridian with the hypothesis that the
earth’s figure was ellipsoidal. His analysis now considered only seven arcs;
he omitted an ancient measurement in Holland and substituted a French
arc measured in 1795 by Delambre and Méchain for two earlier French
arcs. Now, all earlier analyses of arc measurements had treated all mea-
surements as equally reliable; that is, all measurements considered good
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enough to be used at all were allowed an equal opportunity to influence the
result of the calculation, OF course, the mechanics of the problem dictated
that measurements made at extremes in latitude exerted a greater weight
on the combined result than did those made at middle latitudes, but as far
as the intrinsic accuracy of the measurement was concerned it was an
all-or-nothing proposition. In 1799 Laplace evidently thought this was
inappropriate.

In the preceding discussion, I introduced Laplace’s notation (but with
subscripts for superscripts) for the equations of condition describing the
relationship to be tested:

R /% Rl

where a, is the arc length of the kth are (in toises per degree), z the length of
a degree at the equator, y the polar excess, p, the square of the sine of the
kth latitude, and x; the error, due to measurement or failure of the ellipsoi-
dal hypothesis. Now a, was in fact determined by measuring the length of
the arc both on the ground!® and by astronomical observation of the Pole
Star from the arc’s two extreme points; the ratio of these two measure-
ments would then give the length g, in toise per degree. The actual lengths
of the measured arcs varied considerably, from just under 1° in Lapland to
nearly 10° in France. Surely these lengths would affect accuracy, and they
should be incorporated into the analysis. In the Mécanique céleste (vol. 2, bk.
3, §40) Laplace therefore modified Boscovich’s earlier conditions to the
following form:

First, that the sum of the errors committed in the measures of the whole arcs,
ought to be zero. Second, that the sum of all these errors, taken positively,
cught to be a minimum. By considering, in this manner, the whole arcs, instead
of the degrees which have been deduced from them, we shall give to each of
these degrees so much more influence, in the computation of the ellipticity of
the earth, as the corresponding arc is of greater extent, which ought to be the
case. (Laplace, 17991805, vol, 2, p. 134; Bowdiich, 1832, pp. 434-437)

Following Laplace, let i; represent the length, in degrees, of the kth arc
(sor G, 1s the arc’s length in toises). Then the whole arcs satisfy sa;, — 4z —
Uy = %y, and Laplace’s two new conditions become

() 2 by =
A

() Y i) = minimum.
P

13, A baseline (perhaps one-fifth 10 one-tenth the total distance surveyed) was measured
directly by chains. Then the entire length was surveyed by triangulation.
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Laplace derived the solution to the problem by a simple modification of
the earlier algorithm. The condition (i) was equivalent to

A—z—yP=0

where

_ zék@k P = Eikpﬁ
= z?k R

A = wz——z—k—
Subtracting this equation from each of the equations of condition gave
by = yqx = %,
where
by=a,— A, @G =P p.

Thus Laplace began, following Boscovich, b}{ tying the line to the one

point G* = (P, A}, effectively using condition (i) to reduqe the problem Iio

one involving a single unknown, the slope y of the line through the
ighted center of gravity, G*. V

We”}ghe next step in the algorithm was to suppose that the equations are

labeled to correspond to a decreasing sequence b,/q;; that is, so that

by | 2h
4y 42 In

Again, this is an algebraic statement of Boscvovic'h’S orfiering of Zhei p(?lnt‘s
according to their encounter with the moving line. Finally, let hy = liqul,
andlet F=h,+ . . . +h,. Then if r is that integer such that
1

hy+ ... +k,nl<—;F and Ayt ... +h,>-§F,
the solution to the problem was to take y = b,/gq, and 2= é} — Py. 'l;hlz
algorithm is of course just an analytic version of Bosc-ovu:h‘ s gezme} T
procedure, where the points (p;, ;) are replaced by (zk;,),,, zkak)il ap acg
provided an analytic proof that this was indeed the solution to the Ostaig
problem, and he applied the method to seven arc measurements. 1211 e
basis of this calculation he concluded that an ell%pmfslty~ C?f 1 / 31% wias
indicated; but he thought the large error (172.52 toises) '{hlS .xmphed n; the
Lapland arc was evidence that the ear‘th was not elhps?zdal (()La;l) ace,
17991805, vol. 2, pp. 138 - 141; Bowditch, 1832, pp. %45—4? )0 _mm;
cally, aremeasurement of thisarcin 1803 b){ Svanberg did show ?’n err 10(;“ 2(:;
this magnitude (in fact, larger than 200 toises; Svaqberg, 18(? 0, p- 'I: d.
Later analyses, however, called Svanberg’s work into question (Tod-

hunter, 1879).]
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Laplace’s weighted analysis may now be seen as a small but significant
advance in statistical technique. Previous workers had weighted different
measurements differently depending on their realized values. James
Short, for example, had in 1763 averaged determinations of the parallax
of the sun in such a way as to discount those whose distance from the
arithmetic mean was large (Stigler, 1973b). Other workers had discarded
discordant measurements, In addition, analyses such as those of Mayer and
Boscovich had had the effect of giving greater weight, or greater leverage,
to measurements taken under extreme conditions; Cotes’s rule, quoted
carlier, may be most plausibly read as a statement of this principle. Laplace
differed from all of these in weighting the measurements according to an
intrinsic measure of the measurements’ perceived accuracies, the length of
the measured arcs.

Was Laplace’s weighting correct from a modern perspective? Two
sources of error enter into each g,: the error in measurement on the
ground and the error in the astronomical observations. Only two sets of
astronomical determinations are required for each arc, regardless of the
length of the arc, so we shall ignore this source of error in evaluating the
weighting scheme. (Actually, this is not quite correct, because the astro-
nomically measured arc affects o, as a divisor and errors in small arcs will
have a greater effect than the same error for a large arc. However, the
errors from this source were at this time likely to be small relative to those
from other sources, and we are not likely to be greatly misled by ignoring
them in the present analysis.) The error in the measurement on the ground
would have had a variance roughly proportional to the arc length i, (assum-
ing a constant baseline to arc ratio), so we might then expect the variance of
a, 10 be inversely proportional to i,. Now Boscovich’s original method
weighted the measurements as if the ¢, had equal variances, and Laplace
weighted them as if the g, had variances inversely proportional to i#. Thus
it would seem that Laplace’s scheme gave too much weight to long arcs.
And in particular, it gave much too much weight to the French arc, a
circumstance that would probably not have been deplored by Laplace’s
colleagues at the Academy. If the errors in the astronomical determina-
tions were not negligible, however, Laplace’s weights may have been
nearly appropriate. In any event, the fact that he attempted any weighting
at all at this early date is most interesting.

The method of Boscovich, as formalized by Laplace, has continued to
enjoy occasional use since the publication of the Mécanigue céleste. Prony
described it in detail and applied it to problems of water flow in 1804
(Prony, 1804, pp. xxi-xxxii). Three years later Puissant (1807, p. 63)
presented it, again in full analytic detail, and recommended its use in
surveying. And in 1809 and 1815 Bowditch published applications of a
generalization of the method to cometary data. Bowditch’s generalizations
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(1809, 1815) were particularly interesting in that they combined Mayer*s
and Boscovich’s methods. For example, faced with fifty-six equations of
condition involving five unknowns, Bowditch applied the Cond.mon that
the equations sum to zero separately to four different (but partially over-
lapping) subsets of equations; he thus eliminated four of the unknowns ?md
solved for the fifth using Laplace’s algorithm. As late as 1832 Boydltch
was recommending Boscovich’s method over least squares because it gave
less weight to defective observations than did least squares (1832, p. 434).

Legendre and the Invention of Least Squares

We have now almost arrived at the method of least squares, both in
chronological and conceptual terms. We have seen how by 1800 the prin-
ciple of combining observational equations had evolved, through work‘of
Mayer and Laplace, to produce a convenient ad hoc procedure for quite
general situations. We have also seen how the idea of starting with a
mathematical criterion had led, in work of Boscovich and Lalplace, to an
elegant solution suitable for simple linear relationships involving only two
unknowns. The first of these approaches developed through prc?blems in
astronomy; the second was (at least in these egrly years) exclusively em-
ployed in connection with attempts to determine the ﬁgu‘re of the earth.
These two lines came together in the work of a man who, like Laplace, was
an excellent mathematician working on problems in both arenas-—
Adrien Marie Legendre. ‘

Legendre came to deal with empirical prol?lems in astronomy and geod-
esy at a time when the methods we have discussed had been c%eveloped
separately in the two fields. It was also a time vtrhen a hglf-cer}tury § success-
ful use of these methods had seen a change in the view scientists took of
them — from Euler’s early belief that combination of obscrvan.ons made
under different conditions would be detrimental to the later view of La-
place that such combination was essential to the comparison of theory and
experience. Legendre brought a fresh view to tbese problems; and it was
Legendre, and not Laplace, who took the next important step.

Legendre did not hit upon the idea of least squares in his first exposure
to observational data. From 1792 on he was associated w?d} the French
commission charged with measuring the length of a meridian 'quadram
(the distance from the equator to the North Pole) thfrou.gh Paris. One of
the major projects initiated by the National ngvenpon in the early years
after the French Revolution had been the decision in 1792 to change the
ancient system of measurement by introducing the metric systemasa mijw
order, toppling existing standards of measurement in an action symbolic
of the French Revolution itself. The basis of the new system was to be the
meter, defined to be 1/10,000,000 of a meridian quadrant. It remained
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for French science to come u

;}:tse:gi.rll; il(()eepmg with the nationalism that inspired the enterprise, the
overmin: thi;l wads to be based only on new measurements made on Frénch
Barce.lona) b En an arc of negrlx 10°, extending from Montjouy (near
Lot the south to Dunkirk in the north, was measured in 1795 B
the complex task of reducing the multitude re.

su;rrx}mar); of the data was widely circulated by 1799.14
e ;:z]x;t Z’;Z’ftg,g:g;eb;l;i) ﬁggjszznce of the‘ first two volumes of the
‘ 3 an extensive di i
ig;ilcrz;lergrgullts uglderlying Fhe reduction of the ra:z (:il:g?;o?h?sf;lr)ce t;l“;(i);
L ;“321 re, l"/799) is prefaced by a short memoir by Legendr‘e that
AP ts;::, an 1111 (30 December 1798) and indicates that Legendre
o discufs.‘ method of least squares at that time. He wrote, in a
ston of the reduction of arc lengths: ,

In this way we obtain four equations of the form

O=fx—gy+ bz
O=f'x~g'y+ k2
e =f"% ~g"y + "z
e =[x gy 4 py

frqm which we need to find the values of x
whxcl? astronomical questions offer many exa’r;vl’
to satisfy three of the equations exactly;
fourth equation. Rather, we need to t’
t}}at they are borne nearly equally
difficult when numerical values have
gendre, 1798, pp. 9-10)

z. In this type of analysis, of
ples, it is not necessary to seek
that would force all the error onto the
Ty to balance the errors in such a way
by all four equations; this will not be
been substituted in the equations. (Le-

This little-
e-known comment of Legendre’s is revealing: It shows that as

early as 1798 he had acce .
. pted the notion, ,
writngs, that a balance should be struck(})_)nets,zzlved from Mayer’s early

numerical values have
a balance could be found acceptable for
dre was to change his mind on this in the

been substituted in the equations,

the specific case. Evidently Legen
next five years.
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ports did not appear until after 1805,a °
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" tions, and for the appearance of the method of least squares, was the
. preparation in 1805 of 2 memoir on the determination of cometary orbits
~ (Figure 1.5). The memoir is a scant seventy-one pages (excluding the
appendix); and, aside from a few brief remarks at the end of the preface,
the method of least squares makes no appearance before page 64. Even
" this first mention of least squares seems to be an afterthought because,
. after presenting an arbitrary solution to five linear equations in four un-
knowns (one that assumed that two equations held exactly and two of the
. unknowns were zero), Legendre wrote that the resulting errors were ofa
~ size “quite tolerable in the theory of comets. But it is possible to reduce
them further by seeking the minimum of the sum of the squares of the
quantities E/, E”, E” " (1803, p. 64). He then reworked the solution inline

| with this principle. It seems plausible that Legendre hit on the method of

“Jeast squares while his memoir was in the later stages of preparation, a
. guess that is consistent with the fact that the method is not employed
earlier in the memoir, despite several opportunities.

It is clear, however, that Legendre immediately realized the method’s
~ potential and that it was not merely applications to the orbits of comets he
- had in mind. On pages 68 and 69 he explained the method in more detail
- (with the word minimum making five italicized appearances, an emphasis
reflecting his apparent excitement), and the memoir is followed on pages
72-80 by the elegant appendix from which the quotation near the begin-
ning of this chapter was taken. The example that concludes the appendix
reveals Legendre’s depth of understanding of his method (notwithstand-
ing the lack of a formal probabilistic framework). It also suggests that it was
because Legendre saw these problems of the orbits of comets as similar to
those he had encountered in geodesy that he was inspired to introduce his
principle and was able to abstract it from the particular problem he faced.
Indeed, the example he chose to discuss was not just given as an illustra-
tion, it was a serious return to what must have been the most expensive set
of data in France —the 1795 measurements of the French meridian arc
from Montjouy to Dunkirk.

To determine the figure of the earth from these data (Table 1.7), Le-
gendre developed the relationship between arc length in degrees and in
toises in a form slightly different from that we encountered earlier. Letting
Land L’ be the astronomically determined latitudes of the end points of an
arc (from column 2 of Table 1.7) and § the measured length of the arc
(given in column 3 of Table 1.7 in modules, wherea module s just 2 toises),

Legendre wrote
S 3 180
S [ em e — © — si i L'+L
L' —L 5% o - sin (L' — L)cos( )
S S
== + *
28,500 M 28,500

+a —2—;7?9 sin(L” — L)cos(L’ + L).
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Table 1.7. Measurements of the French meridian arc, made in 1795 between
Montjouy (near Barcelona) and Dunkirk.

Place of Arc length
observation Latitude, L § L'—L L'+L
Dunkirk 51°2'10750
. Ay 62,472.59 2°11'20775 99°53'0"
Ei‘;;‘f"“ (Paris) ‘igﬁg,‘ig;gg 7614574  2°40'7725  95°1'32”
Carcassonne 43,12,54;,40 84,424.55 9°57748710  89°23'37”
; 52,749.48 1°5179760 84°34'89”

Montjouy 41°21744780

Source; Legendre (1805, p. 76). Reprinted in Harvey (1822); given in a slightly
different form in Laplace (1799 1805, vol. 2, bk. 3, §41yand Bowditch (1832, p. 453).
Note: Arc lengths (S) are in modules; 1 module = 2 toises = 12.78 feet.

Here D is the length in modules of 1° centered at 45° latitude, « is the
ellipticity of the earth, and € is defined by the relationship D™! = (1 + €) /
98,500. At first glance this appears to be quite a change from the earlier
relationship @ = z + y sin 26; but it is not. Just note that, since sin® 45° =
0.5, D =z +y/2; and, since 6 = (L' + L)/2,2sin? §=1—cos 260=1—
cos(L’ + L). Then since 3a=y/Dand a=5§/ (L' — L), we can easily see
that the formulas are equivalent, save that Legendre employs
180 sin(L’ — L)/n instead of its local approximation, L' — L. Actually,
Legendre’s formulation is [except for the local approximation of
sin(L’ — L)] exactly the same as that used by Laplace for his weighted
analysis: In our previous notation, Legendre’s equation is equivalent to
i,a, = i,z + uypx- The introduction of € instead of D is just a reparametri-
zation, based on the fact that D isknown to be near 28,500; it is both easier
and more accurate to work with smaller numbers.

Legendre then let Fi represent the error made in the determination of
the ith latitude; and, on the basis of data of Table 1.7, he obtained four
equations:

El — EIl = 0.002923 + €(2.192) — (0.563)
FX — E = 0,008100 + 6(2.672) — a(0.351)
EUl — EIV = —0.001096 + €(2.962) + (0.047)
EIV — EV =—0.001808 + €(1.851) + «(0.263).

In forming these equations, Legendre assumed that the effect of these
errors on sin(L’ — L)cos(L” + L) was negligible. Now, he might have ap-
plied the method of least squares to these equations directly, but instead he
noted that “it is necessary to consider the errors separately.” I take this to
mean that, despite his lack of any formulation of any probability model, he
correctly feared one of the consequences of the correlation of the equa-
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tion’s left-hand sides, namely, that treating these differences as four errors

:oulq restrlil?t hisufhoicg of solutions. Therefore he introduced a fifth
quation, EM = EM! which permitted him to reexpress the equations as

E'=E%+0.006023 + 4(4.864) — a(0.914)
Eff=EM+0.003100 + €(2.672) — a(0.351)
EIII =— EIH
EY'=E" +0.001096 ~ €(2.962) — (0.047)
EY'=E" +0.002904 — €(4.813) — 2(0.310),

He t}l;xen solved thesg equations by the method of least squares, treating E!
on the right-hand side as an unknown, together with € and a. He found

a=0.00675=1/148 and ¢ = 0.0000778. Thus D= 28,500/(1 +%) - i

:02'181&432 gg, 2};1(1 the corresponding length of the meridian quadrant
s = 2,564,800.20 modules, a value leading to a meter of
.Th 480 mlodules =0.512960 toises = $.980 feet.
€actual meter was based upon the value found forDb i
re . ” L‘a ]
Mécanigue felesze (vol. 2, bk. 3, §41; see Bowditch, 1832, g 46135)3(35;;2;6
(exgx;ssed in terms of a standard degree), D = 28,504.11, which ’gave ch
::ZQUII:: qg:gd;gg;:s 2,565,370 modules and the meter as 0.256537
=0. toises = 3.28] feet. Laplace’s determinatio. i
pl<l)rated the measurement of the arc at Peru into the calculatiorzl CI)T;CS;
; lzncny; t_heg he found the value of D from the French arc based on this
redetermined ellipticity using his own algori inimi
gorithm to minimize th i-
ir?um ercrior. We note that the use of only the French arc would not l(:ercr::l):e
e]l?Xt'el:l ed only about 10°, permit a very accurate determination of the
< ptlcxt'y.. The same was not true, however, with respect to D and thus of
at(l? mendr(}n qua@rant, 90D, T‘hus the restriction to French data was made
ess cost in eﬁicxency than might be feared, at least as far as the determt
nation of the meter was concerned. o
latTwo observ?mops on Legendre’s procedureare inorder: Viewed froma
€T perspective it was not a correct way of dealing with the type of

resulie: oy e
“us:]l:;’ but,”b.ecause it ignores the variability of the artificially designated
own,” it produces a weighting of the observations that is not of
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maximum efficiency for any reasonable specification of the errors’ sto-
chastic structure. This observation should not be construed as criticism of
Legendre or Laplace, however, for it was to be more than a century before
efficient methods were developed for dealing with the type of correlation
they faced, and in the present case the difference in result is negligible.
Rather, it is remarkable that, lacking any explicit probabilistic formula-

. tion, they made any attempt at all to deal with the problem. The attempt

they did make was a limited one and seems to have been based on a rough
intuitive notion of dependence and tied to the explicit notational appear-
ance of the same errors in different equations. It is nonetheless surprising
to find even this crude recognition of the dependence at this early time.
We shall see that even a half-century after probability was introduced

: formally into the analysis of such problems, little more understanding of

dependence was evident than is found in this, the first published example

* of the method of least squares.

With Legendre’s introduction of least squares, we reach the end of the
first stage of the lines of development begun separately by Mayer and
Boscovich about a half-century before. The idea of combining different

- observational equations evolved slowly from Mayer’s astronomical work,

the idea of an objective criterion of fit was born in Boscovich’s geodetic
work, and their inspired synthesis was signaled by Legendre’s geodetic

- example, appended to an astronomical memoir. But a key element was

missing: There was, in all of this work, no formal appeal to probability and,
more to the point, no move to quantify the uncertainty in the derived
estimates (save only Mayer’s weak attempt in 1750). All of this is the more
puzzling because Laplace, who had been writing extensively on probability
since 1774, had played a key role in all of this development. In Chapter 4
we shall see how, in the two decades following Legendre’s analyses, the
next stage was completed by Laplace, with Carl Friedrich Gauss providing
a key catalytic agent. To explain this properly, however, we must first
examine the major currents of eighteenth-century probability, and it is to
this topic I now turn, starting with the work of Jacob Bernoulli.




