Aalen’s Additive
Regression Model

Introduction

The dominating regression model in survival anal-
ysis is the proportional hazards model (or Cox
model). Although very useful, it is clear that the Cox
model cannot cover all relevant situations and that
alternatives are needed. There are a number of other
possible models, parametric and nonparametric ones.
A member of the latter group is the additive regres-
sion model suggested by Aalen [2, 3]. One reason for
seeking alternatives to the Cox model is that practi-
tioners applying this model may not fully understand
its complexities nor be able to check assumptions
like proportionality. There is undoubtedly a some-
what uncritical use of the Cox model in the medical
field. Clearly, other models may be no more easy to
use, but by trying different approaches, one may get
more insight into the data and develop a more crit-
ical attitude to the whole analysis. After all, there
is no reason to assume that hazards will always be
proportional.

In fact, experience tells one that effects are some-
times proportional, sometimes additive (see Addi-
tive Hazard Models; Additive Model), and often in
between. Even when proportionality is a reasonable
assumption, one often sees that the proportionality
coefficient decreases over time. In fact, this is to be
expected from frailty considerations; one basic con-
sequence of frailty theory is that relative risk will
often be expected to decrease over time. One advan-
tage of the additive regression model presented here
is that effects of covariates are allowed to vary freely
over time. In contrast, when applying Cox analysis
with standard packages, the normal approach will be
to let the coefficients be constant over time and devi-
ations from this may be difficult to incorporate. Thus,
a standard Cox analysis gives no information about
how the effects change over time and valuable infor-
mation may be lost. It may also occur that significant
effects may be masked. For instance, analyzing a set
of survival data, it was found that a covariate indicat-
ing the extent of spread of the cancer (“N-stage”) was
not significant in the Cox analysis, while an additive
model showed a clearly significant effect for the first
year, but with the effect disappearing later [3, Table I
and Figure 7(d)].

From a practical statistical point of view, it has
been asserted that additive effects may be more infor-
mative than proportional effects. A hazard ratio of
2, say, may not be of much interest if the underly-
ing basic hazard is very small. Then, the suggestion
of a substantial effect may be misleading, and the
real effect is better brought out by looking at the
difference between hazards, which is by an additive
approach.

The additive regression model generalizes the Nel-
son—Aalen estimator. For simplicity, assume that
one wants to compare two groups. One way of doing
this would be to make a Nelson—Aalen curve within
each group and then plot the difference between
the two curves. Now, this would be a fine pro-
cedure if the groups were defined by randomiza-
tion, say. Otherwise, one will have to introduce the
covariates, or confounders, which may explain the
difference and adjust for them. The question then
arises how to adjust the difference between two Nel-
son—Aalen curves, and the additive regression model
is an answer to this.

A weakness of the additive approach is that the
hazard rate is not naturally constrained to be positive.
This may have odd effects occasionally, especially
when predicting survival for individuals with extreme
covariates where negative hazard may arise; see [9].
However, this does not prevent the additive model
from being useful in most cases. As pointed out
in [18], there is one important case for which the
possibility of negative hazard rate is no problem,
namely, when modeling excess hazard (see Excess
Risk), for example, in cancer epidemiology. This
subject is discussed further below.

The Additive Model

As indicated by the word ‘“additive”, the model has
a linear structure. To be specific, assume that one
observes the possibly censored life times of a number
of individuals, the censoring times being assumed to
be stopping times in the martingale sense [1] (see
Counting Process Methods in Survival Analysis).
Let X;(t) denote the hazard rate of individual i, n the
number of individuals, and r the number of covariates
in the analysis. Consider the column vector A(¢) of
hazard rates A;(¢),i = 1, ..., n. The linear model is
given as follows:

A(t) = Y(D)a(r) ey
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where the n x (r + 1) matrix Y(¢) is constructed as
follows: If the ith individual is a member of the
risk set at time ¢, then the i th row of Y(¢) is the
vector Z'(t) = (1, Zi(t), Zi(1), ..., Zi(1))', where
Zj (), j=1,...,r are, possibly time-dependent,
covariate values. If the ith individual is not in the
risk set at time ¢, then the corresponding row of Y(¢)
contains only zeros. All sample paths of Y(¢) are
assumed to be left-continuous functions of ¢.

The vector () = (ag(t), a1(?), ..., a-(1)) con-
tains the important regression information: The first
element is a baseline function; while the remain-
ing elements, called regression functions, measure the
influence of the respective covariates. These functions
are allowed to vary freely over time.

When turning to estimation, we concentrate on the
cumulative regression functions defined by A;(7) =
fot aj(s)ds. Let A(t) be the column vector with
elements A;(¢),j =0,...,r. This is estimated by
an approach that is similar to that for ordinary linear
models [2, 3], resulting in the following estimator:

A*() =) X(TV )

T <t

Here T} < T, < - - - are the ordered event times, while
I; is a column vector consisting of zeros except for
a one in the place corresponding to the subject who
experiences an event at time 7j. The estimator is only
defined over the time interval, where Y(¢) has full
rank. The matrix X(¢) is a generalized inverse of Y(¢)
(see Matrix Algebra) and will ordinarily be defined
by the ordinary least squares inverse:

X(1) = [YO'YO]'Y(@) 3)

The components of A*(¢) are intended to be plotted
against time and to give information about effects of
covariates. Notice that the regression functions are the
derivatives of the cumulative functions, and so it is
the slopes of the plots that are informative. A decreas-
ing slope means a decreasing additive effect (but this
may not imply that the relative effect decreases).

The components of A*(#) converge asymptoti-
cally, under appropriate conditions, to normal pro-
cesses with independent increments. An estimator for
the covariance matrix of A*(z) is given by:

21 =Y X(THIP X1, )

Ty <t

where I,? is a diagonal matrix with the vector I as
diagonal.

The model may also be formulated in terms of
counting processes where the justification of the esti-
mator and its properties is more easily seen [6]. The
linear nature of the additive model fits very nicely
with the counting process apparatus of stochastic inte-
grals and so on. An extensive theory for the model
has been derived, including asymptotic theory, test
statistics, and martingale residuals. The latter ones
and other checking procedures developed for the Cox
model apply equally well to the additive approach
[4]. Various issues concerning the model and its gen-
eralizations have been dealt with in [9, 10, 12, 14,
15, 17].

A practical advice concerning the analysis may be
given: It is usually advantageous to center the covari-
ates (subtracting the mean) before analysis. Then, the
estimate of the cumulative baseline function, Af (),
will have a clear interpretation, namely, as the esti-
mated cumulative hazard of an “average” individual.

The Semiparametric Additive Risk Model

One practical problem with the additive model in
the above form is that all effects are nonparametric,
thus making the description of some covariate effects
unnecessarily complicated even when it is not needed.
McKeague and Sasieni [15] suggested a very useful
submodel of the additive model

A1) =Y(Oa) + W)y, &)

where the first component of the model, Y(#)a (), is
defined as above and the second component, W(#)y,
is defined similarly (W(z) is an n x ¢ dimensional
matrix), and y = (1, ..., ¥,) is a regression parame-
ter. The covariates of the model are thus partitioned in
those whose effects depend on time and those whose
effects are constant. Lin and Ying [13] considered a
special case of this model in which the nonparametric
part of the model only contains a baseline. Scheike
[17] suggested a procedure for testing if effects in
the semiparametric model depends significantly on
time, thus making a stepwise model reduction strat-
egy possible. The semiparametric model allows the
data analyst to reduce effects that are not time vary-
ing to a parametric form thus giving a much simpler
description to those effects.
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McKeague and Sasieni [15] derived explicit esti-
mators for A(¢) and y and their standard errors that
are simple to compute.

Example

As an example of the additive analysis, we will use
the (PBC) data on survival of 418 patients with pri-
mary biliary cirrhosis presented in [8]. The source
of our data set is the survival package of S-Plus/R.

The following covariates are included: age (in years),
log(albumin), bilirubin (dichotomized as 0 when
bilirubin is less than 3.25 mg/dl and 1 otherwise),
edema (dichotomized as O for no edema and 1 for
edema present now or before), and log(prothrombin
time). Figures 1 and 2 present cumulative regres-
sion functions for the covariates bilirubin and edema.
Pointwise 95% confidence intervals are also indi-
cated. The null hypothesis: «(s) =0 over a suit-
able interval, may be tested by the supremum test
of Scheike [17]. Here, it gives the values of 5.72

Cumulative regression function

Covariate: bilirubin

4 6 8

Survival (years)

Figure 1 Estimated cumulative regression function for covariate bilirubin
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Figure 2 Estimated cumulative regression function for covariate edema
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(p < 0.001) and 4.00 (p = 0.001) for bilirubin and
edema respectively. The plots may be interpreted as
follows: For bilirubin, one sees a strongly positive
slope, especially after 800 days, indicating a long-
term effect on survival. For edema, the slope of the
plot is largest to begin with. In fact, the plot soon
levels off, and so it is clear that the effect of this
covariate on survival is an initial effect that does not
last. This is also found by Fleming and Harrington
([8], p.- 191) by studying log(— log(survival)) plots,
but the present procedure is a simpler way of dis-
covering it, and it simultaneously adjusts for other
covariates.

We now illustrate, the use of the semiparamet-
ric model and show that the data can be further
summarized. In Aalen’s additive model with all
covariates (age, log(albumin), bilirubin, edema, and
log(protime)), a test for constant covariate effects [17]
gave the p value 0.88 for log(albumin). We, therefore,
reduced the model to the semiparametric model in
which log(albumin) had a constant effect, and other
effects were time varying. In this model, it was found
that age had a constant effect over time (p = 0.89).
Further, stepwise model reduction lead to a model
in which edema and log(protime) had time-varying
effects (with P-values for constant effects at 0.01 and
0.04, respectively), and the remaining covariates were
found to be well described by constant effects. Biliru-
bin had a constant effect of 0.143 (0.026), age 0.002
(0.001), and log(albumin) —0.263 (0.098). Note, that

the cumulative regression effect of bilirubin shown
in Figure 1 is well approximated by a line with slope
0.143.

Relative Survival Rate

There is an alternative useful representation of the
results of the above analysis [19]. Consider a binary
covariate with values 0 and 1, and let A;‘. (t) be its
cumulative regression function. Instead of plotting
this, one could rather plot R*(r) = exp(—A7(1)) ver-
sus ¢. This will be an estimate of the ratio between the
survival curves, namely, the one with covariate value
1 divided by the one with covariate value 0, while
the other covariates are kept constant. The quantity
R*(¢) is similar to what in epidemiology is termed a
relative survival rate (see Excess Mortality).

The relative survival rates have been computed
for the covariates bilirubin and edema in the example
and presented in Figures 3 and 4. One sees that the
relative survival declines to about 35% for bilirubin
and a little above 60% for edema.

Excess Hazard Models

When studying the survival of cancer patients, one
is interested in modeling the excess mortality, which
is the mortality that remains when one subtracts the
expected mortality (which is derived from ordinary
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Figure 3 Estimated relative survival rate for covariate bilirubin
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Figure 4 Estimated relative survival rate for covariate edema

life tables). It is this excess hazard that is supposed
to be the cause-specific hazard related to the disease
in question. Following up work of Andersen and
Vath [7], Zahl [18] has extended the additive model
to the excess hazards framework; see also [20]. Such
excess hazards may well be negative and Zahl has
shown that the additive model may give a better fit
than the proportional hazards model.

Further Developments

The additive risk model, including the semiparametric
version, has certain robustness properties that have
been described along with robust standard errors
in [17].

Estimating transition probabilities in Markov
chains are of great interest in many practical
applications. The additive model is suitable when
one wants to adjust the transition probabilities for
covariates [5]. An application of the additive model to
adjusting for censoring in a more general multistage
framework is given by Satten and Datta [16].

Software

An S-plus program, called Addreg, for making
the cumulative regression plots is available on the
web page www.med.uio.no/imb/stat/addreg/.
Programs developed by T. Scheike are available on

the web page: www.biostat.ku.dk/~ts/. Also,
a program is available in Stata; see [11]. Finally, the
survival package in S-plus contains a routine called
aareg, which can make the plots described here.
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Aalen-Johansen
Estimator

The survival data situation may be described by the
Markov process with the two states “alive” and
“dead”. Splitting the state “dead” into two or more
states, corresponding to different causes of death,
a Markov model for competing risks is obtained.
Another Markov model of importance for biostatis-
tical research is the illness—death model with states
“healthy”, “diseased” and “dead”. For survival data,
the probability of a transition from state “alive”
to state “dead” may be estimated as one minus
the Kaplan-Meier estimator. The Kaplan—Meier
estimator may be generalized to nonhomogeneous
Markov processes with a finite number of states. Such
a generalization was considered by Aalen [1] for the
competing risks model and independently by Aalen
& Johansen [2] and Fleming [5, 6] for the general
case. In particular, the product—integral formulation
of Aalen & Johansen [2] shows how the estimator,
usually denoted the Aalen—Johansen estimator, can
be seen as a matrix version of the Kaplan—Meier
estimator.

Below, we first consider the competing risks
model and the Markov illness—death model for
a chronic disease. This gives illustrations of the
Aalen—Johansen estimator in two simple situations
where its elements take an explicit form. Then we
present the Aalen—Johansen estimator in general,
and show how it is obtained as the product—integral
of the Nelson-Aalen estimators for the cumulative
transition intensities. We also indicate briefly how
this may be used to study its statistical properties.
A detailed account is given in the monograph by
Andersen et al. [3, Section IV.4].

Competing Risks

Assume that we want to study the time to death and
cause of death in a homogeneous population. This
situation with competing causes of death may be
modeled by a Markov process with one transient state
0, corresponding to “alive”, and k absorbing states
corresponding to “dead by cause h”, h = 1,2, ..., k.
The transition intensity from state 0 to state 4 is
denoted ayy, (t) and describes the instantaneous risk of
dying from cause &, i.e. ag, () df is the probability

that an individual will die of cause 4 in the small
time interval [z, t + df), given that it is still alive just
prior to z. The oy (¢) are also termed cause-specific
hazard rate functions. For h = 1, 2, ..., k, we write
Pon (s, t) for the probability that an individual in state
0 (i.e. alive) at time s will be in state & (i.e. dead
from cause h) at a later time . These transition
probabilities are often termed cumulative incidence
functions. Finally, let Py(s, t) denote the probability
that an individual who is alive (i.e. in state 0) at time
s will still be alive at a later time ¢. Then

.k
Poo(s, 1) = GXP[—/ Za()h(u)du:| ,

h=1

and

Pon(s. 1) = f Pools, wagy@ du, (2

forh=1,2,...,k.

Assume that we have a sample of n individuals
from the population under study. Each individual is
followed from an entry time to death or censoring,
i.e. our observations may be subject to right censoring
and/or left truncation. We denote by 1, <, < ---
the times when deaths (of any cause) are observed,
and let dy,; be the number of individuals who die
from cause % (i.e. make a transition from state O to
state h) at ¢;. We also introduce dp; = le;:l doyj for
the number of deaths at ¢; due to any cause, and let
ro; be the number of individuals at risk (i.e. in state
0) just prior to time ¢;. Then the survival probability
(1) may be estimated by the Kaplan—Meier estimator:

N do;
P =[] (1—ﬂ>, 3)

ros
s<tj<t 0j

while the cumulative incidence function (2) may be
estimated by

A A doni
Po(s.) =Y Poo(s,rj_o( °’”>, “

s<t;<t Toj
forh =1,2,...,k. Note that (4) is obtained from (2)
by replacing Pyo(s, u) = Pyo(s, u—) by ﬁoo(s, u—)
and oo, (u)du by dAOh (u), the increment of the
Nelson—Aalen estimator A()h (1) = Zt/g donj/ro; for
the cumulative cause-specific hazard rate function
Aon() = [y con(w) du.
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The variance of the Kaplan—Meier estimator (3)
may in the usual way be estimated by Green-
wood’s formula (see Kaplan—-Meier Estimator),
while when there are no ties in the data,

var Py (s, t) = Z [ Poo s, l_/71)130h(f_,‘, H1?

s<t;<t

x (roj — 1)r0_j3doj

+ ) Pools, 1)’ [1 = 2Po (¢, 1)]

s<t;<t
x (roj — 1)r0_j3d0hj. 5

By breaking the ties at random, this variance estima-
tor may also be used when there are a small num-
ber of tied observations (see Tied Survival Times).
A more systematic treatment of variance estimation
in the presence of ties is discussed below.

To illustrate the above results, we consider data
on a cohort of uranium miners from the Colorado
Plateau (see, for example, [7]). The cohort consisted
of 3347 Caucasian male miners recruited between
1950 and 1960 and was traced for mortality outcomes
to December 31, 1982, by which time there were
258 lung cancer deaths and 1000 deaths from other
causes. Of these deaths, 145 and 442 occurred
between 40 and 60 years of age. The data were
collected to study the effects of radon exposure and
smoking on mortality, but for our illustrative purposes
we will study the (marginal) risk of death from
lung cancer disregarding the information on these
exposures.

We use the competing risks model with two
competing causes of death, corresponding to “dead
from lung cancer” (state 1) and “dead from other
causes” (state 2), and with age as the time-scale.
Figure 1 shows Py (40, 1) for 40 < < 60, i.e. the
estimated risk that a 40 years old miner will die from
lung cancer between 40 and ¢ years of age taking into
account the risk of death from other causes. Pointwise
95% (log-transformed) confidence intervals based on
the approximate normality of the Aalen—Johansen
estimator (cf. below) are also shown. For comparison,
Figure 1 also shows the estimated risk of lung cancer
death disregarding the competing causes of death
(computed as one minus the Kaplan—Meier estimator
treating deaths from other causes as censorings). This
estimate is sometimes interpreted as estimating the
probability of death due to lung cancer, assuming

0.08

0.06

0.04

0.02

0.0 -

40 45 50 55 60

Figure 1 Aalen—Johansen estimate for the risk of dying
from lung cancer taking into account the risk of death from

other causes ( - - - - - - ) with 95% log-transformed con-
fidence intervals ( - - - - - - - ). Risk estimate disregarding
other causes of death is also given (—— )

this to be the only possible cause of death. Such
an interpretation may be quite speculative, however;
see the discussion in [9, Chapter 7]. The estimate
disregarding competing risks is, of course, larger than
the estimate that takes the competing causes of death
into account; the difference between them increases
with age as the risk of dying from other causes
increases.

An Illness—-Death Model

To study the occurrence of a chronic disease as well
as death in a homogeneous population, we may adopt
the Markov illness—death model with states 0, 1 and
2 corresponding to “healthy”, “diseased” and “dead”,
respectively, and where no recovery (i.e. transition
from state 1 to state 0) is possible. The transition
intensities of the model are denoted wg(t), ag(t)
and «>(¢) and describe the instantaneous risks of
transitions between the states, i.e. ag;(¢)dt is the
probability that an individual who is healthy just
prior to time ¢ will get diseased in the small time
interval [, ¢ + dt), while ag,(¢) df and o, (¢) df are
the probabilities that an individual who is disease-
free, respectively diseased, just before time ¢, will
die in the small time interval [f,f + df). For an
individual who is healthy (i.e. in state 0) at time s, we
write Py (s, t) for the probability that he is diseased
(i.e. in state 1) at a later time ¢, while Pyy(s, ) is the
probability that he is still healthy (i.e. in state 0) at
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that time. Similarly, for an individual who is diseased
(i.e. in state 1) at time s, we let Py;(s, t) denote the
probability that he is still alive (i.e. in state 1) at time
t. Then we have

Poo(s, 1) = exp{—[ [oro1 (1) + o2 (u)] du} , (6)
Pii(s,t) = exp[—/ alz(u)du] , 7)

Poi(s, 1) :/ Poo(s, u)ogr (u) Pry(u, t) du. (®)

It is seen that (6) and (7) are of the same form as the
survival probability in the survival data situation.

Assume, then, that we have a sample of n individ-
uals from the population under study, and that each
individual is followed from an entry time to death
or censoring. Exact times of disease occurrences and
deaths are recorded, and we denote by #; <t < ---
the times of any observed event (disease occurrence
or death). Furthermore, we let dy;; be the number
of individuals who get diseased (i.e. make a transi-
tion from state O to state 1) at ¢;, while dypp; and
di2;j denote the numbers of disease-free, respectively
diseased, individuals who die at that time. Finally,
we introduce do; = doi; + dpz; for the total number
of transitions out of state 0, and let ro; and r;; be
the number of healthy (i.e. in state 0) and diseased
(i.e. in state 1) individuals, respectively, just prior to
time #;. Then (6) and (7) may be estimated by the
Kaplan—Meier estimators:

N 1 —dp;
Pots.0y =[] (—0’) ©)

s<tj<t Toj
A 1 —dy;
Puis,n=T] (—’) : (10)
s<t;<t 1j
while an estimator for (8) is
A . do1i\ ~
Py (s, 1) = Z Poo(s, tj_1) (%) P12, 1).
0j

s<t;<t

(1D

Note that (11) is obtained Afrom (8) by replacing
Poo(s, u) = Poo(s, u—) by Poo(s, u—), Pii(u,1) by
Py (u, t) and ooy (1) du by dAg; (u), the increment of
the Nelson—Aalen estimator Am (1) = Z[/St do1j/70)
for the cumulative disease intensity Agi(t) =
fot ao (1) du. The variance of the Kaplan—Meier

estimators (9) and (10) may be estimated by
Greenwood’s formula, while

var Poy (s, 1)

= Z ﬁOO(Sstjfl)z[ﬁll(tj’t) - ﬁm(lj,l)]z

s<tj<t
D 3dos
X (r0] )roj 01/

+ ) [Pools, tj—1) Pon(tj, D (roj — Drg; don;

s<t;<t

+ D [Por(s, i) Pri (g, P (rij — Dri v,

s<t;<t

(12)

when there are no ties in the data, or when a few ties
have been broken at random.

Before we illustrate these results, let us mention
that other interpretations of the states are possible.
In particular, in a study involving the treatment of
cancer, state 0 could correspond to “no response to
treatment”, state 1 to “response to treatment” and
state 2 to “relapse”. The probability Py;(s, ¢) is then
the probability of being in response function sug-
gested by Temkin [10] and sometimes used as an
outcome measure when studying the efficacy of can-
cer chemotherapy. Another interpretation arises in
the study of complications to a disease. Here, state
0 could correspond to “diseased with no complica-
tions”, state 1 to “diseased with complications” and
state 2 to “dead”. This interpretation of the states is
the one relevant for the following illustration.

The Steno Memorial Hospital in Greater Copen-
hagen has, since 1933, served as a diabetes spe-
cialist hospital for patients from the whole of Den-
mark. From the medical records at Steno we use for
illustration data on the 374 female patients referred
between 1933 and 1981 in whom the diagnosis
insulin-dependent diabetes mellitus was established
(usually by a general practitioner or another hospi-
tal) before the age of 10 years and between 1933
and 1972. The patients were followed from first con-
tact with Steno to death, emigration, or December 31,
1984. One of the major complications of insulin-
dependent diabetes is diabetic nephropathy, which is
a sign of kidney failure. Seventeen patients had dia-
betic nephropathy at first admission to Steno, while
76 developed this complication during the observa-
tion period. The seriousness of diabetic nephropathy
is reflected by the fact that among these 93 patients
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54 were observed to die, whereas only 30 of the 281
patients who did not develop diabetic nephropathy
died during the observation period.

We model the disease histories of the patients
by the Markov illness—death model with the states
0 and 1 corresponding to “alive without diabetic
nephropathy” and “alive with diabetic nephropathy”,
respectively, and with diabetes duration as time-scale.
Figure 2 shows ﬁm (5,1), i.e. the estimated proba-
bility of being alive with diabetic nephropathy for
patients without this complication five years after the
onset of the disease. Pointwise 95% (log-transformed)
confidence intervals based on the approximate nor-
mality of the Aalen—Johansen estimator (cf. below)
are also shown. It is seen that the probability of
being alive with diabetic nephropathy (among the
group of patients we consider) first increases up to
an estimated value of 17% after 23 years of diabetes
duration, and then declines due to the high mortality
among these patients.

It should be realized that Figure 2 is based on
two crude assumptions. First, calendar time trends in
mortality and incidence of diabetic nephropathy are
not taken into account. Secondly, by using a Markov
process to model the disease histories, the effect on
mortality of the duration of diabetic nephropathy has
been neglected. A point of less importance is that
the exact times of onset of diabetic nephropathy
were not known for nine of the 93 patients with
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0.05 1

0.0

0 10 20 30 40
Diabetes duration (years)

Figure 2 Aalen—Johansen estimate of the probability of
being alive with diabetic nephropathy for female patients
with diabetes onset before 10 years of age and with no
sign of diabetic nephropathy five years after the onset of
the disease ( ). Pointwise 95% log-transformed
confidence intervals are also shown (

this complication. For these nine patients, predicted
times for the occurrence of diabetic nephropathy were
used. A further discussion and analysis of the data are
given, e.g. by Borch-Johnsen et al. [4]. The data were
used for illustrative purposes by Andersen et al. [3]
who also describe how the nine predicted times have
been calculated.

The General Case

We then consider a general Markov process with a
finite number of states that may be used to model
the life histories of individuals from a homogeneous
population. Let Z = {0, 1, . . ., k} be the state space of
the Markov process, and denote by «,,(f) the transi-
tion intensity from state g € Z to state h € Z, g # h.
The transition intensities describe the instantaneous
risks of transitions between the states, so o (¢) df is
the probability that an individual who is in state g
just before time ¢ will make a transition to state 4 in
the small time interval [¢, ¢ + dr). Furthermore, for
all g, h € Z, we let Pg,(s,t) denote the probability
that an individual who is in state g at time s will be
in state & at a later time ¢, and we write P(s, ¢) for
the (k 4+ 1) x (k + 1) matrix of these transition prob-
abilities. Only for simple Markov processes, like the
competing risks and illness—death models considered
earlier, is it possible to give explicit expressions for
the P, (s, t) in terms of the transition intensities, cf.
(1), (2) and (6)—(8). We will see later, however, that
the transition probability matrix P(s, ¢) itself can be
expressed in terms of the (k + 1) x (k + 1) matrix
6 (1) of the transition intensities. First, we review the
Aalen—Johansen estimator for P(s, ) and discuss the
estimation of (co)variances.

Suppose that we have a sample of n individuals
from the population under study. The individuals
may be followed over different periods of time,
so our observations of their life histories may be
subject to left truncation and/or right censoring. A
crucial assumption, however, is that truncation and
censoring are independent so that the entry and
censoring times do not carry any information on the
risks of transitions between the states; cf. Andersen
et al. [3, Sections II1.2— 3] for a general discussion.
We assume that exact times for transitions between
the states are recorded, and denote by #; <t < ---
the times when transitions between any two states
are observed. Furthermore, for g,h € Z, g # h, we
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let dgjj be the number of individuals who experience
a transition from state g to state h at ¢;, and introduce
dgj = D _jz¢ denj for the number of transitions out of
state g at that time. Finally, we let r,; be the number
of individuals in state g just prior to time #;. Then,
the Aalen—Johansen estimator takes the form

P =[] a+é. (13)

s<tj<t

Here, I is the (k + 1) x (k 4 1) identity matrix, ) ; is
the (k + 1) x (k + 1) matrix with entry (g, h) equal
t0 Qgnj = dgnj/re; for g # h and entry (g, g) equal
t0 Qgej = —dgj/1,j, and the matrix product is taken
in the order of increasing f;s. For simple models
like the competing risks model and the illness—death
model considered earlier, we are able to give explicit
expressions for the elements of (13), cf. (3), (4), and
(9)—(11). In general, however, this is not possible.
But, in any case, a direct implementation of (13)
is simple using software that can handle matrix
multiplications (see Matrix Computations).

For any g, h,m,r € Z, the covariance between
ISgh (s, 1) and 13,,,, (s, t) may be estimated by

V[ Py (5, 1), P (5, 1)]

k
=D 30 Peils, tj-) P (s, 1) Pt 1)
i=0 I#i s<tj<t
— Pyt DL, (2, 1) — Py (1, 1)]

X (rij — Dr; > du;, (14)
provided that there are no ties in the data or that a
small number of tied observations have been broken
at random. Formulas (5) and (12) given earlier are
special cases of (14). As an alternative to (14), or to
handle ties in a systematic manner, one may use the
recursion formula:

&)T/[ﬁgh(s, lj), ﬁmr(ss t.i)]
k k
— C/OT/[ﬁgi(S,tj_l), ﬁml(sa tj—l)]
i=0 =0
k

X (8in + Qinj) (81 + Gurj) + Z Pyi(s. j-1)
i=0

X Pyi (s, 1j-1)COV(Ginj, Gir))s (15)

which describes how the estimated (co)variances are
updated at the times of the observed transitions. (The
estimates are constant between the f;s.) Here, §;,
is a Kronecker delta, while cov(d;nj, &) equals
Onrrij — dinj)ri; dirj when h #i,r #i; it equals
—(r,-j — d,-j)rifd,-,j when h =i 7+— r; and it equals
(rij — d,-j)rifdij when 4 = r = i. When there are no
ties in the data (14) and (15) give identical results.

Product-Integral Representation and
Relation to the Nelson—-Aalen Estimator

We now review how the transition probability
matrix may be derived from the transition intensities
agn(t) and describe how the Aalen—Johansen
estimator is related to the Nelson—Aalen estimators
for the cumulative transition intensities. To this
end, we introduce g (t) = —>_, () and
write 0(t) for the (k+ 1) x (k+ 1) matrix with
element (g, h) equal to oy, (t). Then, the transition
probability matrix P(s,#) is the unique solution
to the Kolmogorov forward differential equation
(0/01)P(s,t) = P(s,1)#(t) with initial condition
P(s, s) = L. By a general result for product—integrals
(Volterra’s equation), this solution takes the form
P(s,t) = T[(S,,][I + 6 (u) du]. Alternatively, if we
introduce the (k+ 1) x (k+ 1) matrix A(f) with
elements Ag,(t) = fot ag;(s) ds, we may write

P(s, 1) = (JST”[I+ dA®u)]. (16)

This product—integral representation of the transi-
tion probability matrix of a Markov process is not
restricted to the situation where transition intensi-
ties exist. In fact (16) assumes only the existence
of cumulative transition intensities A, (f), which do
not need to be absolutely continuous.

For g#h we may estimate the cumula-
tive transition intensity Ag,(#) by the Nel-
son—Aalen estimator Agy (1) = >t Qgnj» while
Age(t) = — Zh#g Agn(t) = Z[/St Qgej- Let A(r) =
< 0, be the (k + 1) x (k + 1) matrix with these
elements. By (16) it is reasonable to estimate the
transition probability matrix by P(s,t) =TT s+
dA(u)]. But since A(t) is a matrix of step func-
tions with a finite number of jumps on (s, ¢], this
is nothing but the Aalen—Johansen estimator (13).
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Thus, the Aalen—Johansen and Nelson—Aalen esti-
mators are related in exactly the same way as are
the transition probability matrix and the cumula-
tive transition intensities themselves. This suggests
that the Aalen—Johansen estimator is the canonical
nonparametric estimator for the matrix of transition
probabilities in a Markov process with a finite num-
ber of states. This statement is supported by the fact
that it may also be given a nonparametric maximum
likelihood interpretation [8].

Martingale Representation and Statistical
Properties

The product—integral formulation of the Aalen—Jo-
hansen estimator is useful for the study of its
statistical properties. We here indicate a few main
steps and refer to Andersen et al. [3, Section IV.4]
for a detailed account. For each g € Z we introduce
an indicator J,(t), which is one if there is at
least one individual in state g just before time ¢,
and zero otherwise. Furthermore, for all g,h €T
define AZh(t) = fot Jo(u)dAg,(u), and let A*(f) be
the (k+ 1) x (k+ 1) matrix with these elements.
Finally, we introduce P*(s, 1) = JU (; 4[1 4+ dA*(u)],
and note that this is almost the same as P(s, ) (cf.
(16)) when there is only a small probability that one
or more states will be empty at times u between
s and t. By a general result for product—integrals
(Duhamel’s equation), we may then write

P(s, HP* (s, 1) — T

:/ P(s, u—)d(A — A @)P*(s,u)". (17)
(s,1]

Here, A—A*isa (k +1) x (k 4+ 1) matrix of square
integrable martingales (see Nelson—-Aalen Estima-
tor). It follows that the right-hand side of (17) is a
matrix-valued stochastic integral, and therefore itself
a (k+ 1) x (k+ 1) matrix of mean zero square inte-
grable martingales. As a consequence of this

E[PGs, HP*(s, 1) '] =1,

so the Aalen—Johansen estimator is almost unbiased.
Furthermore, the predictable variation process of the

matrix-valued martingale (17) suggests an estimator
for the covariance matrix of ls(s, HP*(s, 1)~!, and
based on this the (co)variance estimators (14) and
(15) may be derived.

The martingale representation (17) is also key
to the study of the large sample properties of
the Aalen—Johansen estimator. For fixed s it
may be shown that f’(s, -), properly normalized,
converges weakly to a matrix-valued Gaussian
process. In particular, when also ¢ is given, the
Aalen—Johansen estimator (13) is asymptotically
multinormally distributed, a fact that was used earlier
in connection with the construction of confidence
intervals.
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Absolute Risk

Absolute risk is defined as the probability that a
disease-free individual will develop a given disease
over a specified time interval given current age and
individual risk factors, and in the presence of com-
peting risks. In mathematical terms, the absolute risk
of developing a disease of interest c; in the age inter-
val [a, a;) in the presence of competing risks ¢, for
a person of age a; and with initial covariates x is
given by

w(ay, ax;x) =

/uz hy(u;x) exp{—/u[hl(v;x) + hz(v;x)]dv} du
a 0

’

exp {—/m (A (v;x) + hz(v;X)]dv}
0
)]

where h(v;x) and h,(v;x) are, respectively, the
cause-specific hazards of developing ¢, and ¢, for an
individual with current age v and level x of covari-
ates X. In this formula, the numerator represents the
probability of developing the disease of interest c;
between ages a; and a, in the presence of competing
risks ¢, while the denominator represents the prob-
ability of being at risk at age a;, namely free of
c¢1 and c¢,. This formulation underscores the condi-
tional nature of absolute risk. However, a simpler
and equivalent formulation can be obtained as

a
ﬂ(al,az;x)=f hi(u;x)

aj

X exp {—/u[hl(v;x) +h2(v;x)]dv} du.
2

The hazard h;(u;x) can be expressed as a func-
tion of both the baseline hazard h(u) (i.e. the
hazard in subjects at baseline level of covariates
x) and the level x of covariates X. For instance,
if the covariates X have a multiplicative effect
on the hazard, then the multiplicative relationship
hi(u;x) = hy(u)rr(u;x) is obtained, where the mul-
tiplier rr(u;x) is the relative rate, also termed the
rate ratio, incidence density ratio, hazard ratio (the
term which is used throughout this article), instanta-
neous relative risk or, loosely, relative risk (see the

section “Related Quantities” below). If the covari-
ates X have an additive effect on the hazard, then
the additive relationship A (u;x) = hy(u) + d(u;x)
is obtained, where the additive term d(u;x) is the
rate difference or hazard difference or incidence den-
sity difference. Upon considering such expressions,
one can note that the value of absolute risk depends
on both the incidence of disease in the population
and the strength of the relationship between covari-
ates and disease. One consequence is that, while the
hazard ratio is often portable from one population to
another (portability being more questionable for the
rate difference), portability is not a property of abso-
lute risk, as the baseline incidence rate of disease may
vary widely among populations that are separated in
time and location or even among subgroups of popu-
lations, possibly because of differing genetic patterns
or differing exposure to unknown risk factors. Addi-
tionally, competing causes of death (competing risks)
may also have different patterns among different pop-
ulations which might also influence values of absolute
risk.

An important consideration is that covariates
X may be time-dependent (see Time-dependent
Covariate), in which case one must rely on a
more general formulation of (1) and (2) obtained
by (i) replacing initial covariate value x in
m(ay, a; x) by covariate history in interval [aj, a,),
namely {x(v),a; <v <a}, and (ii) by using
generalized versions of cause-specific hazards,
namely 4 (v; x(v)) and hy(v; x(v)), in the right-hand
terms of (1) and (2). Egs. (1) and (2) correspond
to the special case in which covariates X remain
constant throughout the interval. However, unless it is
possible to predict (in a probabilistic or deterministic
manner) the future variation of covariates over
time, estimation is based on (1) or (2) in their
original form, and relies on the initial covariate
value x and the assumption that it remains constant.
This approach is likely to underestimate absolute
risk if covariates the associated risks of which
can only increase with time are considered. Such
variables include, for instance, family history of
breast cancer and number of previous breast biopsies
for benign breast disease, which are used in
estimating the absolute risk of breast cancer from
the Breast Cancer Detection and Demonstration
Project [47] (see the section “Estimation From
Population-Based or Nested Case—Control Studies”
below).
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Range

Absolute risk is a probability and therefore lies
between O and 1 and is dimensionless. A value of
0, while theoretically possible, would correspond to
very special cases such as a purely genetic disease for
an individual not carrying the disease gene. A value
of 1 would be even more unusual and might again
correspond to a genetic disease with a penetrance of
1 for a gene carrier (but, even in this case, the value
should be less than 1 if competing risks cannot be
ignored).

Synonyms

The term absolute risk or absolute cause-specific
risk has been used by several authors, includ-
ing Dupont [35], Benichou & Gail [13, 14], Beni-
chou [11], and Langholz & Borgan [62]. However,
it is not a universally accepted term. Alternative
terms include risk [59], individualized risk [47], indi-
vidual risk [94], crude probability [28], crude inci-
dence [60], cumulative incidence [49], cumulative
incidence risk [75] and absolute incidence risk [76].
It should be noted that the definition of the two lat-
ter terms [75, 76] ignores the concept of competing
risks.

Interpretation and Usefulness

Absolute risk provides an individual measure of the
probability of disease occurrence, and can therefore
be useful in counselling. It is well suited to predicting
risk for an individual, unlike the hazard ratio or the
relative risk, which quantify the increase in the prob-
ability of disease occurrence relative to subjects at the
baseline level of risk factors, but do not quantify that
probability itself. Moreover, individualized absolute
risk estimates over specific time intervals are often
more useful than general statements about risk such
as “one in nine women will develop breast cancer
during her lifetime” [3].

Absolute risk has been used as a tool for individual
counseling in breast cancer. Indeed, a woman’s deci-
sion to embark on a program of intensive surveillance
with mammography or even to undergo prophylactic
mastectomy depends on her awareness of the medi-
cal options, on personal preferences, and on absolute
risk. A woman may have several risk factors and

an elevated hazard ratio, but if her absolute risk of
developing breast cancer over the next 10 years is
small, she may be reassured and she may be well
advised simply to embark on a program of surveil-
lance. Conversely, she may be very concerned about
her absolute risk over a longer time period, such as
30 years, and she may decide to undergo prophylactic
mastectomy if her absolute risk is very high [92]. An
assessment of absolute risk (and its range of uncer-
tainty) can help the woman understand the extent of
the risk and can therefore be useful in helping the
woman and her doctor define an acceptable medical
plan [17, 44, 47].

Absolute risk is also useful in designing trials of
interventions to prevent the occurrence of a disease
(see Prevention Trials) because the sample sizes
required for these studies (see Sample Size Deter-
mination for Clinical Trials) depend importantly on
the absolute risk of developing the disease during
the period of study [8]. Absolute risk has also been
used to define eligibility criteria in such studies. For
example, women were enrolled in a preventive trial
to decide whether the drug Tamoxifen can reduce the
risk of developing breast cancer. Because Tamox-
ifen is a potentially toxic drug and because it was
to be administered to a healthy population, it was
decided to restrict eligibility to women with some-
what elevated absolute risks of breast cancer. Only
women over age 59 and younger women whose abso-
lute risks were estimated to equal or exceed that of
a typical 60-year-old woman were eligible to partic-
ipate [8, 93].

Absolute risk can also be important in decisions
affecting public health. For example, in order to esti-
mate the absolute reduction in lung cancer incidence
that might result from measures to reduce exposure
to radon, one could categorize a general population
into subgroups based on age, sex, smoking status,
and current radon exposure levels, and then estimate
the absolute reduction in lung cancer incidence, in
the presence of competing risks, that would result
from lowering radon levels in each subgroup [13, 42].
Such an analysis would complement estimation of
population attributable risk and generalized impact
fractions.

The concept of absolute risk is also useful in a
clinical setting as a measure of the individualized
probability of an adverse event, such as a recur-
rence or death in diseased subjects. In that con-
text, absolute risk depends on prognostic factors of
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recurrence or death, rather than on factors influenc-
ing the risk of incident disease, and the time-scale
of interest is usually time from diagnosis or from
surgery rather than age. Absolute risk is a useful
tool to help define individual patient management
and, for instance, the absolute risk of recurrence in
the next three years might be an important element
in deciding whether to prescribe an aggressive and
potentially toxic treatment regimen. Such an appli-
cation is discussed in Benichou & Gail [13], who
consider the absolute risk of recurrence as a func-
tion of cell type and TN staging in patients with
resected lung cancer. Korn & Dorey [60] provide
other examples. Note that in such a setting, 1 minus
the absolute risk of recurrence differs from the stan-
dard disease-free survival probability (obtained from
the disease-free interval distribution or time to recur-
rence distribution) in that absolute risk takes into
account competing risks (deaths from other causes
than the disease under study). The difference is par-
ticularly large if competing death rates are high com-
pared to the disease-related adverse event rate, as
among older people.

Properties

Two main points need to be emphasized. First, as is
evident from its definition, absolute risk can only be
estimated in reference to a specified time interval.
One might be interested in short time spans (e.g. five
years), long time spans (e.g. 30 years), or even life-
time absolute risk. Of course, absolute risk increases
as the time span increases. In the clinical setting, the
time span might also vary with the context and the
severity of the disease.

Absolute risk can be strongly influenced by the
intensity of competing risks (typically competing
causes of death). Absolute risk varies inversely as
a function of death rates from other causes (denoted
by hy(v;x) in (1) and (2)). The same result in the
clinical setting may lead to differences between 1
minus the absolute risk and the disease-free sur-
vival probability (see the section “Interpretation and
Usefulness” above). Indeed, disease-free survival
applies best in the situation in which no compet-
ing causes (unrelated to the disease under study)
are acting to kill the patient before the occur-
rence of the disease or adverse event of inter-
est [13].

Estimability

It follows from its definition that absolute risk is
estimable if and only if cause-specific hazard rates
for the disease (or event) of interest ¢; as well as
death rates from competing causes c¢; are estimable
(see Estimation). Therefore, absolute risk is directly
estimable from cohort and case—cohort studies, but
case—control and cross-sectional studies have to be
complemented with follow-up data. Absolute risk
is estimable from nested case—control studies or
population-based case—control studies, in which
the cohort or the specified population from which
cases and controls are selected provides the necessary
complementary information on incidence rates. While
the theoretic possibility exists to complement cross-
sectional studies with follow-up data, such designs
do not seem to have been implemented.

An important feature of absolute risk is that it
takes into account competing risks, that is the pos-
sibility for an individual to die of an unrelated
disease before developing the disease (or disease-
related event) of interest. Absolute risk is identifiable
without any unverifiable competing risk assumptions,
such as the assumption that competing risks act
independently of the cause of interest because, as
Prentice et al. [86] emphasize, all functions of the
cause-specific hazards in (1) and (2) are estimable.
Chiang [28] used the term “crude” probability to
describe absolute risk, the probability of experiencing
c1 in the presence of competing risks c,. This quantity
is relevant for individual predictions and other appli-
cations discussed above rather than the underlying (or
“net” or “latent”) probability of experiencing ¢, in the
absence of competing risks. One minus the standard
disease-free survival represents that underlying prob-
ability of experiencing c; in the absence of competing
risks or under the (unverifiable) assumption of inde-
pendence between time to ¢; and time to ¢, (see [13,
27, 28, 43, 55, 60] and [86] for more details). The
only competing risk assumption needed to estimate
absolute risk concerns subjects lost to follow-up, who
are assumed to be randomly selected from those at
risk at the time of loss (independent noninformative
censoring) [13].

Sometimes, estimates of competing hazards &, are
based on external sources such as vital statistics.
For instance, Gail et al. [47] developed breast can-
cer absolute risk estimates and used mortality rates
from year 1979 for all causes except breast cancer
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(see also [11, 13, 14] and [60]). Although (1) and (2)
allow for competing risk hazards %, to depend on
covariate level x, it is frequently assumed that h;
does not depend on x. It could also be assumed that
h, depends on a set of covariates X’ that are different
from covariates X.

Estimation from Cohort Studies

Since all cause-specific hazards can be estimated
from cohort studies, it follows that absolute risk can
also be directly estimated from cohort studies. Esti-
mation of cause-specific hazards from cohort data is
a standard topic and details can be found in epidemi-
ology or survival analysis textbooks (see Survival
Analysis, Overview). However, the details of abso-
lute risk estimation have been worked out under
several models, and properties of absolute risk esti-
mates have been studied and compared. A review is
given here.

Covariate-free Estimates of Absolute Risk

The following methods are appropriate for a
homogeneous study population. They are also used
to provide estimates of composite absolute risk in
populations; namely, overall estimates of absolute
risk that do not distinguish among levels of covariates
X. Parametric and nonparametric estimators are
presented.

The “density method” [59, 76, 77] estimates
absolute risk 7 (a;, a;) by the cumulative (incidence)
risk given by 1 — exp{—A(a, ap)}, where A(ay, a;)
is the cumulative hazard for the event of interest,
cy. This formulation ignores competing risks. The
term x is omitted in A because an overall rather
than an exposure-specific absolute risk is considered.
This approach is parametric, as it relies on a
piecewise exponential distribution of time to ¢y,
which corresponds to a piecewise constant hazard
of developing c;. It ignores competing risks, and
therefore applies only in the absence of competing
risks, which constitutes an important limitation.

Benichou & Gail [13] developed direct parametric
estimators of absolute risk. They derived direct esti-
mators of 7 (a;, ay) based on (1) or (2) (still ignoring
covariates X) under exponential and piecewise expo-
nential models. Under the exponential assumption,
hazards & and h; are constant, while under the piece-
wise exponential assumption, hazards h;; and hy;

are piecewise constant. The expression for m(a;, ay)
under the piecewise exponential assumption is given
by [13]

w(ay, ax) = Zhli(h]i + ha) 7!

x [1 —exp{—(hi; + h2) A }JAG),  (3)

with A() = ]—Ij exp{—(hij + h2j)A;}. In (3), the
sum is taken over all time intervals included in
[a1,a2),i is the corresponding index, h;; (respec-
tively hy;) denotes the (constant) hazard for cause c;
(respectively ¢;) in interval i, A; is the width of inter-
val i, and the product in A(i) is taken over all time
intervals in [ay, ay), but the last one and indexed by
Jj. For simplicity, a; and a, are taken to correspond
to interval bounds.

Hazard rates hj; can easily be estimated by d; /1;,
where d); and t;, respectively, denote the observed
number of events and person-years in interval i.
Analogous estimates of competing hazards h,; are
given by d;/t;, where dy; denotes the observed
number of events in interval i. Corresponding point
estimates of m(aj, a;) can be obtained by replacing
hazards by their estimates in (3). Under the simple
exponential assumption, no separate intervals are
considered as the hazards h; and h, are considered
constant throughout time. Eq. (3) simplifies, as the
sum includes only one term and A(i) equals 1.
Estimates of hazards are obtained as for the piecewise
exponential model with a single interval.

Unlike estimates with the density method, direct
estimates of absolute risk with the exponential and
piecewise exponential assumptions do not ignore
competing risks, therefore providing estimates of the
absolute risk of developing c¢; in the presence of
competing risks. Moreover, as for the density method,
absolute risk can be estimated for a much longer
duration than the actual follow-up of individuals in
the study if age is the time scale (open cohort),
provided that there is no secular trend in age-specific
disease incidence.

Variance estimates of the absolute risk estimate
are obtained using the delta method [87], and cor-
responding confidence intervals follow. Details are
given in Benichou & Gail [13] for the exponen-
tial and piecewise exponential models. Properties of
point and variance estimators were studied by Beni-
chou & Gail [13] for the case of a closed cohort.
When the simple exponential model was correct,
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simulations showed no or very little bias in point
estimates of m(aj, ay), and analytic and simulation
results showed that substantial gains in efficiency
could be achieved with a simple exponential analysis.
Simulations showed that exponential and piecewise
exponential analyses yielded nearly nominal coverage
with better results under the log transformation of
m(ai, a;). When a Weibull model with a large shape
parameter of 2 was correct, simulations showed that
only the piecewise exponential analysis with a suffi-
cient number of intervals achieved little or no bias as
well as good coverage, while simpler models led to
serious bias and consequent failure of coverage.
The actuarial method or life table method [23,
33, 39, 41, 59] is an approach that shares similarities
with the piecewise exponential approach, although it
was derived from a less parametric viewpoint. As
with the piecewise exponential approach, time is split
into intervals (indexed by i in this presentation). In
each time interval i, the probability for an individual
at risk at the beginning of the interval to survive the
interval without developing c; is expressed as

=
S; = i’ 4)
n; — w;
(")

where n; denotes the number of subjects in the cohort
at the beginning of interval i, d; the number of events
occurring in interval i, and w; the number of subjects
either lost to follow-up or developing ¢, (competing
risks) in interval i. The actuarial approach is most
appropriate when grouped data are available and the
actual follow-up in each interval is not known. The
person-years of follow-up for subjects lost to follow-
up or developing c; in interval i is not used but, if one
assumes that the mean withdrawal time occurs at the
midpoint of the interval, then the denominator in (4)
can be regarded as the effective number of persons at
risk of developing the disease. That is, it represents
the number of disease-free persons that would be
expected to produce d; events if all persons could
be followed for the entire interval [38, 59, 66]. It can
be regarded as a refinement of the simple cumulative
method [59, 77] that ignores quantity w;. Absolute
risk is estimated by the cumulative (incidence) risk
which, from the formulation in (4), is obtained as

1=]]s: 5)

Since (5) ignores competing risks, the actuarial
method applies in the absence of competing risks,
which constitutes an important limitation, in an
analogous manner as the density method. Moreover,
as shown by several authors [33, 41], the actuarial
method results in biased estimates of risks even in the
unlikely and most favorable event (in terms of bias)
of all withdrawals occurring at the interval midpoints.
Alternative approaches based on different choices of
the quantity to subtract from n; (choices different
from w;/2) are not subject to less bias [38]. The
problem can be improved best by using narrower
intervals, but this is done at the expense of a larger
random error.

Unlike the piecewise exponential models, the
actuarial method does not require knowledge of
follow-up time in each interval but only knowledge
of the number at risk and the number of withdrawals.
The piecewise exponential approach could, however,
be used without knowledge of follow-up time by
assigning a follow-up time of half the interval width
to subjects who are lost to follow-up or who develop
c1 Or ¢p, in an analogous fashion as with the actuarial
method [13]. The piecewise exponential approach has
several advantages over the actuarial method. Bias is
less of a problem with it, it takes competing risks
into account, it applies naturally to open cohorts, and
it extends easily to regression-based estimators (see
below).

When individual follow-up times are all known, it
is possible to estimate absolute risk nonparametrically

as in Aalen [1], by substituting G(t;—), the right con-
tinuous Kaplan—-Meier estimate [56] of surviving
both ¢; and ¢, to time a; into the denorpinator of (1)

and by replacing the numerator by Y. G(t—)R~' (1),
where R(t) is a left continuous process defining the
number of subjects at risk just before . The summa-
tion is over distinct times in [ay, a>) at which events
c1 occur. The same estimator is discussed by Aalen
& Johansen [2], Kay & Schumacher [57], Gray [49],
Matthews [73], Keiding & Andersen [58], Benichou
& Gail [13], and Korn & Dorey [60].

While nonparametric point estimates are easy to
obtain, variance estimates are more complex and can
be obtained in several ways. Results in Aalen [1,
Theorem 2] can be used, as discussed in Benichou
& Gail [13] and Korn & Dorey [60]. Alternatively,
results in Aalen & Johansen [2, Theorem 4.3] can
be used, as discussed by Keiding & Andersen [58].
Confidence intervals can then be obtained, based on
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the log transformation, as suggested by Benichou &
Gail [13] and Keiding & Andersen [58], or based on
results of Dorey & Korn [34], who treat the lower and
upper limit differently, a procedure that they claim is
advantageous under heavy censoring.

Analytic and simulation results in Benichou &
Gail [13] under exponential survival distributions
show that the loss of efficiency of the nonparamet-
ric method is very small compared to a detailed
piecewise exponential model and that nearly nomi-
nal coverage is obtained with the log transformation
as for the piecewise exponential model. In simu-
lations under a Weibull model with a large shape
parameter of 2, very little bias and near nominal cov-
erage was observed as with the piecewise exponential
model [13]. These results suggest that properties of
the piecewise exponential model and the nonpara-
metric approach agree closely. The nonparametric
approach does not make any assumption on the form
of the hazards, but the piecewise constant assumption
can be made less stringent by increasing the number
of intervals. The piecewise exponential model has the
advantage of simplicity of computation, in that it uses
grouped data rather than individual data. Moreover,
it is well suited to open cohorts.

These approaches yield an overall composite abso-
lute risk and ignore covariates X. In order to obtain
estimates that depend on the level of covariates, the
cohort can be subdivided into subcohorts, and these
approaches applied to resulting subcohorts defined
by levels of X. This approach yields absolute risk
estimates with low precision, however, if the sub-
cohorts are small and have few events, as can hap-
pen if several risk factors have to be considered
jointly (see [47] for further discussion and illustra-
tion, and [7] and [82] for further illustration with the
actuarial method and breast cancer data). In order to
remedy this problem, a natural approach is to model
incidence rates i and h, through regression models.

Covariate Models

Regression-based parametric methods are a direct
extension of parametric methods for composite esti-
mates. For instance, Benichou & Gail [13] studied
exponential and piecewise exponential models. Under
the piecewise exponential model, it is assumed that
hazards for c¢; are products of a baseline hazard in
interval i and a function of the covariates, usually
(but not necessarily) expressed as exp(8Tx). Baseline

hazards as well as hazard ratio parameters 8 can be
jointly estimated by maximizing the piecewise expo-
nential likelihood. That likelihood is the same as that
obtained by assuming that the number of events in
each combination of time interval and level of X has
a Poisson distribution with mean given by the prod-
uct of the hazard times the corresponding number
of person-years, that latter number being assumed
constant [52, 61] (see Poisson Regression in Epi-
demiology). It is possible to include time by exposure
interactions in covariates X so that the proportional
hazard assumption is not required. Furthermore, haz-
ards for cause ¢, are estimated separately. They are
also assumed to be piecewise constant and can be
assumed to depend on the set of covariates X, a
different set X’ if needed, or on no covariates. A
point estimate of 7 (aj, ap;x) is obtained by replac-
ing quantities hy; in (3) by quantities &1; exp(8Tx),
where h,; denotes the baseline hazard in the latter
expression, and by plugging in maximum likelihood
estimates of the parameters. Corresponding parameter
estimates for competing hazards are estimated sepa-
rately and also plugged in (3). A similar approach
to point estimation can be taken for other paramet-
ric models such as a simple exponential model or a
Weibull model [13].

As described in Benichou & Gail [13], variance
estimates can be obtained by applying the delta
method [87] and relying on the observed informa-
tion matrix for all parametric models. Finite sample
properties were studied by Benichou & Gail [13]
through simulations based on a clinical trial of lung
cancer [48]. Simulations used 392 patients, an accrual
period of three years, and an additional follow-up
of two years. Time to ¢; was assumed to be expo-
nentially distributed and to depend on two covariates
forming six joint levels, while time to ¢, was assumed
to be exponential and not to depend on any covari-
ates. Point estimates had little bias with piecewise
exponential and exponential analyses. Variance esti-
mates were also little biased and coverage was nearly
nominal with all analyses except for the level of X
with the fewest patients (12 patients) in which vari-
ance estimates and corresponding coverage were too
small. Loss of efficiency could be appreciable when
a detailed piecewise exponential was used compared
to the simple exponential model.

Finally, a semiparametric estimator of abso-
lute risk can be obtained, as outlined in Beni-
chou & Gail [13]. The difference with the piecewise
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exponential approach is that the hazard for c¢; is
the product of an unspecified function of time (the
baseline hazard) times a function of the covariates
which is also usually of the form exp(8Tx) [31]. As
for the piecewise exponential model, X may include
time by exposure interaction and competing hazards
can be assumed to depend on covariates X or X’
or on no covariates (in the latter case, correspond-
ing survival is estimated nonparametrically using the
Kaplan—Meier product-limit estimator).

The expression for a semiparametric estimate of
absolute risk is given in Benichou & Gail [13,
formula (3.1)] and is a function of partial likeli-
hood estimates [32] of hazard ratio parameters S
and related Nelson—Aalen estimates of cumulative
baseline hazards [6]. From results in Tsiatis [95] and
Andersen & Gill [5] on the joint distribution of these
parameter estimates, Benichou & Gail [13] derived
an asymptotic variance estimator. No formal study of
its finite sample properties has been undertaken.

These regression methods yield estimates of abso-
lute risk with acceptable precision for several covari-
ates. Regression-based methods are therefore well
suited for individual prediction. Parametric or semi-
parametric approaches can be used. The piecewise
exponential estimator seems to provide a good com-
promise between bias and precision, while being easy
to implement both for open and closed cohorts.

Estimation from Population-based or
Nested Case—Control Studies

Case—control studies provide data on the distribu-
tions of exposure respectively in diseased subjects
(cases) and nondiseased subjects (controls) for the
disease under study. These data are used to estimate
hazard ratios or relative risks through the estima-
tion of odds ratios, but are not sufficient to estimate
exposure-specific incidence rates (the terms “hazard”
and “incidence rate” are used indiscriminately in the
remainder of the text) and absolute risks. In order to
do so, case—control data have to be complemented
by follow-up data. Either the cases and controls are
selected from a follow-up study (see Case—Control
Study, Nested) that provides either grouped data
or individual data with survival-type information, or
they are selected from a specified population in which
an effort is made to identify all incident cases diag-
nosed during a fixed time interval (see Case—Control

Study, Population-based) usually in a grouped form
(number of cases and number of persons by age
group). In both situations, full information on expo-
sure is obtained only for cases and controls, but the
complementary data provide information on compos-
ite incidence that can be combined with hazard ratio
estimates to obtain exposure-specific incidence rates,
as has long been recognized [29, 30, 68, 75, 76, 80].

The main estimation problem regards estimation
of exposure- and age-specific hazards or incidence
rates (age is the usual time scale in this context).
Absolute risk estimates are then obtained from (1)
or (2), and the delta-method [87] can be used to
obtain the variance of absolute risk estimates based
on the covariance matrix of incidence rate estimates.
Parametric methods based on the piecewise expo-
nential model (also termed the Poisson regression
model) and the logistic model have been derived
under a full likelihood approach, a pseudo-likelihood
approach, and a hybrid approach. That latter approach
will be described fully, because it has been used to
obtain absolute risk estimates in practice. The for-
mer two approaches will be reviewed more briefly,
because they have not yet been used to derive abso-
lute risk estimates and fewer results are available.
Finally, a semiparametric estimate of absolute risk
based on partial likelihood has been proposed for
nested case—control studies with time-matching of
cases and controls, and will also be reviewed.

Parametric Approaches

The hybrid approach has been proposed by Gail
et al. [47] as a multivariate extension of earlier work
by Miettinen [75]. It relies on the possibility of
estimating composite incidence rates hj; from the
population or follow-up data for each age group i or,
in a more general fashion, for each stratum i defined
by age and other factors observed in the follow-up
or population data such as sex and region. Under
a piecewise exponential assumption, the quantity
h}; is estimated by the ratio dy;/t; of the number
of incident cases of disease c¢; to the number of
person—years. Although information on exposure is
obtained on cases and controls only, and not on
the whole cohort or population, baseline incidence
rates hy; (for subjects at the baseline level of all
exposure factors considered) can be obtained through
the relationship [47, 75]:

hii = h};(1 — ARy), (6)
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where AR; is the attributable risk for disease c¢; in
age group i or, more generally stratum i, for all expo-
sure factors jointly, a quantity estimable from the
case—control data. Gail et al. [47] suggested using
the model-based approach of Bruzzi et al. [25], that
incorporates odds ratios from logistic regression,
for estimating attributable risk, and obtained a point
estimate for ;. Upon multiplying that estimate by
the corresponding odds ratio from logistic regres-
sion, they obtained an estimate of the incidence rate
for each joint age and exposure level. Finally, inci-
dence rates for competing risks can be obtained from
the follow-up or population data, provided that those
rates are assumed not to be influenced by the expo-
sure factors for c¢;. The latter assumption stems from
the fact that it would be impossible to estimate hazard
ratios for ¢, from case—control data for disease c¢;. In
fact, Gail et al. [47] used external data on national US
mortality rates to estimate /,; and obtained absolute
risk estimates from the piecewise exponential model
in formula (3).

Variance estimators are complex since incidence
rate estimates involve odds ratio parameters obtained
through logistic regression from the case—control
data and counts of incident cases from the follow-
up or population data. Estimators of variances and
covariances of age- and exposure-specific incidence
rates have been fully worked out by Benichou &
Gail [14] for simple random sampling, stratified
random sampling, frequency matching and individ-
ual matching in a simple setting. The approach relies
on an extension of the delta-method to implicitly
related random variables [12]. It takes into account
all sources of variability; namely, the variance of
hazard ratio estimates and of baseline incidence rate
estimates, as well as the covariance between the two.
Variance estimates of absolute risk estimates are then
obtained through the delta-method [87] and take into
account the variance of competing hazard estimates
unless they are estimated from external sources and
considered fixed, as in Gail et al. [47].

The hybrid approach can be regarded as relying on
two models; namely, the piecewise exponential model
and the logistic model (the conditional logistic model
for individual matching and the unconditional logistic
model for the three other ways of sampling controls).
The baseline incidence rates are obtained by combin-
ing follow-up (or population) data and case—control
data. Benichou & Gail [14] performed simulations
based on the Breast Cancer Detection Demonstration

Project (BCDDP) [9], a large follow-up study of
284780 women, from which about 3000 cases and
3000 controls were selected (case—control study
within a cohort or case—control study). They used a
sample size of 100000 women in each replication and
generated piecewise exponentially distributed times
to breast cancer occurrence by considering four age
groups and two exposure factors forming six levels. A
follow-up of five years was considered, and the possi-
bility of dying from other causes (piecewise constant
competing hazards not influenced by any covariates)
was taken into account. Incident cases and frequency-
matched controls were selected from the follow-up
data. They found a small upward bias in absolute risk
estimates due to the small upward bias incurred by
using odds ratios to estimate hazard ratios when the
rare disease assumption is violated in the context of
such a study. Complete variance estimates had very
little bias and yielded confidence intervals with near
nominal coverage. Coverage was improved with the
logit transform. Incomplete variance estimates that
took into account only the variance of hazard ratio
estimates from the case—control data were too small
for small values of absolute risk, because they ignored
the variances of baseline incidence rate estimates, and
too large for larger values of absolute risk, because
they ignored the negative covariances between hazard
ratio estimates and baseline incidence rate estimates.

The hybrid approach was applied to the esti-
mation of absolute risk of breast cancer from the
BCDDP data as a function of age and four risk fac-
tors [47]. Details regarding variance estimation can
be found in Benichou [11], who took into account
special subsampling of cases and controls. Indeed,
not all incident cases were used to estimate composite
hazards and not all selected cases and controls were
used to estimate hazard ratios. In order to implement
these results and estimate absolute risk for new sub-
jects, tables for point estimation were given by Gail
et al. [47]. Practical implementation has been greatly
facilitated by the development of the computer pro-
gram RISK [10] and of graphs [17] that yield point
estimates and confidence intervals of the absolute
risk of developing breast cancer. Absolute risk is a
widely used tool in individual counseling for breast
cancer [17].

A pseudo-likelihood approach and a full likeli-
hood approach have been proposed as alternatives
to the hybrid approach [15]. They also rely on the
piecewise exponential (or Poisson) model or logistic
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model, although other parametric models could be
used. They yield exposure-specific incidence rate
estimates, but have not been fully developed to
obtain absolute risk estimates, although this extension
would be straightforward. Indeed, it would consist
in (i) substituting in (1) or (2) age- and exposure-
specific hazard estimates for disease ¢; and compet-
ing hazard estimates in order to obtain point estimates
of absolute risk and (ii) using the delta-method [87]
to derive variance estimates.

The pseudo-likelihood approach was presented by
Benichou & Wacholder [15] in the context of a Pois-
son model (piecewise exponential model) and rests
on the following principles. A full likelihood for the
entire cohort or population could be written and max-
imized if information on exposure were available for
all subjects in the population or cohort rather than just
for the cases and controls. However, one can combine
follow-up or population information in the form of
number of events d; and person-years t; for each stra-
tum i with the observed distribution of exposure in
the case—control data to obtain estimates of number
of events dj;; and person-years f;; for joint stratum
level i and exposure level j. This is simply done
by multiplying quantities dj; (respectively #;) by the
observed proportion of cases (respectively controls)
at exposure level j in stratum i. The rare disease
assumption is used to obtain person-years from the
conditional distribution of exposure in controls only.
Substituting these estimated quantities, one obtains a
Poisson pseudo-likelihood which is then maximized
to obtain maximum pseudo-likelihood estimates of
incidence rate parameters (baseline incidence rates
and hazard ratios for a multiplicative model). Vari-
ance estimation relies on sandwich variance estima-
tors [64] which allow for taking into account the
additional component of variability incurred by the
use of estimates of quantities dy;; and ¢;;.

The full likelihood approach differs from the
pseudo-likelihood approach in that a full likeli-
hood is written as a function of the incidence
rate parameters to be estimated and a set of nui-
sance parameters for the conditional distribution
of exposure given the stratum in the population.
Rather than using the observed conditional distri-
butions in cases and controls as with the pseudo-
likelihood approach, the nuisance parameters are
estimated jointly with the incidence rate parameters
by maximization of the likelihood [15]. One obtains
fully efficient maximum-likelihood estimates (rather

than maximum pseudo-likelihood estimates) of all
parameters (incidence rate and nuisance parameters),
and variance estimates of the incidence rate param-
eters are obtained directly from the observed infor-
mation matrix. In the context of a Poisson model,
this approach is faced with the potential problem of
a large number of parameters if several risk factors
and stratum levels are considered. Even in the simple
example of Benichou & Wacholder [15], with nine
strata and eight exposure levels only, 60 nuisance
parameters had to be estimated. This problem can
be alleviated if one is willing to consider the logis-
tic rather than the Poisson model, as pointed out by
Greenland [50]. A prospective logistic model can be
applied to the case—control data and yields maxi-
mum likelihood estimates of hazard ratio parameters.
Furthermore, maximum likelihood estimates of base-
line incidence rates are obtained by adding to the
stratum parameter estimates from the logistic model
a term corresponding to the logarithm of the ratio
of sampling fractions among cases and controls in
the stratum [50, 85]. The covariance matrix of esti-
mates of baseline incidence rates and hazard ratios is
obtained as described in Prentice & Pyke [85].
Upon comparing the pseudo-likelihood, full
likelihood and hybrid approach on population-based
case-control data of bladder cancer [51], Benichou
& Wacholder [15] found that the hybrid approach
seemed to be less efficient for incidence rate
estimation than the other two approaches, which
were themselves equally efficient. This efficiency
loss might be due to the following conceptual
difference regarding estimation of baseline incidence
rates and hazard ratios among the three approaches.
With the maximum likelihood and pseudo-likelihood
approaches, these quantities are jointly estimated
and their negative correlations fully accounted for
in variance estimates. With the hybrid approach,
crude incidence rates and hazard ratios are estimated
separately and then combined to obtain stratum-
and exposure-specific incidence rates and, as a
consequence, negative correlations between estimates
of baseline incidence rates and hazard ratios are not as
strong, which results in larger variances [15]. Another
potential advantage of the full likelihood and pseudo-
likelihood approaches is that they directly estimate
hazard ratios rather than odds ratios. Furthermore,
if the Poisson (but not the logistic) model is used,
they can be applied to more general models of risk;
for example, models with an additive form using
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rate difference parameters rather than hazard ratio
parameters [15]. Finally, all three approaches require
that cases and controls be selected at random [67] and
that incident cases or at least a known proportion of
them be fully identified [15].

Semiparametric Approach

The three parametric approaches described above ap-
ply to situations in which controls are not individually
matched to cases. The hybrid approach can han-
dle special cases of individual matching [14] but not
time-matching, which characterizes nested case—con-
trol studies [24, 65, 71]. In that context, Langholz
& Borgan [62] developed a semiparametric approach
which can be regarded as an extension of the semi-
parametric approach for cohort studies described
above (see the section “Estimation from Cohort
Studies” above). The context is that of a nested
case—control study (case—control within a cohort), in
which cases develop from a cohort, and controls are
selected from subjects still at risk. Therefore, indi-
vidual follow-up times are needed and grouped data
are not sufficient.

Incidence rates are expressed as the product of
baseline incidence rates of an unspecified form times
a function of the covariates representing the haz-
ard ratio [31]. Hazard ratio parameter estimates are
obtained from maximizing the partial likelihood of
the Cox regression model for nested case—control
data [81, 84]. Absolute risk estimates are obtained
by combining partial likelihood hazard ratio param-
eter estimates and corresponding cumulative haz-
ard estimates. Langholz & Borgan [62] showed that
their proposed semiparametric estimate is asymp-
totically normal and provided a variance estimator
based on results in Aalen & Johansen [2], Ander-
sen et al. [6], and Borgan et al. [21]. Point estimates
and corresponding variance estimates are based on
simple sums or products of information from the
case—control study, the estimated hazard ratio param-
eters, and the number at risk at the failure times.
Competing risks can be taken into account provided
that it is assumed that occurrence of ¢, is not influ-
enced by the risk factors for occurrence of disease
cy. Finite sample properties of this approach have
not been studied. A direct comparison with para-
metric approaches presented above is not possible
because the semiparametric approach applies only to
time-matched data, which the parametric approaches

cannot handle. The semiparametric approach requires
observation of individual follow-up time of each sub-
ject in the original cohort in order to form the risk sets
for each failure time, and enable control selection. It
is therefore potentially less widely applicable than the
parametric approaches but makes no assumption on
the baseline hazard. Finally, it has the advantage over
the available parametric approaches of being able to
handle continuous covariates.

Special Problems
Case—Cohort and Cross-sectional Designs

In the case—cohort design, information on exposure
is gathered only in a subcohort of subjects randomly
selected from the original cohort and among subjects
who develop the disease [83]. It is therefore possi-
ble to estimate exposure-specific incidence rates and
absolute risk directly from case—cohort data. How-
ever, the details of absolute risk estimation have not
been worked out in the literature. Cross-sectional
studies would need to be complemented by follow-up
or population data in order to allow for incidence rate
and absolute risk estimation, but such designs do not
seem to have been implemented (see Case—Control
Study, Prevalent).

Two-stage Case—Control Studies

In two-phase case—control studies [22, 98, 99],
cases and controls are selected from a cohort or
a population, as in a case—control study within a
cohort or a population-based case—control study.
Furthermore, a nested subsample of cases and con-
trols is selected from original cases and controls
on which information is gathered on exposure fac-
tors which are more difficult to obtain, such as
X-ray data or genetic markers. Several parametric
approaches have been developed to allow for haz-
ard ratio and incidence rate estimation by an exten-
sion of the pseudo-likelihood approach for two-stage
case—control data [16], pseudo-conditional likelihood
methods [22, 90], and weighted likelihood meth-
ods [40, 54, 88, 89]. From incidence rate estimates
from these various methods, it would be easy to
obtain absolute risk estimates from (1) or (2).
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Continuous Risk Factors

Absolute risk can be expressed as a function of
both continuous and categorical risk factors. Model-
based estimation methods presented above for cohort
data (see the section “Estimation from Cohort Data”
above) accommodate both types of variables. For
case—control data however, the situation is different.
Among parametric approaches, the hybrid approach
yields point estimates that apply to both types of vari-
ables, but variance estimators have been developed
only for categorical covariates. The full likelihood
and pseudo-likelihood approach only apply to cate-
gorical covariates. The semiparametric approach is
more flexible, in that it fully allows for continuous
risk factors for point and variance estimation.

Time-dependent Risk Factors

Most estimation procedures presented above can
be adapted to take into account time-dependent
covariates. However, when absolute risk is used for
individual prediction, estimation of absolute risk over
time interval [a;, a;) is based on the initial value
of the covariates (i.e. the value at time a;) and
assumes that it stays constant over the whole interval,
unless it is possible to predict (in a probabilistic
or deterministic manner) the future variation of
covariates over time (see the opening text).

Secular Trend

An important feature of the estimation methods
described for cohort and case—control studies is that,
by combining hazard estimates from different age
intervals, absolute risk can be estimated for a much
longer age interval than the actual follow-up of
individuals in the study. To combine these hazard
estimates into a single estimate of absolute risk, one
must assume that there is no secular trend in disease
incidence [59, Chapter 6].

Misclassification of Exposure

Misclassification of exposure could affect the valid-
ity of absolute risk estimates, but this problem,
which has been studied for estimation of other mea-
sures (e.g. odds ratio, hazard ratio, and population
attributable risk; see Measurement Error in Epi-
demiologic Studies) has not been studied for absolute
risk estimation.

Use of Two Time Scales

In some applications, it may be important to consider
two time scales, such as time from entry in the cohort
(e.g. time from surgery, diagnosis, or first exposure)
and age. Korn & Dorey [60] give guidelines and
examples for that situation.

Selection of Risk Factors and Model
Misspecification

Selection of risk factors on which to base absolute
risk estimation is a difficult task. Complex multivari-
ate models containing many risk factors will usually
appear to describe the variation of risk in the data
used to fit the model better than simpler models.
Yet the simpler models often perform as well or bet-
ter in predicting risk in other populations [37]. This
is because complex models fit the statistical anoma-
lies of the given sample as well as the reproducible
features, whereas the simpler models tend to reflect
the reproducible features only. It might therefore be
preferable to choose factors for inclusion in the model
that have been previously demonstrated to be impor-
tant rather than to rely solely on the current data
sample to select factors for inclusion [44].

A related problem is model misspecification
which can lead to severe bias in absolute risk
estimates and has to be considered carefully. Model
misspecification can come from an inappropriate
selection of risk factors, but also from incorrectly
modeling the effect of included risk factors,
from selecting the wrong model for time to
event distribution, or from incorrectly assuming
proportional hazards. Benichou & Gail [13] illustrate
the potential severity of the problem in an example
which suggests that using unsaturated rather than
saturated models for covariate effects can lead to
a systematic error that is potentially larger than
random error (see Generalized Linear Model).

Validation

Given the potentially severe effects of model
misspecification on absolute risk estimation, it is
important to validate models used for absolute risk
estimation. For instance, from internal validation
results and two studies of external validation based
on independent cohorts [20, 94] (see Validation
Study), it appeared that the model developed by
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Gail et al. [47] to estimate absolute risk of breast
cancer from the BCDDP as a function of age
and four risk factors produces valid estimates of
absolute risk for women in regular screening as in the
BCDDP, but yields estimates that tend to be too high
when applied to unscreened or sporadically screened
populations [20, 44, 45, 94], as had been cautioned
in the initial paper [47].

Absolute Risk and Treatment Comparison

It might be useful to use absolute risk as a means
of testing for treatment effect, especially given the
availability of tests for comparing k treatment groups
based on absolute risk [49]. However, use of absolute
risk alone may be misleading. For example, if a can-
cer treatment increases s, but leaves s unaffected,
absolute risk will diminish in the treated group; yet
overall survival is reduced and c;-specific survival
is unchanged. Instead, one should compare overall
survival and estimates of the cause-specific survival
curves in the treated and untreated groups, as is com-
mon practice. If h, is not affected by treatment,
however, the change in absolute risk is a more real-
istic gauge of treatment benefit than a comparison
of c;-specific survival curves. If both 4, and h, are
affected, absolute risk gives useful descriptive infor-
mation for summarizing the burden of recurrence in
each group [13].

Overall Adjusted Absolute Risk

In order to obtain an overall measure of absolute risk
at the population level, one might combine individu-
alized estimates to obtain a direct adjusted value for
the entire population by summing estimated values
of absolute risk for a given level of the covariates
over the distribution of the covariates in the refer-
ence population [13]. This procedure would yield a
different estimate than that obtained by covariate-
free estimation of absolute risk from the same pop-
ulation (see the section “Estimation from Cohort
Studies” above). The adjusted procedure would be
analogous to the methods for direct adjustment of sur-
vival curves described by Murphy & Haywood [79],
Makuch [70], and Chang et al. [26], and the variance
estimation methods of Gail & Byar [46] could be
adapted.

Related Quantities
Attack Rate

In the investigation of a local outbreak of a comm-
unicable disease, a measure of interest is the absolute
risk of developing the disease for the duration of
the epidemic or the time during which primary cases
occur. In this situation, absolute risk is often called
an attack rate [59, 69].

Hazard Ratio and Relative Risk

As discussed above (see the section “Interpretation
and Usefulness”), the hazard ratio, also called the
relative rate, rate ratio, incidence density ratio, or
instantaneous relative risk, is a useful measure in
etiologic research that quantifies the strength of the
relationship between exposure and disease, while
absolute risk is more useful in individual prediction
as a measure of the actual probability of disease for a
given risk profile. Large hazard ratios may correspond
to small absolute risks if the disease is rare and
conversely.

Since incidence rates are a function of hazard
ratios in multiplicative models, absolute risk is also
a function of hazard ratios (and of baseline incidence
rates) in those models. Alternatively, additive models
can be used with the rate difference, also called
hazard difference or incidence density difference,
being the relevant parameter instead of the hazard
ratio to measure the effect of covariates.

The term “relative risk” is frequently used to
represent a hazard ratio or its estimator. Strictly
speaking, however, relative risk refers to the ratio
of absolute risks and not of incidence rates [59]. A
synonym is “risk ratio” [76].

Incidence Rate

Absolute risk is a direct function of incidence rates,
as is apparent from (1) and (2) that define abso-
lute risk. As was mentioned above (see the sections
“Estimability” and “Estimation” above), the problems
of absolute risk estimability and estimation essen-
tially reduce to those of incidence rate estimability
and estimation.
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Cumulative Risk and Cumulative Hazard

The relationships between absolute risk and cumula-
tive risk and hazard have been defined in the section
“Estimation from Cohort Studies” above.

Excess Risk

Excess risk [91], also called excess incidence [18,
69, 74], is defined as the difference between the
incidence rates in the exposed and the unexposed.
Like absolute risk, it takes into account the incidence
of the disease in the unexposed and the strength of
the association between exposure and disease. It can
be expressed as the product of the baseline inci-
dence rate times the hazard ratio minus 1, and it
quantifies the difference in incidence that can be
attributed to exposure at the individual level. Other
terms have been used to denote this quantity; namely,
“Berkson’s simple difference” [96], “incidence den-
sity difference” [76], “excess prevalence” [96], and
even “attributable risk” [72, 91].

Population Attributable Risk and Generalized
Impact Fraction

Population attributable risk [63] and the generalized
impact fraction [97] are measures that assess the
public health consequences of an association between
exposure and disease and the potential impact of
prevention measures aimed at eliminating (population
attributable risk) or reducing (generalized impact
fraction) exposure in the population. As was
mentioned above (see the section “Interpretation and
Usefulness” above), absolute risk can be used to
estimate the absolute reduction in incidence that
would result from prevention measures in each
subgroup of exposure, and can therefore be regarded
as a useful complement to population attributable risk
and the generalized impact fraction.

Floating Absolute Risk

The term “floating absolute risk”, introduced by
Easton et al. [36], refers to a concept unrelated to
absolute risk, which may introduce some confusion.
The purpose of those authors was to remedy the
standard problem that hazard ratios are estimated
in reference to a baseline group which in turn
causes hazard ratio estimates for different levels of

exposure to be correlated and may lead to lack of
precision in hazard ratio estimates if the baseline
group is small. The authors proposed a procedure
to obtain hazard ratio estimates unaffected by these
problems. They termed their proposed hazard ratio
estimates “floating absolute risks” to indicate that
their standard errors were not estimated in reference
to an arbitrary baseline group.

Prospects and Conclusions

Despite the substantial development of methods
for estimating absolute risk, there remain important
research issues, including point and variance
estimation for parametric case—control estimators
when continuous risk factors are considered, the
study of finite sample properties of nonparametric and
semiparametric estimators and their comparison with
parametric estimators, the comparison of the three
main parametric approaches in case—control studies,
the study of the effect of exposure misclassification
on absolute risk estimation, and research issues
regarding special problems (see the section “Special
Problems” above).

An important issue is the development of tools
to implement methods for absolute risk estimation.
For instance, a graphic approach has been developed
to convert relative to absolute risk [35]. Graphs [17]
and a computer program [10] have been developed to
estimate absolute risk of breast cancer as a function
of age and four risk factors. More general programs
would be worth developing.

Finally, an important challenge is to increase
awareness of the proper interpretation and use of
absolute risk in practice (e.g. in counseling, see [4,
17, 19, 53] and [78]), as well as of correct estimation
techniques.
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Accelerated Failure-time
Models

Accelerated failure-time models can be simply illus-
trated in the following way. Let T, be the sur-
vival time, under control conditions, from some ori-
gin to the occurrence of an event of interest, and
suppose that application of a treatment, or expo-
sure to a risk factor, modifies the survival time to
T = Ty/0 for some fixed scaling parameter 6. Then
the median survival time under the treatment or
risk factor is 1/6 times the median under the con-
trol, and indeed the time to reach any percentile of
the treatment group will be 1/6 times the time to
reach the corresponding percentile of the controls.
This proportional adjustment of the time-scale repre-
sents the simplest form of the accelerated failure-time
assumption.

The term accelerated failure time derives from
accelerated life testing, particularly in engineering
and similar applications. In these, extrapolation is
often required from high stress levels, designed
to induce rapid failure under laboratory conditions,
to lower stress levels which operate under normal
conditions. The assumed link between the effects
of the different levels is provided by the adjusted
time-scale. Corresponding biostatistical applications
include situations such as carcinogenicity or toxi-
city experiments, in which doses of a high level
are applied under experimental conditions and the
results extrapolated to lower doses via the accel-
erated failure-time assumption (see Extrapolation,
Low Dose).

The Models

Let the proportion of cases in the control group
surviving beyond time ¢ be denoted by So(f) (the
survival function), and let the survival function under
the treatment or exposure be S(¢). Then according to
the accelerated failure-time model the two survival
functions are related by

S(1) = So(01),
and the hazard functions (see Hazard Rate) by

A(t) = 60X (61)

(see Survival Distributions and Their Characte-
ristics). Under this assumption,

Pr(og T >t —log8) = Sp(e"),
giving a location shift model on the log scale, namely
logT = By + logb + ¢,

where ¢ is a zero mean residual.

More general models are obtained by incorporat-
ing covariates or explanatory variables into 6. If x
is a vector of covariates associated with an individ-
ual, then the survival function, given X, is assumed
to be of the form

S(t[x) = So[0(x)1]

for an underlying survival function Sy and function
6(-), with hazard function

A(t]X) = O(X)ho[0(X)1].

Correspondingly, log T = By + log8(x) + €. A par-
ticularly useful form is the loglinear regression
model in which 6(x) = exp(B'x), which leads to the
linear model log T = By + B'x + ¢. Inferences con-
cerning the regression parameters and the ways in
which they influence survival can therefore be made
using log survival times and linear regression meth-
ods, including methods that allow for censored sur-
vival times, where the survival time may be known
only to exceed or be smaller than a given value.
This may result from loss to follow-up, withdrawal
for causes unrelated to the end point of interest
(see Competing Risks), survival beyond the end of
a trial, and so on.

Parametric Models

Parametric models under the accelerated failure-time
assumption are obtained by specifying the under-
lying distribution Sy and the form of dependence
on x through 6(-). Some important special cases
of the underlying distribution include the Weibull,
when Sy(¢) = exp(—kt%), the lognormal, when log T
has a normal distribution, and the log-logistic, when
So(t) = 1/(1 4+ kt*). The last model has received
considerable attention, since one is often interested in
the probability of survival beyond a fixed time (e.g.
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five-year survival rates). If (x) = exp(f'x), then the
logistic transform or log odds ratio is

{ S(t]x)
logy —————
(1= S(x]

which is linear in the covariates x, and for fixed
t represents the familiar linear logistic regression
model.

} = —logk —alogt — af'x,

Estimation and Analysis

If we assume a fully parametric form for
the accelerated failure-time model, then standard
parametric inference procedures such as the use of
likelihood methods are applicable, allowing for the
possible presence of censored observations. With
right-censored failure times and i indexing the
individuals, provided the censoring and survival
mechanisms are independent, the likelihood function
is given by

= ]r0ilx)*Silx),

where y; is the observed failure time or the time at
which censoring occurs for the ith individual and
8; 1s an indicator of censoring taking the value 1
if the failure time is observed and O if censored.
Large-sample estimates of standard errors can be
obtained from the observed Fisher information, since
the presence of censoring will generally preclude the
taking of expectations.

The Expectation-Maximization (EM) algorithm
of Dempster et al. [6] often provides a convenient
method of maximizing the likelihood with censored
data (e.g. [5, Chapter 11]). This method is particu-
larly useful if the distribution of Z; =1logT7; is a
member of the regular exponential family in the
mean parameter p; with variance V;. Then the like-
lihood equations corresponding to derivatives of the
log likelihood with respect to the parameters 8; in
the mean take the simple form

ZZi_Mia'uizO
— Vv, 0B

1

where Z; is z; if the failure time is observed or
E(Z;|T; > y;) if the failure time 7; is censored at y;.
This is of the same form as the likelihood equations
when all data are uncensored but with the censored

values replaced by their conditional means. The E-
step in the EM algorithm thus consists of replacing
the censored responses by their estimated conditional
means given the existing parameter estimates and
the time at which censoring occurs, while the M-
step corresponds to parameter updating by solving
the likelihood equations treating the estimated values
as if they were uncensored. The process is iterated
until convergence. In general there will also be other
parameters involved in the model which need to be
estimated. For a discussion of the EM approach with
(log)-normal responses see Aitkin [1].

Buckley & James [2] adopted a similar approach
to deriving a semiparametric procedure in which the
residual distribution remains unspecified. Suppose
that the residuals &; are independent with common
distribution and that u; = By + B’x;. The likelihood
equations then become

Z(Zi — Bo — B'xi)x;; = 0.

In the method of Buckley & James the condi-
tional expectations for the censored responses are
replaced in the equations by their estimates based
on the Kaplan—-Meier product-limit estimator of the
residual distribution. An iterative estimation scheme
analogous to the EM procedure therefore consists
of starting with estimates of the §;, obtaining the
Kaplan—Meier residual distribution, replacing the
censored responses by their estimated conditional
means using the estimated residual distribution, and
solving the normal equations, assuming these were
the true responses, to update the parameter estimates.
Some modifications are needed to account for the
possibility of the Kaplan—Meier means being unde-
fined when the largest residual is censored, and this
will typically introduce some biases into the intercept
estimates for small samples.

Unlike the fully parametric EM algorithm this
iterative scheme need not converge, nor need the
estimating equations have a unique nor exact solution
due to discontinuities and nonmonotonicity. In these
cases zero crossings or values closest to zero can
be used. Extensions to nonlinear regressions or
M-estimators [16] (see Robustness) are conceptually
straightforward.

Whilst the method is simple to describe, obtaining
theoretic properties has proved difficult, in part due
to the issues of censored data in the right-hand tail
of the distribution. Asymptotic properties have been



Accelerated Failure-time Models 3

obtained under some conditions by Ritov [16] and
Lai & Ying [10], who introduce a smooth weighting
function to overcome instability due to censorship.
Practical issues in the estimation of standard errors
have been addressed by Weissfeld & Schneider [27],
Smith [21], and Lin & Wei [11]. Approximations
based on imputation via the data augmentation algo-
rithm were proposed by Wei & Tanner [24] but,
as noted by James [7], they do not appear to offer
many advantages over the Buckley—James approach
(see Missing Data).

Other semiparametric estimation methods have
been proposed by Miller [13] and by Koul et al. [9].
The former is based on minimizing the weighted
sum of squared residuals f e2dF (¢), where F is the
Kaplan—Meier estimator of the residual distribution
function, while the latter is based on the observa-
tion that the quantities §;Z;/[(1 — G(Z;|x;)] have
mean fBy + B'x;, where G is the censoring distribu-
tion. Koul et al. use a Bayesian estimator of G, thus
obtaining observable quantities which form the basis
of estimating functions. Both the Miller and Koul
et al. estimators appear to be sensitive to the relation-
ship between the censoring times and the covariates —
the former requiring that censorship relate linearly
with the same slope parameters B, the latter that
there be no relationship (Miller & Halpern [14]).
A comparison of semiparametric methods based on
application to the Stanford heart transplant data is
provided by Miller & Halpern.

Estimates of parameters and derivation of their
properties can be based generally on appropriate
test statistics. In the case of accelerated failure-rate
models the linear rank test statistics with right-
censored data introduced by Prentice [15] provide
a basis for estimation and testing using ranks of
the data. Similar rank procedures have been intro-
duced by Louis [12], Tsiatis [23], and Wei et al. [26].
Ritov [16] discusses the asymptotic equivalence of
the method of Tsiatis and the Buckley—James-type
estimators.

Bayesian methods of analysis in the accelerated
failure-time models are considered by Christensen &
Johnson [3].

Comparison with the Proportional
Hazards Model

It is instructive to compare the accelerated failure-
time model with the proportional hazards model or

Cox model. In the proportional hazards model the
survival function is related to the underlying survival
function Sy by

S(t1%) = So()*™,
and the hazards are related by
Atx) = P (X)Ao (1)

for some function ¢ and covariates x. The Cox model
takes the loglinear form ¢ (x) = exp(B’x). In practice,
whether it is the accelerated failure-time model or
the proportional hazards model that is appropriate
(if either) will depend on the mechanisms operating
on the survival times through the covariates. The
only distributions that satisfy both the accelerated
failure-time and proportional hazards conditions are
the Weibull distributions with underlying hazard
functions of the form A¢(¢) = akt®~', in which case
P (x) = 0(x)%.

Ciampi & Etezadi-Amoli [4] suggested that both
accelerated failure-time and proportional hazards
models could be embedded into an extended model
of the form

A(t]x) = h(@'X)Ao[h(B'X)1]

for some function 4. Then, if « = 8 we have an
accelerated failure-time model, while if g =0 the
model is proportional hazards. Comparing the two
thus reduces to testing the values of the parameters
in this embedded model provided the underlying
distribution is not Weibull.

Extensions and Further Reading

In many applications the covariates used for adjust-
ment may also vary with time. Examples include cal-
endar period effects, immunodeficiency status which
changes over time, indicators of receipt of addi-
tional treatments at time ¢, and so on. Extensions of
regression models to include time-dependent covari-
ates have become relatively routine in many areas
of application. Their incorporation into accelerated
failure-time models leads to

S[eIx(r)] = So{O[x ()]},

where the notation x(¢#) now reflects the depen-
dence of the covariates on the time under consid-
eration. Fully parametric analyses in which both
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the underlying distribution and the nature of the
dependence of the covariates on time are com-
pletely specified may be carried out using, for
example, likelihood methods. Robins & Tsiatis [18]
and Robins [17] study an approach to the analysis
of models with time-dependent covariates which is
semiparametric in the sense that the dependence of
the covariates on time is fully specified but where
the underlying distribution Sy remains unspecified.

Useful accounts of accelerated failure-time models
can be found in Kalbfleisch & Prentice [8] and Cox
& Oakes [5]. Wei [25] provides a comprehensive
overview of nonparametric methods of estimation in
accelerated failure-time models, and compares them
with proportional hazards models.

In the econometric literature accelerated failure-
time models are typically referred to as fobit models.

Software

Comprehensive parametric analyses of accelerated
failure-time regression models are available in widely
used packages such as S-PLUS [22] and SAS [19], as
well as many other commercially available packages
(see Software, Biostatistical). These incorporate
response distributions such as the lognormal, Weibull,
log-logistic, and Rayleigh (see Parametric Models
in Survival Analysis) plus their transforms, and
with various forms of censoring. More specialized
survival analysis packages such as Egret [20] also
accommodate censored regression models. Specific
procedures for semi- and nonparametric analyses do
not appear to be widely available.

References

[1]  Aitkin, M. (1981). A note on the regression analysis of
censored data, Technometrics 23, 161-163.

[2]  Buckley, J. & James, 1. (1979). Linear regression with
censored data, Biometrika 66, 429—436.

[3]  Christensen, R. & Johnson, W. (1988). Modelling accel-
erated failure time with a Dirichlet process, Biometrika
75, 693-704.

[4] Ciampi, A. & Etezadi-Amoli, J. (1985). A general
model for testing the proportional hazards and the
accelerated failure time hypotheses in the analysis of
censored survival data with covariates, Communications
in Statistics — Theory and Methods 14, 651-667.

[5] Cox, D.R. & Oakes, D. (1984). Analysis of Survival
Data. Chapman & Hall, London.

[6]

[7]

[8]
[9]

[10]

[11]

[12]
[13]
[14]
[15]
[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Dempster, A.P., Laird, N.M. & Rubin, D.B. (1977).
Maximum likelihood from incomplete data via the
EM algorithm (with discussion), Journal of the Royal
Statistical Society, Series B 39, 1-38.

James, LR. (1995). A note on the analysis of censored
regression data by multiple imputation, Biometrics 51,
358-362.

Kalbfleisch, J.D. & Prentice, R.L. (1980). The Statistical
Analysis of Failure Time Data. Wiley, New York.

Koul, H., Susarla, V. & Van Ryzin, J. (1981). Regression
analysis with randomly right censored data, Annals of
Statistics 9, 1276—1288.

Lai, TL. & Ying, Z. (1991). Large sample theory
of a modified Buckley-James estimator for regression
analysis with censored data, Annals of Statistics 19,
1370-1402.

Lin, J.S. & Wei, L.J. (1992). Linear regression analysis
based on Buckley-James estimating equations, Biomet-
rics 48, 679-681.

Louis, T.A. (1981). Nonparametric analysis of an accel-
erated failure time model, Biometrika 68, 381—390.
Miller, R. (1976). Least squares regression with censored
data, Biometrika 63, 449—-464.

Miller, R. & Halpern, J. (1982). Regression with cen-
sored data, Biometrika 69, 521-531.

Prentice, R.L. (1978). Linear rank tests with right
censored data, Biometrika 65, 167—179.

Ritov, Y. (1990). Estimation in a linear regression model
with censored data, Annals of Statistics 18, 303-328.
Robins, J. (1992). Estimation of the time-dependent
accelerated failure time model in the presence of con-
founding factors, Biometrika 79, 321-334.

Robins, J. & Tsiatis, A.A. (1992). Semiparametric esti-
mation of an accelerated failure time model with time-
dependent covariates, Biometrika 79, 311-320.

SAS Institute Inc. (1995). The SAS System for Windows,
Release 6.11. Cary.

CYTEL Software Corporation (1996). Egret for Win-
dows. Statistics and Epidemiology Research Corpora-
tion, Cambridge.

Smith, P.J. (1988). Asymptotic properties of linear
regression estimators under a fixed censorship model,
Australian Journal of Statistics 30, 52—66.

Insightful Corporation (2001). S-Plus 6 for Windows
Users Guide. StatSci, a division of Math-Soft, Inc.,
Seattle.

Tsiatis, A.A. (1990). Estimating regression parameters
using linear rank tests for censored data, Annals of
Statistics 18, 354-372.

Wei, G.C.G. & Tanner, M.A. (1991). Application of mul-
tiple imputation to the analysis of censored regression
data, Biometrics 47, 1297—1309.

Wei, L.J. (1992). The accelerated failure time model: a
useful alternative to the Cox regression model in survival
analysis, Statistics in Medicine 11, 1871-1879.

Wei, L.J., Ying, Z. & Lin, D.Y. (1990). Linear regression
analysis of censored survival data based on rank data,
Biometrika 77, 845-851.



Accelerated Failure-time Models 5

[27] Weissfeld, L.A. & Schneider, H. (1987). Inferences
based on the Buckley-James procedure, Communications IAN JAMES
in Statistics — Theory and Methods 16, 177-187.



Accident and Emergency
Medicine

Accident and emergency medicine is that specialty of
medicine whose practitioners offer immediate medi-
cal care to people with major and minor injuries and
illnesses presenting as emergencies to departments of
Accident and Emergency (A&E) in general hospitals.

The specialty of A&E medicine and A&E depart-
ments in the UK have their counterparts in other
countries. For example, in the United States of Amer-
ica (US), Canada, Sweden, Australia, New Zealand,
and Spain, there are emergency rooms in general hos-
pitals that provide the same service as A&E depart-
ments in the UK. The crucial functions of this service
are the formulation of an early diagnosis, the institu-
tion of immediate therapies, and the timely referral if
needed to the most appropriate specialty or agency to
allow maximum chance of optimum recovery to be
achieved. The conditions with which people present
can vary widely. At one end lie true emergencies,
where lifesaving treatment is needed within the first
hour of onset. At the other end are a vast range of
minor injuries and illnesses that could be managed in
primary care or by individuals themselves.

Historical Development

In the UK, prior to the inception of the National
Health Service (NHS) in 1948, free medical care for
the poor had been varyingly available for several cen-
turies from infirmaries run by local councils and from
independent hospitals funded by charity. Most condi-
tions seen would have been, as now, minor illnesses
and injuries. This pattern of free care for the poor
was followed in other countries. The debate about
whether these minor conditions should be seen in
A&E departments is not new. It was first described
in the Lancet in 1849 [7]. Casualty departments pri-
marily saw people with injuries caused by trauma.
The report of the Medical Advisory Committee of
the Central Health Services Council on Accident and
Emergency Services in 1962, known as the Platt
Report, recommended centralizing casualty services
in general hospitals where all specialties were repre-
sented. They were to become receiving departments
and be managed by orthopedic surgeons because of
the predominance of trauma cases. They were to be

called Accident and Emergency departments. There
was an increasing realization that most of the real
emergencies were medical cases with presenting con-
ditions such as heart attacks and severe asthmatic
or epileptic attacks. There was also much debate,
as now, about whether the main role of such ser-
vices should be to manage major emergency cases or
anyone who presented. Parallel developments have
occurred elsewhere. Early concern about the growth
in the use of emergency departments was raised in the
US in 1966 [22] and in the UK in the 1980s [13].
For example, the annual rate of first attendance at
such departments per 1000 population in England
rose from 105 in 1961 to 218 in 1984 [13]. This
upward trend seems to have finally peaked in 1989 at
a rate of 233 attendances per 1000 population [24].
A&E departments are now an integral part of gen-
eral hospitals in the UK. But the debates about their
true role (managing only emergency cases or offering
an alternative to primary care) and their relation to
trauma centers still rage in many countries [2, 24].

Different Types of Study

Descriptive and Analytical Epidemiology

Many researchers have tried to understand the deter-
minants of the large geographical and temporal vari-
ation in first attendance. Some of these, and many
others, have striven to show either the inappropriate-
ness of much of the attendance at A&E departments
or that much of it could be managed in general
practice, or both. There have been a very large num-
ber of studies of single departments looking at these
issues. Most of these have just used simple descrip-
tive statistics with occasional use of the chi-square
test and simple parametric tests (see Hypothesis
Testing). One of the earliest was reported by Wein-
erman et al.in 1966 [22]. Many of these studies are
referenced in [24] and in the report of the Anglia
and Oxford emergency health care project steering
group [2]. Fairley et al. [5] undertook one of the first
studies of more than one department. They found that
rates of use were highest for the age range 15-44
years, sex-specific rates were higher for males, and
about 10% of attenders are admitted. These results
have been replicated by many others. In general,
the large majority of cases are due to trauma [5],
although medical cases are relatively more common
in inner city areas. Reilly [18] was one of the first to
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show that general practitioners (see General Prac-
tice) could do much of the work undertaken by A&E
departments. Holohan [8] was the first to describe
the concept of social predicament as a key deter-
minant in a large proportion of cases. The concept
of inappropriateness has been much described. But
the first systematic attempt to produce a classifica-
tion scheme was in 1960 by the Nuffield Provincial
Hospitals Trust.

Milner et al. [13] used correlation analysis, mul-
tiple linear regression, multiple logistic regression
and a nonparametric test for the analyses of vari-
ance (see Nonparametric Methods) in their studies
on temporal and geographical use. They found an
eighteen-fold difference among health districts in the
mean annual new attendance rates at A&E depart-
ments in England over the period 1974—1985. There
was a rising trend in these rates which was statis-
tically significant (P < 0.05) for 89% of districts.
There was also a twenty-six-fold difference in the
extent to which new attenders were reviewed [12].
The ratio of return attendances to first attendances
(reattendance ratio) had declined significantly (P <
0.05) in 70% of districts. Investigation of the vari-
ation in the reattendance ratio among eight A&E
departments showed that it was booked reatten-
dance which largely determined sample reattendance
ratios [12].

There is now an NHS common minimum data set
for A&E departments in the UK [16]. This should
facilitate comparative research among A&E depart-
ments.

Clinical Research

Discriminant analysis has been used very success-
fully for producing survival probabilities using logis-
tic functions and regression weightings to allow the
systematic audit of emergency care for cases of
major trauma. This began in the US in the early
1980s with the Major Trauma Outcomes Study [3]
and was later adopted in the UK [21]. The mortal-
ity rate in A&E departments in the UK is much
less than 1% and trauma accounts for less than one-
fifth [20]. Most of the deaths are due to medical
emergencies such as myocardial infarction, stroke, or
asthma [19]. Randomization has proven very diffi-
cult in care for life-threatening emergencies. There
have been no randomized controlled trials (RCTs)
(see Clinical Trials, Overview) of major trauma

centers or emergency helicopter medical services.
Major well-designed comparative studies of these
have been undertaken in the UK without random
allocation by the Medical Care Research Unit in
Sheffield [17]. The major obstacle to randomization
was the organization of care. The emergency nature
of cases interacted with the ability to randomize
responsively and quickly. The Medical Care Research
Unit in Sheffield is currently running a randomized
controlled trial in the UK of paramedical assistance
as the first emergency contact which randomizes the
paramedics rather than the patients. For the less
urgent conditions, informed consent in randomized
controlled trials has usually been sought (see Ethics
of Randomized Trials).

A search of the nine emergency journals on Med-
line for 1995 found only 4% of articles described
RCTs. These were usually studies of minor clinical
developments.

Health Technology Assessment

Weinerman et al. [23] used descriptive statistics and
x? analysis to describe the possibilities of medical
triage in 1963 in a pilot study. There have been many
similar subsequent studies which claimed to have
evaluated nurse triage and shown it to be beneficial.
Apart from one, they have all either excluded a
comparative arm, not used valid outcome measures,
or been pilot studies. George et al. [6] in 1992 used
a comparative design with triage being alternately on
and off. They showed that triage patients waited on
average longer than nontriaged. This was especially
so for those most in need of urgent medical care.

Health technology assessment (see Health Ser-
vices Organization in the US) came of age in acci-
dent and emergency medicine with the publication of
an RCT with a cost-effectiveness analysis by Murphy
et al. [15]. This group used valid intermediary out-
come measures and found that general practitioners
(GPs) were more cost effective than hospital doctors
or nurses for managing primary care cases which pre-
sented to an A&E department.

The debate about trauma centers rages on. There is
a shortage of good quality research evidence on the
relative costs and benefits of the alternative forms
of care for patients suffering major trauma. The UK
Department of Health has funded a major compara-
tive study of this [17] which shows, according to the
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Department, that trauma centers are not cost effective
in the shire counties of England.

Laboratory and Basic Sciences

There are many investigations undertaken in A&E
departments in the UK. X-ray testing is the most
common, followed by blood testing [12]. The oppor-
tunities for such tests are great. Head injuries, for
example, are very common, as are twisted ankles.
New technologies, such as MRI scanning or near-
patient testing, are constantly being developed, which
could have a major impact on A&E clinical practice.
So far none of these technologies has been evaluated
as rigorously as new drugs are. The lack of rigor-
ous evaluation of tests is a general finding in health
care. A recent Cochrane Collaboration has been
established to try to rectify this. Details about its work
and testing methodologies can be found on the World
Wide Web at http://wwwsom.fmc.flinders.edu.au
FUSA/COCHRANE/sadtdoc.htm.

In the nine emergency care journals found on
Medline in 1995, the vast majority of original arti-
cles contained descriptive statistics. Correlation and
predictive analysis were much less common.

Statistical Models

In the vast majority of studies only standard
statistical methods have been used. Time series
analysis was used recently to estimate the staffing
requirements of A&E departments at various times
depending on the case-mix presenting [14]. Milner
had previously used the autoregressive integrative
moving average (ARIMA) process (see ARMA and
ARIMA Models) using the Box—Jenkins procedure
to estimate future workloads in the Trent region of
England [11]. Three time series were forecast. These
were the first attendance rate, the ratio of return to
first attendances, and the local resident population
forecasts. These forecasts were then combined to
produce forecasts for the district numbers of first,
return, and total attendances. The theoretical ARIMA
methods were applied without modification. There
were two other examples of studies of emergency
departments in the statistical literature on Medline
in the period 1985-1996. The first was the 1992
National Ambulatory Medical Survey from the
US National Center for Health Statistics. This
was a descriptive survey of a random sample of

attendances at hospital emergency and outpatient
departments [10]. The second described the use of
correspondence analysis as a screening method
for indicants for clinical diagnosis through the
application of the independent Bayesian method [4].

The proximity of the place of residence of an
individual to a health care facility predicts its use
by that individual. This general relationship has been
found to hold for the use of A&E departments by
Ingram et al. [9] and others.

Landmark Studies
Major Trauma Outcomes Studies

The Major Trauma Outcome Studies in the US [3]
and UK [21] have allowed the quality of emergency
care to be examined thoroughly by health care pro-
fessionals as well as by purchasers and providers.
These confidential studies allowed mortality rates for
departments to be compared after adjusting for the
nature and severity of the injury by means of the
Revised Trauma Score and the Injury Severity Score
and the patient’s age.

Deaths in A&KE Departments

The battle for the heart and soul of A&E medicine
has long since been won. History and trauma favored
orthopedic surgery. Technology and the diseases of
affluence favored general medicine. The Platt Report
started the revolution in the UK and various learned
bodies continued it. But it was Shalley & Cross who
stopped the debate with their study using descriptive
statistics which showed in 1984 that most preventable
deaths in A&E departments were due to medical
conditions [19].

Inappropriate Attendance

Weinerman relaunched the debate in 1966 about inap-
propriate attendance in the US with a descriptive
study of a case series of 2028 patients [22]. This
followed the Nuffield Provincial Hospitals Study of
casualty services in 1960 and the Platt Report in 1962.
We have still not answered the question about appro-
priateness. We do however understand much better
the policy and health service issues (see Health Ser-
vices Research, Overview).
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Reattendance

Reattendance of a patient at A&E departments was
thought to be determined by the diagnosis and need
for treatment. Milner et al. [12] showed using multi-
ple logistic regression in 1992 that these were minor
influences. The crucial factor was whether the doctor
booked a patient to return. This propensity varied in
an idiosyncratic manner among departments.

Particular Statistical Concepts, Problems,
and Techniques

Accurate, population-based information on the inci-
dence rates of minor injuries and illnesses is not
available in the UK, unlike the US where the National
Health Interview Survey reports this annually [1].
A similar regular survey from time to time in the
UK would help to assess the appropriateness of
the great geographical variation in the use of A&E
departments.

There is a need to develop valid quantitative
health status instruments for common A&E con-
ditions such as twisted ankles, lacerations, head
injuries, and strains and sprains, as well as the uncom-
mon ones such as burns, and ear, nose, throat and
eye disorders. They will have to be simple to admin-
ister. This will allow cost-effectiveness studies of the
various alternative models of care to be undertaken.

Anticipated Developments

The central issue on the use of A&E departments in
the UK is not discovering the determinants of such
use. It is to secure an agreed policy on the basis of
research evidence on the role of A&E departments.
Currently they are providing a combination of ser-
vices for hospital emergencies, minor injuries, alter-
native primary care, major trauma, and/or a fail-safe
system for healthcare. There are two basic options
for coping with the out-of-hours emergency problems
and the overlap between general practice and A&E
departments.

One model is to develop emergency primary
health care centers for out-of-hours work or for a 24-
hours-a-day service. The second model is to develop
primary care within the A&E department. We need to
know the cost effectiveness of these options. When
there is agreement in a locality about the respective

roles of hospital emergency services and general
medical services, then there is an obligation to inform
local people about using these health services appro-
priately.

The Cochrane Collaboration is systematically
reviewing the literature by health problem through
a world-wide collaboration based on Cochrane
Centers and health problem collaborative groups
(http://cochrane@mcmaster.ca). There will be a
systematic attempt to bring together knowledge on
emergency care from the collaborative groups.
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Accident Proneness

Research into the concept of accident proneness was
motivated by the desire to find effective ways of
reducing accidents. The initial hope was to identify
the individuals most “prone” to have accidents and to
nullify their problems in some way. Accident prone-
ness was viewed as a personal psychological factor
which affected the individual’s probability of suffer-
ing an accident. The original context was industrial
accidents during the 1914—1918 war. A very substan-
tial research literature grew up over the succeeding
half-century, especially as road accidents became a
serious social and economic problem.

The concept of an accident as a purely random
event had led Bortkiewicz [2, 3] to develop the Pois-
son distribution as a model for the number, X, of
fatal accidents at work in a given time interval

X

A
Pr(X =x) =e *=—,
x!

0<A.
(D

x=0,1,2,...,

His data sets included the well-known data on deaths
from cavalry horse kicks. The Poisson model assumes
that all individuals have the same probability (propor-
tional to A) of having an accident. The model implies
that if you remove from the population under con-
sideration those members who have had the highest
number of accidents over a period of time, then this
will have no effect whatsoever on the distribution of
accidents in the population in subsequent periods.

Greenwood & Woods [5] and Greenwood &
Yule [6] challenged the idea of pure randomness in
their investigation into factory accidents. They put
forward three competing hypotheses:

1. Pure chance, leading to the Poisson distribu-
tion, (1).

2. True contagion, i.e. the hypothesis that all indi-
viduals initially have the same probability of hav-
ing an accident, but that this probability changes
each time an accident is incurred. This led to
their “biased distribution”. If the probability of
an accident remains unchanged after the occur-
rence of the first accident, then they described
the outcome as the “burnt fingers distribution”.

3. Apparent contagion, i.e. the hypothesis that indi-
viduals have constant but unequal probabilities
of having an accident. This became known as

accident proneness in the literature. It gives
rise to a mixed Poisson distribution. Greenwood
& Yule’s well-known model for accident data
assumes that the probability of an accident varies
from individual to individual according to a
gamma (c, k) distribution (see Gamma Distri-
bution); the outcome is that the overall distribu-
tion of accidents in the population is a negative
binomial distribution with

e L Ar e_MCk)Lk_l dx
P X=x)=[ e*> - "~~ “%
0 x!' 'k

k+x—1 1\ ¢\
:( X )(c—i—l) (c—i—l) ’

x=01,2,..., 0<ec, O0<k
2

(see Contagious Distributions).

However, it is easy to construct a true conta-
gion model which also leads to the negative binomial
distribution of (2) — a good empirical fit of the nega-
tive binomial distribution to population accident data
cannot therefore distinguish between true contagion
and accident proneness.

During the 1950s a number of authors (including
Arbous & Kerrich [1]) tried to detect accident prone-
ness by examining individuals’ accident records in
two consecutive periods. The general finding was that
in practice this bivariate approach requires very large
data sets. Arbous & Kerrich gave a good review of
contemporary theories of accident occurrence.

Cresswell & Froggatt [4] in their study of bus
driver accidents rejected the idea of accident prone-
ness in favor of a fourth model:

4. Spells; here each driver is assumed to be suscep-
tible to random spells (periods of time) during
which accidents may befall him/her randomly
with a probability that is the same for all drivers.
They called the outcome distribution “long” or
“short” according to whether further accidents
might not or might occur randomly outside a
spell. For their long model

X eiM(jAY et
pr(sz)zzwe .qb’

= x! j

x=0,1,2,..., 0 <A, 0<¢.

3



2 Accident Proneness

There is no simple expression for these proba-
bilities. The distribution is better known in the
statistical literature as the Neyman type A.

It soon became apparent that the problems of
distinguishing between the various hypotheses are
very severe. The Neyman type A distribution can
easily be given a proneness interpretation [7] and,
similarly, the negative binomial distribution can be
given a spells interpretation.

A major problem which has bedevilled accident
proneness as a concept is its exact definition — how
is proneness to be distinguished from other aspects of
personal risk, e.g. age or experience? This does not
seem to have been resolved satisfactorily.

Prior to 1968, accident models assumed con-
stant environmental risk as opposed to personal risk.
Irwin [8] criticized this assumption and introduced a
fifth type of model:

5. Accident liability and accident proneness; this
incorporates the concept of accident liability
resulting from varying environmental exposure.
Irwin developed a three-parameter “Generalized
Waring” distribution that assumes randomness
while taking into account varying accident lia-
bility as well as varying accident proneness. He
set @ = 1/(c+ 1) in (2) and assumed that 6 has
a beta(a, b) distribution, giving

1
Pr(X:x):/ ("”_1)9*(1—9)"
0 X

0~1(1 —6)-1do
B(a, b)
b+k—Dla+b—1)!
T -k -—Dla—-1D!
k+x—Dla+x—-1!
(a@a+db+k+x—1)x!
x=01,2,..., 4)
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where 0 < k, 0 <a, 0 < b. The theory under-
lying this model has been studied in depth by
Xekalaki [11, 12] both for a single time period
and for a subdivided time period. Discrimination
between proneness and liability is theoretically
possible but it is difficult to achieve this in
practice.

Most of the work on proneness and related con-
cepts has involved accident count data and hence
discrete distributions. An alternative approach is to
examine interaccident times (involving continuous
distributions). This has received some attention but it
runs into problems similar to those with count data —
it is particularly difficult to get reliable large-scale
data on interaccident times.

There are two major books on the statistical anal-
ysis of accident data. Both involve large data sets.
The two books display strongly contrasting views
on accident theory — Cresswell & Froggatt [4] favor
the spells hypothesis while Shaw & Sichel [10]
strongly endorse the accident-proneness approach.
Kemp [9] gave a detailed review of work on prone-
ness and related topics from 1920 to 1970. He con-
cluded that “from a practical point of view (e.g.
in terms of its contribution to accident prevention),
the concept of accident proneness had proved singu-
larly ineffectual”. Nevertheless, the study of accident
proneness was valuable in the development of statis-
tical methodology.

By the early 1980s the golden age of accident
proneness theorizing was over. Very little theoretical
research appears to have taken place since then.
Attention had moved towards risk evaluation and
analysis. This may well reflect the view that whether
or not proneness in a narrow sense does exist, in
practice there are other very important factors that
contribute to a particular individual’s accident record.
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Actuarial Methods

Historically, probability theory and statistical meth-
ods have played a central part in actuarial science,
in both theory and practice. Indeed, the motto of
the Institute of Actuaries, the professional body in
England and the first to be established worldwide is
certum ex incertis. Furthermore, the early develop-
ment of these subjects was inextricably linked, with
many of the principal contributors to actuarial the-
ory also making notable contributions to probability
and statistics — for example, John Graunt, Abraham
de Moivre, Thomas Simpson, Daniel and Nicholas
Bernoulli, and Erastus de Forest. Also, some mod-
ern statistical models have little-known actuarial
antecedents, e.g. Bohmer’s development in 1912 of
the product limit estimator of Kaplan—-Meier, and Du
Pasquier’s analysis in 1913 of multiple state and com-
peting risk models; see Haberman & Sibbett [28] for
further discussion.

We begin our review with a brief consideration of
the nature of actuarial science. Actuarial science is
concerned with the financial management of financial
security systems — these can be defined as “mecha-
nisms for reducing the adverse financial impact of
random events that prevent the fulfillment of rea-
sonable expectations” [3]. These systems have the
important characteristics of risk transfer and risk
pooling [12] but certain fundamental limitations. For
example, they are restricted to reducing the conse-
quences of random events that create losses that can
be measured in monetary terms. Secondly, such sys-
tems do not directly reduce the probability of a loss
occurring.

Examples of situations where random events may
cause financial losses would include the following:

1. The destruction of property by fire or natural
catastrophe (storm, hail, flood, landslide, earth-
quake, volcanic eruption) is usually considered a
random event in which the loss can be measured
in monetary terms.

2. A damage award imposed by a court as a result
of a negligent event is often considered a random
event with resulting monetary loss.

3. Prolonged illness may occur unexpectedly and
result in financial losses in terms of reduced
income and extra health care expenses.

4. Death of a young adult may occur while long-
term family and business commitments remain
unfulfilled.

5. Survival to an advanced age may deplete an
individual’s resources for meeting the cost of
living, including long-term care.

One of the key tasks for an actuary advising financial
security systems is the management of uncertainty.
This process can be broken down into a number of
distinct stages; for example, one classification would
be: identification of information sources; collection
of data; analysis; model construction (see Model,
Choice of); sensitivity analysis; prediction; moni-
toring the model assumptions in the light of emerg-
ing experience (see Model Checking); updating the
model.

Survival Model (or Life Table): Structure

The survival model is concerned with representing
the mortality of individuals. Here, we consider sin-
gle lives, although the extension to contingencies
involving multiple lives is straightforward [3, 21].
The initial assumption is that the time from birth to
death can be represented by a continuous random
variable 7,. We define the distribution function of
Ty and the survival function of T as follows:

Fo(t) = Pr(Ty < 1); (1
So(®) =Pr(Ty > t) =1 — Fy(1). 2)

If we consider an individual aged x(> 0) currently,
then we can define a random variable 7, to be
his/her future lifetime, conditional on him/her having
survived to age x. Then the distribution function of
T, is defined as

Fo(@t) =Pr(Ty < 1) =Pr(To < x +1[To > x), (3)

which is written as ;q, in actuarial notation (and as
g, in the special case when ¢ = 1), and the survival
function is defined as

S:(t) =Pr(Ty > t) =Pr(Ty > x +t|Ty > x), (4)

which is written as ;p, in actuarial notation.
It is then straightforward to demonstrate the con-
nection between F, and Fj, and between S, and S,

namely
Fo(x +1) — Fo(x)

() = = s ®)
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and Sox 4 1)
S.(1) = Lt_ 6
() Sol0) (6)

The force of mortality at age x, uy, is defined as

|:Pr(x<T0§x+h|T0>x)i|. 7

. = lim
Mx P 7

0
The force of mortality is also described as the hazard
rate.

The probability density function of T, f,(¢), is
defined by

d
(1) = —F (1),
fe(@®) & ()
and is linked to the force of mortality through the

following relationship which follows from this defi-
nition:

fx(t) = tPxMx+1, (8)
so that
A0
Mx+t = S (1) .

This gives rise to a differential equation for , py,

d

Etpx = —tDPxMx+t» &)

which can be integrated with the boundary condition
opx = 1 to give the following useful and important

formula:
t
tPx = €Xp (_/ Mx+s dS) . (10)
0

In numerical applications of the survival model it is
common to impose simplifying assumptions on the
distribution of 7, within a particular year of age. The
two most commonly used such assumptions are:

1. a uniform distribution of deaths, i.e.
fx(t) = constant for 0 < ¢ < 1;
2. a constant force of mortality, i.e.
Uytr = constant for 0 <t < 1.

An important modification to the survival model is
the development of a select survival model, for use
in many applications, in particular life insurance. The
survival model is constructed from observations for

certain population groups, differentiated by charac-
teristics such as sex, geographical area, and type of
insurance purchased. The age at entry to the group
under consideration can have a significant influence
on the resulting probabilities.

To focus the discussion, we consider an individual
who has just purchased life insurance at age x.
Since life insurance is carefully underwritten and only
lives in good health are accepted (sometimes after a
medical examination), it is reasonable to expect that a
person who has just purchased insurance at, say, age
x will be in better health than a person who bought
insurance ¢ years ago, say, at age x — ¢, and is now
also aged x (ceteris paribus). This dependence of
health status on ¢ and x will have an impact on the
probabilities of survival and is allowed for by a select
survival model. Specifically, the probabilities of death
are graded according to age at entry and duration of
membership. The notation is to represent the one-
year conditional probability of death for a person
who entered at age x and who is now aged x + ¢
as g+ Then the selection effect is represented by
the sequence of inequalities:

de) < Gu-D+1 < x—242 < **+, (11)

where each probability refers to the conditional prob-
ability of death for a person aged x with different
periods of membership. Empirically, we find that the
selection effect becomes negligible some years, say
r, after entry. We represent this feature by requiring
that

dix—r)+r = qx—r—D+r+1 = " = ({x-

r is then called the select period and g, is called the
ultimate probability of death at age x.

Selection arises in other practical circumstances,
for example for persons purchasing life annuities and
for those retiring after disablement. This latter case
provides an example of negative selection for which
the inequalities in (11) would be reversed.

The survival model can be traced back to Graunt’s
landmark contribution with the setting up of the
first life table in 1662. The first authors to have
used this life table were the Huygens brothers, who
corresponded on the probabilistic interpretation of
various life table indices. The first life table in the
modern sense is widely attributed to Halley in 1693.
Further historical details can be found [28, 29].
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Survival Model and the Life Table:
Actuarial Applications

In general, life insurance policies involve benefits
payable by the insurer to the policyholder contingent
on the policyholder’s status and, in return, premiums
are payable by the policyholder while he or she is
alive. The benefits may consist of a single payment
or a series of payments, and may be dependent on the
policyholder having just died (as in life insurance) or
being alive (as in an annuity). The financial manage-
ment and control of life insurance depends critically
on the survival model (and life table) which is used
by actuaries in the calculations of premiums, reserves,
surrender values, and other functions; see [3, 21] for
further discussion.

Life insurance mathematics was developed by
de Moivre (with his book of 1725, which was the
first text on this subject) and Simpson (with his book
of 1742), although their prime focus was on annuity
rather than insurance contracts. Dodson was the first
to demonstrate (in 1755) how modern life insurance
could be operated with level annual premiums calcu-
lated on the basis of age at entry, and how this level
charge for an increasing risk leads to the build-up of
a reserve.

Survival Model: Estimation of Parameters

Estimation of F,(¢), Sy (¢), f:(t), or x4, Will enable
us to specify the distribution of 7, given certain
mildly restrictive conditions.

The simplest experiment would be to observe a
large number of individuals, born in a particular time
interval: then the proportion alive at age ¢ > 0 would
provide an estimate of Sy(¢). This is a nonparametric
approach (see Nonparametric Methods), leading to
a step function which would become more regular
if the sample size were increased. Such an approach
is not practicable because of the length of time it
would take to specify fully the survival function and
because it may not be possible to observe the deaths
of all the lives in the study, because of censoring
(see Censored Data). In medical statistics, however,
this type of experiment is widely used, and estimators
like the Kaplan—Meier (product limit) and the Nel-
son—Aalen estimators have been developed which
allow for censored observations. The so-called actu-
arial estimator also enjoys wide use when the data

are in grouped form [16]. We consider a partition of
the survival period as follows:
O=ty <t <--- <ty <lyy =00,

and assume that the total population of lives at time
to, No, is of the same exact age (and suppress age in
the notation). Let d; be the observed number of deaths
and w; the number of right-censored observations (or
losses) during the interval (t;, t;+1). Let N; be the
number of lives at risk at the start of the interval (¢;,
ti+1), i.e. just after time ¢;.

Then N;;| = N; — d; — w;, and the actuarial esti-
mate of F(t) is

A d;
Foy=1-]] (1_1\’]—,%10]) (12)

j=0
fjp1=t

In actuarial practice, it is normal to use a differ-
ent experimental plan and base estimation on data
gathered within a short time interval — for example,
four calendar years for the standard life tables pre-
pared by the UK Continuous Mortality Investigation
Bureau (CMIB). As a consequence, we observe sev-
eral cohorts within a well-defined window rather than
one cohort over its full life history (see Figure 1). As
a result, we might not be sampling from the same dis-
tribution and it may be necessary to impose further
assumptions on our model (for example, that survival
probabilities are constant with respect to calendar
time). Limiting the observation time to a rectangle
defined by a specific period of time and an age inter-
val, say x to x + 1, also introduces censoring: lives
enter observation at a known time and survivors leave
observation at a known time (when the investiga-
tion period ends or on attaining age x + 1), while

A Age A Age

/ » Time

(@)
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y» Time
>

Observation
period

A
A

(b)

Figure 1 Lexis diagrams illustrating different experimen-
tal plans. (a) Cohort-based; (b) fixed period
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for deaths and other types of exit (for example, sur-
renders of a policy), the time of exit will be random.
Further discussion of censoring is provided by [1].

To take the actuarial approach further, we follow
Broffit [5] and consider one particular form of cen-
soring. We consider N lives to be observed between
ages x and x + 1. For the ith life we let x + a; be
the age at which observation starts and x + b; the age
at which observation must cease if the life survives
to that age. Then b; = min(1, a; + ¢; — ¢;), where ¢;
and ¢; are the dates of entry into the study and of the
end of the study. The key point is that a;, ¢;, and c¢;,
and hence b;, are known in advance.

We define two random variables

lo
D; =
07

and T; such that x + 7; = age at which observation
of the ith life ceases.

We also define W; = T; — a;, the waiting time or
time spent under observation for the ith life.

We note that

b
D; =
1s

The outcome of observing these random variables is
a sample (d;, w;), and we define w = Z;N=1 w; and
d = ZlNzl d;, the total waiting time and total number
of deaths observed, respectively.

The maximum likelihood estimator for u is then

1= (13)
A=

if the ith life is observed to die,

if the ith life is not observed to die,

if and only if W; = b; — a;,
if and only if 0 < W; < b; — a;.

where D = Zf\;l D;and W = Z:N=1 W;, and the cor-
responding estimate is & = d/w.

In many applications the randomness of W; is
ignored and it is usual to write the realized value
w as E¢, the central exposure to risk. Assuming a
constant force of mortality as before, the assumption
that D has a Poisson distribution with parameter
wEY leads to the estimator

N D
n=— (14)

E¢’
The Poisson model is not exact given the above
experimental design, but it is a good approximation
in many applications.
Given the estimated values of u from (13) or
(14), it is then possible to construct a survival model,

using the standard results described earlier. By using
estimates from successive ages and time periods, it
is also possible to construct a cohort life table, as
depicted schematically in Figure 1(a).

Many of the early life tables were based on the
experience of individuals who purchased annuities
(usually from the government) or who participated in
tontines: for example, those constructed by Struyck
in 1740, Kersseboom in 1742, and Deparcieux in
1746. These life tables were based on the cohort
design of Figure 1(a). In 1749, the Swedish General
Register Office was established and the first national
set of population data started to be collected from
that date. Wargentin combined death registration data
for 1755—1763 and the triennial censuses of 1757,
1760, and 1763 (used to approximate exposed to
risk figures) to estimate values of ¢, (1766). This
procedure was taken up and developed further by
Price in 1783 to produce the first modern life tables
based on the experimental design of Figure 1(b).
The first published life table in 1828 based on the
mortality experience of an insurance company was
reported by Morgan in 1828.

Multiple State and Multiple Decrement
Models: Structure

The survival model can be regarded as a two-state
model (Figure 2), with two states “alive” and “dead”
and transitions permitted in one direction only. This
model can be extended to include any number of
states, with transitions between them in either direc-
tion. Two examples with important applications in
actuarial work, are the multiple decrement model
(Figure 3, widely used in pensions applications) and
the three-state disability model (Figure 4, widely used
in disability insurance applications).

We consider initially the case where there
are n possible states. Let S(x), 0 <x < oo, be
a continuous-time, time-inhomogeneous Markov
process with a finite state space (n < oo), and
suppose that we interpret “S(x) = 1” to mean “the
individual is in state 1 at age/time x”.

1 2

Alive > Dead

Figure 2 Two-state survival model
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Decrement
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Figure 3 Multiple decrement model
1 2
Healthy —> Sick

/

Dead

3

Figure 4 Three-state multiple state model

We define the conditional transition probability
P =Pr[S(x +1) = b|S(x) = al,
and the occupancy probability
DY =Pr[S(x +u)=a, forall ue(0,1)|S(x)=al.
Corresponding to the definition of the force of mortal-

ity, (7), in the survival model, we define the transition
intensity from state a to state b at age x by

ab
<”;lx ) for a # b.

ab :
ne’ = lim
* h—0+

Then, we can derive the Chapman—Kolmogorov for-
ward differential equations:

0 a aj  Jjb a bj
Sy = oYl = opul, (19
i#b
and
9 — _ .
—pl = =Pl Y i, (16)

ot °
j#a
which are generalizations of (9). Given estimates of
the transition intensities, this set of equations (15) can
be solved numerically (see, for example, [8, 31]) or
analytically in certain special cases (see [42] for a
discussion of piecewise constant transition intensi-
ties). Eq. (16) can be integrated directly, in a similar
manner to (9), leading to

t .
Py = exp —f Y uteds ). A7)
0
J#a

which plays an important role in the estimation of the
transition intensities from observed data.

Semi-Markov Model

In the above discussion, the Markov assumption has
been made: that transition intensities (and probabil-
ities) at time ¢ depend (at least explicitly) on the
current state at that time only. More realistic, and
possibly more complex, models can be constructed
considering, for example:

1. the dependence of some intensities (and proba-
bilities) on the age x at time 0, corresponding,
for example, to the issue of an insurance policy

2. the dependence of some intensities (and probabil-
ities) on the time spent in the current state since
the latest transition to that state

3. the dependence of some intensities (and proba-
bilities) on the total time spent in some states
since the policy issue.

The consideration of point 1 implies the use of issue-
select intensities, corresponding to fi(x)4: for the
survival model and life table. This extension does
not imply the use of more complex models since it is
implicitly allowed for by the Markov assumption for
the process S(¢).
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With point 2, the Markovian property of the pro-
cess S(¢) is lost. Nevertheless, there are practicable
ways of dealing with this assumption, which is of
practical importance in disability insurance where
transitions from the disabled state would depend on
the duration of the current disability. One general
(and complex) approach leads to semi-Markov pro-
cesses [8, 11], while a simpler approach requires the
“splitting” of some states [11, 31].

The aim of point 3 is to stress the individual’s
life history. This assumption can lead to intractable
models. (However, particular aspects of this assump-
tion can be introduced without a dramatic increase in
complexity.)

Multiple State Models: Actuarial
Applications

As for the survival model, multiple state models are
used for the determination of premiums and reserves
for insurance policies, operating in a multiple state
environment — for example, income protection insur-
ance policies in the UK which provide an annuity
while the individual is “sick or disabled” subject to
certain qualifying conditions [40]. For a further dis-
cussion, see [25].

Correspondingly, the multiple decrement model
is widely used in applications in defined pension
schemes where the actuary’s objective is to determine
the contribution rate for current members and to
calculate reserves at regular intervals and to monitor
the financial health of the scheme.

In some practical applications, it is important to
allow for the effects of selection arising from the
effect of different transitions. For example, where
withdrawals are associated with lower than average
mortality rates, increased mortality in the continuing
population results; where early retirements are asso-
ciated with higher than average mortality, the result
is decreased mortality in the continuing population.

Multiple State Models: Estimation of
Parameters

For illustration we consider the three-state model of
Figure 4; extensions to the more general case are
straightforward. We consider an observation period
of perhaps several calendar years and assume that
each individual represents an independent realization

of the underlying stochastic process, S(y), where y
is the individual’s age. We assume that, while under
observation, we can observe the time and type of
each transition that an individual makes. We focus,
for inference purposes, on the age interval (x, x + 1),
over which we assume that the transition intensities
are constants, u'2, u!3, u2t, u?.

The observations in respect of a single life are

now:

1. the times between successive transitions
2. the numbers of transitions of each type.

The form of the likelihood means that it suffices
to record the total waiting time spent in each state.
Following Sverdrup [51], we then define

C; = waiting time of the jth life in the healthy state

W; = waiting time of the jth life in the disabled

state

number of transitions from healthy —— dis-

abled by the jth life

R; = number of transitions from disabled ——
healthy by the jth life

D; = number of transitions from healthy ——
dead by the jth life

U; = number of transitions from disabled ——
dead by the jth life,

e
Il

and totals C = Zf’ C; (and so on). It can then be
shown that the maximum likelihood estimators are,
respectively,

D U
~13 n23
M)lc = _C’ /"Lx = —W,
S R
~12 ~21
= —, = —. ]8
L A (18)

We note that each estimator is the ratio of two random
variables: number of transitions and waiting time (or
central exposed to risk).

It may be important to be able to estimate the
moments of these estimators, for example when
comparing the results of two sets of observations
or comparing one experience with a given standard
experience. It is a well-known result of maximum
likelihood theory that the asymptotic distribution of
each [ is normal with mean w and variance w/E(C)
or u/E(W), as appropriate.

The history of the development of multiple state
models has been fully described by [13] and [46].
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These models can be traced back to Bernoulli’s
memoir of 1766, in which he applied the methods of
differential calculus to a problem involving a three-
state decrement model and then solved the resulting
differential equations under certain constraints. The
problem was concerned with the incidence of small-
pox in the population and measuring the efficacy of
inoculation. Bernoulli’s ideas were developed by a
number of authors, in particular Lambert in 1772,
Cournot in 1843, Makeham in 1867, Karup in 1875,
and Du Pasquier in 1912.

Du Pasquier’s work is very significant, presenting
an early application of Markov processes and laying
the foundations for modern actuarial applications to
disability insurance, long-term care insurance, and
critical illness policies, inter alia [40].

Projections

Almost all aspects of the actuarial management of
financial security systems like insurance companies
and pension funds require the projection forward of
the financial status and the underlying cash flows
using a survival model, multiple state model, or
multiple decrement model, as appropriate.

The methods used are essentially those of the com-
ponent method of population projection, and can be
traced back to Webster’s early calculations for the
Scottish Ministers’ Widows Fund set up in 1743.
Techniques, which were originally deterministic, have
now been extended to allow for stochastic projec-
tions, based on simulations, of portfolios of policies
and ultimately of companies.

In life insurance, financial projections require,
inter alia, estimates of mortality rates and withdrawal
rates. For pension schemes, the projections require
estimates of rates of mortality, withdrawal, disability,
and retirement. For health insurance, a multiple-state
model with rates of incidence of disability, recovery,
withdrawal, and mortality would be used. In these
cases, it would be normal to attempt to model the
variation of the probabilities with secular time (as
well as age, for example), so that extrapolations
can be made. The forecasting methods receiving most
attention consist of regression based methods (using
generalized linear models: for example [48]) and
methods based on the Lee-Carter method (for exam-
ple, [34, 35, 44].

In the case of financial calculations associated with
annuities and pensions, it is important to note that the

improving life expectancy and the downward secular
trend in mortality rates (observed in many countries)
(see Morbidity and Mortality, Changing Patterns
in the Twentieth Century) need to be allowed for
explicitly in the calculation of premiums and reserves.
Failure to make such an allowance can have seri-
ous financial consequences for an insurer because
improving life expectancy would mean that benefits
would have to be paid for longer than anticipated. An
example of modeling the impact of mortality trends
as insurance portfolios is [38].

Similarly, where an upward trend in mortality is
suspected, it is important to recognize this in life
insurance calculations. This has been an important
feature of recent discussions in respect of the impact
of AIDS (see [14]).

For health insurance (based on the model in
Figure 4), we would note the likely relationship
between the probability of recovery and the
employment prospects for the individual and the
economic environment [24]. An important area of
recent development has centered on the modeling of
dependence between demographic risks and between
demographic and financial risks. This application has
been based on copulas [18, 49].

Graduation

Graduation may be regarded as the principles and
methods by which a set of observed probabilities is
adjusted to provide a suitable basis for inferences and
further practical calculations to be made.

We consider for the moment a set of age-specific
crude probabilities of death, c}x, or forces of mortality
(i.e. hazard rates), ¢,, which have been calculated
from a set of observations. These values can each
be regarded as a sample from a larger population
and thus contain some random fluctuations. If we
believed that the true ¢, (or wu,) were independent,
then the crude values would be our final estimates of
the true, underlying rates. However, a common, prior
opinion about the form of these true rates is that each
is closely related to its neighbors. This relationship
is expressed by the belief that the true rates progress
smoothly from one age to the next. So the next step
is to graduate the crude rates to produce smooth
estimates, ¢, (or fi,) of the true rates. This is done
by systematically revising the crude values to remove
the random fluctuations. This can be considered as a
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cheaper and more practicable alternative to increasing
the size of the original investigation.

The graduation process is an essential step in the
construction of a survival model in ensuring that the
model displays the required degree of smoothness.
Then, the functions of practical importance calculated
from the model (and leading to insurance premiums,
reserves, surrender values, etc.) have results that share
this important property of smoothness.

Graduation methods tend to fall under the cate-
gories parametric (see Parametric Models in Sur-
vival Analysis) and nonparametric. For a full review,
readers should consult [2] and [36].

Parametric methods involve the fitting of a math-
ematical function to ¢, or ji,, with the parameters
being determined by a formal procedure such as max-
imum likelihood estimation. Although in the context
of the assumed function such methods are efficient
(see Efficiency and Efficient Estimators), they are
always liable to some degree of bias since no preas-
signed function will represent exactly the true (and
unknown) values of ¢, or w,. Nonparametric meth-
ods aim to give more stable estimates than the crude
values by combining data at different values of x,
but without presupposing any particular mathematical
form for g, or u,. Like parametric methods, they are
liable to give biased estimates, but in such a way that
it is possible to balance explicitly an increase in bias
with a decrease in sampling variation. With nonpara-
metric methods, like kernel methods (see Density
Estimation), the amount of smoothing of the crude
data can be varied continuously over a continuous
range (e.g. by the choice of bandwidth). In contrast,
the smoothness of parametric methods can only be
regulated in discrete steps, for example by increas-
ing the degree of the polynomial or by increasing the
number of knots in a cubic spline. The properties of
such curves will also tend to change abruptly. How-
ever, parametric methods are able to achieve higher
degrees of smoothness than nonparametric methods
through their use of explicit mathematical formulae,
and may be more useful for extrapolation beyond the
data range available.

Parametric Methods

We consider initially the graduation of an index of
mortality like g, or u, with respect to age.

Forfar et al. [17] give a comprehensive description
of the methodology used in the UK to graduate

survival models. We reformulate the methodology
using the framework of generalized linear models
(GLMs); for a full review see [27].

A GLM is characterized by independent response
variables (Y, with u =1, 2, ..., n) with distribution
specified by

¢V (im,)

u

E(Yu) = ny, Var(Yu) = (19)
comprising a variance function V, a scale parameter
¢ (> 0), and prior weights w,. Covariates enter via

a linear predictor,
p
Nu :Z)Cujﬂj, (20)
j=1

with specified structure (x,;) and unknown parame-
ters B; linked to the mean response through a known,
differential, monotonic link function g with

g(mu) = MNu- (21)

The suffices or units u have a structure which is either
intrinsic or imposed. The data comprise realizations
(y.) of the independent response variables, matched
to the structure of the units. Generally, in any one
study, the detail of the distribution and link are fixed,
while the predictor structure may be varied.

Model fitting is by maximizing the quasi log
likelihood (see Quasi-likelihood), leading to a
system of equations in the unknown gB;s which
need to be solved numerically. Full details can be
found in [37], which also describes the calculation of
the standard errors for the parametric estimators,
based on standard statistical theory. For members
of the exponential family of distributions (see
Parametric Models in Survival Analysis), the quasi
log likelihood equates to the log likelihood.

The raw data would normally comprise the num-
ber of recorded deaths a, accruing from matching
exposures (or person-years at risk) r, over a range
of ages x, in a specific calendar period.

The approach would then be to model the actual
numbers of deaths A, as Poisson variables when tar-
geting w, and as binomial variables when targeting
qx. Thus, for . graduations with responses (A, ),

my = E(A,) = FxMx+1/25
¢ = 17

Vimy) =my, o, =1,
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and for g, graduations with responses (A,),

My = TI'x{x, V(mvc) = My (1 - ﬂ) s

rx
¢=1.

The formulas underpinning a (parametric) graduation
can be presented as predictor—link relationships with
age x as the sole covariate.

The most common choice for 7, is to use poly-
nomial predictors, or a set of orthogonal polynomials
(see Orthogonality) for reasons of convenience of
computing and interpretation. Splines and break-point
predictors have also been used.

Parametric models of mortality have a long his-
tory, dating from Gompertz’s “law” of 1825,

wy =1,

px = exp(bo + bix),
Makeham’s modification of 1860,
px = ao + exp(bo + bix),
and Thiele’s proposal of 1872,

(x —6)2}

P = bo—b —
1y = exp(by — bix) + aj exp |: T

+ exp(b; + b4x).

Later suggestions include the use of a logistic family
of curves [39] and Heligman & Pollard’s model
involving a combination of double-exponential and
lognormal curves for representing the odds function
[gx/(1 —q,)] [30]. These mark progress towards a
parametric model for the full age range.

Nonparametric Methods: Moving Weighted
Average Graduation

Moving weighted average graduation methods
(see Moving Average) were among the first
nonparametric methods to be developed. The adjusted
average formulae were largely developed by de Forest
in the 1870s in a series of rather obscure papers which
were rescued from oblivion and the results extended
by Wolfenden [55]. For comments on the importance
of de Forest’s contributions see [50]. In this approach
a weighted average of consecutive crude values is
taken, i.e.

s=m

Ge=) a4y, (22)

S=—m

The most successful formulas have symmetric coeffi-
cients a; = a_;. When considering the optimality of
the coefficients ay, it is useful to consider the crude
rate as a random variable and express it as

Colx = {gx + ry,

where ¢, is the true rate and r, is the residual
error. An essential feature of any graduation is
that the graduated rates should be smooth in some
sense. With moving weighted averages (MWA), one
approach is to choose weights that give the smoothest
graduations, ceteris paribus. London [36] provides a
fuller discussion of this approach.

The problems caused by MWA methods failing to
give smoothed values of the first and last m observa-
tions have recently been addressed by Greville [23],
among others.

Nonparametric Methods: Kernel Methods

Kernel estimation methods are used for estimating
a probability density function (see Density Estima-
tion). Thus, if x{, x, ..., x,, are some observed val-
ues of the random variable X, then the kernel estimate
of the density at x is

R l n
f) = E;kb(x —xi). (23)
where k,(x) = k(x/b) is a kernel function which
satisfies
/ k(x)dx = 1.
—00

The bandwidth b governs the amount of smoothing
which is applied. The larger the value of b is, the
more smooth is the resulting estimate. In effect, a
kernel density estimate is formed by placing a kernel
function at each data point and then summing these
functions to form the estimate. A more complete
discussion of kernel density estimation is given
in [45, 47].

We assume that for a set of ages x;,i = 1,...,n,
we are given a measure of the exposed to risk e; and
the observed number of deaths d;.

Two kernel estimators have been suggested, both
of which are closely related to MWA graduation,
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namely

> diky(x — x)
G = (24)

Xn: eikp(x — x;)
i=1

and

Zcojx‘.kh(x - X;)
A (25)

Z kp(x — x;)
im1

In the context of graduation, ¢“" was intro-
duced by Copas & Haberman [9] and ¢™V by
Ramlau—Hausen [41]. The latter is related to the
Nadaraya—Watson estimator and can be viewed as a
continuous analogue of MWA graduation [19]. The
choice of bandwidth is discussed in some detail
in [20].

Nonparametric Methods: Whittaker—Henderson
Methods

The nonparametric methods described above can be
regarded as local, in the sense that the graduated
value at a given age depends only on the observed
values for arguments within a stipulated distance
from the given argument. Global methods allow each
graduated value to depend on all the observed data.
The principal such method is Whittaker—Henderson
graduation, devised by Whittaker [54].
The approach is based on a minimization of

S=) wyluy, =y’ +hY (Auy)’,  (26)
i=1

i=1

where y,, denotes the crude values and u,, denotes
the resulting graduated values at age x;, with i =
1,2,...,n. S combines a measure of goodness of fit
of the graduation and a measure of the smoothness
of the sequence of graduated values, moderated by a
positive parameter /2 chosen by the user to reflect the
relative importance that they wish to attach to these
conflicting characteristics. It is common to choose
s =2or3.

When i =0, S is minimized when u,, = y,, so
that no graduation is needed. As % tends to O, fit
is emphasized over smoothness. When /4 becomes

large, the second term dominates and in the limit
the graduating curve becomes the least squares fitted
polynomial of degree s — 1.

(wy,) is a set of positive weights chosen by
the user, although it is common to choose for wy,
the reciprocal of an estimate of the variance of
the observation y,,. Then, the graduated values u,,
are constrained to be close to the more reliable
observations (i.e. those with smaller variances) and
to be approximately a polynomial of degree s — 1,
where the observations are less reliable.

We can rewrite (26) in matrix notation,

S = (u—y)W(-y) +h(Ku)Ku, Q27

where y is the vector of observed values, u is the
vector of graduated values, and W is the n x n
diagonal matrix with successive diagonal elements
equal to wy,. K'is an (n — s) x n matrix with entries

ki, where
(L 1\stHi—] s
kij= (=1 <j—i>'

It is then straightforward to show that S is minimized
by u satisfying

ijs

(W +hK'K)u = Wy. (28)

As an extension, the loss function in (26) has
been adapted to the fitting of a continuous curve,
namely the smoothing spline of DeBoor [15]. This
is discussed in more detail in [22].

A Bayesian interpretation of Whittaker—Hender-
son graduation has been provided by Taylor [52],
and Verrall [53] has shown that the approach
is equivalent to a dynamic regression analysis
in which one parameter of the fitted line is
allowed to vary stochastically. A two-dimensional
version of Whittaker—Henderson graduation has been
introduced by Knorr [33].

Other Nonparametric Methods
Related global methods include Bayesian [32] and
information theoretic methods [4].

Tests of a Satisfactory Graduation

Two characteristics of a graduation require exam-
ination: smoothness and goodness of fit to the
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observed data. These qualities are in competition,
as is formalized in the criterion S for Whit-
taker—Henderson graduation; see (26).

The degree of smoothness required of a graduation
is subjective and depends on the use to be made of
the results; for applications in life insurance, it is
essential that the resulting functions (e.g. premiums)
are smooth. A parametric function (not a piecewise
function) may, of course, be assumed to be smooth.
In other cases, it has become customary to examine
low-order finite differences of the graduated values
and to consider their size and progression with respect
to age.

For measuring the goodness of fit, it is common
practice to tabulate the residuals, defined as the dif-
ference between the graduated value and the observed
value at the relevant ages. The diagnostics are aug-
mented by a variety of residual plots (see Residuals
for Survival Analysis), including the normal and
half-normal plots, and a battery of tests (including
the standardized deviations test, cumulative devia-
tions test, serial correlations test, sign test, changes
of sign tests, and grouping of sign tests; see [2] for a
full discussion).

Risk Classification and Regression

An important feature of insurance systems is the
classification of risks for the purposes of fixing
premiums. The classic economic argument in favor
of risk classification is to combat adverse selection,
the tendency of high risks to be more likely to
buy insurance or to buy larger amounts than low
risks [12].

In this context, the proportional hazards model
of Cox [10] has become widely used for the modeling
of the dependence of the force of mortality on a
range of covariates (e.g. sex, blood pressure, weight).
Following the notation of statistics, we let A denote
the force of mortality (or hazard rate) and then
propose

p
Mz =2 exp [ Y zisi ], 29

j=1

where A(t,z;) is the hazard rate at time ¢ for a
person with known covariates given by the vector
z; (with elements z;;), (8;) is a set of parameters to
be estimated, and A*(¢) is a baseline hazard rate at

time ¢. Then each factor z; enters the hazard in a
multiplicative fashion. In this formulation, only A*(#)
depends on time, but the model can be adapted to
feature time-dependent covariates.

If we assume that the A*(¢) values are known, then
we can formulate the model as a GLM and hence
produce parameter estimates for the (8;); examples
are provided by [26, 43].

Results from such studies of insurance mortality
have demonstrated that the total mortality risk can be
represented by a statistical model involving a linear
combination of a number of factors (possibly with
interactions). The results have proved very useful
for insurance purposes. Further, the major medico-
actuarial studies of mortality and survival experience
of insured lives characterized by a range of covariates
have been of considerable importance in public health
terms — for example, the link between build, blood
pressure, and mortality demonstrated by the Build and
Blood Pressure Studies in the US [6, 7].
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Adaptive and Dynamic
Methods of Treatment
Assignment

The simplest design of a randomized clinical trial is
to enter a predetermined number of patients (i.e. use
a fixed sample size) and to assign treatment by ran-
domization with equal probability for each patient.
In practice, trials are rarely conducted in this fash-
ion. More commonly, both the manner in which
patients are allocated a treatment, and the decision
to terminate the study, are based on patient-specific
information that accumulates during the progress of
the trial. The terminology used to identify the dif-
ferent kinds of methods has not been consistent.
However, in this article the following taxonomy will
be used to classify the methods. A dynamic alloca-
tion method is one in which information on patient
covariates that predict the clinical outcome is used to
determine the treatment assignment. By contrast, an
adaptive allocation method is one that uses accumu-
lating outcome data to affect the treatment selection.
In the broad context of adaptive designs, sequential
designs (see Sequential Analysis) are prespecified
analytic rules that guide the decision to terminate the
trial on the grounds that the evidence favoring one of
the treatments has become persuasive.

Dynamic Treatment Allocation

A completely randomized design (see Experimental
Design) is relatively simple to implement and
prevents selection bias. It also ensures that
all hypothetical permutations of the treatment
assignments are equiprobable, under the null
hypothesis, and thus forms the basis for a
conventional permutation test, if this is the analysis of
choice. The disadvantages of complete randomization
include inefficiency in small trials, due primarily
to the risk of imbalanced treatment totals, and
the possibility that important prognostic factors
may also be imbalanced by chance, reducing the
credibility of the results of the trial. The simplest
way to avoid imbalance in treatment totals is
to randomize groups of individuals in “blocks”,
with equal numbers of each treatment in each
block (see Randomized Treatment Assignment).

Imbalance in important prognostic factors can be
reduced by allocating randomly permuted blocks
within the strata (see Stratification) defined by
the factors [26]. This method, randomly permuted
blocks in strata, is probably the most widely used
randomization method, and it is easily implemented,
since all of the allocation sequences can be prescribed
before the start of the trial, by creating sequences of
blocks for each stratum. That is to say, the dynamic
aspects of this method are embedded in the stratum-
specific sequences of allocations, and so no dynamic
calculations are necessary in the course of the trial to
determine the next treatment allocation.

The method of randomly permuted blocks in strata
rapidly degenerates as the number of strata increases.
For example, a trial with five stratification factors,
and three categories for each factor, would have 3 =
243 distinct strata. Therefore, in the course of the trial
many of the strata will accrue few, if any, patients
(unless the sample size is very large), rendering the
blocking ineffective. In effect, the method reduces
to complete randomization as the number of strata
increases. To offset this problem there are a number
of methods that balance the factors individually,
i.e. marginally, without requiring balance within all
factor combinations.

Suppose that there are f factors, and [, levels in
factor f. At any given point in the trial the treatment
allocations of the previous patients will have created
some amount of imbalance among the factors. Let
t;jx be the total number of patients in the jth level of
factor i that have been allocated to treatment k, i =
L...,fij=1,...,ly,k=1,...,r, where r is the
number of treatments. The trial is balanced for factor
i level j to the extent that #;q, ..., #; are similar.
If the next patient to be randomized possesses factor
i at the jth level, then one can consider the effect
that each of the possible treatment allocations would
have on this balance. Balance must be characterized
by a mathematical function. Taves [21] proposed
the popular minimization method, where balance is
characterized by the range of treatment totals, and
the treatment is selected by minimizing the sum
of the ranges across all of the factors. Pocock &
Simon [18] proposed a more general version of this
method in which the treatment is selected by a biased
coin randomization, with the biased coin probabilities
determined by the balancing function. They suggested
the use of either the range or the variance as
balancing functions. Their overall balancing function
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involves a weighted sum of the balancing functions
of the individual factors, where the weights could be
assigned on the basis of the relative importance of
the prognostic factors. That is, if 77, (k) represents
the treatment totals if treatment k is allocated, and
if Fj; [ti’;.k (k)] is the balance for the jth level of the
ith factor under these circumstances, then the overall

balance is
Bi=) > wiFyltj®k)].
i

Note that only the unique levels of each factor for
the new patient are affected by the choice of k.
The values of B; are especially easy to update and
compute if the variance is used as the balancing
function [11]. The biased coin probabilities are then
determined on the basis of Bi. For example, if the
r treatment assignments are ranked from the one
that would lead to the least imbalance, k = 1, to
the one that would lead to the greatest imbalance,
k = r, then one of the formulas suggested by Pocock
& Simon is to select p; > r~!, and set p; = (1 —
p1)/(r —1) for k =2,...,r. In this case the degree
of randomization is inversely related to p;, and the
design is fully randomized if p; = r~!. The use of
biased coins in this context, rather than deterministic
allocations, was originally proposed by Efron [10],
in part to ensure that the trial is truly “randomized”,
enabling the calculation of an appropriate reference
distribution for a permutation test (making use of the
biasing probabilities), and in part to reduce the risk
of selection bias.

Numerous other treatment allocation schemes
have been proposed. Notably, it has been shown that
balance is a characteristic of design optimality for
the linear model [7], and efficient designs have been
developed in the context of the theory of optimal
design [3]. Various simulation studies and general
empirical evidence demonstrate that all of these algo-
rithms are effective at balancing stratification factors,
even very early in the trial when there is a risk that
the trial might have to be terminated unexpectedly.
The numerous proposed methods have been reviewed
in detail [14].

The validity of conventional statistical tests sub-
sequent to the use of stratified or minimization-type
schemes has been a topic of debate. In general,
stratification has the effect of making the treat-
ment groups more alike that would be expected by
chance. This tends to make the unadjusted estimator

of the treatment effect more precise, but the variance
estimator is positively biased, and thus unadjusted
statistical tests are conservative. Simon provides a
review of historical discussion of this issue in the
context of agricultural experiments in the 1930s [19].
To correct for this effect, it is necessary to perform
a stratified analysis, stratified by the same factors
employed in the design. This may be inconvenient if
numerous factors were used in a minimization-type
scheme. However, the distortion of the p values is
only substantial for strong prognostic factors, and so
it will typically be unnecessary to adjust for all factors
in the analysis. Biased-coin designs affect the validity
of standard permutation tests owing to the fact that
different allocation sequences are not equiprobable,
and it is possible in theory to correct this problem by
simulating the correct reference distribution [19].

Adaptive Designs

Adaptive designs, i.e. designs which depend on the
accumulating outcome data, have been researched
and discussed extensively since the 1950s. Pioneering
work in this area was accomplished by Armitage,
who adapted the sequential probability ratio test
for application to medical trials [2]. Such a scheme
allows for a formal termination rule at any time
based on a global significance level. That is to
say, it accounts for the fact that multiple analyses
of the data will increase the chances of a false
positive finding, and so the stopping boundaries are
adjusted to offset this multiplicity problem. For many
years this methodology appears to have been well
known but little used. However, a series of papers
in the late 1970s and early 1980s succeeded in
popularizing the concept, via the development of
group sequential stopping rules, in which a relatively
small number of pre-specified interim analyses are
envisaged (see Data and Safety Monitoring). These
new methods were developed in recognition of the
fact that large multicenter trials are usually subject
to regular analyses by data-monitoring committees
(see Data Monitoring Committees). The simplest
method involves setting a single significance level for
each analysis [17]. However, it appears that methods
with very strict criteria early in the trial, and a final
criterion close to the nominal level (e.g. 5%), such as
the O’Brien and Fleming rule, are more popular [15].

An entirely different formulation of this prob-
lem also led to much research and debate, stemming
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from the ideas of Anscombe [1] and Colton [9]. This
approach is designed to optimize the stopping rule
on the basis of an appropriate loss function, in con-
trast to the arbitrariness inherent in using significance
tests. To do this, it is necessary to construct a “patient
horizon”, i.e. the total number of patients either on
the trial or affected by the trial results in the future
via the choice of the best treatment. In this model
the responses to each treatment are assumed nor-
mally distributed with equal variances, and patients
are randomized until the boundary is crossed, after
which all remaining patients are assigned to the supe-
rior treatment up to the patient horizon. The optimal
boundary is evaluated by trading the losses incurred
by randomizing half the patients to the inferior treat-
ment, and the losses incurred by making the wrong
decision and assigning all future patients, up to the
horizon, to the inferior treatment. Tabulated bound-
aries for this problem are provided by Chernoff &
Petkau [8]. Even greater optimization is theoretically
possible by optimizing the proportions randomized to
the treatments on the basis of the emerging data [5,
13]. A perceived problem with this kind of approach
is that the formulation is considered by most experts
to be too simplistic to be a credible approximation
to the realities of clinical research [16]. The patient
horizon is a spuriously precise expression of a vague
concept. As a result, this approach is not used widely.

A closely related formulation is the two-armed
bandit problem [20]. Zelen popularized this concept
in the context of medical trials, calling it the
play-the-winner rule [25]. Conceptually this rule
involves randomly selecting treatments using urn-
sampling, where the numbers of balls in the urn are
changed as outcomes are recorded. If outcomes are
recorded immediately, i.e. before the next allocation,
then a modified play-the-winner rule assigns the
subsequent patient to the same treatment following
a successful outcome, and to the opposite treatment
following a failure. Generalizations to this idea have
been studied by numerous investigators, especially
randomized versions that do not allow deterministic
allocations [24]. The basic rationale presented for
play-the-winner (or biased coin) adaptive designs is
that it is preferable on ethical grounds to assign
more patients to the treatment that appears to be
generating the superior outcomes, and indeed it has
been shown that such designs do allocate fewer
patients to the “inferior” treatment compared with an
equal allocation design, after fixing the probability

of a correct selection [25]. Although this method has
not been used frequently in practice, it was employed
in a highly controversial study of extracorporeal
membrane oxygenation therapy (ECMO) in newborn
infants [4]. This trial was concluded after 12 patients
were treated, only one of whom was allocated the
control treatment (the only failure in the study). The
subsequent permutation-based analysis, calculated
on the basis of the biased-coin design, led to
a marginally significant result [23]. However, the
methodology received much criticism [6], and a
subsequent confirmatory trial involving a randomized
consent design (see Ethics of Randomized Trials)
also led to great controversy [22].

The decision to continue or terminate a clini-
cal trial on the basis of the available evidence is
a highly charged issue that continues to engender
debate among statisticians, clinical investigators, and
ethicists, and even the role of randomization contin-
ues to be disputed. Frequently, in the course of a trial,
relevant data from a related trial or a meta-analysis
(see Meta-analysis of Clinical Trials) become avail-
able, and this may influence the decision to continue
or terminate the study. The merits of formalizing
the use of such information have been debated at
length [12].
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Adaptive Designs for
Clinical Trials

If investigators planning a clinical trial knew all
that was necessary to design it, they would select
an optimal statistical procedure to test the primary
hypothesis of interest. In practice, however, one
rarely has sufficient information available at the time
one designs a trial — the variability of the primary
outcome measure may be unknown, the effect size
uncertain, and the expected compliance to therapy, a
conjecture. Particularly for a long-term study, modi-
fications to standard medical practice that may occur
as the trial progresses may produce unanticipated
changes that affect parameters used to design the
trial. Lacking firm estimates for parameters integral
to the design of a study, the investigators may choose
to sacrifice statistical optimality in exchange for an
adaptive design that provides flexibility. This section
discusses a variety of such adaptive designs for clin-
ical trials.

One can imagine many different types of adapta-
tions. Some adaptive designs, by changing the allo-
cation ratio during the course of the trial (play the
winner trials or drop the loser trials) aim to increase
the probability of assigning the best treatment to the
participants in the trial (see Adaptive and Dynamic
Methods of Treatment Assignment). Other adap-
tive designs incorporate aspects of both a dose-finding
and confirmatory study; others may allow change in
endpoint or modifications of entry criteria. This arti-
cle discusses a class of adaptive designs that modify
sample size during the course of the trial. Two types
of such designs are available — those whose purpose
is to end a study early if the answers are clear and
those whose purpose is to increase the information in
a trial, either by increasing sample size or length of
follow-up, to maintain desired statistical power. We
deal here primarily with two-stage adaptive designs.
For a general description of the theoretical underpin-
nings of two-stage adaptive designs, see [16].

The types of designs considered in this article
encompass the classes of design with an experimen-
tal and control arm (see Clinical Trials, Overview),
a preselected primary endpoint, and a criterion speci-
fying the requirement to preserve, or nearly preserve,
the preselected Type I error rate. These designs aim
to prevent bias, not only the technical bias defined

by inflation of the Type I error rate, but also bias that
may creep into the study by loosening the protective
firewalls that separate the blinded data from those
involved in the conduct of the study. In particu-
lar, the article addresses sequential analysis, futility
analysis, conditional power (see Cooperative Heart
Disease Trials), and designs that permit changes to
sample size or follow-up time in response to internal
estimates of either variability or effect size. Designs
that allow changes to sample size on the basis of
these internal estimates are called “internal pilot”
designs [23]. Some authors reserve the word “adap-
tive” for the special case of internal pilot designs that
use effect size to modify the sample size. This article
does not discuss more general adaptive designs that
allow such changes as dropping a study arm during
the course of the trial, redefining the primary end-
points, selecting a different test statistic, modifying
the study population, or changing the allocation ratio
during the study.

The oldest type of adaptive design goes by the
name ‘“sequential analysis”. These methods, now part
of the standard tools of biostatistics, have been widely
used for several decades and experienced clinical tri-
alists understand their properties well. While sequen-
tial designs are less efficient than the optimal fixed
sample design, most schemes in common use incur
only small losses in efficiency. They allow a trial
to stop early with the declaration of statistically sig-
nificant benefit for the treated group. Many clinical
investigators expect to see a sequential plan as part
of a clinical trial, especially a long-term trial or a
trial with a clinical outcome. In designing such trials,
biostatisticians should think not only of the primary
endpoint, but also about supportive endpoints and
subgroups of potential importance. Stopping a trial
early may allow declaration of success for the pri-
mary endpoint, but if the sample size is small at the
time the study ends, the observed effect size may con-
siderably overestimate the true effect. Moreover, the
results may have ambiguous interpretations for other
important questions.

A second type of adaptive approach that per-
mits early termination with protection of Type I error
rate is the so-called futility analysis. A trial may be
declared futile if the experimental therapy is not so
bad as to be unsafe, but if the probability of show-
ing benefit is low. In this type of design, the group
watching the trial, often the Data Monitoring Com-
mittee, may recommend ending the trial early if
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it assesses that continuing is “futile”. The method
of assessing futility may be based on conditional
power [13] and the B-value [14]; it may be based
on a confidence limit, or a boundary for excluding a
specific effect [8]. The criterion for defining futility
often depends on the secondary objectives of the trial.
A trial examining proof-of-concept may stop early for
futility if the concept appears unfounded; similarly, a
confirmatory trial, or a trial that follows an unsuccess-
ful one, may have a low threshold for stopping early
and declaring futility. Designers of a first Phase 3
trial (see Clinical Trials, Overview) however, may
be reluctant to stop for futility because they intend to
use data from the trial to learn a lot about the new
therapy and early stopping produces too little infor-
mation for rich exploration of the data. By the same
token, designers of a trial of a therapy in common
use may wish to continue the trial even if the chance
of finding benefit is low because clear evidence of
no efficacy is important for the public health. Futility
analyses that are based on conditional power rely on
the stochastic independence of nonoverlapping peri-
ods of the trial [14].

Internal pilot designs, unlike sequential analysis
and futility analysis, incorporate the possibility of
increased sample size. Two classes of such designs
are available: those that use data internal to the trial
to reestimate one or more nuisance parameters and
those that reestimate the effect size. In both cases,
the new estimate provides the basis for recalculat-
ing sample size. All these designs provide a hedge
against having made poor estimates of parameters
in designing the trial; however, this hedge can be
costly. Midcourse estimates, which are based on a
fraction of the total sample size originally projected,
are often imprecise. This imprecision is more serious
for designs that aim to estimate effect size than they
are for those that estimate nuisance parameters.

The simplest approaches use data from the first, or
internal pilot phase, to estimate variance, and then
apply this new estimate to a sample size formula. A
paper by Stein spawned these methods [22]. Many
variants are available. Some use unblinded data [3,
22, 23], some blinded [11]. Some use formulas that
do not correct for potential inflation of Type I error
rate, and some address the inflation directly. Methods
are available for nmormal [3-5, 7, 11, 23, 24, 26]
and binomial [10, 12] tests as well as for repeated
measures (see Multiplicity in Clinical Trials) [25].

The blinded and unblinded approaches have dif-
ferent properties. From the point of view of statisti-
cal operating characteristics, the blinded versions are
generally preferable when the specified effect size is
close to the true effect [26]. Especially for binomial
and time-to-failure outcomes (see Survival Analysis,
Overview), choosing between blinded and unblinded
assessment requires balancing the risk of overestimat-
ing the sample size, which can occur in the blinded
cases, with providing too much information to the
investigators, which can occur in unblinded cases. For
example, consider a trial designed to demonstrate a
difference in proportion of failure from 0.4 to 0.3. In
the blinded case, one would expect a pooled event
rate of 0.35. Seeing a rate lower than that would
prompt an increase in sample size. If, however, the
observed rates were 0.4 and 0.1, that is, a 75% reduc-
tion at the first stage, the observed pooled rate of
0.25 would lead to a considerable, and unnecessary,
increase in sample size. A method based on the esti-
mated placebo rate alone would leave the sample size
unchanged.

Both blinded and unblinded methods protect the
Type I error rate quite well. In fact, even naive esti-
mates that simply calculate the sample size at the
second stage using the estimated rate in the placebo
without any correction for having made an interim
look at the data incur only minimal inflation in Type I
error rate [23]. Other methods, for example, [S] cor-
rect for the look and hence preserve Type I error rate
more precisely. Thus, the criterion for selecting a
method for increasing sample size on the basis of
internal estimates of information (variance, propor-
tion, or hazard should be based less on the operating
characteristics (see Animal Screening Systems) of
the procedures and more on practical contingencies.
If the study team can separate the estimates from the
operation of the study, then unblinded assessments
based on the placebo rates may be appealing; if they
cannot, then blinded methods are preferable.

Several very different methods are available for
internal pilot designs that use effect size as the basis
for changing sample size. Some approaches combine
p-values from the two stages [1]; some base sample
size on conditional power [19]; some rely on unequal
weighing of data from the two phases of the study [6,
15, 20].

Procedures that allow increasing the sample size
to control the conditional power implicitly permit
increasing the sample size if the effect size at
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the interim look is low. The procedure calculates
the conditional power at the first stage and then
increases the sample size to maintain desired con-
ditional power. Consider a two-stage trial that tests a
one-sided (see Alternative Hypothesis) null hypoth-
esis Hj. At each stage one calculates p-values, p;
and p,. If p; <o) < «, the trial stops and rejects
Hy. If p; > ap > «, the trial stops for futility. If
o) < p1 < o, the trial continues to the second stage
and the final decision is based on a combination
function C(p;, p,) that rejects (does not reject) Hy
if C(p1, p2) <c(>c). If a9 =1, the trial will not
stop for futility and if «p =1, the trial will not
stop early [2]. The conditional error function [19],
CE(p;) = Prob(reject Hy|p;), is the probability of
rejecting the null hypothesis conditional on observ-
ing a p-value of p; at the first stage. Let A(p;) be a
monotonic function such that o; + f:lo A(pydp; =
«. A rule that rejects Hy when p; < «; or when
o) < p1 <oy and py < A(p;) controls the Type I
error rate. If oy < p; < g then A(p,) is the condi-
tional error function [18]. For a description of various
conditional error functions, see [19].

One simple, very flexible, two-stage method calcu-
lates the z-statistic (see Standard Normal Deviate),
z; halfway though the trial [20]. The investigators
decide on the basis of z; whether to increase the sam-
ple size (decreases are not allowed). If they decide not
to change the sample size, the study continues to its
planned end. If they change the sample size, they may
use any method to calculate the second stage sample,
ny. The rejection region is z* = (z1 + 22)/2Y% > 2z,
and the p-value is 1 — @{(z; +z2)/21/2}. Because
Z, and Z, are independent standard normal vari-
ates for any sample size function n,(z;), z* also has
a standard normal distribution. If the sample size
remains unchanged, then the loss of efficiency is very
small because z* is only slightly larger than the usual
fixed-sample z-score.

An option for one-sided tests uses a variance-
spending sequential method [9], a technique that
allows one to change sample size in response to an
effect size different from expected. In these designs,
one constructs a final test statistic using a weighted
average of the sequentially collected data, where the
observed data prior to each stage determines the
weight function for that stage [21]. The goal is to ter-
minate a trial early when the treatment effect is large
or when the new therapy is harmful but to ensure an
adequate sample size when the true effect is small.

The final test statistic is a weighted average of the
test statistics at each stage. One selects the weights to
maintain the variance of the final test statistic in order
to preserve the Type I error rate. Thus, in general, not
all observations have equal weight.

Two other approaches combine sequential analy-
sis with potential increases in sample size [6, 15].
These methods, like the variance-spending sequen-
tial methods above, maintain the Type I error rate
by assigning different weights to different stages of
the study. Consider a trial with K planned interim
analyses. At interim analyses 1, 2, ..., L, perform the
prespecified group sequential test. At the Lth interim
analysis, if the monitoring boundary is not crossed,
then adjust the sample size, up or down, by the fac-
tor N(8/AL) where N is the original sample size per
group and A, the observed treatment difference at the
Lth analysis. Both approaches [6] and [15], though
slightly different in theory and implementation, have
similar properties.

While the ability to modify one’s study on the
basis of an observed effect has considerable appeal
(you can have your cake and eat it), the methods
are not problem free. The estimate of effect size
can be quite biased, so special estimators must be
employed. The estimated treatment effect at the end
of the first stage may be imprecise, so the recal-
culated sample size may be either too large or too
small and there is some question about the propri-
ety of changing the effect size one wants to detect.
Moreover, such designs can be extremely inefficient
relative to comparable fixed sample size designs or
classical sequential designs [17].

None of these methods should substitute for a
careful design. Classical sequential analysis, futil-
ity analysis, and sample size recalculation on the
basis of reestimated nuisance parameters incur lit-
tle loss of efficiency; however, adaptive methods that
use effect size to change sample size may be very
inefficient, requiring much larger sample sizes than
a well-designed sequential plan. Thus, one should
be cautious in the use of this type of adaptation.
During the design phase, one should identify the
parameters projected with greatest uncertainty and
select midcourse changes specifically to address those
uncertainties. A strategy that deliberately chooses a
low sample size in the hope that an adaptive design
will bail one out courts serious inefficiency. On the
other hand, failing to modify one’s plans when the
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data from a trial show important deviations from the
expected may render the results of a trial ambiguous.

References

(1]

(2]

(3]

[4]

(5]

(6]

(71

(8]
[9]

[10]

[11]

[12]

[13]

Bauer, P. (1989). Multistage testing with adaptive
designs, Biometrie und Informatik in Medizin and Biolo-
gie 20, 130—148.

Bauer, P. & Kohne, K. (1994). Evaluation of exper-
iments with adaptive interim analyses, Biometrics 50,
1029-1041 (Correction, Biometrics 52, 380, 1996).
Birkett, M. & Day, S. (1995). Internal pilot studies
for estimating sample size, Statistics in Medicine 13,
2455-2463.

Bristol, D. (1993). Sample size determination using an
interim analysis, Journal of Biopharmaceutical Statistics
3, 159-166.

Coffey, C. & Muller, K. (1999). Exact test size and
power of a Gaussian error linear model for an internal
pilot study, Statistics in Medicine 18, 1199-1214.

Cui, L., Hung, HM.J. & Wang, S.-J. (1999). Modifica-
tion of sample size in group sequential clinical trials,
Biometrics 55, 853—-857.

Denne, J. & Jennison, C. (1999). Estimating the sample
size for a t-test using an internal pilot, Statistics in
Medicine 18, 1575-1585.

Emerson, S. & Fleming, T. (1989). Symmetric group
sequential test designs, Biometrics 45, 905-923.
Fisher, L.D. (1998). Self-designing clinical trials, Statis-
tics in Medicine 17, 1551-1562.

Gould, A. (1992). Interim analyses for monitoring clin-
ical trials that do not materially affect the type I error
rate, Statistics in Medicine 11, 55—-66.

Gould, A. & Shih, W. (1991). Sample size reestimation
without unblinding for normally distributed outcomes
with unknown variance, Communications in Statistics
21, 2833-2853.

Herson, J. & Wittes, J. (1993). The use of interim
analysis for sample size adjustment, Drug Information
Journal 27, 753-760.

Lan, K., Simon, R. & Halperin, M. (1982). Stochastically
curtailed tests in long-term clinical trials, Communica-
tions in Statistics C1, 207-219.

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Lan, K. & Wittes, J. (1988). The B-value: a tool for
monitoring data, Biometrics 44, 579—585.

Lehmacher, W. & Wassmer, G. (1999). Adaptive sample
size calculations in group sequential trials, Biometrics
55, 1286—-1290.

Liu, Q., Proschan, M.A. & Pledger, G.W. (2002). A
unified theory of two-stage adaptive designs, Journal of
the American Statistical Association 97, 1034—1041.
Mehta, C.R. & Tsiatis, A. (2001). Flexible sample size
considerations using information-based interim monitor-
ing, Drug Information Journal 35, 1095—1112.

Posch, M. & Bauer, P. (2002). Promises and limitations
of adaptive designs for clinical research, /IBC. Freiburg,
Germany.

Proschan, M. & Hunsberger, S. (1995). Designed exten-
sion of studies based on conditional power, Biometrics
51, 1315-1324.

Proschan, M., Liu, Q. & Hunsberger, S. (2002). Practical
mid-course sample size modification in clinical trials,
Controlled Clinical Trials 24, 4—15.

Shen, Y. & Fisher, L. (1999). Statistical inference for
self-designing clinical trials with one-sided hypothesis,
Biometrics 55, 190-197.

Stein, C. (1945). A two-sample test for a linear hypoth-
esis whose power is independent of the variance, Annals
of Mathematical Statistics 16, 243—258.

Wittes, J. & Brittain, E. (1990). The role of internal
pilot studies in increasing the efficiency of clinical trials,
Statistics in Medicine 9, 65-72.

Wittes, J.T., Schabenberger, O., Zucker, D.M., Brit-
tain, E. & Proschan M. (1999). Internal pilot studies I:
type I error rate of the naive t-test, Statistics in Medicine
18, 3481-3491.

Zucker, D. & Denne, J. (2002). Sample size redeter-
mination for repeated measures studies, Biometrics 58,
548-559.

Zucker, D.M., Wittes, J.T., Schabenberger, O. & Brit-
tain, E. (1999). Internal pilot studies II: compari-
son of various procedures, Statistics in Medicine 18,
3493-3509.

JANET WITTES



Adaptive Sampling

Animal populations are often highly clustered
(see Clustering). For example, fish can form large,
widely scattered schools with few fish in between.
Even rare species of animals may form small groups
that are hard to find. Applying standard sampling
methods such as simple random sampling of plots
to such a population could yield little information,
with most of the plots being empty. Adaptive cluster
sampling, the most well-known form of adaptive
sampling, is based on the simple idea that when some
animals are located on a sample plot, the neighboring
plots (and possibly their neighbors as well) are added
to the sample. The hope is to find the whole cluster.
Methods of estimation were initially developed in
the three pioneering papers of Thompson [27-29]
and the sampling book by Thompson [30]. The
methodology is described in detail by Seber &
Thompson [38], and by Thompson & Seber [51].

Adaptive Methods

With adaptive sampling, the selection of sampling
units (or plots) at any stage of the process depends on
information from the units already selected. Sequen-
tial sampling could therefore be regarded as an adap-
tive method of sampling, but with the sample size
rather than the method of selecting the units being
adaptive. We note that the network (multiplicity)
sampling introduced by Sirken and colleagues [39]
(see [21] for references) is different from adaptive
sampling, though they both use the idea of a network.

Adaptive cluster sampling, which we discuss in
detail below, is the most common adaptive method.
It is a form of biased sampling, technically known
as unequal probability sampling, which arises when
sampling clusters of different sizes. The probability of
selecting a plot will depend on the size of the animal
cluster in which the plot is embedded. We find, not
surprisingly, that the standard Horvitz—Thompson
(HT) and Hansen—Hurwitz (HH) estimators for un-
equal probability sampling (cf. [16] and [18]) can be
modified to provide unbiased estimators.

Another adaptive method, which has been des-
cribed as adaptive allocation, can be used when the
population is divided up into strata or primary units,
each consisting of secondary units. An initial sample

of secondary units is taken in each primary unit. If
some criterion is satisfied, for example the average
number of animals per sampled unit in the primary
unit is greater than some prechosen number, then
a further sample of units is taken from the same
primary unit. Kremers [22] developed an unbiased
estimator for this situation. If the clumps tend to
be big enough so that they are spread over several
primary units, we could use what is found in a
particular primary unit to determine the level of
the sampling in the next unit. This is the basis for
the theory developed by Thompson et al. [49]. Other
forms of augmenting the initial sample which give
biased estimates are described by Francis [14, 15] and
Jolly & Hampton [19, 20].

Adaptive Cluster Sampling

As indicated briefly above, adaptive cluster sampling
begins with an initial sample and, if individuals
are detected on one of the selected units, then the
neighboring units of that unit are sampled as well. If
further individuals are encountered on a unit in the
neighborhood, then the neighborhood of that unit is
also added to the sample, and so on, thus building
up a cluster of units. If the initial sample includes a
unit from a clump, then the rest of the clump will
generally be sampled. Such an approach will give us
a greater number of individuals.

To set out the steps involved in adaptive cluster
sampling, we begin with a finite population of N
units (plots) indexed by their “labels” (1,2, ..., N).
With unit i is associated a variable of interest y;
for i =1,2,..., N. Up till now we have referred
to y; as the number of animals on the ith unit.
However, as well as counting numbers of individuals,
we may wish to measure some other characteristic
of the unit, for example plant biomass or pollution
level, or even just note the presence or absence of
some characteristic using an indicator variable for
y;. In addition to rare species and pollution studies,
we can envisage a wide range of populations that
would benefit from adaptive sampling, for example
populations which form large aggregations such as
fish, marine mammals, and shrimp. It has also been
used for sampling animal habitats [28], and we can
add mineral deposits and rare infectious diseases in
human populations (e.g. AIDS) to our list. Having
defined y;, our aim is to select a sample, observe the
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y values for the units in the sample, and then estimate
some function of the population y values such as
the population total Zf\’: 1 yi =t or the population
mean p = t/N. Before sampling begins we need to
do three things.

The first is to define, for each unit i, a neighbor-
hood consisting of that unit and a set of “neighboring”
units. For example we could choose all the adjacent
units with a common boundary which, together with
unit i, form a “cross”. Neighborhoods can be defined
to have a variety of patterns; the units in a neighbor-
hood do not have to be contiguous. However, they
must have a “symmetry” property, that is if unit j is
in the neighborhood of unit i, then unit i is in the
neighborhood of unit j. We assume, for the moment,
that these neighborhoods do not depend on y;.

The next step is to specify a condition C (for
instance, y > ¢ where ¢ is a specified constant),
which determines when we add a neighborhood or
not, and the third step is to decide on the size of the
initial sample size n;.

We begin the sampling process by taking an initial
random sample of n; units selected, usually with-
out replacement (see Sampling With and Without
Replacement), from the N units in the population.
Whenever the y value of a unit i in the initial sam-
ple satisfies C, all units in the neighborhood of unit
i are added to the sample. If, in turn, any of the
added units satisfies the condition, still more units
are added. The process is continued until a cluster
of units is obtained which contains a “boundary” of
units called edge units that do not satisfy C. If a
unit selected in the initial sample does not satisfy C,
then there is no augmentation and we have a cluster
of size one. The process is demonstrated in Figure 1
where the units are plots and the neighborhood forms
a cross. Here y; is the number of animals on plot
i and ¢ = 0 so that a neighborhood is added every
time animals are found. In Figure 1(a) we see one
of the initial plots which happens to contain one ani-
mal. As it is on the edge of a “clump” we see that
the adaptive process leads to the cluster of plots in
Figure 1(b).

We note that even if the units in the initial sample
are distinct, as in sampling without replacement,
repeats can occur in the final sample as clusters may
overlap on their edge units or even coincide. For
example, if two nonedge units in the same cluster are
selected in the initial sample, then that whole cluster
occurs twice in the final sample. The final sample

.o.:o .-.of/

(a) (b)

Figure 1 (a) Initial sample plot; (b) cluster obtained by
adding adaptively

then consists of n; (not necessarily distinct) clusters,
one for each unit selected in the initial sample.

Unbiased Estimation

Although the cluster is the natural sample group,
it is not a convenient entity to use for theoretical
developments because of the double role that edge
units can play. If an edge unit is selected in the
initial sample, then it forms a cluster of size 1. If it is
not selected in the initial sample, then it can still be
selected by being a member of any cluster for which
it is an edge unit. We therefore introduce the idea
of the network A; for unit i which is defined to be
the cluster generated by unit i but with its edge units
removed. In Figure 1(b) we get the sampled network
by omitting the empty units from the sampled cluster.
Here the selection of any unit in the network leads to
the selection of all of the network. If unit i is the only
unit in a cluster satisfying C, then A; consists of just
unit i and forms a network of size 1. We also define
any unit which does not satisfy C to be a network of
size 1 as its selection does not lead to the inclusion
of any other units. This means that all clusters of
size 1 are also networks of size 1. Thus any cluster
consisting of more than one unit can be split into a
network and further networks of size 1 (one for each
edge unit). In contrast to having clusters which may
overlap on their edge units, the distinct networks are
disjoint and form a partition of the N units.

Since the probability of selecting a unit will
depend on the size of the network it is in, we are
in the situation of unequal probability sampling and
the usual estimates based on equal probability sam-
pling will be biased. However, as already mentioned,
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we can consider the Horvitz—Thompson (HT) and
Hansen—Hurwitz (HH) estimators, the latter being
used in sampling with replacement. These estima-
tors, however, require that we know the probability
of selection of each unit in the final sample. Unfortu-
nately these probabilities are only known for units in
networks selected by the initial sample, and not for
the edge units attached to these networks. For exam-
ple, the probability 7r; that an initial sampling unit
falls in the network containing unit i is

() /()

where m; is the number of units in this network.

Therefore, in what follows, we ignore all edge
units that are not in the initial sample and use only
network information when it comes to computing the
final estimators. Motivated by the HT estimator for
the population mean p, we consider

RN &
o Ngy"Eu,-]’

where [; takes the value 1 if the initial sample
intersects network A;, and O otherwise. It is clear
that i is an unbiased estimator for sampling with or
without replacement.

Another possible estimator (motivated by the HH
estimator) that is also obviously unbiased for sam-
pling, with or without replacement, is

IS f

where f; is the number of times that the ith unit
in the final sample appears in the estimator, that is
the number of units in the initial sample which fall
in (intersect) A; determined by unit i. We note that
fi = 0 if no units in the initial sample intersect A;.
It can be shown that

ny

.1 —
M:— w; =w,

say, where w; is the mean of the observations in A;,
i.e. w is the mean of the n; (not necessarily distinct)
network means. Di Consiglio & Scanu [12] studied
the asymptotic behaviors of (i and ji. They proved
that, under suitable conditions, Hajek’s theorem [17]

for asymptotic normality distribution can be applied
to both estimators. However, confidence intervals
based on asymptotic approximations may not be
appropriate when the sample size is relatively small.
Christman & Pontius [9] used several bootstrap per-
centile methods for constructing confidence intervals
under adaptive cluster sampling. They showed, in a
simulation study, that the coverage by the bootstrap
method was closer to nominal coverage than the nor-
mal approximation.

In addition to the above two types of estimator,
there is a third type of estimator that can be used.
Since a network can be selected more than once, a
more efficient design might be to “remove” a network
from further consideration once it has been selected,
i.e. select networks without replacement. We can than
use an estimator due to Murthy [26]; details are given
by Salehi & Seber [33]. Salehi & Seber [35] gave a
direct proof of Murthy’s estimator which extends the
use of this estimator to sequential and some adaptive
sampling schemes.

Rao-Blackwell Modification

In the above unbiased estimates that we introduced,
we did not make use of the y values from the edge
units. With this loss of information we would expect
to be able to find more efficient estimates using all
the sample data. We now show how we can do this.

An adaptive sample can be defined as one
for which the probability of obtaining the sample
depends only on the distinct unordered y observa-
tions in the sample, and not on the y values outside
the sample. In this case d, the set of distinct unordered
labels in the sample together with their associated y
values, is minimal sufficient for w. This is proved
for “conventional designs” by Cassel et al. [7] and
Chaudhuri & Stenger [8], and their proofs readily
extend to the case of adaptive designs. (This exten-
sion is implicit in [2] and it is given in [51].) This
means that an unbiased estimator that is not a func-
tion of d can be “improved” by taking the expectation
of the estimator conditional on d to give an esti-
mator with smaller variance. For example, consider
three unbiased estimators of p, namely y, (the mean
of the initial sample of n; units), ft, and fi. Each
of these depends on the order of selection as they
depend on which n; units are in the initial sample;
[ also depends on repeat selections; and when the
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initial sample is selected with replacement, all three
estimators depend on repeat selections. Since all three
estimators are not functions of the minimal sufficient
statistic d we can apply the Rao-Blackwell theo-
rem. If 7 is any one of the three estimators, then
E[T|d] will give a better unbiased estimate, i.e. one
with smaller variance. We find that this estimator now
uses all the units including the edge units. Salehi [30],
using an approach based on the inclusion—exclusion
formula, has derived analytical expressions for the
Rao-Blackwell version of the modified HH and
HT estimators and their variance estimators. Felix-
Medina [13], using a different approach, has also
derived analytical expressions for their variances.

Applications and Extensions

In applications, other methods are sometimes used for
obtaining the initial sample. For instance, in forestry
the units are trees, and these are usually selected by
a method of unequal probability sampling where the
probability of selecting a tree is proportional to the
basal area of a tree (the cross-sectional area of a
tree at the basal height — usually 4.5 feet in the US).
Roesch [29] described a number of estimators for this
situation and derivations are given in [51].

In ecology, larger sample units other than single
plots are often used. For example, a common sam-
pling unit is the strip transect, which we might call
the primary unit. In its adaptive modification, the strip
would be divided up into smaller secondary units,
and if we find animals in one of its secondary units
we would sample units on either side of that unit,
with still further searching if additional animals are
sighted while on this search. Strips are widely used
in both aerial and ship surveys of animals and marine
mammals.

Here the aircraft or vessel travels down a line
(called a line transect) and the area is surveyed on
either side out to a given distance. Thompson [44]
showed how the above theory can be applied to this
sampling situation. He pointed out that a primary unit
need not be a contiguous set of secondary units. For
example, in some wildlife surveys the selection of
sites chosen for observation is done systematically
(with a random starting point) and a single systematic
selection then forms the primary unit (see Systematic
Sampling Methods). We can then select several such
primary units without replacement and add adaptively

as before. Such a selection of secondary units will
tend to give better coverage of the population than a
simple random sample. Acharya et al. [1] used sstem-
atic adaptive cluster sampling (SACS) to sample three
rare tree species in a forest area of about 40ha in
Nepal. They checked its applicability and showed
that, for some cases, its efficiency of density esti-
mation relative to conventional systematic sampling,
increased by up to 500%.

Clearly other ways of choosing a primary unit
to give better coverage are possible. Munholland &
Borkowski [24, 25] and Borkowski [3] suggest using
a Latin square +1 design selected from a square
grid of secondary units. The Latin square gives a
secondary unit in every row and column of the grid,
and the extra (i.e. 4+1) unit ensures that any pair of
units has a positive probability of being included in
the initial sample. The latter requirement is needed
for unbiased variance estimation. Salehi [31] sug-
gested using a systematic Latin square sampling +1
design selected from a rectangular grid of secondary
units.

In some situations it is hard to know what ¢
should be for the condition y > ¢. If we choose ¢
too low or too high we end up with a feast or famine
of extra plots. Thompson [48] suggested using the
data themselves, in fact the order statistics. For
example, ¢ could be the rth largest y value in the
initial sample statistic so that the neighborhoods are
now determined by the y values. This method would
be particularly useful in pollution studies where the
location of “hot spots” is important. In a study of
contaminated sites, the advantages and disadvantages
of this sampling scheme, when used along with
composite sampling, have been discussed briefly by
Correl [11].

Another problem, regularly encountered with ani-
mal population studies, is that not all animals are
detected. Thompson & Seber [50] developed tools for
handling incomplete detectability for a wide variety
of designs including adaptive designs thus extending
the work of Steinhorst & Samuel [42]. In the presence
of incomplete detection, Pollard and Buckland [27]
developed an adaptive sampling method in shipboard
line transect survey. The survey effort is increased
when the number of observation exceeds some limit.
This increase is achieved by zigzagging for a period,
after which the ship returns to the nominal (straight
line) cruise track. They use distance sampling theory
(see [6] to find the estimator.
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Often we are in a multivariate situation where
one needs to record several characteristics or mea-
surements on each unit, e.g. the numbers of different
species. Thompson [47] pointed out that any function
of the variables can be used to define the criterion C,
and obtained unbiased estimates of the mean vector
and covariance matrix for these variables.

We can use any of the above methods in con-
junction with stratification. If we do not allow the
clusters to cross stratum boundaries, then individual
stratum estimates are independent and can be com-
bined in the usual fashion. However, Thompson [45]
extended this theory to allow for the case where
clusters do overlap. Such an approach makes more
efficient use of sample information.

Finally we mention the “model-based” or “super-
population” approach (cf. Sérndal et al. [37], for
example). Here the population vector y of y values
is considered to be a realization of a random vector
Y with some joint distribution F, which may depend
on an unknown parameter ¢. In a Bayesian frame-
work ¢ will have a known prior distribution. For
this model-based approach, Thompson & Seber [51]
indicate which of the results for conventional designs
carry over to adaptive designs and which of those do
not. They also show in their Chapter 10 that optimal
designs tend to be adaptive.

Relative Efficiency

An important question one might ask about adaptive
sampling is “How does it compare with, say, sim-
ple random sampling?” This question is discussed by
Thompson & Seber [51, Chapter 5] and some guide-
lines are given. Cost considerations are also impor-
tant. Simple examples given by them throughout their
book suggest that there are large gains in efficiency
to be had with clustered populations. Clearly, it will
depend on the degree of clustering in the population.
Two simulation studies that shed some light on this
are given by Smith et al. [40] and Brown [4]. These
two studies suggested that the HT estimator is more
efficient than the HH estimator. Salehi [32] found
some support for this analytically, and recommended
use of the HT estimator despite the HH estimator
being easier to compute.

Adaptive cluster sampling is an efficient method
for sampling rare and clustered populations when
cluster sizes are large relative to unit sizes. Smith

et al. [41] used adaptive cluster sampling for esti-
mating the density of freshwater mussel populations.
Since some of the populations were rare and clus-
tered, but with small cluster sizes, adaptively added
units were mainly edge units, with little or no gain
in efficiency.

Designing an Adaptive Survey

There are several problems associated with adaptive
sampling. First, the final sample size is random and
therefore unknown. Furthermore, as we saw above,
the unit selection probabilities depend on the initial
sample size n;. How then can we use a pilot survey,
for example, to design an experiment with a given
efficiency or expected cost — an approach which is
used for conventional designs such as simple random
sampling? Secondly, if an inappropriate criterion C
for adding neighborhoods is used, then there may be a
“feast or famine” of sampling units. If too many units
are being added at each initially selected unit then we
end up sampling too many units. Alternatively we
might not get enough units. Thirdly, a lot of effort
can be expended in locating initial units as we must
travel to the site of each such unit.

Recently, a two-stage scheme has been developed
by Salehi & Seber [34] which helps us to deal with
all three problems in a reasonably optimal manner.
To use this scheme, we divide the population of (sec-
ondary) units into, say, M primary sampling units
(PSUs), each containing Ny = N /M secondary units.
A simple random sample of m primary units is then
taken and adaptive cluster sampling is carried out
in each of the selected primary units using an ini-
tial sample of ng units. We again have two schemes,
depending on whether networks are allowed to cross
PSU boundaries or not, and two estimators (HT and
HH) for each scheme. To design such an experiment,
we use the HT estimator with nonoverlapping bound-
aries and choose a pilot sample of m, PSUs but with
the same initial sample size of ng units in each of the
selected primary units. The theory based on the pilot
survey now works, that is, we can now determine m
to achieve a given efficiency or cost. The reason for
this is that the network selection probabilities in a
PSU are the same for both the pilot survey and the
survey planned; both depend on ny.

Another method of controlling the overall sample
size is to use a method called restricted adaptive
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cluster sampling, proposed by Brown & Manly [5].
Here the units are selected sequentially for the initial
sample until a desired sample size is reached. The
sampling therefore “restricts” the initial sample to one
that produces a final sample size that is either at or
just over the defined limit. The HT and HH estimators
are now biased but under some circumstances the
bias can be estimated well by bootstrapping. Lo
et al. [23] used the restricted method to estimate
Pacific hake larval abundance.

Salehi & Seber refno36 provided an unbiased
estimator for the restricted method. Using a simu-
lation study, they showed that the unbiased estimator
has a smaller mean square error than the biased
estimators. They also considered a restricted method
when the networks are selected without replacement
and obtained its unbiased estimator. Christman and
Lan [10] introduced inverse adaptive cluster sam-
pling, which is a especial case of restricted adaptive
cluster sampling.
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Additive Hazard Models

While most modern analyses of survival data focus
on multiplicative models for relative risk using
proportional hazards models, some work has been
done on the development of additive hazard models.
Aalen’s additive regression model [1, 2, 6, 8] is a
general nonparametric additive hazard model of the
form:

> hx, (1)

where the A; are nonparametric hazard functions
associated with covariate x;, which may be time-
dependent. Andersen & Veath [3] discuss a special
case of this model of the form

B @) +y @), 2

where y () and B(¢t) are functions to be estimated and
w*(t) is a known function describing rates in some
reference population. McKeague & Sasieni [8] dis-
cuss a partly parametric version of (1). For inference
and other issues related to models (1) and (2) see
Aalen’s additive regression model. In what follows
we discuss a class of parametric additive hazard mod-
els that are of special interest in studies in which we
want to describe data on survival in terms of how the
excess risk (or rate) depends on one or more “expo-
sures”, and how these exposure-specific risks depend
on other factors, such as sex, age at exposure, or time
since exposure. These models are used extensively in
studies of radiation effects on cancer [10, 11] and
are applicable in a wide variety of occupational and
other studies.

In many applications it is useful to consider addi-
tive hazard models of the form:

)\'O(t7 ﬁOaZ0)+)\l(taﬂl7 Zl)a (3)
Aro(t, Bo, zo)[1 + A1 (2, B, z1)]- )

In these models, Xo(-) represents a background
hazard (rate) function that depends on time (¢), and
other covariates, zg, with parameters By, while A;(-)
describes the excess hazard (excess absolute rate)
(3) or excess relative risk (4) as a function of time
and covariates, z;, with parameters ;. In general,
covariates affecting the excess risk will include some
measure of exposure and may be time-dependent. It is
also common for some covariates, e.g. sex, to affect

both the background and excess risks. That is, some
covariates may appear in both zy and z;.

When working with parametric additive hazard
models one must specify functional forms for the
background and excess risks. In many problems log-
linear models provide an adequate description of
the background rates. Commonly used models for
the logarithm of the background rate are linear or
polynomial functions of ¢ or log(¢), though linear or
quadratic splines in ¢ or log(z) can also be useful.
Other covariates, such as sex or birth cohort, may
affect the intercepts or slopes in such models.

For an exposure, d, it is often useful to consider
excess risk models of the form

M) = pld, By (t, z, B1),

where we assume that other factors act multiplica-
tively on the shape of the dose-response function
p(-). Dose—response functions may be described
using linear, quadratic, linear spline, categorical, or
other functions of dose, while effect modification
is often modeled using loglinear functions of other
covariates.

For example, in an analysis of mortality from
cancers other than leukemia in Japanese atomic bomb
survivors over a 40-year period it was found that
the effect of radiation could be described quite well
using an additive excess relative risk model in which
the linear dose effect depends on sex and decreases
loglinearly with increasing age at exposure (agex)
with no significant effects of age. One way to write
this model for the excess relative risk is

A (-) = Bidose x exp(B, female + B3 agex),

where female is an indicator variable that is 1 for
women and O for men. An alternative model describ-
ing excess absolute cancer death rates for atomic
bomb survivors cancer data in terms of age at death

(age) is

A1(-) = Bi dose x exp|[B: In(age)]
= B dose x (age)”.

These two models were found to describe the excess
cancer risks equally well.



2 Additive Hazard Models

Generalizing the Models

There are a number of useful generalizations and
extensions of models (3) and (4). An important exten-
sion, which is closely related to model (1), general-
izes the simple standardized mortality ratio (SMR)
(see Standardization Methods) used in many epi-
demiologic studies. In particular, external data on
background rates can be incorporated into either
model by inclusion of these rates as a covariate in the
background term, which may also include additional
parameters to describe the ratio of the external back-
ground rates and the rates in the study population.
We can write this background rate model as

)"O(t7 205 ﬂo) = /J“*(t’ ZO)V(ZO, IBO)

Breslow et al. [5] discuss this multiplicative SMR
model in some detail; extension to additive hazard
models is straightforward.

Models (3) and (4) can also be extended to inves-
tigate the joint effects (see Synergy of Exposure
Effects) of multiple exposures by the inclusion of
additional excess hazard terms (for independent addi-
tive effects) or by allowing interactions between
different exposure effects in a single excess hazard
term.

Several authors (e.g. [4] and [9]) have proposed
hybrid parametric families with a continuous index
parameter y such that models like (3) and (4) cor-
respond to specific values of y. The method of
Aranda-Ordaz [4] involves the use of a hybrid fam-
ily that includes complementary log—log and nega-
tive complementary log models to analyze survival
data grouped into equal length intervals. This fam-
ily includes models in which the excess hazard or
the log relative risk are modeled as linear functions
of the covariates. Muirhead & Darby [9] proposed a
hybrid model of the form

{ro(t, Bo, 20)” + [1 + A2, Br, z0)]” — 1317,

When y equals 1 this corresponds to the excess
hazard model (4) and, in the limit as y approaches 0,
it corresponds to the excess relative model (3).

The primary use of these hybrid models is to com-
pare how well the data of interest are described by
models in which either the relative or absolute excess
risk is constant over time. It is generally easier and
more informative to address this question through a
simple comparison of the fits of time-constant excess

hazard and excess relative risk models, together with
analyses of the effect of allowing the excess hazards
or relative risks to depend on time. When excess risks
are allowed to depend on time there is usually little
difference in the fit of models (3) and (4). In this case,
the hybrid models contain little information about the
index parameter (i.e. the profile likelihood function
for y is quite flat).

Parameter Estimation and Inference

It is generally impractical to develop likelihood-based
estimating function equations for the use of fully
specified parametric models based on (3) and (4) with
ungrouped survival data. However, parameter estima-
tion for both of these classes of models is relatively
straightforward when done using Poisson regression
methods for grouped survival data. With suitable
Poisson regression software it is possible to fit a ver-
sion of model (4) in which the background hazard
is modeled using separate multiplicative parameters
for each time period, possibly, with stratification on
other factors. This model, which is closely related
to the stratified semiparametric proportional hazards
model, can be written

)\'O(tfzv ﬁ) = nsf)‘(zv ﬁ)v (5)

where the 7, is a parameter describing the hazard for
the 7th time period in a stratum, s, defined by other
factors.

Since model (4) is a proportional hazards model,
parameter estimation can also, in principle, be car-
ried out using partial likelihood or counting process
methods; in which case, the background rate would
be replaced by, or include, a nonparametric baseline
hazard function. Lin & Ying [7] outline a method
for fitting simple semiparametric additive excess
rate models (3) (see Semiparametric Regression) to
ungrouped data using counting process methods.

Unfortunately, since the additive models of inter-
est are almost always not simple linear or loglinear
functions of the covariates, standard Poisson regres-
sion and proportional hazards modeling software is
of little use in fitting these models. However, the
Epicure software package, which was designed for
working with general parametric and semiparametric
additive risk models, can compute maximum likeli-
hood estimates for a broad range of additive hazard
models.
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Since parameter estimation for additive hazard
models is generally carried out using likelihood
or partial likelihood methods, inference about
parameters of interest can be carried out using the
standard asymptotic methods, including Wald, score,
and likelihood ratio tests. However, because of
the nonlinear nature of the models and, in many
applications, the limited information on excess risks,
asymptotic standard errors and, hence, hypothesis
tests and confidence intervals based on Wald tests
can be quite misleading. Likelihood ratio tests and
profile likelihood-based confidence intervals are the
preferred methods of inference when working with
additive hazard models.

Hazard functions are, by definition, nonnegative.
This constraint is addressed implicitly by multiplica-
tive hazard models. However, for additive hazard
models it is possible that one of the components of
the hazard (usually the “excess”) can be negative. The
implicit constraint in model (3) is that 11 (-) > —X¢ ("),
while that for model (4) is () > —1. These implicit
constraints can make it difficult to fit additive haz-
ard models for some data sets. In simple excess risk
models, these constraints can be addressed by the
choice of the parameterization (e.g. modeling the log
of the linear dose—response slope) or by restricting
the range of some parameters (e.g. restricting a linear
dose—response slope in a simple linear excess rela-
tive risk model to be greater than minus one over
the maximum dose). However, these approaches are
inadequate for every problem.

Summary

Parametric additive hazard functions such as those
described in (3) and (4) are useful and, in some
settings, natural, alternatives to the semiparamet-
ric multiplicative hazards that have come to dom-
inate the analysis of survival data in recent years.
These models are especially useful for dose—response

analyses in which one is primarily interested in the
characterization of excess risks and how the excess
depends on other factors. Parameter estimation and
inference for additive hazard models is most eas-
ily carried out using nonlinear models and Poisson
regression methods for grouped survival data.
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Additive Model

It is common, though potentially confusing, in discus-
sions of risks and rates to make a distinction between
additive and multiplicative risk models (e.g. [1,
Chapter 4]). Under the additive or excess risk (rate)
model the risk is described as

R =Ry + E(2), (D

where Ry is the background risk and E(z) is an excess
risk function associated with “exposure”, z. Under the
multiplicative or relative risk model, “exposure” is
assumed to have a multiplicative effect on the rates:

R = Ry x RR(2), 2)

where RR(z) is the relative risk function.

The confusion in referring to (1) and (2) as addi-
tive and multiplicative models arises because the
functions used to describe the excess risk in (1) or
the relative risk in (2) can include both additive and
multiplicative components. In particular, the simple
excess relative risk model RR(z) = 1 + Bz is often
called an additive model. To make a clear distinc-
tion between the form of the risk function and the
nature of the functions used to model the compo-
nents of risk, it is best to describe (1) and (2) as
excess risk and relative risk models, respectively. If
this is done, then the term additive model can be used
to refer to excess or relative risk models that involve
additive components. With this definition of additive
models, excess risk models are intrinsically additive
because they always include the sum of background
and excess risks, while relative risk models may be
either multiplicative, e.g. RR(z) = exp(Bz), or addi-
tive, e.g. RR(z) = 1 4+ Bz. Thomas [4] and Breslow

& Storer [2] describe general relative risk functions
that include both additive and multiplicative models.
Realistic excess risk models often involve sums of
multiplicative models for the background and excess
risk functions. For example, in a dose—response anal-
ysis it might be appropriate to allow the excess risk
associated with a given dose (d) to depend on sex
(s) or time since exposure (¢) by considering a mul-
tiplicative model for the excess risk of the form

EWd,s,t) = Bigd x 1°.

Preston et al. [3] describe a general class of additive
models that are useful in working with either excess
or relative risks.

The articles on Parametric Models in Survival
Analysis and Poisson Regression in Epidemiology
describe some specific additive models and discuss
methods for parameter estimation and inference with
such models.
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Additive—-Multiplicative
Intensity Models

Introduction

The proportional hazards model introduced by Cox
(see Cox Regression Model) has been so dominant
in survival analysis that other models have had a
hard time getting the attention they deserve. The Cox
model is extremely useful and has many desirable
properties, but obviously also has some shortcom-
ings. One important shortcoming is that the model
has a hard time describing time-varying effects (non-
proportional effects), and although some work has
been aimed at extending the model to overcome
this problem [7, 9, 15], there is still some way
to a fully satisfactory apparatus to deal with time-
varying effects. Also, some covariates will have
effects that are not well described as being multi-
plicative, and some of the available tests may reveal
this [13].

One important alternative to the proportional haz-
ards model is the additive hazard model and, in par-
ticular, Aalen’s additive hazard regression model.
Aalen’s additive hazard regression model is com-
pletely nonparametric and includes covariates addi-
tively in the model thus leading to an excess risk
interpretation. The Aalen model is very flexible and
will estimate all covariate effects as time-varying
effects. A semiparametric version of the model was
suggested by McKeague and Sasieni [8] and in a spe-
cial case by Lin and Ying [4] (see Aalen’s Additive
Regression Model). One advantage of the additive
models is that time-varying effects are easy to esti-
mate (with explicit estimators) and that inferential
procedures for making conclusions about the time-
varying effects exist. The semiparametric version of
the model has not received much attention in practi-
cal work but has the advantage that explicit estimators
are given and that the flexibility of the Aalen model
can be used only for those covariate effects where
it is needed, whereas other covariate effects can be
described by parameters.

The additive and multiplicative models postulate
different relationships between the hazard and covari-
ates, and it is seldom clear which of the models
should be preferred. The models may often be used
to complement each other and to provide different
summary measures. Sometimes, however, covariate

effects are best modeled as multiplicative and other
covariate effects are best modeled as being additive,
and then one must combine the additive and multi-
plicative models.

Sometimes the data will only give little guidance
on whether a covariate effect should be described
as multiplicative or additive, but then the choice of
additive or multiplicative effects will not be criti-
cal for the interpretation of the data. We illustrate
in the example how certain tests can be used to
decide if a covariate has an additive or multiplicative
effect.

The additive and proportional hazard models may
be combined in various ways to achieve flexible and
useful models. We shall here consider two mod-
els that are based on either adding or multiply-
ing the multiplicative Cox model and the additive
Aalen model. This leads to two quite different mod-
els that are both quite flexible and useful. When
the models are added, it leads to the proportional
excess hazard models. Several parametric versions
of such models exist (see Additive Hazard Mod-
els). For the version of the proportional excess haz-
ard model considered here, the additive part can
be thought of as modeling the baseline mortality,
whereas the multiplicative part describes the excess
risk due to different exposure levels. When the mod-
els are multiplied, it leads to a flexible model termed
the Cox—Aalen model below. For this model, some
covariate effects are believed to result in multiplica-
tive effects, whereas other effects are better described
as additive. In the article on additive hazard models,
an example from cancer mortality is used to illus-
trate structures similar to those in the Cox—Aalen
model.

Some notation is needed. We here use the count-
ing process formulation. Assume that i.i.d. sub-
jects are observed over some observation period
[0,7] and give rise to counting process data
N;(s) with at risk indicator Y;(s), excess risk
indicator p;(¢), and (p + ¢)-dimensional covariates
(X[ (s), ZI(s)). Let N(t) = (N1(t), ..., N,(1))T be
an n-dimensional counting process and define matri-
ces X(1) = (1()X1(1), ..., ()X, (1)), X,(1) =
(P1X1 (1), ..., ()X, (1)", and  Z(1) = (Y (1)
Z\(t),...,Y1(t)Z,(t))". Finally, let diag(w;) denote
an n x n diagonal matrix with elements wy, ..., w,,
¢() = (P1(1), ... (1), where ¢ (1) = p;(1)
exp(ZiT(t),B) and define X (B,1) = (X,(¢), (1)), an
(p + 1) x n matrix (see Matrix Algebra).



2 Additive-Multiplicative Intensity Models

Proportional Excess Hazard Models

Lin and Ying [5] considered the following addi-
tive—multiplicative intensity model

A1) =Y (@) [8(ZT0B) + h(XTM)y)], (1)

where Y (¢) is an at risk indicator, (X (t), Z(¢)) is
a p + ¢ dimensional covariate vector, (8T, yT) is a
p + q dimensional vector of regression coefficients
and Ag(¢) is an unspecified baseline hazard. Both &
and g are assumed known. One problem with this
model is that only the baseline is time-varying and
therefore data with time-varying effects will often
not be well described by the model. When additional
time-varying effects are included in the model, the
model will get added flexibility and it turns out
that it is relatively simple to extend the model to
deal with time-varying effects such as in the flexible
additive—multiplicate intensity model [6], where the
intensity is of the form

A=Y @) [XT(Oa®) + p0) (o) exp{ZT(B}] ,
@

where both Y (t) and p(¢) are at risk (excess risk)
indicators, «(-) is a g-vector of time-varying regres-
sion functions, Ag(¢) is the baseline hazard of the
excess risk term, and B is a p-dimensional vector
of relative risk regression coefficients. The at risk
indicators Y (¢) and p(¢) may be equivalent as in the
Lin and Ying model, but sometimes one will have
a baseline group where there is no excess risk. It
should be verified that the model is identifiable. The
model is an extension of the Lin and Ying model
when g(x) = x and h(x) = exp(x) and the model
is the sum of an additive Aalen model and a Cox
model. Sasieni [10] considered the special case of
this model where aT(£)X;(¢) is replaced by a known
function of X;(r). We shall consider estimation of
the unknown parameters B, A(t) = fot a(s)ds and
A(t) = fot Mo(s)ds; see [6] for additional theoreti-
cal details. Essentially, the model reduces to Aalen’s
additive risk model for known § and this may be uti-
lized to obtain a score equation (see Likelihood) for
B that only depends on observed quantities. Zahl [14]
illustrated the use of the model with examples from
breast and colon cancer.

Using the matrix notation introduced above, we
can write an unweighted version of the score equation

for B as

U :/0 Z" (t)diag(¢: (1)1 — X (B, 1)

< (X (B.0X(B. 0} X (B.01AN(1) =0, (3)

where ¢; (1) = pi (1) exp(Z;(1)" ).
Now, denoting the solution to the score equation
as B, we estimate B = (A(¢), A(t)) by

-1

E(o:fo [X'B.oxd.n] X' B.navo.
)

An alternative estimation strategy is to iterate
between fitting the model with 8 or A(¢) known [14].

The model extends both the Cox and the Aalen
model and may have potential use to investigate
goodness of fit for these models.

The Multiplicative Cox—Aalen Model

A different way of combining additive and multi-
plicative models are given by the Cox—Aalen model
[11, 12]

A () = Y0 [XT O] exp(ZI)B).  (5)

The Cox—Aalen allows a very flexible (additive)
description of covariate effects of X;(t) while
allowing other covariate effects to act multiplicatively
on the hazard. One alternative way of thinking
about the model is to consider it as an
approximation to the general stratified hazard model
A, X; (1)) exp(Z,-T(t)ﬁ) suggested by Dabrowska [1].
Compared to the Dabrowska model, some structure is
introduced to make the estimation easier and to help
facilitate the interpretation of the covariate effects.

To estimate the parameters of the model, an
approximate maximum likelihood score equation is
suggested and the estimators are studied in [11, 12].
The key to solving the model is to notice that for
known B we have a usual Aalen model where the
nonparametric terms can be estimated.

To estimate the regression parameter 8, we solve
the score equation

U =/ Z'0 - W, X (1)
0

X AXTOW @, X)) ' X ()]dN@) =0, (6)
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where W (¢, B) = diag(exp(Z;(¢)TB)). This score eq-
uation reduces to Cox’s partial score equation when
X)) =@, ..., Y,()T. An estimator of the cum-
ulative baseline A(¢) = fot a(s)ds is

Ar) = / {XT(I)W(t, ,é)X(t)]_] XT(1)dN@).
0
@

Note the strong resemblance with the Aalen esti-
mator. These estimators may be improved by the use
of weight matrices.

Effect-modification

For models where effects are modeled solely as
either multiplicative or additive, effect-modification
is just another word for interaction (see Effect
Modification) on the chosen scale. For the addi-
tive—multiplicative models considered in the sections
“Proportional Excess Hazard Models” and “The Mul-
tiplicative Cox—Aalen Model”, however, this is no
longer valid.

Generally, multiplicative effects will lead to some
interaction on the hazard, and additive effects will
lead to interaction on the log-hazard. For the pro-
portional excess model, both the multiplicative and
additive effects will lead to interaction on the overall
log-hazard. The model is constructed to give multi-
plicative effects on the excess risk. The multiplicative
effects of the Cox—Aalen model are linear on the
log-hazard and lead to interaction on the hazard, and
vice-versa for the additive effects of the model.

Assume, for example, that gender has a multiplica-
tive effect on some hazard, with males having relative
risk & compared to that of females, and that some
treatment has an additive (or multiplicative) effect,
with treated having intensity A;(¢) and untreated hav-
ing intensity Ao (z). Then the treated females will have
excess risk e(t) = A;(t) — Ao(t), whereas the excess
risk for males will be modified by the effect of gender
to fe(t). Note that these properties refer specifically
to the chosen scale at which one considers covariate
effects.

The Cox—Aalen model has the useful property
that it allows effect-modification of the covariates
included in the proportional part of the model,
some examples of the use of such a model is
given under additive hazard models. Note, that the

effect-modification, however, must be the same for
all effects in the additive part of the model (just as in
the Cox model). The model may be extended to allow
different effect-modification for the different effects
in the additive model.

Example

To illustrate the use of the Cox—Aalen model, we
consider the data that was also used to illustrate
the use of the Aalen model (see Aalen’s Additive
Regression Model). The data are given in [2] and
gives the survival on 418 patients with primary biliary
cirrhosis. The source of our data set is the survival
package of S-Plus/R (see S-PLUS and S; R). The
following covariates were used for the modeling:
age, log(albumin), bilirubin (dichotomized as 0 when
bilirubin is less than 3.25mg/dL and 1 otherwise),
edema (present/not present), and log(prothrombin).
To resemble the analysis for the additive risk model
as closely as possible, we only consider the data for
the first 3000 days.

First, considering the Cox model to fit the data,
a modified version of the cumulative score test [3]
(see [12]) showed that log(prothrombin) had a non-
proportional effect with a P value at 0.001. We
therefore included log(prothrombin) in the additive
part of the model. With log(prothrombin) in the addi-
tive part of the model, a similar score test revealed
that edema had nonproportional effects (p = 0.04).
So even though the test statistic is not dramatic, it
seems preferable with a more flexible description of
the effect of edema.

We therefore consider the Cox—Aalen model with
baseline, edema and log(prothrombin) as additive
components and age, log(albumin), bilirubin as mul-
tiplicative effects. The score test for proportional
effects gave P values 0.12 for bilirubin, 0.91 for
age and 0.81 for log(albumin). The covariates age
and log(albumin) were centered to give a meaning-
ful interpretation of the additive part of the model.
The log-relative risk estimates (standard error) were
1.46 (0.19) for bilirubin, 0.033 (0.0073) for age, and
—2.58 (0.57) for log(albumin).

Figure 1 gives the cumulative effect of edema,
whose shape resembles that of the estimate from
Aalen’s additive risk model. Denote the cumulative
effect of edema as A.(¢). Now, for a subject with
mean age and mean log(albumin) and bilirubin (less
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Figure 1 Cumulative regression function for time-varying
excess risk effect of edema with 95 % pointwise confidence
intervals

than 3.25), the presence of edema leads to a survival
that lowered by exp(—A.(¢) (relative survival). For
a subject with proportional effects leading to a total
relative risk at R, however, the relative survival is
exp(—R - A, (1)).

Software

Software to fit the models using R (S-plus) is avail-
able from www.biostat.ku.dk/~ts
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Administrative Databases

Administrative databases are derived from informa-
tion routinely and systematically collected for pur-
poses of managing a health care system [8]. Over
the last few years, hospitals and insurers have often
used such data to examine admissions, procedures,
and lengths of stay. Because of new technologies
allowing linkages between databases (see Record
Linkage) and the increasing availability of compre-
hensive population information, studies using admin-
istrative data no longer need focus just on the
amount and type of care. Instead, the accessibil-
ity and breadth of administrative data have made
them a more general resource for the study of
both health and health care (see Health Services
Research, Overview) [56].

Questions such as the following can be approached
using population-based administrative data:

1. How does the use of procedures, medica-
tions, and other health services vary with per-
sonal characteristics, such as age, gender, race,
income, and health status (see Descriptive Epi-
demiology; Health Care Utilization Data)?

2. How does the use of these services vary with the
source or mechanism of payment (see Health
Care Financing)?

3. How does the use of these services vary across
hospitals, communities, and regions (see Small
Area Variation Analysis)?

4. How do the short-term and long-term outcomes
of health care vary with personal, payer,
and geographic or system characteristics
(see Outcomes Research)?

5. How do total health care costs, and the distri-
bution of component costs, vary with personal,
payer, and geographic or system characteristics?

6. Is high use of specific health services associated
with better outcomes? Are unhealthy popula-
tions “underserved” by the health care system?

7. How have the use of health services and the
outcomes of care changed over time?

8. What is the appropriate level of health care
resources for a population or region?

9. In what areas is the health care system consum-
ing excess resources and, therefore, deserving
of regulatory or market constraints?

10. How are the outcomes and processes of health
care related? Which physicians, hospitals, nurs-
ing facilities, and health plans have the best out-
comes and processes of care? How can the qual-
ity of care provided elsewhere be improved?

11. How does the natural history of disease vary
with personal and geographic characteristics?
How has it changed over time?

12.  Are diagnostic or therapeutic methods as effec-
tive in the community as they are in ran-
domized controlled trials (see Clinical Trials,
Overview)?

Figure 1 presents a view of an ideal administra-
tive database with a research registry playing a central
role. Such a registry, with its ability to generate mean-
ingful information on each individual’s life course,
helps multiply the number of health and health care
studies that can be performed. Nonetheless, each of
the associated files — alone or in conjunction with
others — may permit important research.

This article provides an overview of the use
of administrative databases for research on clini-
cal epidemiology, health services, and population
health. We wish to present a framework for under-
standing how administrative data can accurately and
cost-effectively generate health and health care infor-
mation for communities and populations.

Common Types of Administrative Data

The inclusiveness of administrative databases is
strongly related to the requirements of health
insurance plans and regulatory agencies. In Canada,
where the population of each province is covered
by a single insurance plan, health care data are
comprehensive. The more complicated situation in
the US has resulted in a loss of important utilization
data associated with the Medicare and Medicaid
programs [73]. In other developed countries, many
administrative data files hold information about
eligibility or enrollment, life events, claims and
services, special programs, and providers. We present
a brief overview of each type of file in what follows.

Registries

A population registry incorporates information on
birth, death, mobility within a catchment area (such as



2 Administrative Databases

Personal
\ care home

Population - based
research
registry

Provider

Pharmaceutical

Figure 1 An ideal administrative database

a province), and in- and out-migration for all people
enrolled with an insurance or benefit plan. A registry
is essential for following a study cohort (see Cohort
Study), providing denominators for analyses of rates,
and updating data for each enrolled individual. When
administrative registries are compared and combined
into a research registry which accurately defines the
health insurance status for each resident over many
years the value of the tool is enhanced [64].

A research registry permits extensive checks on
“subject misidentification”. If an individual’s identi-
fiers are incorrect, utilization, loss to follow-up, and
mortality may be misassigned. In one study, a lack
of adjustment for women who were not appropriately
identified, because they either left the province or
changed their health care number, led to a serious
underestimate of the number of women who may
have developed cancer following breast augmenta-
tion [4].

Standardized systems for updating and reviewing
the quality of registry data are critical. Typical
checks on the accuracy of a population registry
rely on other sources of information (disease
registers, vital statistics files, census data, etc.).
Such checks include comparisons between the
number and characteristics of individuals in particular
categories (such as age/gender/place of residence)
with aggregate statistics from organizations such as
the census [28, 64]. Often, there are opportunities
to compare registry information on individual
mortality and loss to follow-up with primary data
collection; these comparisons are particularly useful
in uncovering errors affecting a small percentage of
the population.

Life Events

Acquiring and maintaining up-to-date demographic
information generally requires integrating files from
different sources. Life events such as birth (date and
place), marriage (date and place), and death (date,
place, and cause) are typically recorded in vital statis-
tics files. In Canada, vital statistics files need to be
better coordinated with utilization data maintained by
provincial health departments to provide a standard
health registration number on all death records.

In the US, linkages between vital statistics and
health care utilization files (see Record Linkage)
are rather unusual. However, the Medicare Provider
Analysis and Review dataset from the Health Care
Financing Agency is linked to an enrollment file
indicating the date of death. Some states, such as
California, have also linked patient discharge data
to birth and death records. Both Canadian (through
the Statistics Canada Mortality File) and American
statistical agencies (through the National Center for
Health Statistics’ National Death Index) provide an
additional route for funded investigators to access
mortality data.

Claims and Services

Physician services recorded in an administrative data-
base may include information regarding physician
visits, surgical procedures, immunizations, prescrip-
tion drugs, and diagnostic tests such as Papanicolaou
tests. Descriptive fields identify the patient, the physi-
cian, and, where relevant, the institution. Typically,
each claim describes a single service or event for a
specific patient by a specific provider on a single date.
If a single visit results in several billable services,
more than one computer record may be generated;
attention to detail is critical so that a single test or
service is not counted twice (see Drug Ultilization
Patterns).

Documentation requirements affect the extent to
which any recording system captures a population’s
ambulatory care patterns. In Manitoba, neither visits
to the provincial cancer foundation (after the first) nor
visits to health care providers other than physicians
are recorded. However, because of the frequency of
fee-for-service care and the requirement that salaried
physicians submit “dummy” claims, from 90% to
98% of all physician-provided ambulatory care is
captured in the existing system.
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Administrative files describing hospital or nursing
home stays are often maintained by regulatory agen-
cies or provider associations. Each hospital discharge
abstract describes services provided to a patient dur-
ing a specified period in that facility. Most hos-
pital discharge files are similar, including patient
identifiers, demographic information such as gender
and age or birth date, dates of admission and sep-
aration (discharge), diagnostic codes, payer source
and charges, and procedure codes for all surgery
(see Classifications of Medical and Surgical Pro-
cedures). Files for nursing home stays are similar but
usually include little, if any, diagnostic and surgical
information.

Although many private and government programs
maintain files that describe individuals’ use of their
services, the agency managing the data must be will-
ing to permit linkage (see Record Linkage). Ser-
vice files may be maintained by nutrition programs
(e.g. the Women, Infants, Children program in the
US), immunization programs, local public health pro-
grams, education and rehabilitation programs, special
programs for children with developmental disorders,
and various voluntary agencies.

Provider Data

Physician information will obviously depend on the
requirements of the relevant insurer or registrar. Items
such as age, sex, education, specialty, and experience
are likely to be available. Such data are particularly
useful for physician manpower planning (see Health
Workforce Modeling) and for comparisons of prac-
tice patterns among different types of physicians.
Health care organizations often submit data about
their organizational, structural, and financial charac-
teristics to trade associations and regulatory agencies.
This information can be linked to individual-level
data, so that differences in the utilization, costs, and
outcomes of health care can be correlated with institu-
tional characteristics. This permits testing hypotheses
related to the impact of hospital size, ownership,
teaching status, financial health, intensive care avail-
ability, and nurse staffing levels. Provider informa-
tion collected by trade associations may be relatively
difficult to obtain or may be incomplete because par-
ticipation in the data system is typically voluntary.

Uses of Administrative Data

As fiscal restraint and organizational change continue,
administrative databases can help to answer questions
regarding the complex interplay among population
characteristics, health status (see Quality of Life and
Health Status), and health care utilization patterns.
Such analyses can target health reform efforts, high-
light the correlates of apparent overuse or underuse,
and identify low-variation and high-variation services
for which discretion plays a greater role (see Health
Care Utilization Data; Drug Utilization Patterns).
Differences in utilization can be related to:

1. Individual characteristics, such as age, gender,
race, income, education, medical history, and
comorbidity.

2. Payer characteristics, such as the source and
method of payment [15, 42].

3. Characteristics of health care organizations, such
as teaching status, size, ownership, location, and
staffing levels [20].

4. Characteristics of small areas,
provinces, and countries [22, 74].

states and

Studies comparing the use of specific health ser-
vices may provide important information for manag-
ing the delivery of preventive health services to an
entire population (e.g. opthalmologic examination of
diabetic patients), for directing additional resources to
generally underserved individuals, and for redesign-
ing health care organizations to deliver higher prior-
ity services [72]. Administrative data are particularly
important for evaluating the impact of changes in
the health care system, such as capitating physician
payment, restricting pharmaceutical formularies, and
closing hospital beds.

Profiling physician use of health services is a
popular application in the 1990s [3]. Hospitals pro-
file their physicians’ length of stay pattern and their
prescribing of high-cost medications. Health plans
describe physician choice of screening tests, as well
as their subspecialty referral rates and hospitaliza-
tion rates. Such studies have revealed, for example,
that physicians vary considerably in their use of
Papanicolaou testing, with some overtesting and oth-
ers markedly undertesting relative to current guide-
lines [65]. Physicians also vary in their management
of breast cancer and in their proclivity to hospitalize,
even after controlling for patient characteristics [21,
61]. Disease-specific utilization measures that assess
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ambulatory care quality and access have several uses:
to reward physicians who use preventive services
appropriately, to counsel physicians who do not, and
to channel patients away from primary care physi-
cians who overuse technology-intensive and subspe-
cialty services [46].

In the US, administrative data are also being used
to profile health care delivery systems, such as health
maintenance organizations (HMOs) and independent
practice associations (IPAs). Large employers and
employer coalitions have pressured health insurance
plans to produce information on quality as well
as on price. In response, the National Committee
for Quality Assurance [48] developed a Health Plan
Employer Data Information System (HEDIS) which
includes a set of quality indicators representing use
of various preventive procedures. To promote more
comprehensive measures, several major purchasers
and managed care advocates established the Founda-
tion for Accountability [76]. Many of these measures
may be based on administrative data, although oper-
ational definitions were not released by early 1997.

Costs

Because of global budgeting, Canadian hospital
databases typically do not include direct cost
data. Most administrative databases in the US,
however, include data on total charges and/or charges
for selected components of care (e.g. pharmacy,
laboratory, supplies). Databases maintained by
payers, such as state Medicaid programs and
insurance companies, also include information on
allowable charges or actual payments to providers.
Although these payments sometimes represent only
a fraction of the billed charges, payments by
government health insurance programs represent a
better measure of public investment than billed
charges. These financial data can be used for five
general types of research:

1. Cost-profiling studies to show the mean costs
incurred by specific physicians, hospitals, and
other health care providers. Similar to the utiliza-
tion profiles discussed above, cost profiles can
be used by health plans to “delist” individ-
ual providers and offer incentives for improved
financial performance.

2. Cost-of-illness studies to estimate the aggregate
cost of medical and nonmedical care for a speci-
fic condition. This aggregate cost may be strati-
fied by payer or by demographic characteristics
to show how the condition’s economic impact is
distributed.

3. Cost-containment studies to evalua