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PREFACE TO THE FIRST EDITION.

Tay Theory of Probabilities is naturally and strongly
divided into two parts. One of these relates to those
chances which can be altered only by the changes of
entire units or integral multiples of units in the funda-
mental conditions of the problem : as in the instances
of the number of duts exhibited by the upper surface
of & die, or the numbers of black and white bulls to
be extracted from a bag. The other relutes to those
chances which have respect to insensible gradutions in
the value of the clement measured ; as in the duration
of life, or in the amount of error incident to an ustro-
nomical observation,

It may be difficult fo commence the investigutions
proper for the second division of the theory without
referring to principles derived from the first. Never
theless, it is certain that, when the clements of the
second division of the theory are estublished, ull refer-
ence to the firat division is lnid aside ; and the original
connexion is, by the great majority of persons who use
the second division, entirely forgotten. The two divi-
sions branch off into totally unconnected subjects : those
persons who habitually use one part never have oeeasion
for the other ; and practically they become two different
seiences, |

~In order to spare astronomers and observers in
natural philosophy the confusion and luss of time which
are produced by referring to the ordiuary treatises om-
bracing both branches of Probabilities, T have thought
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it desirable to draw up this tract, relating only to Errors
of Observation, and to the rules, derivable from the
consideration of these krrors, for the Combination of
the Results of Ohservations, I have thus also the
advantage of entering somewhnt more fully into several
points, of interest to the observer, than can possibly be
done in a General Theory of Probabilitics,

No novelty, 1 believe, of fundamental character, will
be found in these pages, At the same timeo I may sfate
that the work hus been written without reference to
or distinet recollection of any other treatise (excepting
only Laplace’s Z'héorie des Probabilités) ; and the me-
thods of treating the different problems may therefore
differ in some small degrees from those commonly em-
ployed.

G. B. AIRY,

Rovar Ossenrvarony, GureNwicH,
January a3, 1861.

PREFACE TO THE SECOND EDITION,

The work has been thoroughly revised, but no im-
portant alteration has Leen made: except in the intro-
duction of the new Section 15, and ‘the consequent
alteration in the numeration of articles of Sections 16
and 17 (formerly 15 and 16): and in the addition of the
Appendix, giving the result of a comparison of the

theoretical law of Frequency of Errors with the Fre-

quency actudlly observed in an extensive series.

G. B, AIRY.
February 10, 1875,
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CORRIGENDA,

Page 47, dele line 1, and substitute the following :—

Mean Square of Sum of Errors a 44 + ¢ 4 d + &e,

Page 61, between lines 6 and 7, insert * final apparent results,
affocted by $he ”
o line 18, for *actual error of ! read ‘apparent ',
” line 14, for *actual orrors of the’ read ‘apparent’.
" line 19, for ‘actual error ' read ‘ result’,
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FALLIBLE MEASURLS, AND SIMPLE ERRORS OF
OBSERVATION.

§ 1. Nature of the Errors here considered.

1, Tus nature of the Errors of Observation which
form the subject of the following Treatise, will perhaps
be understood from a comparison of the different kinds
of Errors to which different Estimations or Measures are
liable.

- - 2, Suppose that a quantity of common nuts are put
into a cup, and a person makes an estimate of the num-
ber. His estimate may be correct ; more probably it
will he incorrect, But if imcorrect, the error has this

A, o~ A
& 2



2 BIMPLE ERRORS OF OBSERVATION.

peculiarity, that it is an error of whole nuts, There can-
not be an error of a fraction of a nut. This class of ervors
may be called Errors of Integers. These are not the errors
to which this treatise applies.

3. Instead of nuts, suppose water to be put into the
cup, and suppose an estimate of the quantity of water to
be formed, expressed either by its cubical content, or by
its woight. Either of those estimates may be in error by
any amount (practically not excceding a certain limit),
proceeding by any gradations of magnitude, however mi-
nute. This class of errors may be called Graduated
Errors. It is to the consideration of these errors that
this treatise is directed.

4. If, instead of nuts or water, the cup be charged
with particles of very small dimensions, as grains of fine
sand, the state of things will be intermediate between the
two considercd above. Theoretically, the errors of esti-
mation, however expressed, must be Krrors of Integers of
Band-Grains ; but practically, these sand-grains may be
so small that it iz & matter of indifference whether the
gradations of error proceed by whole sand-grains or by
fractions of a sand-grain. In this case, the errors are

practically Graduated Krrors,

5. In all these cases, the estimation is of a simple
kind ; but there arve other casesin which the process may
be either simple or complex; and, if it is complex, a dif-
ferent class of errors may be introduced. Suppose, for
instance, it is desired to know the length of a given road.

K



NATURE OF THE ERRORS, 3

A person accustomed to road-measures may estimate its
length ; this estimation will be subject simply to Craduated
Krrors. Another person may measure its length by a yard-
measure ; and this method of measuring, from uncertainties
in the adjustments of the successive yards, &c. will also be
subject to Graduated Errors. But besides this, it will be
subject to the possibility of the omission of registry of
entire yards, or the record of too many entire yards; not
as o fault of estimate, but as a result of mental confusion.,
In like manner, when s measure is made with a micro-
meter; there may be inaccuracy in the observation as
represented by the fractional part of the reading ; but there
may also be error of the number of whole revolutions, or
of the whole number of decades of subdivisions, similar to
tho erroneous records of yards mentioned above, arising
from causes totally distinet from those which produce in-
accuracy of mere observation, This class of Frrors may
be called Mistakes. Their distinguishing peculiarity is,
that they admit of Conjectural Correction. These Mistakes
are not further considered in the present treatise,

6. The errors therefors, to which the subsequent in~
vestigations apply, may be considered as characterized by
the following conditions :—

They are infinitesimally graduated,
~ They do not admit of conjectural correction,

7. Observations or measures subject to those errors
will be called in this treatise “fallible observations” or
* fallible measures.”

A2



4 SIMPLE ERRORS OF OBSERVATION.

8. Sfrictly speaking, we ought, in the expression of
our general ides, to use the word “uncertainty” instead of
“orvor.” For we caunot at any time assert positively
that our estimate or measure, though fallible, is not per-
fectly correct; and therefore it may happen that there ia
no “error,” in the ordinary senso of the word. And, in
like monner, when from the general or abstract idea we
proceed to concrete numerical evaluations, we ought,instead
of “error,” to say “uncertain crror;” including, among
the uncertainties of value, the possible case that the un-
certain error may =0, With this caution, however, in the
interpretation of our word, the term “error” may still be
used without danger of incorrectness, When the term is
qualified, as “Actual Error” or “Probable Error,” there is
no fear of misinterpretation,

§ 2. Law of Probability of Errors of any given amount,’

9. In estimating numerically the “probability” that
the magnitude of an error will be included between two
given limits, we shall adopt the same principle as in the
ordinary Theory of Chances. When the numerical value
of the “probability” is to be determined & priori, we
shall consider oll the possible combinations which pro-
ducs error; and the fraction, whose numerator is the num-
ber of combinations producing an errer which is included

between the given limits, and whose denominator is the

. total number of possible combinations, will be the * pro-
Lability ” that the error will be included between those
limits, But when the numerical value is to be deter-

1
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LAW OF PROBABILITY OF ERRORS. b

mined from ohservations, then if tho numerator be the
number of observations, whese errors fall within the given
limits, and if the denominator be the total number of
observations, the fraction so formed, when the number of
observations is indefinitely great, is the “ probability,”

10. A very slight contemplation of the nature of
errors will lead us to two conclusions :—

First, that, though there is, in any given case, a pos-
sibility of errors of a large magnitude, and thorefore a
possibility that the magnitude of an error may fall be-
tween the two values ¥ and E + 8, where Z is large;
still it is more probable that the magnitude of an error
may fall between the two values e and ¢+ 3¢, where ¢ is
small; 8¢ being supposed to be the same in both, Thus,
in estimating the length of a road, it is less probable that
the estimator’s error will fall between 100 yards and
101 yards than that it will full between 10 yards and
11 yards, Or, if the distance is measured with a yard-
measure, and mistakes are put out of consideration, it is
less likely that the error will fall between 100 inches and
101 inches than that it will fall between 10 inches and
11 inches.

Second, that, according to the accuracy of the methods
used and the care bestowed upon them, different values
must be assumed for the errors in order to present com-
parable degrees of. prabability. Thus, in estimating the
road-lengths by eye, an error amounting to 10 yards is
sufficiently probable; and the chance that the real error
wmay fall between 10 yards and 11 yards is not contemptibly



b BIMPLE ERRORS OF OBSERVATION,

small. But in measuring by a yard-measure, the proba-
bility that the crror can amount to 10 yards is so insigni-
ficant that no man will think it worth consideration ; and
the probability that the error may fall betweon 10 yards
and 11 yards will never enter into our thoughts. It may,
however, perhaps be judged that an error amounting to 10
inches is about as probable with this kind of measure as
an error of 10 yards with eye-estimation ; and the probabi-
lity that the error may fall between 10 inches and 11 inches,
with this mode of measuring, may be comparable with the
probability of the error, in the rougher estimation, falling
between 10 yards and 11 yards,

11. Here then we are led to the idea that tho alge-
braical formula which is to express the probability that an
error will fall between the limits ¢ and ¢ + 8¢ (whero e is
extremely small) will possess the following propertics :—

(4) Inasmuch as, by multiplying our very narvow
interval of limits, we multiply our probability in the same
proportion, the formula must be of the form ¢ (¢) x 8.

(B) The term ¢ (6) must diminish as ¢ iucreases, and
must be indefinitely small when ¢ is indefinitely large,

(C) The term ¢ (6) must contain a constant symbol
or parameter ¢, which is constant in the expression of the
probabilities under the same system of estimation or mea-
sure, and is different for different systems of estimation or
meastire. I (as seoms likely), upon taking a proper pro-
portion of magnitudes of error, the law of declension of
the probubility of errors is the same for delicate measures

|
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LAPLACE'S INVESTIGATION OF THEIR LAW, {

and for coarse measures, then tho formula will be of the

form 1,(»(-3) X (), or -\[r( ) x --, where ¢ is small for

a delicate system of measurcs, a.nd large for a coarse
system of measures,

[The reader is recommeonded, in the first instance, to
pass over the articles 12 to 21.]

12. Laplace has investigated, by an ¢ priors process,
well worthy of that great mathematician, the form of the
function expressing the law of probability, Without enter-
ing inte all details, for which we must refer to the Zhéorie
Analytique des Probabilités, we may give an idea here of
the principal steps of the process,

13, The fundamental principle in this investigation is,
that an error, as actually occurring in observation, is not of
simple origin, but is produced by the algebraical combina-
tion of a great many independent causes of error’, each of
which, according to the chance which affects it inde-
pendently, may prodace an error, of either sign and of
different magnitude. Theso ervors are supposed to be of
the class of Errors of Integers, which admit of being
treated by the usual Theory of Chances; then, supposing
the integers to be indefinitely small, and the range of their
number to be indefinitely great, the conditions ultimately
. appronch to the state of Graduated Frrors,

) Thia {a not the language of Laplace; but it appears to be the under-
standing on which his investigation ismost distinetly applicable to single
etrors of observation.



8 SIMPLE ERRORS OF OBSERVATION.

14, Suppose then that, for one source of error, the
errors may be, with equal probability,

=y =n+l, —-%4+2,.-1,0,+1, 3, ..0n-2 a—1, n,

o . 1
the probability of each will be Sati

Supposs that, for another source of error, tho crrors
ey also be, with equal probability,

-"-‘R, "‘"n'l"l, -'13'-!-2,...-1, 0, +1, 2, ...“'-"2, ﬂ"""l, ”,

and so on for g sources of error, And suppose that wo
wish to ascertain what is the probability that, upon com-
bining algebraically onc error taken from tho first series,
with one error taken from the second series, and with one
error taken from the third series, and so on, we can pro-
duce an error I, The first step is, to ascertain how many
are the different combinations which will each produce Z,

13, Now, if we watch the process of combination, we
shall see that the numbers are added by exactly the same
law as the addition of indices in the successive multipli-
cations of the polynomial

¢ PV gm0 /=3 Jglrnove 1 ¢lv-9e V-3 J-*e V=1 €™ »I-:,

by itself, supposing the operation repeated s—1 times.
And therefore the number of combinations required will

be, the. coefficient of ¢#V™! (which is also the same as the -

coefficient of ¢®Y"), in the expansion of

{ e-na. V-1 +E—tu—uo V-1 Segire Vi ver 4 00 v-:,,, e s’~l+ "o V-1 ]‘-

1o

¢

X
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This coefficient will be exhibited as & number uncom-
bined with any power of ¥, if wo multiply the expansion

either by ¢®¥™, or by ¢V, or by 1, (hoV 4 gV,

The number of combinations required is therefore the same
as the term independent of @ in the expansion of

% (em/-:+ el \H) {0 VR NVl o g BVt \’-Ila’
or tho same as the term independent of @ in the ex-

pansion of

coslf x {1 +2cos0 + 2 cos 26 + ...... + 2 cos nfj?.

And, remarking that if we integrate this quantity with
respect to 6, from 6 =0 to =1, the terms depending on
@ will entirely disappear, and the term independent of
@ will be multiplied by ar, it follows that the number of
combinations required is the definite integral

-:;. rda.cos 10 x {1 +2cos 6 +2c0520 ... + 2 cos nf}*,
«0

M
sin 1'-’-‘-“;—1 9)’

or-l-. Fdﬂ.coslﬂ x( i
T sin—2-0

And the total number of possible combinations whiclt
are, & priort, equally probable, is (2n 4 1)
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Consequently, the probability that the algebraical com-
bination of errors, one taken from each series, will produce
the crror /, is

. 41
1 1 sin” - - @\’
i F [dﬂ cos 8 x D K

gin ; 0
-

In subsequent steps, # and g are supposed to be very
large.
16. To integrate this, with the kind of approximation

which is proper for the circumstances of the case, Laplace
assumes

sin “f;-—l e ”
=g ¥,
(2n + 1).sin-§ e

(as the exponential is essentially positive, this does not in

strictness apply further than ?---+—1 6 = ; but as succeed-

.-d

ing values of the fraction are small, and are raised to the
high power s, they may be safely neglected in comparison
with the first part of the integral) ; expanding the sines in

powers of 8, and the cxponential in powers of 2, it will

be found that

. ty6 B
~Terts (1t s 4 &),

where £ is u function of n which approaches, as n becomes
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very large, to the definite numerical value 5.  The expres-
ston to be integrated then becomes, :

1 e
wyinm+1)a

» It\/6 B, . \] - 3B, .
L dt.cos [;/{1 ; (t::i,lﬁ] (1+;¢ +&c.)].e ".(1+ —;—t +&c.).

To simplify this integral, it is to be remarked that ¢
multiplies the whole, and that this factor decrcases with
extremo rapidity as ¢ increases, While ¢ is small, the

B - . L L)
terms £ in the argument of .lie cosine are unimportant;

and when ¢ is large, it matters not whether they are retained
or not, beeause their rejection merely produces a different
length of period for the periodical term which is multi--
plied by an excessively small coefficient. Also it appears
(as will be shewn in Article 19) that the integration of
such a term as cos mt. e . 35¢ introduces no infinite term,
and therefora when it is divided by the very large number
3, this may be rejected. The iutegral is therefore reduced

to this,
! & [ dt. cos - iyt e

7 Jin ¥ 1)) )o N Y CE ST A

17. As the first step to this, let us find the value of

{ dt. ¢ ‘Thore ig no process for this puipose so con-
<0

venient as the indirect one of ascertaining the solid content
of the solid of revolution in which ¢ is the radius of any
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section, and z the corresponding ordinate =&, Lot zand
y be the other rectangular co-ordinates, so that ¢'=a" 4.4,
Then the solid content may be expressed in either of the
following ways:

By polar co-ordinates, solid content
=21r.f dit.¢"=m,
0
By rectangular co-ordinates, solid content

=[ @[ e[ dct | dy.e

- ) () [

since, for a definite integral, it is indifforent what symbol
be used for the independent variable,

Hence, 4 ( f:dg ) e‘"t’)! =,

and [ a.ee=y]
0 “

18. Next, to find the value of L dt.cosrt. et Call

this definite integral y. As this is a function of #, it can be
differentiated with respect to »; and as the processof inte-
gration expressed in the symbol does not apply to #, y
can be differentiated by differentiating under the integral
‘sign, Thus -

dy = : g
o= --L dé.tsinrt.e™,
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Integrating by parts, the general integral for i—%
1 - T -
--i-asmrt.e 2fdt.cosrt.e A
in which, taking the integral from ¢= 0 to ¢ = », the first

‘ *
term vanishes, and the second becomes — G ¥ Thus we have

dy »

=u---1
d'. ‘)

Iftegrating this differential equation in the ordinary
way,
g
y={.€4.

Now when 7 =0, we have found by the last urticle that

Lo

the value of y for that case is 9" e Hence we obtain

finally
Ke
dt cosrt.€C = 5—;— €4,

19, If we differentinte this cxpression twiee with
respect to 7, we find,

BN o
fdt t.cos1t. € =nmr, (i ;) i3

and oxpressions of similar character if we differentiate four
times, six times, &e. The right-hand expressions arc
never infinite. This is the theorem to which we referred
in Article 16, as justifying the rejection of certain terms in

the integral.
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20. TReverting now to the expression at the end of
Article 18, and making the proper changes of notation, we
find for the value of the integral at the end of Article 16,

/ .-
1. Vo -, g atili,

2ym’ Jin(n+ 1) 8

This expression for the probability that the error, pro-
duced by the combination of numerous errors (see Article
14), will be 1, is based on the supposition that the changes
of magunitude of { proceed by a unit at a timo, I now we
pass from Errors of Integers to Graduated Errows, we may
consider that we have thus obtained all the probabilities
that the error will lie between 7 and +1. In order to
obtain all the probabilities that the error will lie between
! and 1 4 81, we derive the following expression from that
above,

-on
1 y/6 e, 3,

v Wi (n+1).4

Here I is o very large number, expressing the magni-
tude @ of an error which is not strikingly large, by a large
multiple of small units,

Let [ = ma, where m is large; 8l=mdz; and the pro.
bability that the error falls between « avd 4+ 8z is

L WO.m e
Vo i ¥ 1).e e Ban

Let n (ﬂG;::-iD % = 6%, whers ¢ may be a quantity of
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magnitude comparable to the magnitudes which we shall
use in applications of the symbol «; then we huve finally
for the probability that the error will full between @ and
z + 8x,

1 o
- - . € crnaxa

ey
This function, it will be remarked, possesses the cha-
racters which in Article 11 we have indicated as necessary.
We shall hereafter call ¢ the madulus,

21, Laplace afterwards proceeds to consider the effect
of supposing that the probabilities of individual errors, in
the different series mentioned in Article 14, are not uniform
through each series, as is supposed in Article 14, but vary
according to an algehraical law, giving equal probabilities
for 4 or — errors of the same magnitude, And in this ease
also he finds a result of the same form, For this, however,
we refer to the Zhévrie Analytique des Probabilités,

22. Whatever may be thought of the process by
which this formula has becn obtained, it will searcely be
doubted by any one that the result is entirely in aceord-
ance with our general ideas of the frequency of errors. In
order to exhibit the numerical law of frequency (that is,

2
the variable factor ¢ o, which, when multiplied by 8
gives & number proportioned to the probability of errars
falling between « and « -+ &), the following table is com-

puted ;



SIMPLE ERRORS OF OBSERVATION.

o3

'ABLE OF VALUES OF ¢ &,

1-0000
0:9901
0:9608
0-9139
Q-8521
0-7788
0-6917
0-6126
05273
0-4449
0:3679
0-2082
02369
01845
0-1409
01054
0-07731
005558
0-03916
0-02705
0-01832
001216
0007907
0:005042

P
Py

0:001159
0:0006823
0-0008937
0-0002226
0-0001234
0-00006706
0-00003571
0:0000186+4
0-000009540
0:000004785
0:000002353
0-000001134
0:0000005353
0-0000002480
00000001125
¢-00000005006
0-00000002183
0-000000009330
0-000000003909
0-000000001605
0-0000000006401
0-0000000002549
0-00000000009860
0-00000000003738

O W e e e He W 0 00 02 69 03 00 02 03 03 GO 4D bD by iy
SHRTD S B

0-003151
0-001930

0-00000000001389

09
190
11
19
13
14
15
18
17
18
1:9
30
21
32
23
24
2:5

23, And to present more clearly to the eya the import
of these numbers, the following curve is constructed, in
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which the abscissa represents :f., or tho proportion of the

magnitude of an error to the modulus, and the ordinate

represents the corresponding frequency of errors of that
magnitude,

E‘ \ .\
N
- .,
[~
g:
~_
Magnitode of Error. T

Proleble Error «

Mean Ervor -

Error of Mean Square -
Modnlns -

Here it will be remarked that the curve approaches

. the abscissa by an almost. uniform descent from Maguitude
of Error=0 to Magnitude of Error=17 x Modulus; and
that after the Magnitude of Error amounts to 20 x Modulus,
the Frequency of Error becomes practically insensible, This

A, B
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is precisely the kind of law which we should & priori have
expected the Frequeney of Errvor to follow; and which, with-
out such an investigation as Laplace's, we might have
agsumed gonerally; and for which, haviug assumed a
general form, we might have scarched an algebraical law,
For these reasons, we shall, through the rest of this treatise,
assume tho law of frequency

a8 expressing the probability of errors ocenrring with mag-
nitude included between 2 and = + 8.

§ 3. Consequences of the Law of Probubility or Frequency
of Errors, us applied to Cne System of Measures of
Ong Element,

24. The Law of Probability of Errors or Frequency of
Errors, which we have found, amounts practically to this,
Suppose the total number of Measures to be 4, 4 being a
vory large number; then we may expect the nuinber of
errors, whosc magnitudes fall between « and = 4 8z, to be

Fa

-e ¢, 8,

co/r
where ¢ is & modulus, constant for One System of Measures,
but different for Different Systems of Measures, It is partly
the object of the following investigations to give the means
of determining either the modulus ¢, or other constanta
related to it, in any given system of practical errors, .

25. This may be a convenient opportunity for remark-
ing expressly that the fundamental suppositions of La-
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place’s investigation, Article 14, assume that the law of
Probability of Krrors applies equally to positive and tu
negative errors, It follows therefore that the formula in
Article 24 must be received as applying equally to pesitive
and to negative errors, The number 4 includes the whole
of the measures, whether their errors may happen to e
positive or negative,

26. Conceive now that the true value of the Element
which is to be measured is known (we shall hereafter con-
sider the more usual case when it is not known), and
that the error of every individual measure ean thercfure
be found. The readiest method of inferring from these a
number which is closely related to the Modulus is, to take
the mean of all the positive errors without sign, and to
take the mean of all the negative errors without sigy
(which two means, when the number of observations is
very great, ought not to differ sensibly), and to take the
numerical mean of the two. This may be called the
Mean Error. It is to be regarded as a mere numerical
quantity, without sign, Its relation to the Modulus is
thus found. Since the number of errors whose magnitude

x?
is included between a and 2+ 8z is 5?/"5' e ¢, 8 and the
magnitude of each error does not differ %ensibly from a,

the sum of these errors will be sen31bly - \/ " & o ; and

the sum of all the errors of positive sign will be

cvﬂ_]d.ne ‘\/
B 2
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The number of errors of positive sign is
A [® = A
— e 7 & =2 e

o f . du.e 5 -

Dividing the preceding expression by this,

4,6 c
Mean positive error = 7

Similarly,
. ¢
Mean negative error = -

v
And thercfore,
Mean Error = L ¢ X 0504189,
N

And conversely,
¢ = Mean Error x 1'7772454.

By this formula, ¢ can be found with ease when the series
of errors is exhibited.

27. It iz however sometimes convenient (as will ap-
pear hereafter, Article G1) to use a method of deduction
derived from the Squares of Errors. The positive and
negative errors are then included under the same formula.
If we form the mean of the squares, and extract the square
root of that mean, we may appropriately call it the Error
of Mean Square. This, like the Mean Error, is 2 numerical
quentity, without sign, To investigate it in terms of ¢,
we remark that the sum of the squares of errors between
z and o+ 8» (formed as in the last Article) will be

4 =
a‘,—rﬁ ¢, Jexa’
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and the sum of all the squares of errors will be

" x! 4w .. at
‘A' ! de.¢ #.2'= {PAcw.e“c’}

chr — —w 27T
Ade (4= -
+2‘\/‘;' -“dm.e o,

The first term vanishes between the limits — 0 and + =,
9
and the second term = + 1{: . The whole numbeor of errors

g
is 4. Hence the Mean Square is % , and the Error of Mean

Square is
0,\/; =0 X 0707107 ;

or ¢= Frror of Mean Square x 1414214,

28. It has however been customary to make use of a
different number, ealled the Probable Error, It is not
meant by this term that the number used is a more pro-
bable value of error than any other value, but that, when
the positive sign is sttached to it, the number of positive
errors larger than that value is about as great as the num-
ber of positive crrors smaller than that value: and that,
when the negative sign is attached to it, the same remark
applies to the negative errors,. The Probable Error itself
is & numerical quantity, without sign. To ascertain the
algebraicel condition which this requires, we have only to
remark that, as the number of positive errors up to the

% o
value z is 4 f dz.e ¢, and as the whole number of
cd-.-r 0
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pusitive errors is ‘g , and half the whole number of positive

’ F &
CITOTS 18 3 W must find the value of # which makes

::l

dic.e ¢, or — f dw.e ", equal to

el !

29. For this purpose, we must be prepared with a

table of the numerieal values of el { dw.e", 1t is not
our busginess to describe here the process by which the
numerical values are obtained (and which is common to
the integrals of all expressible functions); we shall merely
give the following table, which is abstracted from tables
in Kramp’s Refructions and in the Encyclopredia Metro-

pulitana, Article ZTheory of Probabilities.

1 [w -
TABLE OF THE VALUES OF o f dw.e "
0

Integral.

0-499068
U-4499428
0-499655
0:499796

+ 0440103 h 2
3
{
5
6 i 0499881
¢
8
9
0

1
9 | 0455157 ;
| 0-467004
| 0476143 -

0000000 | , 2
2

9-

3

| 0483053 : 2
2

2

2

0066232

0-111351
0164313
0-214196
(0260250 |, 0-499932
0-499962
0499979
0-499988

‘3
4

5

6 | 0488174
7 | 0491895 |
8

9

0

1

roooo0ee
St =D

0-494545 |
(-496395 | 3.
0-497661 |
0498610 | w 0-500000

0-338001
0371051 |
0-308454
0421350

1
1
'l
1
1
1
0301928 |1 1
I
1
2
&
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By interpolation amonyg these, we find that the value
of w which gives for the value of the integral 0-23, is
0476948 ; or the Probable Error, which is the corresponding
value of =, is ¢ x 0-476048, And, conversely, ¢ = Probable

. Error x 20966065,

30. The reader will advantageously remark in this
table how nearly all the errors arc included within a small

value of w or 2—’ For it will be remembered that the Inte-

gral when multiplied by A (the entire number of positive
and negative errors) expresses the number of errors up to

that value of w or 9-!3:-)—!:. Thus it appears that from w =0

up to w=105 or g_r_gqgw 165, we have alrcady obtained

19 f the whole number of errors of the same sign ; and

50
. .o 49999
from w =0 up to w=30, we have obtaincd 50000 of the

whole number of errors of the same sign.

31, Returning now to the results of the investigations
in Articles 26, 27, 28, 29; we may conveniently exhibit
the relations between the values of the different constants
therein found, by the following table :—
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PROPORTIONS OF THE DIPFERENT CONSTANTS.

\[Lnn
Sqtiare.

In terms of Modulus ...| 1:000000 0-564189 3070?107 oaTeaes |

——— .

In terms of Menn Error 1 77&40% 1 000000 1 303314 0 845369 I

In terms of Error of)],, ] . .
Mean Bquaro ... } 1414214 | 0-797885 | 1000000 lo 674506

H
1
e e A — e A — 4 s . ——— e e

In tﬁ:f;i of Pm"“"‘*’} 2:096065 | 1182916 | 1-482567 : 1-000000 '
LN X N} (X ] l :

82. To distinguish cach of the errors, really occurring
in observations, from the “Mean Error,” “ Error of Mean
Square,” “Probable Error,” which are mere numerical
deductions made according to laws frumed for convenience
only, we shall usually designate an error really occurring
(whether its magnitude be known or not) by the term
“ Actual Error,”

§'4. Remarks on the application of these processes +n
particular cases.

38, Tt must always be borne in mind that the law of
frequency of errors does not exactly hold except the num-
ber of errors is indefinitely great. With a limited number
of eirors, the law will be imperfectly followed ; and the
deductions, made on the supposition that the law is strictly
followed, will be or may be inaccurnte or inconsistent.
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Thus, if we investigate the value of the modulus, first
by means of the Mean Error, secondly by the Error of
Mean SBquare, we shall probably obtain diseordant results,
We cannot assert ¢ priori which of these is the better.,

34. There is one case which oceurs in practice so fre-
quently that it deserves especial notice. In collecting
the results of a number of observations, it will froquently
be found that, while the results of the groater number
of observations are very accordant, the result of some
one aingle observation gives a discordance of large mag-
nitude. There is, under these circumstances, a strong
temptation to erase the discordant observation, as having
been manifestly affected by some extraordinary cause of
error. Yet a consideration of the law of Frequency of Error,
as exhibited in the last Section (which recognizes the pose
sible existence of large errors), or & consideration of the
formation of a complex error by the addition of numerous
gimple errors, a3 in Article 14 (which permits a great num-
ber of simple errors bear gxg.the.mme sign to be aggregated
by addition of mao'm)a{de \ihd thenbx to producc a large
complex error), will ,Bj}’ew that such fage errors may fairly
oceur ; and if so, th ya-mngt,,bg yelgined, " We may perhaps
think that where a'gguse of unfair emtr may exist (as in
omission of clampin zemth-d:stan}e-cnule) and where
we know by certain evidénee thatfn some instances that
unfair causo has actually come into play, there is sufficient
reason to presume that it has come into play in an in.
stance before us, Such an explanation, however, can only
be admitted with the utmost caution,
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PART 1I

ERRORS IN THE COMBINATION OF FALLIBLE
MEASURES,

§ 5. Law of Frequency of Error, and values of Mean
Brror and, Probable Ervor, of @ symbolical or numeri-
cal Hultiple of one Fullible Meusure,

33, THIS case is exceedingly simple; but it is so im.
portant that we shall make it the object of distinet treat-
ment, Suppose that, in different measures of a quantity X,
the actual errors z,, @,, w,, & have been committed.
Then it is evideut that our acceptations of the value of the
quantity ¥'=nX (an algebraical or numerical multiple of
&), derived from these different measures, ave affected by
the Actual Errors y,= nz,, y,= nx,, y,= nx,, &c.; and that,
generally speaking, where X is liable to any number of
errors of the magnitudes x, #+ &, or any thing between
them, Y is linble to exactly the same number of errors of
the magnitudes sz =y, nx + néz =y + 8y, or of magnitudes
between them. Therefore the expression for the Frequency
of Errors in Article 24 becomes this ;

The number of errors of ¥ or n.X, whoso megnitudes
fall between y and y + 8y, may be expected to be |

A

e
c:\/w"e . O,
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which is the same as
1
;;;L; o € N, 33/.

From this we at once derive these conclusions: (1) The
lnw of Frequency of Errors for nX is exactly similar to that
for the errors of an original measure X; and therefore, in
all future combinations, n.X may be used as if it had been
an original measure, (2) The modulus for the errors of
aX is, in the formula, ne. (3) Referring to the constant
proportions in Articles 26, 27, 29, 31; the Meun Krror
of nX will therefure =n x mean error of .X; the Error of
Mean Square of nX'=n x error of mean square of X ; the
Probable Error of n.Y =n x probable error of X,

36, It may be useful to guard the reader against one
misinterpretation of the meuning of nX. We do not mean
the measure of a simple quantity ¥ which is equal to nX.
The crrors (whether actual, mean, or probable) of the
quantity .X cannot in any way be made subscrvient to the
determination of the error of another simple quantity Y.
Thus, reverting to our instances in Article 5, &e, 2 judg-
ment of the possible error in estimating the length of a
road about 100 yards long will in no degree aid the judg-
ment of the possible error in estimating the length of a
road about 10000 yards long. The quantity ».X is in fact
merely an algebraical multiple or a numerical multiple of
X, introduced into some algebraical formula, and is not
exhibited ns a material quantity.

87. Another eaution to be observed is this; that we
must most carefully distinguish between n.X the multiple
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of .X (on the one hand), and the sum of a series of » inde-
pendent quantities .Y, + X, 4 &e. ... 4 X, (on the other
hand); even though the mean error or probable error of
each of the quantities X, X, &e. iz equal to the mean
error or probable error of X, The value of mean error or
probable error of such a sum will be found hereafter
(Article 53).

§ 6. Law of Frequency of Error, and values of Mean
Error and Probable Error, of a quantity formed by
the elgebraical sum or difference of twe independent
Fallzble 3leasures, ‘

38. Suppose that we have the number C of measures
of a quantity .\, in which the law of frequency of errors
is this (see Article 24), that we may expect the number
of errors whose magnitudes fall between = and & + &, to be

égézl . e'g. h:
¢ being the modulus of these errors, and the number C
being very large.

And suppose that we have the number F of measures
of & quantity Y, absolutcly independent of the measures

of the quantity X, in which we may expect the number
of errors whose magnitudes fall between yand  + I, to be
| F #
}V;; . € 7, h,

f being the modulus of these errors, and the number F
being very large,
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And suppose that a new quantity Z is formed by adding
X and Y together,

It ig required to ascertain thelaw of frequency of errors
of Zor X+ Y.

39. Instead of supposing the errors to be graduated,
we will suppose that all the errors whose number is

s
€ @ .k have the uniform magnitude «; and so for

oy
other equal intervals % in the value of 2. Thus, putting
@, ®, &, a: for 2 —2h, @k, 2+ h, @+ 2k, and putting
O for - 4 -, the numbers of errors of X will be

of magnitude z - 242, ¢ s h;

z.’

of magnitude x4, C'e sk
2

of magnitude =z, Cl.eak
- ') nr’?

of magnitude #+ 4, C'.e o by

P
of magnitude =+ 24, C'.e & .k
and it is plain that, by making % small enough, this state
of things will approach as near as we please to that of
graduated errors,

~ In like manner, the numbers of errors of ¥ will be
3

of magnitude y+2h, F'.¢ r.h;
b ]
of magnitude y+A, F'.e'g'z.h;
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. 8
of magnitude y, F'.e . h;
. y2
of magnitude y - 1, e nh;
. L, R
of nagnitude y— 24, F.erih

40. Let 24 y=2 Now in order to form all the
possible values of Z, we muat combine evory possible
value of X (C in number) with every possible value of ¥
(F in number), forming a total number CF of combina-
tions, (This process implies that the errors of .\ are ab-
solutely independent of those of ¥)) The number of com-
binations of errors will be the same. If we examine the
result of combining the two series of errors in the last
Article, we find that the magnitudes of the errors formed
will be

g—4h,2-3h, 23, 2=h, 2,5+ h, 242, 2+ 3h, 2+ 4k,

We shall thercfore have o series of magnitudes of error
of Z in our result, varying by a step of magnitude A every
time, and therefore similar to those which we have adopted
for the errors of X and Y.

41. Now if we examine the combinatiens of errors
that will produce z, and the numbers of these combina-
tions (which apply to a step of magnitude %), we find the
following:

combining x — 24 with y + 2k, the number is

.f! 3{“3
C'.¢ v hxF'.¢ ﬂ' hor C'F'.hxe - 7,k
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combining @~k with g + &, the number is

O
C'F . .hxed
combining # with y, the number is

N
CF . hxeé s h;
combining @ +4 with y — &, the number is
~tow
CF.hxed ph:
combining x+ 2k with y — 24, the number is
£1_gA

C'F . hxed rihy
and 8o on, continued indefinitely both ways, If we put
z —z for y, and remark that
Y'ey+2h=z—242%h=z2-u,
and so for the others, we see that all the last factors in

the series just exhibited are the values of

Ay B -2
¢ ®sih ore ¢ s b,

when for  we put successively the values
x—2h, 2—h, 2, z+ h, 2+ 2k,
continued indefinitely both ways, without altering the

value of 2. The sam of these, suppusing & made indefi-

nitely small, is the same as

+ o _--l_'_’_fz-.!‘)’
de.e ™ g1,

-

where 2 is considered constant. Introducing the factors,
and remarking that

o C  F _CF
CF = e xf\hr“qf?r'
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the whole number of errors of magnitude z when a step of
magnitude A iz made each thae, or, as in Article 40, the
whole number of errors of £ whose magnitudes are included
between 2 and z + 4, will be

CF#L d B -
ofr
where ¢ is to be regarded as constant,

42, The index of the exponential is easily changed
into this form;

__2 _dtfr  da )
¢+ c’f"( ¢+f"
4+ 1 o'z
Let ¢+ =¢, P G T s = E,
. . # 8
Then the index is — 5 — 2,
en the index is F
And, (as de=df, and 2 is constant for this investiga-

tion), the whole number of errors of Z, whose magnitudes
are included between z and 2 4 A, will be

Y 2t ptw
e a5,

But (see Article 17, and remark that in this case

J2=2f),

of of
[ dE. er" w/qrmv(c,_‘_f,)q/cr N,
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Therefore, finally, the whole number of errors of Z whose
magnitudes are included between 2z and z + A, will be

cr

2
s e#.h;

where the whole number of combinations which can form
errors i3 CF,

43. Comparing this expression with that in Article
24, it appears that the'law of frequency of error for Z is
precisely the same as that for X or for ¥; the modulus
being g or

V@ +f).

Hence wo have this very remarkable result. When
two fallible determinations X and Y aro added algebrai-
cally to form a result Z, the law of frequency of error
for Z will bo the same as for X or ¥, but the modulus
will be formed by the theorem,

square of modulus for Z= squaro of modulus for X + square
of modulus for ¥,

44. And as (seé Articles 26, 27, 28, 29, 81) the Mean
Error, the Error of Mean Square, and the Probable Error,
ate in all cases expressed by constant numerical multiples
of the Modulus, wo have

(m.e. of Z)'=s (m.e. of X)*'+ (. 6. of ),
(e. 1.5, of Z)'= (0. m. 8, of X)*+ (e.m. 5 of )"

(pe.of Z)'= (p.e.of X)'+(p.e. of Y).
A, ¢
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These are the fundamental theorems for the Error of
the Result of the Addition of Fallible Measures, They
constitute, in fact, but one theorom; inasmuch as, using
one, the others follow as matter of course. We shall
commonly make use of Probable Errors (as most exten-
sively adopted), unless any difference is expressly noted ;
but the reader, who prefers Mean Errors, may form tho
theorems in the corresponding shape, by merely substi-
tuting “m. e.” for * p.e.” throughout,

45. It cannot be too strongly enforced on the student
that the measures which determine X must be absolutely
and entirely independent of those which determine Y. If
any one of the observations, which contributes to give a
measure of X, does also contribute to give a measure of ¥;
then the single measure of X founded on that observation
must be combined with the corresponding single measure
of ¥ to form its value of Z, and with no other; and the
freedom to combine any possible error of X with any possi-
ble error of ¥, on which the whole investigation in Articles
40 and 41 depends, is to that extent lost, As an illustra-
tion: suppose that differences of astronomical latitude upon
the carth, or ‘amplitudes,’ are determined by observations
of the same stars at the two extremities of 2 meridian are:
and suppose that X, the amplitude from a station in the
Isle of Wight to a station in Yorkshire, is determined by
observing stars in the Isle of Wight and the same stars in
Yorkshire; and suppose that Y, the amplitude from the
Yorkshire station to a Shetland station, is determined by
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observing stars in Yorkshire and the same stars in Shet-
land. First suppose that the observations of stars used
in the measure of X are not the same which are used in
the measure of Y. Then the errors in the determination
of X are totally independent of the errors in the deter-
mination of Y'; any one determination of X may be com-
bined with any one determination of Y; and if Z=X
+ Y= amplitude from Isle of Wight to Shetland, the
theorem

p.eof Z)={(pe of X)*+ (peof ¥)

applics strictly. But suppose now that one and tho same
set of star-observations made in Yorkshire are used to
determine X (by comparison with Isle of Wight observa-
tions) aud Y (by comparison with Shetland observations).
Thon the determination of X, based upon a star-observa-
tion in Yorkshire, will be combined only with a deter-
mination of Y, based upon the same star-observation in
Yorkshire (as will be scen on taking the mecans of zenith
distances at the stations, and forming the amplitudes).
The Yorkshire observations are of no use at all for deter-
mining Z, and may be completely omitted. Their errors
have no influence on the result; for if the observations of
any star in Yorkshire make X too small, the same observa-
tions make Y equally too large, and in forming Z=X4 Y
these orrors disappear, In fact, the determination of Z
here is totally independent of those of X and ¥ and the
investigation of its mean error or probable error will not
depend on those of X and ¥, It will depend on the ob-
servations at the Isle of Wight and Shetland only: whereas

c2



30 . COMBINATION OF ERRORS,

the probable error of .X will depend on observations at the
Isle of Wight and Yorkshire only, aud the probable error
of Y will depend on the observations at Yorkshire and
Shetland only. Thus it may happen that, although
4 =X 4+ Y, the probable error of Z is less than either the
probable error of X or the probable error of Y.

The investigation of the prohable error of Z, when a
portion of the stars observed are common to two or three
stations, will be explained horeafter (Article 80).

4G. Suppose that we have determinations of X and
Y, as in Article 38, and W= X~ Y; it is required to
agcertain the law of frequency of errors and the mean error
ur probable error of W.

The fundamental supposition, upon which ‘we have
gone throughout the investigation, is, that the law of
frequency is the same for positive and for negative errorg
of the same magnitude. And this is implied in our final
formula for the number of errors between @ and 2+ S,

namely, 23_4_ €, dx, which gives equal values foro=+4¢

N7
and for = —3 Inasmuch therefore as Y is liable to
positive and negative errors of the same magnitude in
¢qual numbers, it follows that — ¥ is liable to the same
ervors a8 + Y'; and therefore the probable error of — ¥ is
the same as the probable error of 4 ¥,

47. Now We X+ (~Y), and therefore
(p.e.of W)*=(p.e of X)'+ (p. e, of ~ Y)°,

i

e et v
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Substituting in the last term from Article 46,
{p.e. of W)=(p. e, of X)*+ (p.c. of Y)*

48, The theorems of Article 44 may thorofore be ex-
tended, in the following.form ;

mo of (X3Y)'= (meof X!+ (me of YV,
{em. s of (X ¥))*=(e.m.6 of X)*+ (e.m.5. of T),

pe. of (X & )f*= (peof XP4+ (peoX)

and, the law of frequency of errors for X'+ Y will be similar
to that for a simple fullible measure.

49, The reader’s attention is particularly invited to
the fullowing remark. We have found in Article 35 that
when the errors of n fallible measure are subject to our
general law of Frequency of Errors, the errors of any con-
stant multiple of that measure are subject to the same
laws ; and we have found in Articles 44, 47, 48, that when
the errors of each of two fallible measures are subject to
that law, the errors of their sums and differences are sub-
Ject to the same law. Now all our subsequent combina.
tions of fallible quantities will consist of sums, differences,
and multiples, Consequently, for every fallible quantity
of which we shall treat hercafter, the General Law of
Froquency of Errors will apply. Regarding this as suf-
ficient notice, we shall not again allude to the Law of
Frequency of Errors,
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§ 7. Values of Mean Error und Probable Error, in
combinations which ocour most frequently,

50. To find the Probable Error of X +1Y, % and {
being constant multipliers,

By Article 33, the probable error of 2X = k x probable
error of X'; and the probable ervor of Y =1 x probable

error of ¥, Now, considering £X and 1Y as two indepen-
dent fallible quantities,

{p.e. of (RX +1X)}*= (p. 0. of XX)*+ (p. e. of 1Y),
Substituting the values just found,
{p.e. of kX +1Y)P =2, (p-e of X)* +P. (p.e of Y,

In like manner,
{m.e, of (kX4 IY)P*=". (m.e. of X)*+ %, (m.e. of Y.

51, To find the Probable Error of the sum of any
number of independent fallible results,

R4+ 84+ T4 Ut &e.

This is easily obtained by repeated applications of the
theorem of Article 44, thus:

[p.e. of (B+ 8)}" = (p. e. of B+ (p... of 8;
[P . of {(B + 8) + T
= {p. o. of (R4 8)}* + (p. e. of T)®
=(p.e. of R)'+ (p. . of §)'+(p. & of T)*;

0
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[p.e of {(BR+8+T)+ U}
= {p.e. of (B+ 8+ T)}* + (p.e. of U)*
=(p, e, of B)%(p.e. of 8)*+(p. e of T)+(p. e. of U)";

and s0 on to any number of terms,

A similar theorem applies to the Error of Mean Square,
sod the Mean Error, substituting e.m.s. or m. ¢ for p.e.
throughout,

52, In like manner, using the theorem of Article 50,
the probable error of B + 88+ ¢T' + wU+&ec., where 7, 8,
t, u, are constant multipliers, is given by the formula,

{P& e, of (TR + 88+ 1T + ﬂU)}'
(o B (3 oL 87+ £.(pk TP A O

And a similar theorem for Error of Mean Square and
Mean Error, substituting e, m. s. and m. e, for p. e.

Measures thus combined may be called “ Cumulative
Measures.”

53, ‘To find the Probable Error of X, + X, + ... + Xy
where X, X, X,...X,, are n different and independent
measures of the same physical quantity, or of equal phy-
sical quantitics, in every one of which the probable error
is the same, and equal to the probable ervor of X',

By the theorem of Article 51,



40 COMBINATION OF ERROESH,

{p.c. of (X, + X 40+ X)) =(p.o of X))+ (p.e. of X)...
+ (p. e of X,)? ,
= (p.e. of X+ (p.c.of X))+ ... 4 (p.e. of X)) to # torms
=n.(p. e of X%
and therefore,
p.e of (X, 4 X, + ... + X) =40 xp.o. of X,

| 54, In Article 85, we found that
peofaX =nxpe o X;
but here we find that
peof (X +X .. +X)=yrxpeo oX,

although the probable error of cach of the quantities X,
Xy, &e. is equal tothat of X,, A little consideration will
explain this apparent discordance. 'When we add together
the identical quantities X,, X,, X,, &c. to n terms; if there
18 & large actual error of the first X, there is, necessarily,
the same large actual error of each of the other X, X, &e.:
and the aggregate has the very large actual error n x large
error of X,. But when we add together the sndependent
quantities X, X,, &e., if the actual error of X is largo, it
i8 very improbable that the simultancous actual error of
each of the others X,, X,, &e, has a value equally large
and the same sign, and therefore it ig very improbable
that the aggregate of all will produce an actual error equal
or approaching to n X large error of X;. The magnitude
- of the probable error (which is proportional to the mean
error, see Article 31) depends on the probability or fre-
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quency of large actual errors, (for in Article 26, to make the
moan error Jarge, we must have many lnrge actual errors);
and therefore the probable ervor of X, + X, + ... + X, will
be smaller than that of X, + X, 4... to & terms, although
p.e.of Xy=p.e of Xy=...=p.eof X,

55. To find the probable crror of the mean of X,
X,y oo o X, where X, X, ... &, are n different and
indopendent measures of the same physical quantity, in
every one of which the probable error=p.e. of X,.

X+ X 4.+ X,

n

. The mean of X, X, ... X, =
”"1‘ Xn+1 X+ .. +1Xu;
) 7 7
and the square of its probable error, by Article 52,

-_-..3,(1;. e of X+ ,(p 0. of X)'+ ot (p o of X,
Lo of T+ 1 (p.c. of X'+ ... tont
=9 (p. 0 of L)'+ 4 (p.c.o X))+ ... ton terms,

1
=i (p.e. of XY= (p.o. of X

and therefore,

p. e.ofmeananI,X,,. .X—-;}-xp.o of X.

- a3 bl
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§ 8. Instances of the Application of these Theorems.

56, Iustance (1), The colatifude of a geographical
station is determined by observing, m times, the zenith«
distance of a star at its upper culmination; and by
observing, a times, the zenith-distance of the same star at
its lower culmination ; all proper astronomieal corrections
being applied. The probable error of each of the upper
observations is p, e, u. and that of each of the lower i
p.e. L To find the probable error of the determination
of colatitude,

The probable ervor of the upper zenith-distance, which
is derived from the mean of m observations, is P-f;/%‘-ll;

and the probable error of the lower zenith-distance, which

p- el
v

Now the colatitude = ; upper zenith-distance +% lower ze-

is derived from the mean of s observations, is

nith-distance; and the determinations of these zenith.
distances, as facts of observation, are strictly independent,
Therefore, by Article 52,

(p. e, of colatitude)®

(p. e. of U, Zen. dnst.)’ +3 (p e of L. zen, dist.)’

=3
=1 (peu) 1 (pel)
T4

— T a
n

lihf

m
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If the observations at upper and lower culmination are
equally good, so that

p.e.w.=p.el=p.e,
. _{pe) 1 1\,
then (p. e. of colatitude)' = =3 " (—ﬂ; + ;) ;

or p. e, of colatitude ,,P__ '%3 .

57. Instance (2). In the operation of determining
geographical longitude by transits of the moon, the moon’s
right-ascension is determined by comparing a transit of the
moon with the mean of the transits of several stars; to
find the probable error of the right-nsconsion thus deter-

mined.

If p.e. m, be the probable error of moon-observation,
and p. e.s. the probable error of a star-observation, and
if the number of star-observations be n, then we have

p. e. of moan of star-transits = Pij:' ’

p. e. of moon-transit = p, e. m,

Hence, by Article 48,

p. €. of (moon-transit — mean of star-transits)

]
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If p.O.S.mP. e, m.wp- 0.,

p- ©. of {(noon-transit — mean of star-transits)

=P, G ,\/(l+l)

It will be remarked heve that, when the numlier of stars
amounts to three or four, the probable error of result is very
little diminished by increasing the number of stars.

§9. Methods of determining Mean LError and Probable
Error tn @ given series of observations.

58. In Articles 26, 27, 28, we have given methods
of determining the Mean Error, Error of Mean Square, and
Probable Error, when the value of every Actual IKrror in
a series of measures or obscrvations is certainly known,
But it is evident that this can rarely or perhaps never
apply in practice, because the real value of the quantity
measurod is not certainly known, and therefore the value
of each Actual Error is not certainly known. We shall
now undertake the solution of this problem. Given a
sories of » measures of a physical element (all the mea-
surcs being, so far as is known to the obscrver, equally
good) ; to find (from the measures only) the Mean Error,
Error of Mean Square, and Probable Error, of one measure,
and of the mean of the » measures. | |

59. Wa shall suppose that (in conformity with a re-
gult to be found hereafter, Article 68,) the mean of the
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» measures is adopted as the true result. Yet this mean
is not necessarily the true result; and our investigation
will naturally take the shupo of ascertaining how much
the formule: of Articles 26, 27, 28, are altered by recog-
nizing its chance of error.  And first, for Mean Error, In
the process of Article 26, suppose that, in consequence of
our taking an crroncous value for the true result, all the
<+ orrors are increased by a small quantity, and all the
— errors are diminished (numerieally) by the same quantity,
"Then the mean 4 eror and the mean - error will Le, one
increased and the other diminished, by the same quantity,
und their mean, which forms the mean error, will not be
affected, And if, from the same cause, one or more of
the — errors become apparently 4 enrors, the mean + error
and the mean — error are very nearly equally affected in
magnitude but in different ways (numerically), and their
mean i8 sensibly unaffected, Thus the determination of
Mean Error is not affected ; and the process of Article 26
15 to be used without alteration, A resulf may follow from
this which is slightly inconsistent with that to be found in
Article 60, as has been remarked in Article 33,

60. Secondly, for Error of Mean Square. Suppose
that the Actual Errors of the s measures are ¢, b, ¢, d, &c.
to 2 terms ; then the Actual Error of the mean is

a+bd+eddt &e
n ?

and therefore if, for the process of Article 27, we form
the sum of the squares of the Apparont, Error of cach mea-
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sure, that is of the difference of each measure from the
mean ; we do not form the squares of ¢, §, ¢, d, &c, but of

a+dtctdt e

A e et i 2

n !

patbretrd e
n

H

c~a+5+c+d+&a
n »

The sum of their squares (that i3, the sum of squares
of apparent errors) is

G+ 44 &e.

5 ]
- ;(a+b+c+&c.)x(c&+b+c+cl+&c.)
+ R X %—,x (@+b+c+d+&e)
=a’+b’+c’+&c.-—-3’ix(a+b+c+d+&c.)’.

Now, in the long run of observations, we may consider
each of the squares in the first part of this formula as
being equal to the Mean Square of Error; so that for a?,
or I, or &, &e¢., we may put (Error of Mean Squarc)®, using
the definition of Article 27, But for a-+b+¢+d + &e.,
which enters as an aggregate quantity, we must remark
that, by Article 51,
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Mean Square of Error of (@ + 4 + ¢ + d + &e.)
= (m. 8. ¢, of ¢) 4 (m. 8 e. of b) + &e.

=n % (Error of Mean Square)’,

Thus the sum of squares which we form is truly

# X {c.m.s of a measure)"'-—--}-' X n % (e, m. 8. of a measure)®,
2= (8 — 1) % (e. m. 8. of & measure)’,

And from this,

sum of squares of apparent errors
n—1

e, m. 8. of 2 measure =

2

. _ /sum of squares of apparent errors
¢.m. 8. of the mean = ,\/ e ) ,

And by the table of Article 31,
p. e, of & measuro

= 06745 x '\/sum of squares of apparent errors

71

p- e. of the mean

sum of squares of apparent errors

= () |4 . ————
06745 x nin=1)

61. The quantitics which enter into the formation of
the mean error, error of mean square, and probable error,
will be most conveniently computed thus. It is supposed
that the different measures are 4, B, €, &e., and that
their mean is M,
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First, for the mean error, Select all the measures
4, B, C, &c. which aro larger than Jf: supposing their
number to be /, form the quantity

A+B+ C4 &e.
/ —

M,

which gives one value of mean error. Select all the
measures P, Q, R, &c, which are smaller than M sup-
posing their number to be s, form the quantity

JI-P+ Q@+ B4 &e.

8

# b

which gives the other value of mean crror. The mean of
these two values of mean error is to be adopted.

Second, for the crror of mean square and probable orror,
We wish to form (4 — M)t + (B— M) 4 (C—- I+ &e.
This=A%+ B+ C'+ &e.—~ 2). (A 4+ B+ C+&e) +n. M?,
But A+B+C4&e=a.l;

so that the expression
= A"+ B'+ C*+ &, — n. MY,

This is the “Sum of squares of apparcnt errors,” to be
used in the formulie of Article 60.
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PART IIL

PRINCIPLES OF FORMING THE MOST ADVANTAGEOUS
COMBINATION OF FALLIBLE MEASURES,

§ 10. Method of combining measures; meaning of “com-
bination-weight;”  principle of most advantageous
combination : caution in its applicution to ** entangled
meusures,”

62. THE determinations of plysical elements from
numerous observations, to which this treatise relates, are
of two kinds.

The First is, the determination of some one physical
clement, which does not vary or which varies only by
& certainly caleulable quantity during the period of
observations, by mcans of numerous direct and smmediate
measures. Thus, in the measuro of the apparent angular
distance betweon the components of a double star, we are
making direet and immodiate measures of a quantity
sensibly invariable; in measuring the difference of moon’s
right ascension from the right ascension of known stars at
two or more known stations, in order to render similar
observations at an unknown station available for determin-
ing its longitude, we arc making direct and immediate
measures of quantities which are different at the two or

more stations, but whose difference can be accurately com-
puted.

A, D
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63. The measures thus obtained are all fallible, and
the problem before us is, How they shall be combined ? It
is not inconceivable that different rules might be adopted
for this purpose, depending (for instance) upon the products
of different powers of the various measures, and ultimate
extraction of the root corresponding to the sum of the
indices of powers: or upon other imaginable operations.
But the one methad (to which all others will approximate
in effect} which has universally recommended itself, not
- only by its simplicity, but also by the circumstance that it
permits all the measures to be increased or diminished by
the same quantity (which iz sometimes convenient), is, to
multiply each measure by a number (either different for each
different measure, or the same for any or all) which number
is here called the “combination.weight;” to add togother
these products of measures by combination-weights; and
to divide the sum by the sum of combination-weights.

64. The problem of advantageous combination now
becomes this, What combination-weights will be most
advantageous? And to answer this, we must decide on
the eriterion of advantage. The criterion on which we
shall fix is:—That combination is best which gives a
result whose probable error, or mean error, or error of
mean square, is the smallest possible. This is all that
we can do. -+ We cannot assert that our result shall be
~correct; or that, in the case before us, its actual error shall
be small, or smaller than might be given by many other
combinations; but we can assert that it is prodable that its

actual error will be the smallest, and that it is certain that,
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by adopting this rule in a very great number of instances,
we shall on the whole obtain results which are liable to
smaller errors than can be obtained in any other way.

3. Now if we know the probable errors, or the pro-
portion of probable errors, of the individual observations,
(an indispensable condition,) we can put known symbols
for them, and we can put undetermined symbols for the
combination-weights; and, by the precepts of Part 11, wo
can form the symbolical expression for the probable error
of the result. This probable error is to be made mini-
mum, the undetermined quantities being the combination-
weights. Thus we fall upon the theory of compler mazima
and minima. Its application is in every case very easy,
because the quantities required enter only to the second
order. Instances will be found in Articles 68 to 72,

66. It sometimes happens that, even in the measures
of an invariable quantity, combinations of a complicated
charactor occur. Different complex measures are some-
times formed, leading to the same result; in which some
of the observations are different in each measure, but
other observations are used in all or in several of the
measures; and thus tho measures ave not strictly inde-
pendent. - We shall call these “entangled measures.”
The only caution to be impressed on the reader is, to be
. very careful, in forming the separate rosults, to delay the
oxhibition of their probable errors to the last possible
stago; expressing first the actuul error of each separato
rosult of the form ultimately required, by the actual error

D2
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of each observation. It will often be found that, in this
way, the results of observations will be totally or partially
eliminated (and justly so), which, if the probable errors
had been formed at an carly stage, would have vitiated
the result. Instances of this will be given Dbelow
(Articles T4 to 85).

67. The Sceond class is, the simultaneous deter-
mination of several physicul clements, It may be illus-
trated by one of its most frequent applications, that of
determining the corrections to be applied to the orbital
clements of o planet’s orbit. The quantities measured are
right ascensions and north polar distances, observed when
the planct is at different points in its orbit, and in
different positions with respect to the observer, If ap-
proximate orbital elements are adopted, each having an
indeterminate symbol attached to it for the small correction
which it may require; it will be possible to express, by
orbital caleulation, every right ascension and north polar
distance by numerical quantities, to which are attached
definite multiples of the scveral indeterminate symbols,
Equating these to the observed right ascensions and north
polar distances, a long series of numerous equations is
obtained, with different multiples of the indeterminate
symbols; each equation being subject to its own actual
error of observation, And the question before us is now,
How shall these namerous equations be combined so as to
form exactly as many equations as the number of indeter-
minate symbols, securing at the same time the eonudition
that the probable error of every one of the values thus ob-

rw-
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COMBINATION OF SIMPLE MEASURES. 53

tained shall be the smallest possible? This is also a case
of complex murimae and minima. Numerous problems in
astronomy, geodesy, and other applied sciences, require this
treatment. It will be fully explained in Articlos 87 to 122.

§ 11.  Combination of simple measures; meaning of “the-
oretical weight;” simplicity of resulls for thevretical
weight; ellowable departure from the strict vules.

68. Suppose that we have n independent measures of
some element of observation (e g. the angular distance be-
tween two stars), all equully good, so far us we can judge
& priori; to find the proper method of combining them.

Let B, E,...E,, be the actual ervors of the individual
measures, which are not known, but which will affect the
result. Let their probable errors be e, ¢, ..., cach of
which==¢. And let the combination-weights required be
W,, W, ... w,. Then the actual error of the result, formed
as is described in Article 63, will Lo

w b+ wk,.. 4wk,
W, + W, + .+ w,
) w,
= o iw, . ot 0, 0 E, +é&e.
The (p. e. of result)’, by Article 52, is

W v,
(éé;:i-}b; .' + a0 ) "+ (w + w, '.. + w ) ¢’ +&e.
- wye D+ Wy ..._'__._'!'.'.3.‘.’ ey
y (o, + w,... +10,)* °}
which in this instance becomes
fx wi+w 4. +w,

(0, + in, ot w)
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Making the fraction minimum with respect to w,, we obtain
2w 2 0
w'tw'.+w! wtw . +w,

Similarly, by w,,
ey 2 0
w'dw' .t wt Wt W,

and so for the other weights,

It follows that w, = w,=w, &e, but that all are inde-
terminate. That is, the measures are to be combined by
equal combination-weights; or, in other words, the arith-

metical mean is to be taken, The (probable error of result)?

probable error of result = ;/%i ;
as was found in Article 53,

69. Suppose that we have #n independent measures or
results which are not equally good, (For instance: the
atmospheric or other circumstances of individual observa.
tions may be different: or, if individual observations are
equally good, the results of different days, formed by the
means of different numbers of obgervations on the dif-
ferent days, would have different values. In determina-
tions of colatitude by means of different stars, the values
of results from different stars will be affected by their north
polar distances, as well as by the other circumstances.)

The notatious of Article 68 may be retained, rejecting
only the simple letter . Thus we have for (p.e. of result)",

"f’lie:"" wle,’ et w,'e,? .
b, ey
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and w,, w,, &c., are to be so determined as to make this
minimum,

Differentiating with respect to w,,
2w‘ei 2

oTe T W e I 0 Wy
Dlﬁ'erentmtmg with respect to 1w,,
2w e_“___n____ 2 =0
we +we, oo fwrle) 'w+w,..+w )
And so for the others,

It is evident that we’=we? = &e. = w,e'= C some
indeterminate constant. Hence

w =£ w ='-C-' &e w =g—
3 e:’ ¥ e:’ '3 " e'zl
and (p.e. of result)’
_Cw+w.ntw)_ C
T (o wy . w) W, b,
Or ! 1.+ ! + ¥ o 1

(p. e. of result)® e

70, We shall now introduce & new term. Let
' 1
(probable error)?

_be called the “theoretical weight,” ort.w. Then we have
these two remarkable results:—

. When independent fallible measures ave collateral, that
is, when each of them gives & measure of the same un-
known quantity, which measures are to be combined by
combination-weights in order to obtain a final result ;-
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First, The combination-weight for ench mensure ought
to be proportional to its theoretical weight.

Second. When the combination-weight for each mea-
sure is proportional to its theoretical weight, the theoretical
weight of the final result is equal to the sum of the theo-
retical weights of the several colluterul measures?,

When the theoretical weights of the original fallible
mensures are equal, and they are combined with equal
combination-weights, the theoretical weight of the result
is proportionsl tu the number of the original measures,

71. Thesec rules apply in every case of combination of
measures leading to the valuo of the same simple quantity,
provided that the observations on which those measuresare
founded are absolutely independent. Thus, we may com-
bine by these rules the measures of distance or position of
double stars made on different days; the zenith distances of
the same star (for geographical latitude) on different days;
the results (for geographical latitude) of the observations of
different stars; the results (for geodetic amplitude) of the
observations of differcnt stars; the results (for terrestrial
longitudes) of transits of the moon on different days, &e.

72. Instance, In Articlo 56 we have found for the
probable error of colatitude determined Ly m observations

1 The reader ia cautioned, whilo remembering these important theo.
rems, also to bear in mind the following (Artielex 44 to 53) s~

When independent faliible measures or quantities are cumulative, that
is, when they aro to be combined by addition or subtraction to form n new
fallible quantity; then tho square of probable error of the new fallible
quantity is equal to the sum of the squares of probuble errors of the several
cumulative meagures or quantities,

TPV S AT S T L o N A T e 5
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of a atar at its upper culmination, and »n observations at
its lower culmination,

é 4 n
92 mn

where ¢ is the probable crror of an observation, all being
supposed equally good.  Another star, whose observations
are equally good, observed m, times at upper and #, times
at lower culmination, gives a result with probeble error

e m, +n,
2 wm,

a third gives a result with probable error
é nt,+n,
9 'V/ ﬂ+ &e.
Their theoretical weights are
4 mn 4 mmn, 4 mp, &e

& m+n’ &'mtu ' €& wmgtn
The different results ought to he combined (to form a
mean) with combination-weights propgrtienal respee-
tively to
mn mn, ma,
mA+n’  wtn’ wm+a,”
and the theoretical weight of the mean so formed will be
4 r mn mn, mn,
e’(ﬂe#f;:a"—na + n, +m +1e e )
and its probable crror will be the square roob of the re-
ciprocal of this quantity.
It is supposed herc that the zenith-point is free from
error. If it is not, the cnse becomes ame of “entangled
observations,” similar to that of Article 73,

&e.;
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78, We may however depart somewhat from the
precise rule of combination lnid down in Artide 70, with-
vut materially vitiating vur results,  We have in Asticle 09
determined the conditivas which make p. ¢. of result mini.
mum; amd it is well known that, in all cases of algebraical
minimum, the primary variable may be altered through a
considerable range, without giving a value of tho derived
function much differing from the minimum. Thus, sup~
poso that we had two independent incusures, for the same
physical clement, whase probable orrors weve 6 and ¢'=2e,
We ought, by the rule of Article 70, to combive them by
combination-weights in the propertion of 4 : 1. But sup-
pose that we use combination-weights in the proportion of
#:1, Put £ and E’ for the actual errors; the actual
evror of result will be

nE+E n o, 1 ,
‘41 =5¢+1b+ﬂ+1E’

the p. ¢. will be (by Article 52)
n 2 . 1 9 " ’\/_{"’!"' 4_:)
/\/{(’H' 1) e (;i +l) ¢ } =0 w4l
3-2n
=ey/{e i

Using special numbers, we find

With combination-weights as 2 : 1, the p.e. of result

= € v:;S =g X 0'943&
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With combination-weights as 4: 1, the p.e. of result
58!§9=¢ x 0894,

.......... verassnnnnnans 83 1, the p.e, of result
we-‘-"-!-?—*-‘mestw.

veetanieansinnsesssssnneniensenss 108 1, the p.e. of result

/260 e

=6 jn e X 0947,

Thus it appears that we may use combination-weights

in any proportion between those of 2 ¢ 1 and 16 : 1 without

increasing the p.e. of result by more than 115 part.

But if we used a proportion of combination-weights
less than 3 : 2, the probuble crror of the result would be
greater, and the value of the result Jess, than if we used
the principal measure alone.

The values of the result obtained by these combina-
tions will be different, but we have no means of knowing
with certainty whether one approaches nearer to the
truth than another, All that we know is that, in repest-
ing combinations of these kinds in an infinite number of
instances, that which we have indicated as best will on the
whole produce rather smaller errors than the others.

When, however, we depart from the strictness of the
First rule in Article 70, the Second theorem of that Article

no longer holds,
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§ 12, ZLreatment of Entangled Measures.

74, The nature and trentment of entangled measures
will be best understood from instances,

Instance (1), Suppose that the longitude of an unknown
station is to be dotermined by the right ascension of the
moon at transit (ns found by ascertaining the difference be-
tween the moon’s time of transit and the mean of the times
of transit of n stars) compared with the right ascension at
transit determined in the same manner at e known station
(where the number of stars observed is ¢); and suppose the
probable error of trausit of the moon or of any starto be e,
Then, as has been found in Article 57, the probable error of

right ascension at the unkuown station is ¢ ,\/ (l+ 1) ,

that ot the known station 15 e ,‘/ (i + 1); and therefore,

by Articles 47 and 48, as these two determinations are in
every respect independent, the probable error of the differ-
ence of right ascensions at transit (on which the longitude

depends) is e,\/(-:;+é+2).

Suppose that a second comparison is made, of the same
transits at the unknown station, with transits of the moon
and b stars at s second known station. The probable
error of the quantity on which the longitude depends is

found in like manner to be e ~/ (l + % 4 2) .
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Now if we combined these two results, (leading to the
same physical determination, and both correct,) by the rules
of Article 70, we should obtain an erroneovus conclusion,
For, the two results are not independent, inasmuch as the
obsorvations at the unknown station enter into huth,

73. To obtain a correct result, we must refer to the
actual errors.  In strictness, we ought to refer to the actual
error of cach individual observation ; but, inasmueh as it is
perfectly certain that all the observations at cach of the
stations, separately considered, are entirely independent of
all the obscrvations at the other stations, we may put a sym-
bol for the uctual error of excess of moon’s KA., above mean
of stars’ R.A. at cach of the stations, Let these symbols
be N, A, B, respectively. Then the aclual crrors of the
quantities on which lungitude depends, as found by com-
paring the unknown station with each of the knoww stations,
are respectively N— A4, N —~DB. Let the quantitics be
combined with the combination-weights o, 8. Then the
final actual error will be

e(N-+BWN~B) _y 2 4__F
at i3 = a+ﬁA a+ﬁB'
And the syuare of probable error of final result

g o . 48 Bg A2
..-—..{(p.c. of \') +(&":!:_I=_f)‘i (p.e.of d)'+ (2+ B} (p. ¢. of B) }

Tb make this minimum, we must make
o (p.e. of A)' +8'(p.c. of B)’
(a+B)*



02 ADVANTAGEOUS COMBINATION OF MEASURES,

minimum, This algebraical problem is exactly the samo
as that of Article 69, and the result is

C B ¢
= (g of A* T (pie, of B
where € is an indeterminate constant. And this gives for
(p.e. of final result)’,

{0 or 5y fﬁ}

e, (pe of A x (pe. of BY
=2 \[(p‘e' Of N) (P e of A)’-}- (p e, UfB)g}
u+mﬂ+w}

a+b+ 2ub

{+1+

76, If we put r for the *theoretical weight” of final
result (sce the definition in Article 70); n, a, b, for those
of the observations N, 4, B, respectively; then the last
formula but one becomes

or

Let n be divided into two parts n, and n,, such that

8
n = n n, =---- —nr
a+b ¢ b a+b

Now if the theoretical weight n, at the station N had

* Iustances of a more complicated character may bo seen in tho Me.
moirs of the R. Astronomical Society, Vol. xx. p, 218,

B
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been combined with the theoretieal weight a at the station
4, they would have given for theorctical weight of their
result

L

pom Aol a+b an

" n,ta a0 n+(8+b)’
a+bh

And if the theoretical weight n, at the station N had
been combined with the theoretieal weight b at the station
B, they would have given for theoretical weight of their

result
b'n
. b.n, _ 84D bn
b= h,+b Do n+(@+b)’
— v+ Db
a+b
And consequently,
1‘.+l‘hl=r.

And it is easy to see that, as there are two conditions
to be satisfied by tho two quantities n, n, no other
quantities will produce the same aggregates n and .

77. Hoence we may conceive that the theoretical
weight n is divided into two parts proportional to a and b,
and thet those parts are combined separately with a and b
respectively, and that they produce in the result the sepa-
rate ports v, and r,, which united make up the entire
theorctical weight of result . The same, it would be
found, applies if there are any number of stations 4, B,
C, D, &e.
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78.  The partition of theorctical weight of final result
thus obtained, producing separate theoretical weights of
result depending on the combination of N with 4 and
N with B respectively, does in fact produce separato
theoretical weights for comparison of N with .4, and eom-
parison of N with B, without necessarily distinguishing
whether the clement (as moon’s place) to which N relates
is inferred from that to which 4 rolates, or whether the
element to which 4 relates is inferred from that to which
N relates, Hence it is applicable to such cases as the
following.

1. Instance (2). A geodetic theodolite being con-
sidered immoveable, observations {whose actual error is
A) are made with it for the direction of the noith meri-
dian, and observations (subject to actual errors A, B, C,
&c.) are made on different triangulation-signals: to find
the weight to be given to the determination of the true
azimuth of each signal.

Using analogous notation, the theoretical weight m is
to be divided into parts m, m,, m_, &c.; and then the
weights of the determinations for separate signals are
those produced by combining m, with a, m, with b, &c,
or arc

am bm

B a+bioke)’ mr @+ brods): %

80. Instance (3). In the observation of zenith-dis-
tances of stars for the amplitude of & meridian are divided
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into two sections by an intermediate station : suppose that
a starsaro observed at all the stations, the mesns of actual
errors being respectively 4,, 4,, A,: supposo that b stars
are observed at the first and secoud stations only, the
means of the actual errors heing respectively B, B,:
that ¢ stars are observed at the second aud third only,
the means of actual errors being €, C: and that d stars
are observed at tho first and third only, the means of

actual errors being D,, D, They may be represented
thus:

3. ‘%‘ﬂ. i
g4 5§ 3
@n /4] w
SIS Quevererenn A, 4, A,
Stars b ...oevnene. B, B,
Stars ¢ ..vvveriiane Cy C,.
- Stars deevienrines D, D,

~ Buppose the probable error of every individual obser-
vation to be &, It is now required to find the combina-
tion proper for determining the amplitude of the first
section of the are,

81, Besides the direct measures of the first section,
there are indivect mensures produced by subtracting the
measures of the second section from the measures of the

A, E
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whole arc. All the possible measures of the first section
are therefore the following ;

. 4,-4,
L B - B} Direet.

OL 4, A= (4, 4)
Iv. 4, - 4,-(C,-C)
V. D,—D -(d,~4)
V. D,-D,-(C-0C)]

- Indirect,

But of these, IIT is a mere reproduction of I: and of
the four measures I, IV, V, VI, it is easily seen that one
may be formed from the three others; and tho retention of
all would introduce indeterminate solutions. The following
may be retained, as substantially different;

4,-4,........ wessees With combination-weight v,
B~ B,.ccocviirnnnnnn tosrreetiereisrresenisaanes vossesll)
A= A= Cb G erviiininiiieiniiiciisenseressessans &,
Dy D~ C+C,...uunn, seesutrnssnnnsessrntanne v Y.

These are entangled mensures, inasmuch as 4,, C, C,,
appear in different measures.

82. The actual error of their mean will be

v+w+w+J

- ~(v+2)d 4+vA 4 @A g'_-'WB yFwB 4 (2 +Y) Oy~(w+y ),QZ".'/D y+yD,
vhwizty '
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The independent fallible quantities are now separated ;
3
and, by Article 52, remarking that (p.e. of A,)’m%, and

go for the others, we find

p.e. of result)"
¢

(v+a:)’1-+v*-1-+w'1+w'1+w’31- +(m+y)’§f+(w+y)‘g-+y’ ‘%+y" 2«1'2

_ ¢ a a b
N Wtw+aty) '

Making this minimum with regard to v, w,x, 3, as in

Article 69,

{

1. 1
(%’*‘:19 cz'4-1,"l== iiiii [ AR LE R LN R R RN

&

[ZR AT IAN TR YT RNY)

w b‘ +w E“: sEPENRETEI IS

(v +2) -1-+w1+(as+y) 1+(w+y) lea

—

(+3) 4 @ra), +yd+y; =

From which
4a® + 2a0 4 4ad C

= "Ba+0c+6d

_ b, 4ab+ 8o + 3bd

w=g0=—g 6ci6d ©
2ac — 2ad a
8a+6c+6d

Rad 4 3¢d
Y™ %at0+6d O

E2
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It is remarkable here that in some cases @ may be
negative, indieating that advantago will be gained by sub-
tracting that multiple of ineasure fromn the others,

If a=b=¢=d, and D=aC, the combination-weights
become

we
2:

Y

D
g w—O, yﬂ"i.

83. If we thought fit to roject the combination
Aa — A‘ b 0“*‘ Gg,

there would be no entanglement ; and it would easily be
found, by Article 70, that the combinativn-weights ought

to be proportional to a, b, éf_ff__ ; and the theoretical weight

of the result

T & (2 + 3+ e f"d)

In like manner, for the second section of the are, the
measures to be used are

A,-4,, C,~-C, D,-D -DB.+B;
and the theoretical weight of result

:’(2+2+2bbf2d)

84. Now if we qombined these two sections to form
the whole are, and inferred the probable error of the whole
from the probable errors of the sections by the rule of
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Article 44, we should obtain an erroneous result. For, the
observations on which the determinations of value of the
two sections are founded are not independent ; both contain
the observations 4,, B,, B,, C,, C,, D,, D,; and they are
therefore entangled results,

The correct result for the whole will be obtiined by
an investigation exactly similar to that for each part.
There is the direct measure by the « stars, with error
4,~ 4,; the direct measure by the d stars, with error
Dy~ D,; and the indirect measure obtained by adding
the result of the b stars to the result of the ¢ atars, with
error B, ~ B, 4 C;— €, The theorctical weight of the
result will be found to be

AT

If the number of observations at the intermediate sta-
tion is very small, (as if a is small, b and ¢ =0, d large,)
the theorctical weight of the value of each seetion will be
small, while that of the entire are may be great.

This instance is well adapted to give the reader a clear
idea of the characteristic difference between actual error
and probable error. So far as actual error is concerned,
if we add the measure of one section with its actual error,
to the measure of the other section with its actual crror,
we cntirely (and correetly) destroy so much of the actual
orror as depends on the observations at the intermediate
station. But the probable error (see Articlo 8) is a mea-
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gsure of uncertainty ; and if, without looking carefully in
each case to the origin of the uncertsinty, we simply add
together the two separate measures charged with their
respective uncertainties, we obtain for the whole arc a
sum with an apparently large uncertainty which is very
incorrect.

83. If the observations at the three stations are to be
combined in one connected system; it will be best to use
each batch of stars separately, giving to each resulting
amplitude its proper weight as deduced from that batch
only. For the batches B, C, D, the operation is perfectly
clear; for the batch 4, the principles of Articles 75,
76, 79, must be used, which here give a very simple
result, |

86. It is scarcely necessary to delay longer on the
subject of entangled measures, The caution required, and
which in all eases suffices, is :~—to commence the investi-
gations by the use not of probable but of actual errors; to
collect all the coefficients of each actual error, and to
separate them from the cocfficients of every other error;
and when the formul® are in a state fit for the introduc.
tion of probable errors, to investigate, by a process special
to the case under consideration, the magnitudes of the
combination-weights which will produce the minimum
probable error in the result. |
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§ 13.  Treatment of numerous eguations applying to

several unknown quantities: introduction of the term
“ mimmuwin squares.”

87. The origin of equations of this class has been
explained in Article 07, It lLas there been seen that,
putting «, y, &e.,, for the corrections to orbital elements,
&e. which it is the object of the problem to discover,
(the number of which elements we shall for clearness
suppose to be three, though the investigation will evi-
dently apply in the same form to any number of su-h
corrections,) every equation will have the form

az -+ by + cz= f,

where f' is the difference between a quantity computed
theoretically from assumed elements and a quantity ob-
served, and is therefore subject to the casual error of
ubservation. 1f the last terms of the equations, as given
immediately by obscrvation, have not the same probable
error, we shall suppose that the equations are multiplicd
by proper factors (see Article 35), so that in every ease
the probable error of the Iast teym f is made = ¢; e beiny
an arbitrary number, for which sometimes it is very con-
venient to substitute the abstract value 1. We shall use
the letters a, b, ¢, £, and others which are to be introduced,
without subscripts, in their general sense; but for tho
separate equations we shall affix the subscripts 1, 2, &,
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48. The number of equations being greater than
three, and it being requisite to reduce the final equations
to three in number ; the only method which suggests itself,
for giving every one of the fundamentsl equations a proper
share in the formation of those three equations, is :—first
to multiply the equations by a series of factors &, k,, &e,,
and to adopt their sum as onc fundamental equation;
secondly, to multiply thom by another series ¢, I, &e.;
thirdly, to multiply them by another series m,, m,, &o
Thus having the series of fundamental equations

ez +by+ecz=f,
a+ by +eg=f,
&e.
we form the threc series
kaz+hbytkes=4f,
ko +kby +keg=kf,
&e,
lag+ldy+ice=1f,
za“sm + ansy + z:c'az =1fy
&e.
man 4 mby+ mos =mf,

mag + mby + meog=m,f,
&e.

oo
u
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of which the sums are
@ % (ka) +y. 5 (k) + 2. = (e) = ZSF),
w. Z(le)+y . Z()+ 2.3 (le) =S (lf),
&. % (ma) +y. Z(mb)+2 ., Z (me) = 3, (mf),

These are our tlree final eguations for determining
x, 3, and z: and our problem now is, to ascertain the law
of formation of the factors &, I, m, which will give values
of @, ¥, #, for each of which the prebable error may be
minimum,

89. ILet us confine our attention, fur a short time,
to the investigution of the value of z. The process of
sulving the last three equations will consist, in fact, in
finding different factors wherewith the equations may be
multiplied, such that, when the multiplied equations are
added together, y and # may Le eliminated, and the terms
depending on @ and f muy alone remain. But, remarking
how the three equations are composed from the original
equations, this multiplication of equations formed by sums
of multiples of the original equations is in fact a collection
of sums of other multiples of tho original equations. Let
n be the general letter for the multipliers (foimed by
this double process) of the original equations; then the
final process for solution of the equations is thus ex-
hibited ;

2 % 3 (na) =2 (nf);
3 (nd)=0;

2 (ne) =0;



Th ADVANTAQGEOUS COMBINATION OF MEASURES,

which can be solved with an infinity of different values.
of n,

90. From those,

(na) of.l + na,+ &e,’

from which the actuul error of =

n,
TR a'""@"&"é: % actual error of £,

n,
o " a;.“ gl 'a?r&"é‘ x actual error of f,

4 &e.,

and, as the probable error of cach of the quantities £, £,
&c. = ¢, the square of probable crror of

7' + n,* 4 &e.
(na +nga 4 &)

2 (n)
X
The numbers n,, n,, &e. are so to be chosen that the
square of probable error of 2 shall be minimum ; and
thercfore its variation produced by simultancous stall
variations in each of them shall be 6; .

If we put &n,, 8n,, &c. for such small variations, we
must have, by the formulee of ordinary differentiation,
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0= 0% +080,+&e. _ adn, +aln, +&e,
n' +n' + &, na, + na, +&e,

— %

3 (n%) ' 3 (na)

of Qs ndn, +-n,0n +&e. - adn, + aln, 4 &e. e [1].

But the variations &»,, 8n,, &c., are not independent
here, as were the corresponding variations in Articles 68
and 69 ; for they are affected by the antecedent conditions
Z (nb) =0, 2 (nc) = 0; from which we derive

0=bdn + bdn,+8&c ..coccunnnnnn.. [2),
0=¢0n, + ¢ 8n, + &c. +oovvveennn... (30,

These three equations must hold simultancously for
the values of #,, n,, &c., which we require,

91. It would perhaps be a troublesome matter to ex-
tract analytically from these equations the values of n,, n,,
&e. We are Lowever able to shew synthetically that a
certain form given to the numbers n,, n, &ec. satisfies
the conditions. Letk, =a,, b, =a,, &c.; l,=b, | =b, &c.;
m,=by, m,=0b,, &e.; so that the final cquations of Article
88 take the form

z.%(@")+y.2 (ab) +2.5 (ac) = (af) ....... [4],
2.5 (ab) + y. 3 (B) +2.3 (be) =2 (B )erennn. [5],
@2 (ac) + y.2 (be) +2.2(¢") =X (¢f) ....... [0].

Then the values of =, Y #, which are deduced from
these equations, possess the properties required.
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92, For, suppose that we obtuin the value of « by
multiplying the first of these by p, the second by, the
third by r, and taking their sum, the coefficients of y and 2
buing inade to vanish. Then

€% p.2 (@) 4q. E(ad) +7.5 (a0) |
=p. 3@ +q.SEN+r. S0 |
p. (@) +q. Z 0N +r.2(be) =0;
p.Z{ae)+q. () +r. % () =0;

which are the same as
@ x Zla (pa+t gb +r¢)} = [ F(pa+gb +1o)} ... [T],
Z{h(pa+t gb4re)l =0 iiiiiiiiiiiiiiiinnnnn [8],
2{e(Ppa+t gb+7re)} =0iiriiiiinnn vevnieiinnnans [9}.

Comparing these equations with those of Article 89, »
is now replaced by pa+ ¢b+re. Therefore
% (0) =2 {(pa+gb+10) (po+gb+ro)}
=p. 2% (@n)+q.2%b(pa+gb+ ro)} +r.Z{e(pat+gh+re)l
The last two quantities vanish, by virtue of equations [8]
and [9]; and therefore = (a’) =p .3 (an). Substituting

this in the first denominator of equation [1], the equation
becomes

(n,~ pa,) on,+ (v, — pa,) &y + &e.=0,
or (gb, + ve,) 8n, + (gb, + 7e,) 8n, 4 &e.=0;

{ q (0,8n,+ bdn, + &c.)}

| = 0.veeee e [10];
o 7 (6,50, 68n, + &e.) 0]
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which is, under the new assumptions, the equivalent of
equation (1), and on the truth of which will depend the
validity of the new assumptions, Now the equation [10]
is frue; for ity left hand consists of two parts, of which
one =0 by equation [2], and the other =0 by equation
[8]. Consequently, the equations [1], [2], [3], are simul-
taneously satisfied: and therefore the assumption of
Article 91 gives the values of x, whose probable error is
minimun. |

93. If we investigate, by a similar method, the as-
sumption which will give for  the value whose probable
error is minimum, we have only to remark that the equa-
tions [4], [3], [6], are symmetrical with respeet to «, ¥,
and z, and therefore when treated -for y in the same
manner as for z, they will exhibit the same result for y
as for x; that is, the probable error of y, as determined
from their solution, is minimum, In the same manner,
the probable error of 2, as determined from the solution
of the same equations, treated in the same manner, is
minimun.

The problem, therefore, of determining values of .,
¥, 2, to satisfy, with the smallest probable error of &, y,
aud 2z, the numerous equations

axeg-bytez=f,

agp+dy+eg=,,
&e.
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is completely solved by solution of the equations

z.Z(@)+y.2@b)+ 2. % (ac) = Z (af),
&3 (ah)+y . () + . 5 (Be) = S (),
©.2(ac)+y.2(be) +2.2 (") =2 (cf).

94, Suppose that, instead of proposing to ourselves
the condition that the probable errors of the deduced
values of @, 4, 2, shall be minimum, we had proposed this
condition ; that the sum of the squares of the errors re-
maiuing after correction for the deduced values of a, ¥,
and z, or

. (s +ly+ez—f)

shall be minimum, On differentiating each equation
- with respect to &, and taking their sum, we should have
obtained

Zla.(ae+dytoz—f)}=0;
and similarly for y and #

Z{b.(az+by+es—F)) =0,

Zfe. oz +bytes=f)]=0;

the very same equations as those found above. In conse-
quence of this property of the equations, of giving such
values of 2, ¥, and ¢, that the sum of squares of errors
remaining after their application %hall be minimum, the
method is very frequently called * the method of minimum
squares,” This term is very unfortunate; it has fre.
quently led investigators to suppose thai the subject of

[y~ e g e ST
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the minimum is the sum of squares of discordances as first
presonted ; whereas it ought to be the sum of squares of
discordances, when so multiplied as to have the same
probable error,

95. It is easy to see that the same principles apply,
the same remarks hold, and the same result is obtained,
when the number of unknown elements, instead of being
restricted to three, is any whatever. The rule is universal ;
multiply every equation by such a factor that the pro-
bable error of the right-hand term will be the same for
all; multiply every altered equation by its coefficient
of one unknown quantity, and take the sum for a new
equation; the same for the second unknown quantity ;
and so on for every unknown quantity; and thus a num-
ber of equations will be found equal to the gumber of
unknown quantities,

96. In order to exhibit the probable error of 2 thus
determined, wo may proceed by a purely algebraical pro-
cess, It will however socon be found that it leads to
results of intolerable complexity. We would recommend
the reader to introduce numbers as soon as possible for
every symbol except f (that quantity from whose error
all errors spring). In the following explanation, however,
of the succession of steps, the reader will ensily see to
what extent he can advantageously retain the symbols,

It is first necessary to find the factors of the equations
[4], [5]), [6), of Article 91, or the last equations of Article
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93, which will climinate y and z. Thoy are easily found
tu be,

For equation [4], 2.0 x 5.8 — (2, )",

For equation [3], X .acx % . be—5 ,ab x 3.4

For equation [0], 5. abxZ. 0~ .ae x S. 1

There is no difficulty in finding the fuctors when the
number of unknown quantitics exceeds three; but the

trouble is so great that it will always be best to use
numbers,

Applying these, we obtain
@=P.3(of) + Q.5 (4f) + B. 3 (of),

where P, ), R, are numbers, but af, b, of, are for the
prescnt retained in the symbolieal form.,

Now if we examine the form in wlich the individual
quantities £, f;, &c. enter into this expression, and if we
collect together all the multiples of cach individual quan-
tity, we shall find

@ = (Pa,+ Qb, + Re)) f, + (Pa,+ @b, + Be,) £, + &e.

We have here a number of independent fallible quan-
tities, to which the formula of Article 52 will properly
apply. Remarking that the prohable error of each of the
quantities £, f,, &c. is supposed o = ¢, we obtain

e

(p._e Of—q) = (P a, + an + R"x '+ (P a, -+ Qb& + RC',)* + &e.

=5, (fa+ Qb+ Re)%;
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which may be exhibited in symbols of great complexity,
but which it will be very far easier to evaluate in numbers
Ly an cntirely numerical process, |

Tho operation for finding the probable errors of y and
¢ would be exactly similar. -

87. The relaxation of the rules for determining the
most, advantageous valucs of the factors of the equations,
which in reference to tho treatment of simple measuros is
explained in Article 73, is admissible also in the treatment
of equations applying to several unknown quantities, and
for the same theoretical reason. By taking advantage of
this relaxation, the lnbour may sometimes be materially
diminished. In actual applications, the numbers d,, a,, &c.
b,, &e., usually consist .of troublesome decimals. In pracs
tice, all desirable accuracy will be secured for the result,
by striking off, in the factors only, all the latter decimals,
leaving only one or two significant figures, The use of
different factors will produce different results, but not
necessarily more inaccurate results; we have no means of
cortainly knowing which arc the best; wo only know that,
if we ropeat the process in an infinity of instances, the fac-
tors corresponding accurately to minimum will furnish us
with results whose errors are, on the whole, a little smaller
than those originating from other factors.
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§ 14, Instances of the formation of equations applying to
several unknown quantities,

88, It will perhaps be instructive to shew how equa-
tions, such as those treated above, arise. For this purpose,
wo will take two instances; one of very simple and one of
very complicated character.

89. Instance 1. It is required to determine the most
probable values of the personal equations between a
number of transit observers 4, B, C, D, &c.; where the
observers have been brought into comparison in many
combinations, or perhaps in every possible combination
but never more than two at a time,

Use the symbol (ab) to denote the number of compari-
sons between A and B, and A4 -~ B for the symbolical
value of the personal equation between 4 and B, (4B)
for its numerical value deduced from the mean of com-
parisons, And supposc that the probable error of each
single comparison is ¢. Then the probable error of (4B)

is «-/_(%5 . Therefore when we have formed the equation
A-B=(4B)

in which the last term is liable to tho probable error

J(%b_)' » We must, in conformity with the recommendation

in Article 87, multiply the equation by 4/(ab), aud then

- -

;
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its probablo error will be e, Thus we find, for the dif-

forent comparisons, the following equations, all liable to the
same probable error ¢

V(ab). 4 —lab). B=y(ab). (4B),
yiac). A — yiao). O=y(ac). (4C),
&e.
y(be) . B~ 4f(fc) . O=y(be). (BC),
&e,,
and these equations are exactly such as those in Article

88, though in an imperfect form. The determining equa-

tions must therefore be formed by the rule of Article 9.
Thus we find ;—

The first cquation is to be formed by the sum of the
following,

(ad) . 4 —(ab), B =+ (ab). (41),
(ac) . 4 — (ac). C ==+ (ac). (40),
&e,

The sccond equation is to be formed by the sum of
the following,

(¢8) . B — (ab). A = — (ab}. (AB),
(¢} . B — (be) . C' = + (be) . (BO),
&o,
¥ 2
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- Thus we obtain the simple rule i—

Form each equation for companson of two observers by
taking the mean of all their comparisons,

Multiply each such equation by its number of compari-
gons, This is, in fact, the same as if the sum of all the

individual comparisons of those two observers had been
taken,

In the various multiplied equations which contain 4;
make the coefficicnt of A4 in every equation positive (by
changing all the signs of the equation where necessary),
and then add all fogether to form a determining equation.

In the various multiplied equations which contain B,
iricluding, if necessary, one from the last-mentioned series ;
make the coefficient of B in every equation positive (by
changing signs if necessary), and add all together to form
a determining equation,

In the various multiplied equations which contain C,
including, if necessary, one from each of the last two series: ;
make tho coefficient of C in every equation positive (by
changing signs if necessary), and add all together to form
& determining equation,

And so through all the observers.

It will be found that one of the determining equations
may be produced by a combination . of all the other de- -
termining equations; and therefore it is ‘necessary to
assume a value for one of the quantities, 4, or B, or

C" &C. s

"
&
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100. Instanco 2. Tna uet (not necessarily a simple
chain) of geodetic triangles; one or more sides have been
actually measured, or so determined Ly immediate refor
enco to measured bascs that they may be considered as
measured; in some of the triangles, threo angles have
been mensured, in others only two; at some stations, all
the angles round the cirelo have been observed, at others
not all; at some stations, astronomical azimuths have been
observed: it is required to lay down the rules for de-
termination of the positions of the different stations,

101. It is first necessary to determine the value of
probablo error in each of the observations. And this is
not to be done by a simple rule, because the observa-
tions are not all alike. For instance, the horizontal angle
hetween two signals is liable to emor from (1) error of
instrument, (2) error of pointing to one signal, (3) error
of pointing to the other signal; and when each probable
error is ascertained, the probable ctror of horizontal angle
between signals is easily formed. But for the azimuth
of & given signal, the sources of error are, (1) err of
instrument, (2) error of pointing to the signal, (3) error
of pointing in the divection of the meridian ; and the pro-
bable error of this last may be very different from the
others, The linear meusures will require a peculiar esti-
mate of probable error.,,

~ All must, however, antecedent 4o all other treatment,
be 8o found that the probable error of every measuro, of
whatever kind, can be specified,
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102, The next step in this (and in all other compli-
cated cases) will be, to assume that every co-ordinate of
station which we are seeking, i8 approximately known,
and numerically expressed. Thus, if the triangulation is
so small in scale that its area may be supposed o plane,
we may assume, for the two rectangular co-ordinates of
every point, numerical values, each subjeet to a small
correction (which corrections it is the object of the whole
investigation to ascertain), If the triangulation is so large
in scale that the spheroidal form of the earth must be
regarded, we may assume, for the astronomical latitude
and longitude of every point, numerical valnes, each sub-
ject to a small correction,

1038. With these numerical values and symbolical cor.
rections, every fact which has been the subject of measure
must be computed ; and the computation-result must con-
sist of two parts, one numerical, and the other multiply.
ing the symbolical corrections, Thus; suppose that the
arca is plane, and that the rectangular co-ordinates are

For 1st station, o, 8a,, b, +3&b,
¥or 2d station, a,-8a,, b,+384,
For 3d station, a,4 8¢, b,+ &b,
&e.
(where. @, a,, &ec, b, b, &e., are numerical, and &a,,
da,, &e., 8b,, 8b,, &c. are symbols only). Suppose that the

direction of @ is parallel to the meridian, Then theazimuth
of the second station as viewed from the first is
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O Gy Gy G
b, -,
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* where tan C’,=g!—:-£', and where all quantities are nu-
3

merical, except da,, 8!:‘, da,, 8b,. For convenience wo will
write this,
True azimuth of 2d station as seen from lat station
=C,+4,.6aq,~ 4 ,.5¢,+DB,,.8,-B, 8,
And in like manner,

True azimuth of 3d station as scen from 1st station
= C, +A,f,.8a3 — A:.a* da, + B,,. ob, -B,',.Sb,.

Now if the azimuth of the 2d station had been observed
at the 1st, and found =+, (subject to error of observation),
then the comparison of the first formula with this would
give the cquation

'Am ,3@, = Am '&‘x +Bm' Sba"" 'Bl.s . 8b|= h— 0:'
If, however, no azimuth from the meridian had been
observed, but only the horizontal angle 8,, between the

2d and 3d stations, which is the same as 4, —~v,, and is
subject to errors of observation ; then we should have

A, S0, ~ A, 80,4 (A,,— 4,) 84, + B, .8, B,,.8,
+ (BI.'! - B: a) ‘Sba
=0,,— C,+ C,
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The distance of the 2d station from the first
= y/{{t, = a)"+ (b, ~ )"}

e, ~a,
L O R

b,—b,
:J"'a a,)“+ (b }

which may Le writtcn

I"t + ‘Mm (aai -~ 8“1) + *N;.a (Sb, - 861)'

(8b, - 8b),

Now if the distanco from the first station to the second
had been measured, and found =X\, subject to error of
observation; then the comparison with this formula would
yive

M. 80, M, 8a,+ N, 8b,~ N, 8b,= A, I,

104, Each of these cquations contains, on the right
hand, & fallible quantity; the first contains «,, the second
contains @,,, the third contains A, The probable error
of each of these, as we have said in Article 101, must be
supposed known ; and then, the equation must be divided
by a divisor proportional to that probable error. This
.operation being effected, we shall have a series of equa-
tions whose probable errors are all equal; and the rule
of Article 93 can be applied ; and we shall havo a series
of determining equations equal in number to the number
of unknown quantities ; that is, to double the number of
stations,
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105. The reader who will well examine such an in-
stauce as this will be struck with the perfect generality
and great beauty of the theory, He will sce that, what~
over has been observed, and in whatever shape, ag a fuct
of observation, will enter with its proper weight into the
formation of the final determining equations, He may
exereise bis fancy in introducing different circumstances
Suppose, for instance, that a referring-signal has been
used. The correction of assumed azimuth of that refer-
ring-signal will be a new unknown quantity, Sometimes
it is combined only with obscrvations of signals, in which
case it produces one form of equation; sometimes it is
combined also with meridian-observations, in which case
it produccs another form of equation. In some batchos
of observatious, it may be necessary to use the theory of
“entangled measures” (see Articles 74 to 86) hefore the
probable errors can be.properly found. Whatever mea-
sure is made, & proper corresponding equation can be
formed, and the proper cautions accompunying it will soon
present themsclves,

106. It may occur to the reader as o difficulty, that
the quantities concerned arc not homogencous ; the mea~
sure of @, for instance, being in angle, and that of A in
units of length. This, however, is only apparent. Any
measurc i8 expressed by means of ccrtain units, and its
probablo crror is expressed by the same units; and, when
wo divide each equation by a divisor proportional to its
probable error, we do in fact produce an equation of abs-
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tract numbers, whose probable ervor also is an abstract

number. The whole are then strictly comparable, in
whatever kinds of measure they have originated.

107. The solution of 50 numerous a series of equa-
tions is of course troublesome, It is, however, no moro
troublesome than the nature of the subject strictly ro-
quires, And it is to be considered that it gives to every
observation of every kind exactly the weight that is due
to it: that it leads to one distinet system of results, with-
out leaving any opening for uncertainty ; and that that
gystcm of results is the most probable,

§ 15. Treatment of Observations in which it is required

that the Errors of Observations rigorously satisfy
some assigned conditions,

108, In the cquations considered in Article 87, each
of which gave the effects of combining, with different fac-
tors, the unknown corrections of certain elements, in order
that observations might thereby be better represented —it
is to be remarked that there was no expectation that tho
result of combination of these corrcctions of clements
would exactly represent the observations, or that any exuct
relation could be assigned as existing dmong tho cor.
rections which were to be found; or betweon “the result of
applying those corrections;” and “cbscrvations”, |

109, But there are instances in which the nature of
the problem requires that, among the corrections which
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are to be found, a prescribed equation shall be rigorously
muintained, The nature and trecatment of these will best
be understood from examples,

110, Instance (1), In a geodetic triangle, olserva.
tions of the three angles are made, On comparing their
sam with the quantity 180°spherical excess, to which
that sum ought to be equal, it is found that the sum
requires the corroction 4. How ought that correction to
be divided among the three angles, their probable erors
of observation being known ?

111. Let I, E,, E; be the three corrections required,
tho probable errors of obscrvation being e,, ¢, ¢, Then
tho first consideration is,

E, is to be as small as possible,

The quantity J, here corresponds to the quantity
ax+ by tez—f
in Article 87; the latter being the residual difference

between an observed quantity and o quantity computed
from corrccted elements, which difference is to he made

“g3 small as possible,” The cquations are therefure to
be exhibited in the same form.
Hence we may state the equations thus :
£, =0, with probable crror e,,
15,=0, . €,

L
-}‘aﬂ(" IFERELEENEEENEEENENERL RN e.'
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If we stopped at this form, we could not obtain a valid
solution : the number of equations being tho same as the
number of unknown quantities, in which casc no solution
depending on probabilities ean be obtained,

112, Now we introduce the condition
B+ E, 4+ E, = A,

and use it to eliminato ono of the quantities, as E, Then
the equations become,

Iy, =0, with probable ervor e,

E’ao, LA LR RN R AL ER R P NN YT e"

A -E‘_Egzo, L R Y N Y N RS R T 630

Here we have three equations to determine two quan-
tities, and the process of Article 93 may be followed,

113, Dividing by the probable crrors, we have these
equations, in cach of which the probable error =1;

E_,
é

and therefore, by the process of Article 93, forming o
final- equation principally for E,, by multiplying each -
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equation here by its. coefficient of £, and adding the pro-
duets,
E, 4 E

€ e (e (eu =0.

Similarly, forming a final equation principally for E,,
by multiplying cach equation by its cocficient of E, and
adding the products,

E, 4 E _E

e " e g e,

Comparing these two equations, T 3+ We might

VAT,

at once infer from this that (%)" has the same value,

but it may be more satisfactory to solve the equations
completely. Eliminating E, from the first equation, by
the rolation just found,

' &1 A4y,
Bl W

or E {(e)+(e,)+(e)}~ A (e)f=0.

" (8 )'
lhercfore - I' -A- (e‘)“+ (3‘)"‘]' (e')i ’

whence, by the relation found,

(e,)’
@) + () + (o}

E=4
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and by subtracting their sum from A,

If.r' 3,:1 s e (e’* ? R
? (0,)°+ (e,) + (e)*
Hence, the corrections to be assigned to the different

angles ought to be proportional to the squares of their
ruspective probable errors,

114. Instance (2). From a theodolitc station, n sig.
nals can bo scen; the angles, botween each signal and the
next in azimuth, are independontly observed ; their sum,
which ougbt to be 3G(’, is 360° - B: how ought the cor-
rection 3 to be divided ?

115. The equations in this instance will be
E, =0, with probable error ¢,

1;?= 0, AR AR R I R R YN NN ] ea’

A 4
E“w 0’ PIRSFL RN A P GIN NNty e“l

Then, by the equation
E,+ B, 4 & + E, =B,
the last of the cquations is changed into
B E,—E, ~&o.~F,_, =0, with piobable error g, ;

and the equations are to be treated in the same manner as
in Instance (1); and o similar result is obtained ; namely,
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that the corrections to be assigned to the different
angles must be proportional to the squares of their re-
spective probable errors.

The next instance will be more complicated.

116. Instance (3). In the survey of a chain of tri-
angles, a hexagonal combination of the following kind
occurs, in which every angle is observed independently;
all are lisble to error; to find the correction which ought
to be made to each,

| ~ Let the angles be denoted by the simple numbers
let their corrcctions sought be [1], [2], &o, and their
probable errors of observation (1), (2), &o. .
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Then we have the equations,

[1]=0, with probable error (1,

21=0, v, (2);
< [18}=0, v (18

And now wo have to consider how many of these
unknown quantitics can be eliminated by virtue of the
geometrical relations,

117. Adding the angles at the central station, and
comparing the sum with 36¢°,
{1+ [2] + [3] + [4] + [5] + [6] =& known quantity 4.
Then in the six trianglcs,
[1]+{7]4[8]=a known quantity B,

214+ {974010] ovvvecrr v, ¢,
(3] + 114 [12] oo D,
(4] + (18] [14] voocecenrrinne, E,
(3] + [15] 4 [16] cvvvvveeeeeerennn, F,
(6] + [27] 4 [18] eeoerrereerrren. ¢,

When corrections satisfying these equations are ap-
plied, we shall have a set of six triongles, with angles
consistent in éach triangle; and which so adhero togethor
that they fill up 360" at the contral station ; nevertheless
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it might happen that, in calculating & from a, ¢ from b,
d from ¢, e from d, f from e, and «' from f, we should
find & value ¢’ differing from a. But it is necessary that
@' be found rigorously equal fo «¢. Tracing the calcu-
Jations through the several triangles, it is found that this
equation gives (with corrected angles),
sin? sin®  sinll sinl3d sinl§ sinl7
sin 8" 8inl10 " sinl2 "sinlé” sinl6 sinls 7
and, taking the logarithms, with the addition of symbols
for the corrections,
log.8in7 —log . sin 8 +log. sin 9 — log.sin 10 +log.sin11
~log.sin12+4 log.sin13—log .sin14 4 log .sin15—log.sin16
+ log.sin 17 —log.8in 18
4 cot 7 x [7] ~ cot 8 [8] + cot 9 x [9] - &e. ......
verers + 008 17 x [17]— cot 18 x [18]

We shall use the symbol L to donote the first part of
this expression, which is a known guantity.

Thus we have eight equations to be rigorously satis-
fied. By means of these, wo are to eliminate cight of the
quantities (1], [2], &e, and there will remain ten quan-~
tities to be determined by eighteen equations,

- 118, Snpposo for instance we decide to eliminate the
corrections [1], [2], &c, as far as [8]. We have

[2]=C-[9]-[10],

[8}=D-[11]~[12],
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[4] = B~ [13] - [14],
[5]= I~ {15] - [16],
| [6)= ¢~ [17]} - [18].
Substituting these in the first equation,
(1]=A~C~ D-LE-F-G
+[974 [10]4-[1 3]+ [12])+ [13]+{ 1]+t 3]410] +{17]+[18].
Then
[=B~[1}-18]
w—Ad4B+C+ D+ E+ F4 @
— [8]~[91-[10] - [11]~[12}-[18] - [14] ~[13]
- [16)-[17)-[18}.
Substituting this in the last equation of Article 117,
0=
LicotTx(—A+B+C+D+E+F+G)
ot 7 x {[8]+[9] +[10]+[11] + [12]+ [13] +[14]+ [13]
+ [16]+ [17] +[18}}
~ cot 8 x [8] 4 cot 9 x [9] —cot 10 x {10] +cot 11 x [11]
— ot 12 x [12] 4 cot 18 x [13] —cot 14 x [14)
4 eot 15 x [15]— cot 16 x [16] + cot 17 x [17]
— cot 18 x [18],
From this equation, [8] is found in terms of {9], [10],
&e. as far as [18]. And substituting it in the preceding
expression, {7] is found in terms of (9], {10}, &c. as far

as [18]. Thus all the corrections [1], (2],...[8], are ex-
pressed in terms of [9], [10]...[18).
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119. The primary equations of probabilities are,
[1] = 0 with probable crror (1),

[2]=0 .covrrieririniiniinnn, (2,
[18]=0 AR IR PR N NN XN RY ] 'Y (18),

Of these, the first eight will now be changed into the
following :

O+ [10} +...4[18]=-A+ C+ D+ E+F+ G,
with probable error (1),

[9]+[10] = C, et (2,
[11]+[12] =D, SRR 13
[18] +[14] = E, et (4),
[15] 4 [16] = F, e e ),
I714+[18] =6, e, G),

o @h

-
-

of [9], [10]...[18], known
. expressing [7] J {quantities

> -

rseries of multiples) { series of )
> =3

w

of [9], [10]...[18], KROWRL  } vosiscrcrrrnrnacnranens (S)

. expressing [8] ] lquantities

L

series of multiples) { series of ]
=

The remaining equations will retain their simple form,
9] =0, with prebable etror (9),
T10]=0) vevvnverrinersvnnes (10),

g2
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120, Each of these eighteen equations is then to
be divided by its probable error, and we thus obtain the
following equations, in each of which the probable exror

=}

o]  [10] +'[_1§]=__—-A+6'+I)+E+F’+G
YR N ¢ ) (1) ’
with probable error 1,
2) + & =’ O ]

and so through all the equations,

The equations so divided, having the same probable
error, are in a fit state for application of the miethod of
Article 93, The first of the final equations (principally
for [9]) will be formed by multiplying each equation by
the coetlicient of (9] in that equation, and adding the pro-
ducts; the second of the final equations (principally for
[101) will be formed by multiplying each equation by the
coefficicnt of [10] in that equation, and adding the pro-
ducts; and soon to (18], From the equations thus formed,
the values of [9], [10]...[18], are found ; and by substi-
tuting these in the formulee of Airticle 118, the values of
[1], [2])...[B] are found,

121. It is particularly to be observed that, although
in the changed equations of probubilities we eliminate
such quantities as [1], [2], &c, we do not eliminate their
corresponding probable errors (1), (2), &c., each of which
must he left in its place. This retention of the probable
error will be remarked in Instances (1) and (2),
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122, The complete solution is so troublesome that it
would searcely ever be used in praetice. Probably some

process like the fullowing would be employed, with suf-
ficieut accuracy :

Divide the error 4 by the process of Instunce (2), and
use the corrected angles in the process that follows,

Divide the errors B, (... @, by the process of Iustance

(1), and use the corrected angles in the process that fol.
lows,

Apply the last equation of Article 117, by a proecess
nearly similer to that for 4,

Repeat the process for dividing 4* (the discordunce at
the center produced by the angles as fust eorrected’,

Repeat the process for dividing B, C'...(". And
contiuue this operation as often as way be nceessary.




PART 1V,

OX MINED ERRORS OF DIFFERENT CLASSES, AND
CONSTANT ERRORS,

§ 16.  Consideration of the circumstances under which the
existence of JMized Errors of Different (lasses may
be recognized, aml investigation of their separute
vulwues,

123. WueN successive series of observations are
made, day after day, of the same measurable quantity,
which is cither invariable (as the angular distance Ve-
tween two components of a double star) or admits of being
reduced by ealeulation to an invariable quantity (as the
apparent angulur diameter of a planet); and when every
known instrumental correction has been applied (as for
zevo, for effect of temperature upon the secale, &e); still
it will sometimes be found that the result obtained on
one day differs from the result obtained on another day
by a larger quantity than could have been anticipated,
The idea then presents itself, that possibly there has been
on some one day, or on every day, some cause, special to
the day, which bhas produced a Constant Error in the
menasures of that day. It is our business now to considey
the evidence for, and the treatment of, such constant
error.
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124. The cxistence of a daily constant error, that is,
of an additional error which follows & different law from
the ardinary error, ought not to be lightly assumed.
When observations are made on only two or three days,
and the number of observations on each day is not ex-
tremely great, the mere fuct, of accordunce on each day and
discordance from day to day, is not sufficient to prove &
constant error. The existence of an accordance analogous
to & “run of luck” in ordinary chances is sufficiently pro-
bable. If this be accepted, os epplying to each day, the
whole of the observations on the different days must be
aggregated as one series, subject to the usual law of error.
More extensive expericnee, however, may give greater con-
fidence to the assumption of constant errors; and then the
treatment of which we proceed to speuk will properly

apply.

125. First, it ought, in general, to be established that
there is possibility of error, constant on one day but vary-
ing from day to day. Suppose, for instance, that the
distance of two near stars is observed with some double-
image instrament by the method of three equal distances,
alternately right and left. It does not appear that any
atmospherical or personal circumstance can produce & con-
stant error; and, unless we are driven to it by considerations
like those to be mentioned in Article 129, we must not
entertain it. But suppose, on tho other hand, that we have
measured the apparent diameter of Jupiter. It is evident
that both atmospheric and personal circumstances may
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sensibly alter the measure; and here we may admnit the
possibility of the error,

126. Now let us take the observations of cach day
separately, and, by the rules of Articles 60 and 61, investi-
gate from each separate day the probable error of a singlo
measure. We moy expect to find different values (the
mere paucity of observations will sufficiently explain the
difference); but as the individual observations on the dif-
ferent days either are equally good, or (as well as wo can
judge) bave such a difference of merit that we can approxi-
mately assign the proportion of their probable errors, we
can define tho value of probable error for observations of
standard quality as determined from the obscrvations of
each day; we must then combine these, with greater
weight for the deductions from the more numerous obser-
vations, and we shall have a final value of probable ervor
of each individual observation, not containing the effects
of Constant Error. From this we can, by the rule of
Article 53, infer the “Probable Error of Each Day’s
Result;” still not containing the effects of Constant Error,
The “Result of Each Day,” also not containing any cor-
rection for Constant Error, is given by the mean of doter-
minations for each day,

127, We must now attach to the numerical value of
“Result of Each Day” a symbol for “ Actual Ervor of
Result of Fach Day;” and take the mean of all these
compound guantities, numerical and symbolical, for all the
days; (the combination-weighta being proportional to the
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number of observations on each day, unless any modifying
cireumstance require u different proportion). This mean
may be regarded as “ Final Result.” The * Final Result®
is to be subtracted from the “ Result of Each Day;" the
remuinder is the “Discordance of Each Duy's Hesult.”
For ench day it consists of two parts; a number, and a
geries of multiples of ull the symbols for * Actual Error of
Resuls of Each Day.”

128. Now treat the Discordance (eonsisting of the
number accompanied with multiples of symbols) as being
itself an Error, and investigate the “ Mean Discordance
by the rule of Article 26 or 59; a value of “Mean Dis-
cordance” will thus be obtained, consisting of a number
accompanied with a scries of multiples of symbols of
“Actual Error.” Consider each day's “ Actual Error” as
an independent fallible quantity whose Probable Error is
that obtained in Article 126, and form the * Probable
Error of Mean Discordance” by the rule of Article 52,
Thus we have, for Mean Discordance, a formula consisting

of two parts, namely,
(1) A numerical value,

(2) A number expressing the probable error in the
determination of that numerical value,

129, And now it will rest entirely in the judgment of
the computer to determine whether the simple numerieal
value (1) just found, is to be adopted for Mean Discordance
or not, It is quite clear that, if (2) exceeds (1), there isno
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sufficient justification for the. assumption of a Discordance,
that is, of a Constant Error. 1f (2) is much less thun (1),
it appears equally clear that a Constant Error must be
assumed to exist, and (1) or any value near it may be
adapted for Mean Discordance, The Probable Discordance,
or Probable Constant Error, will be found by multiplying
this by 0-8433, as in Article 31,

130, The reader must not be startled at our referring
these decisions to his judgmnent, without material assiste
ance from the Caleulus. The Caleulus is, after all, a
mere tool by which the decisions of the mind are worked
out with accurdcy, but which must be directed by the
mind, In deciding on the admissibility of Constant Error,
after giving full weight to the considerations of Article 129,
it will still be impossible, and would be wrong, to exclude
the considerations of Article 125, and these cannot be
brought under algebraical or numerical rule.

131, These investigations suppose that the *“Dis-
cordance of Each Day’s Result” cannot, so far as we know
antecedently, be referred to any distinet assignable cause.
But if there should appear to be any such cause, as,
for instance, if we conccivo that the observations of one
person always give a greater measure than the observations
of another person, it will be easy to apply an investigation,
analogous to that just given. The ebservations of each
person should be separated from those of other persous and
collected together; from the colleeted group of each per-
son’s observations, a Mean Result and Probable Error of
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Mean Result for each person must be found ; and then the
reader must judge whether, in view of the amount of Pro-
bable Errors, a Porsonal Difference of Results is admissible
or required.  The investigation is simpler than the preeed-
ing, in this respect, that it arrives at a Simple Personal
Difference of Results, and not at a Mean Discordance,
And the result is simpler than the Iast, because it is & Con-
stant Correction to the results of one person, instead of an
uncertain correction liablo to the laws of clianee,

§ 17. Treatment of observations when the values of Pro-
bable Constant Error for different groups, and probable
error of observation of tndividual measures within each
group, are assumed as known,

132, When numerous and extensive series of observa-
tions have been made, as in Articles 1206, &c., sufficient to
determine the Probable Valuo of the so-ealled Constant
Error (which is in fact an Error varying from group to
group) and the ordinary probable error of an individual
observation in each group; suppese that there are made
oceasional observations, in limited groups, for which it is
desirable to define the rules of combination. We are not
justified, for each of these limifed groups, in assuming a
value for the Constant Errox, or Variable Error of the
" Second Class, applicable to that group; we mast treat it
as an uncertain quantity, and ascertain the combination-
weights, and the probable error and theorctical weight of
finnl result, under the effects of the errors of the two classes,
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by an operation analogous to those which are applied when
the errors are only of vne class,

*

133, In the first group of observations, let the actual
value of the error of second class be ,C'; in the sccond
group ,C; in the third group ,0, &e.; the probable value
of each being . And in the first group, let tho actual
values of the crrors of first class (or ordinary errors) for the
successive observations be B, \E, E_, &e.; for those in
the second group K, &, &c.; the probable value of cach
being e. And let the nuinber of observations in the sue-
eessive groups be u, n, &, Let thé combination factors
be z,, 2, 2o 805 £ £ o8 &0 2, o%a 3%y &o.; and
80 fur successive groups,

Then the actual errors of the separate measuros will be

O+ .E

s
L+ E,
LC+,B,
&e,
L+ E,
JL+.E,
O+ Ey
&e,
IO+ B,
&e.
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And the actual error of the fingl result, obtained by
combining the separate measures with the eombination-
weights above given, will be the fraction, whose nume-
rator is

(Izl + l£l+ lsﬁ+ &e') lc+ (izl +i’ﬂ + &c')ﬂo
+ (2, + 42, + &), C + &e,
+ (2 Byt Bt 2, B4 &)
+ (2B + 2y oI+ &)
+ (sﬁn ool + g oy + &e.) + &e,
and whose denominator is

(2, + 2, + 2+ &) + (2, + 2, + &) + (2, + 2, + &e) +&e.

134, The square of the probable error of the final
result, found in exactly the same way as in all preceds
ing cases, will be the fraction whose numerator is

(2t 2t &)t o'+ (2,4 2, + &) M (2,4 42,4 & )2 00+ &e,
+{(2)" 4 (2)"+ & e + (7, + (2,0 + &e ] *
+ {6 + (20" + &e.} 6" + e
and whose denominator is _
{(g, 4 5+ &e) + (2, + 2y + &o) + (2, + 2, + &) + &)1,

This is to be made minimum with respect to the variae
tion of each of the quafitities .z, .z, &e., 2, 2, &e,
o2y 2o & &e.  Differentiating with respect to each,
making each differential coefficient =0, and treating as
in former instances, we find successively, (putting 4 for
an indeterminate constant),
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First, = gy = 2, = e,
therefore, for each of these we may use the symbol 3,
Second, R NAE N LW
Myt gdt = 4,
fegt & ok 2.8 = 4,

&o,
from which we obtain

o i e
vopcte’

which is applicable to every observation in the first group ;

N
’z"y-n.o’-l-e"’

which is applicable to every observation in the second

group ; and so on through all the groups,

133, In the numerator of expression for tho square of
probable error of result, if for 2,, 2,, &c., we insert 2, and

so for other groups, it becomes

no gl E Qe+ . 2, 2t S

=A(n. 24 0. 24 &),

and the same substitution converts the denominator to
(n.z+n. ,zfl- &e)*;

and the square of probable error of result

.4
RIS ,z-r—&c.
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which with the values of ,2, ¢, &c. found above, becomes

1
N LA T A .
M. et ,n.o’+e’+&c°
1 1 1
OF (orobable siror of resulip =g T ot &
d+ a ¢+ “
* ¥ |

138, If, as in Article 181, we conceive that we can
fix upon some distinet cause of Coustant Error for one
group, all the others being assumed free from Constant
LError, and can ascertain with confidence the amount of
the Constant ; that group of results may then be reduced
by application of the Constant, For the determination
of the probable error of the result of the group so cor-
rected, it must be borne in mind that the determination
of the Constant is liuble to error, Let 4, B, C, D, &e.
to a terms, be the actual errors, and a, &, ¢, d, &c. the
probable errors of the means of various groups, 4 cor-
responding to that in which we suspect sufficient reason
for assuming a Constant Error, The actual error of de-
termination of Constant Error will be

.A-B"" C+ D 4 &e.
. 71

. and the probable error of determination of Constant Ervor

will be
V4ot 4 d 4+ &o
: ]
\/ {a o =) ____} .



112 CONCLUSION,

But the correeted result of that group will e Jiable to the
actual error

4 { B+ C+D+&c} B+ C4+ Dy &e,
wa—a j—...———--.——-- ——
-1 w=1

and its probable error will be

VE

In fact, by referring that result to the mean of other re-
sults, and so determining its correction, we entirely deprive
that result of any original value in the application of these
groups,

But if, on another oceasion, there were observations
made by the same person or under the same circumstances
as the obscrvations 4, then the determination of Constant

Error and of its probable error just found would be pro-
perly applicable,

These conclusions will be varied according to the
various assumptions made; the reader will have little dif-

ficulty in applying the theory of preceding Articles to any
of them,

'CONCLUSION,

137. In the practical applications of the Theory of
Errors of Observations and of the Combination of Obser-
vations which have fallen under our ndtice, the following
ave the principal sources of error and inconvenience,
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(1) In some instances, mensures have been combined
by a method of “minimum squares” without reference to
the value of probable error of each of the separate obser-
vations ; and an erroneous result has been deduced, The
computer, apparently, has had his attention engrossed by
“minimum squares” as the important result to be ob-
tained; whereas, in reality, the satisfying of the equations
for minimum squares produces s merely accidental coinci-
dence of results in certain eases (not in all) with those
leading to the “minimum probable error of final result,”
which is the legitimate object of search. .

(2) In some instances, entangled obscrvations have
been treated as if they were independent, and an erroneous
result has been inferred,

(3) In some instances, the labour of application of the
theory has been greatly and unnecessarily increased by the
use of numerical coefficients proceeding to several places
of decimals; when simple factors would have given results
possessing all desirable accuracy,

We beliove that, by avoiding these errors, and by
otherwiso conforming to the principles of this Treatise,
the Theory of the Combination of Observations may,
without great labour, be made & valuable aid in the com-
putation of Physical Measures,
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PRACTICAL VERIFICATION OF THE THEORETICAL LAW
FOR THE FREQUENCY OF ERRORS.

Wira the view of examining the practical accuracy of the

formula 4x ¢, & (we Article 34 and preceding Artioles)
for the frequenocy of the occurrence of Errors of Measure &c.
between the error-magnitudes @ and =+ 8z, I collected the
results (638 in number) of all the observations of the N.P.D.
of Polaris made at the Royal Observatory in the years 1869
to 1873, as reduced in each year to exhibit the mean N.P.D.
at the beginning of the year from every observation in the
year. In every separate year the difference hetween each of
these mean N.P.D. and the annual mean of all was taken.
From the large number of observations in each year, and from
the perfect certainty a3 to the elements of reduction from one
year to another, it was evident that there would be no appre-
ciable error in considering these * differences from the mean”
in ench year as identical with the ¢ differences from the mean”
of all which would bhave been obtained if all the results had
beon referred to one epoch of time and treated in one group.
I therefore extracted from the various groups all the “ differences
from the mean,” and arranged them in order of magnitude,
from the largest negative ¢ difference” - 2”35 to the largest
positive ¢ difference” + 3"-61. These may be econsidered as
veritable errors of observation. The sum of negative errors
was - 21588, and the sum of positive ervors + 21373 (the
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small discordance between them arising from the loss of figures
in the suecceoding decimal places), The mean error or
BT oy = 00755 ; from which, by the tablo
in Avticle 31, the Modulus was found to be 1"1973, and the
Probable Error 0“5711.

The errors were then divided into small groups, each group
extending over an error-range of 0"05; from 0”03 to 0”07,
0"08 to 0712, 013 to 0"'17, and so on, Loth in the positive
nnd in the negutive direction. But, as the frequency of errors
for the lurge values was very small, one group was extended
from — 238 to - 218, one from — 2”12 to — 1”98, one from
— 1797 to 1”73, one from ~ 1”72 to — 1":58, ene from + 158
to +1"72, one from +1773 to +1"97, one from +1"-08 to
+2"12, one from +2":13 to +2":38, one from + 239 to +3":58,

The only result extracted from these groups was, the number
of observations in each group: and this was considered as
representing the frequency through an error-range of 005,
corresponding in formuls to the magnitude of the central exror
of the group as the independent variable: thus the number of
errors between 0”°G3 and 0”67 was taken to represent the
frequency through an emrorsrange of 0705, which must cor-
respond in any mathomatical formula to the independent
varinble 0”'65. For those cases in which longer groups were
employed, the actual number of observations was redieed so
ng to make it justly comparable with the number of obser-
vations in other parts of the series of groups : thus in the group
. extending from — 2738 to 3”13, which extends over an errer-
range of 0”25, or five times the ordinary error-range, the
actual numboer of observations was divided by b to make it
comparable with the others, and the resulting quotient was
held to correspond to the error or independent variable 2”30,
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It soon hecame evident that there was no marked dis-
cordunce between the laws of distribution for positive and for
negutive values: and therefore the corresponding numbers
were added together, Then, in order to remove small irregu-
larities, the first number was added to the second, the second
to the third, &c., and then the fist sum was added to the
second, the second to the thind, &o,, the first sum of the second
order being held to correspond to the second original number;
aud 5o throughout. The extreme first and last were adopted
without change. The numbers thus formed are evidently, on
the whole, eight times as large as the original numbers, The
numbers thus produced were laid down in a graphical repro-
sentation, in which the abscissa was the magnitude of the
“difference,” or error of observation, and the ordinate was
the corresponding number for eight times the frequency. Then
a free curve was drawn by hand passing through the points
representing these numbers, And this terminated the re.
ference to the facts of observation, It appeared that, in the
band-drawn curve, the ordinate for error =0 might be taken
as 124,

For a similar exhibition of the results of theory, or of the
1)

numbers given by the formuln 4 x fi", where ¢= Modulus
= 11973, and where 4 evidently = 124, it was only necessary
to caleulate the expression,
oL
frequency =124 x /W
or

log. frequency = 30934217 — "(ﬁ‘;’f;%%? « (Error)!,

This caloulation was made for every value of Error 0-05,
0:10, 0:15, &e. to 1G5, and then for 1-75, 2-10, 2-30, 250,
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parison, the following diagram is prepared.

To exhibit more clearly to the eye the result of this com-
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through 0-°06 of mugnitude, multiplied by the factor 8 B

The ordinates of the dark points ropresent the observed frequency of errors, each corresponding to the error represented

in the abseissa below.
The continnous black curve was drawn freely by hand through the dark points.

The dotted carve represenis the formula of Article 24.
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Abscissn repregenting the magnitudes of errore,
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Tt is evident that the formula represents with all practicable
neouracy the observed Frequency of Errors, upon which all the
upplications of the Theory of Probabilities are founded : and

the validity of every investigation in thia Treatise is theroby
established,
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