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Abraham Wald’s Work on Aircraft Survivability

MARC MANGEL and FRANCISCO J. SAMANIEGO*

While he was a member of the Statistical Research Group
(SRG), Abraham Wald worked on the problem of esti-
mating the vulnerability of aircraft, using data obtained
from survivors. This work was published as a series of
SRG memoranda and was used in World War II and in
the wars in Korea and Vietnam. The memoranda were
recently reissued by the Center for Naval Analyses. This
article is a condensation and exposition of Wald’s work,
in which his ideas and methods are described. In the final
section, his main results are reexamined in the light of
classical statistical theory and more recent work.

KEY WORDS: Survivability; Missing data; Approximate
methods; Maximum likelihood.

1. INTRODUCTION

December 7, 1981, was the 40th anniversary of the at-
tack on Pearl Harbor, the subsequent entry of the United
States into World War II, and also the birth of the Sta-
tistical Research Group (SRG) and the Antisubmarine
Warfare Operations Research Group (ASWORG, later
renamed the Operations Evaluation Group (OEG) and
now part of the Center for Naval Analyses). The early
histories of SRG and ASWORG/OEG were described re-
cently by their original leaders, W.A. Wallis (1980) and
P.M. Morse (1977), respectively. While in the SRG, Abra-
ham Wald developed techniques for estimating the sur-
vivability of aircraft encountering enemy ground fire.
Wald’s methods were used in World War II and by the
Navy and Air Force during the wars in Korea and Viet-
nam. Although this work was declassified many years
ago, it has not appeared in the open literature. At the end
of his historical paper, Wallis (1980) mentions that the
Wald work will soon appear in print. The papers Wald
wrote describing the methods were recently reprinted by
the Center for Naval Analyses (Wald 1980); there are
eight memoranda, totaling over 100 pages.

The primary goal of this article is to present an expo-
sitory survey of Wald’s work. Wald’s work is interesting
from several perspectives. It is of historical interest, since
the questions Wald addressed were most urgent at the
time but are substantively different from questions of in-
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terest to the defense establishment today. Second, Wald’s
work is interesting in the light of more recent develop-
ments (e.g., isotonic regression and numerical methods
in missing data problems). It is interesting in a third way,
too, for it gives us another example of a great mind in
action.

In writing this exposition, we have tried to stay as close
to Wald’s work as possible. We have followed the logical
order of the arguments in the order in which he wrote the
memoranda. The work is quite complicated, and many
of the details are quite technical. For ease of exposition,
we have eliminated as many details as possible while at-
tempting to retain cohesiveness and clarity. The reader
interested in full details can obtain copies of the original
memoranda from the Center for Naval Analyses.

In the next section, the operational and statistical prob-
lems are formulated, some sample data are given, and an
overview of the SRG memoranda is given. Section 3 is a
survey of Wald’s work, beginning with the derivation of
his basic equation. Various bounds and approximations
for the survivability are then derived. The section con-
cludes with a discussion of the effects of sampling errors.
In the last section, we reexamine Wald’s work in light of
classical statistical theory as well as more recent work.
This reexamination leads us to the general conclusion that
Wald’s treatment of these problems was definitive.

2. THE PROBLEMS AND AN OVERVIEW
OF WALD’S WORK

21 The Operational and Statistical Problems

The operational problem can be stated as follows. Air-
craft returning from missions have hits by enemy weap-
ons distributed over various parts of the plane (e.g.,
wings, tail, fuselage, etc.). The operational commander
must decide (a) what tactics would improve survivability,
and (b) how to reinforce various parts of the aircraft to
improve survivability. Reinforcement means, of course,
that the aircraft is heavier, and this impairs its mission.
The operational commander does not know the distri-
bution of hits on an aircraft that did not return. This is
the basic difficulty in making a decision.

The statistical treatment of the problems that Wald
studied is complicated by the fact that data on downed
aircraft are unobservable. If these missing data were
available, survival probabilities could be estimated by the
methods of isotonic regression. Without such data, Wald
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set to work on the problem of estimating the probability
that an aircraft that has sustained a fixed number of hits
will survive an additional hit. He also attempted to es-
timate the survival probability of an aircraft sustaining a
hit to one of various portions of the body, with different
failure rates (e.g., a hit to the nose is more lethal than a
hit to the middle of the fuselage). Wald’s problems were
compounded by a lack of modern computing equipment,
a present-day recourse when one is faced with hard prob-
lems that resist analytical solution.

2.2 A Hypothetical Set of Data

Throughout the memoranda, Wald used data to illus-
trate his methods. Although Wald used different data
values to illustrate the analysis, we have redone the cal-
culations for one set of data. This helps one see the use-
fulness of the more complicated analyses.

The set of data is divided into two subsets. The first
subset pertains only to hits on the aircraft, ignoring lo-
cation of the hit. Assume that 400 aircraft were sent on
a mission and that the numbers of aircraft returning with
i hits anywhere, A;, are Ap = 320, A; = 32, A, = 20, A;
=4, Ay = 2, and As = 2. The second subset assumes
that the location of the hits is known. Subdivide the air-
craft into 4 main parts: engines (part 1), fuselage (part 2),
fuel system (part 3), everything else (part 4), and let y(i)
be the fraction of the area of the aircraft occupied by part
i. The total number of hits to all returning aircraft in this
case is D.7—1 iA; = 102. Assume that the hits are distrib-
uted according to the following observations:

Part number () Number of hits (Ni) observed on part

1 .269 19
2 .346 39
3 .154 18
4 .231 26

In anticipation of what follows, let 8(i) be the fraction
of hits observed on part i. Then 8(1) = .186, 8(2) = .382,
3(3) = .176, 5(4) = .255.

These are the kinds of data that the operational com-
mander would obtain and pass on to the statistician work-
ing for him. We suggest that the reader now reread the
operational problems described in Section 2.1, consider
the data again, and then decide how one might attack the
problem.

2.3 An Outline of Wald’'s SRG Memoranda

The basic observational variables are the number N of
aircraft participating in the combat, the number A; of air-
craft returning with 7 hits, and a; = A;/N. From these
data, one wants to find P;, the probability that an aircraft
is downed by the ith hit, and p;, the conditional proba-
bility that an aircraft is downed by the ith hit, given that
it received at least i — 1 hits and was not downed.

Wald then introduced distributions of hits over the air-
craft and found analogous quantities for each subregion
of the aircraft. Figure 1 is a flowchart of Wald’s work on
this problem.
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Figure 1. Schematic Outline of Wald’s Memoranda.
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3. SURVEY OF WALD'S MEMORANDA

This section is a survey of the memoranda. Until Sec-
tion 3.6, it is assumed that sampling errors are negligible.

3.1 Wald’s Basic Equation

In this section, we derive the basic equation satisfied
by the probabilities P; (or g; = 1 — p;). Let a; = A;/N be
the fraction of aircraft returning with i hits. Wald assumed
that a; = 0 if i > n, for some n. Thus, the fraction of
aircraft lostis L = 1 — >,7_¢ a;. Wald also assumed that
an unhit aircraft always returns and that there is a value
m such that the probability of receiving more than m hits
is zero. He argued that m = n + 1.

Let x; be the fraction of aircraft downed by the ith hit.
(Thus xo = 0.) Then >,/ x; = L. The x;’s then satisfy
the recursion relationship

i—1
x,~=p,~<1 - Etlj—
Jj=0

The term in brackets in (3.1) is the proportion of aircraft

i—1

E.’g), i=1,..

Jj=0

3.1

.y R

receiving at least i hits. If ¢; is defined by ¢; = 1 —
>.i24 a;, then (3.1) becomes
i—1
Xi+pi D xi=pici, i=12,...,n (3.2

Jj=0

For some of the analysis, Wald found (3.2) more useful
than (3.1). The goal now is to somehow relate the ob-
servables (a;) to the probabilities. In SRG 85, Wald de-
rives the following equation, which is basic to all of his
work.

=1 — ao. (3.3)

n
a;

q1 - q;

Equation (3.3) relates the observables a;, the fractions of
aircraft returning with j hits, and the unknowns g;, the
conditional probability of not being downed by the jth hit
given that the first j — 1 hits did not down the aircraft.
It is the fundamental equation of the analysis. In the next
section, we compare Wald’s work with other approaches
to this problem. For this reason, it helps to review Wald’s
derivation of (3.3).

Let b; be the hypothetical proportion of aircraft hit i
times if dummy bullets were used. Then b; = a;; set y; =
b; — a;. In addition, y; = P;b; = Pi(a; + y;). Thus y; =
(Pi/Q:) a;, where as before, P; = 1 — q1q2 - g; and Q;
= ¢, *** q;. Hence we obtain y; = (a:/q, - q)) — a..
Summing up to n and noting that >,”_, y; = L gives
(3.3).

Equation (3.3) is easily solved with the simplifying as-
sumption of constant g; = q. For example, for the data,
(3.3) becomes the fifth-order equation

.08 N 05 .01  .005  .005

20,
9 ¢ ¢ 4 q’

which yields g = .851. Hence p;, the probability of the

(3.4)
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ith hit downing the aircraft given that the first i — 1 hits
did not down it, is p; = .149 (for all i).

Once we know p;, we can compute x;, the ratio of the
number of aircraft downed by the ith to the total number
of aircraft participating, recursively from Equations (3.1)
or (3.2). We find that x; = .02980, x, = .01344, x; =
.00399, x4 = .00190, and xs = .00087.

These results are easily obtained, but are based on the
assumption of g, = g, = ‘- = g,. This severely limits
their usefulness. The rest of Wald’s memoranda studies
ways of relaxing this assumption.

3.2 A Least Upper Bound for the Probability of i
Hits Downing an Aircraft

Wald’s next step was to find a bound on P; = 1 —
I1;=1 gi, which is the probability of an aircraft being
downed by i hits. The bound he found is sharp and its
attainment corresponds to the worst case in terms of sur-
vivability.

The problem of interest may be written as follows:

i
minimize [] g,
j=1

a;

subject to >, =1 - ao. (3.5)

j=1491 """ 4,

Equation (3.5) is a nonlinear optimization problem (Avriel
1976). Wald obtained an iterative solution as follows.
First he showed that if a set {g*, . . ., g.*} solves (3.5),
then ¢* = g;+1* = -~ = gq,*; that is, that the g; are all
equal forj = i.

Applying this result when i =
imized if it satisfies

4

jgl qr

Assume now that g, is known by solving the algebraic

equation (3.6). Next one needs to find the value of g that

minimizes ¢,q.. Using the result given above, problem
(3.5) becomes

I means that g, is min-

(3.6)

=1—a0.

minimize q;q»
. 1 & a
subject to — L
qi jgl q’!

=1 — a,. 3.7

Straightforward solution via the Lagrange multiplier
method gives

o=l S U-Da
1 —a ;5 g/
and
n—1 .
(J - l)aj+1
—_— = q,. (3.8)
jz:z q”’ :

Elementary arguments show that these equations have
exactly one root in (g, g2).
Wald then generalized this argument to determine the
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minimum of [}~ ¢;. He followed the same kind of rea-

soning, starting with the assumption that q; = ¢, i = j

= 2; then one wants to minimize g,q,'~'. The Lagrange
multiplier method is used again; only the details change.
It is clear that even with present-day computing abil-
ities this approach quickly becomes complicated and
time-consuming. In 1943, the task of exact computations
was hopeless for any problems of operational interest;
thus Wald considered various approximation schemes.

3.3 Approximate Bounds on P,

Wald’s next step was to obtain approximate upper and
lower bounds on P;. Let P;* be the maximum value of P;
and let 0;* = 1 — P;*. The first step is to find the lower
bound z; of Q;*, that is, to find a bound on the minimum
of Q;. Wald used an interesting kind of hypothetical rea-
soning: Let y; be the fraction of the returning aircraft that
would be downed if they were to receive i — j additional
hits. Then one obtains

P—Eyj-f-Exj, i=1

J=1

y 2, .. (3.9)

., n.

After some algebraic manipulations, Wald obtained the
bounds

2 x. (3.10)

Equation (3.10) provides a lower bound on Q;, once an
upper bound on X}_; x; is known. Wald showed that the
maximum value of X; = >./_, x; occurs when p, = p, =

- = p, = p. In such a case, the solution of (3.6) gives
q:1 = 1 — p, and then the x; are obtained from (3.1). We
will let z; be the lower bound on Q; obtained in this man-
ner.

Next Wald turned to the problem of estimating an upper
bound on the value of Q;. He showed that such an upper
bound is given by

t,‘ = min[l;li, ﬁzi_], .y ﬂi—129 ﬁi]9 (3-11)
where i, is the positive root of the equation
> = uJ - =1- 2 ao. (3.12)

J=r
He obtained (3.11) and (3.12) by a sequence of manipu-
lations on equations analogous to (3.5) and (3.6).

Let us now apply these results to the data. First we
will find the lower bound z;. The first step is to find go,
the solution of (3.3) when q; = g2 = - = q,. In this
case, we have found g, as the solution of (3.4); that is,
go = .851. We have also found the x; and thus obtain
the upper bounds X; = >,i_; x;. For the data, we obtain
X; = .02980, X, = .04324, X5 = .04723, X4 = .04913,
Xs = .05000. According to (3.10), our lower bound is z;
=1 — (X/(1 — Xiz} a;)). Hence we obtain z; = .85100,
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22 = .63967, zz = .32529, and z4 = .18117. It is not nec-
essary to calculate zs, since Qs can be obtained directly.
In this case, zs = .090909.

Now consider the upper bounds ;. Let us write out
some of the Equations (3.12), to see what they look like.
For r = 1, we obtain (3.4), so that &, = .851. Forr =
2, (3.12) becomes

—+——+—-+—;=1—ao—a|, (313)

which has solution &, = .722. In a similar way, one finds
i3 = .531, iy = .333. The ¢; are given by (3.11); namely

= .851
t, = min(i,?, i) = .722
t; = min(i,?, @,?, i;) = .521
ty = min(i,*, @y°, %, ds) = .282. 3.14)

Note that ¢s is not calculated since the exact value of Qs
can be found.

In Table 1, we compare the exact result obtained by
the method of the previous section with lower bound (z;),
upper bound (¢;), and the value obtained assuming all hits
are equally lethal (go’).

3.4 Bounds on P, Under Additional Assumptions

The results of the previous section are, from a com-
putational viewpoint, less cumbersome than the exact re-
sults. They are still complicated to use, however, so Wald
studied the bounds on survival probability under addi-
tional assumptions. These assumptions are that

MG =q+e1=N\gq;, j=12,...,n—1 (@3.15)
for fixed known \; and \,, and that
> g\ VT2 <1 — a. (3.16)
Jj=1

Note that (3.16) need not be true if A\, is too small; but
if A1 is close enough to 1, then (3.16) will be true. The
basic Equations (3.3) and (3.16) imply that g, < 1.
Wald first calculated the values of q;, . . . , g, Which
make Q; (i < n) a minimum. Denote these by g.*, . . .,
g.*. By using a straightforward proof by contradiction,
he proved the following: (a) forj = i,i + 1,...,n —
1, gj+1* = \2q;*; and (b) if j is the smallest integer such

Table 1. Exact and Approximate Values of Q;

Value
Exact Lower Upper Equal Lethality
i Value Bound Bound of Hits
1 .851 .851 .851 .851
2 721 .640 722 724
3 .517 .325 .521 .616
4 .282 .181 .282 525
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that gx+1* = N2q,* for all k = j, then q,* = \,q,_* for

r=2,3,...,j — 1. These results can be viewed as
analogs of the results in Section 3.3.
LetE,,r=1,...,i — 1, be the minimum value of

Q; under the restriction that g;.1 = Nig;,j =1, ...,
r—1,and gj+1 = Nagjforj=r +1,...,n — 1. The
above results show that Q; = min{E;;, E, . . ., Eii_1}.
The results in Sections 3.2 and 3.3 show how the E;, can
be calculated. In particular, Wald showed that if g, is the

positive root (in g) of the equation (forr = 0,1, 2, . . .,
i—1
r+1 n—r—1
2 aj)\l—j(j—l)/Zq—j + 2 {ar+1+j)\]—r(r+l)/2—rj}
Jj=1 Jj=1

X Ay THUFEDZ g=CHIEDY = | — g0 (3.17)
then an approximation to E;, is
E, = )\lr(r+1)/2+r(i—r—1) )\2(1'—’)(1'—’—1)/2 qri- (318)

Similar arguments show that if g,*, . . . , g,* are values
of g; minimizing 0, = []/~: g;, then g;+1* = \,g/*, j
=1, ..., n — 1. This means that if g is the root of the
equation
> a2 g7 = 1 — g, (3.19)
Jj=1
then the minimum value of Q,, is \,""~ V2 g”,

Wald proceeded in the same fashion to show that the
maximum of Q,, is N\,"" =12 g" where q is a solution of
the (3.19) with X\, replaced by \,.

There is a quantity analogous to E;,. Namely, if D,, is
the maximum of Q; under the restriction that g+, = \q;
forj=r+1,...,n— land gj4+, = N\yg,forj = 1,

.» r — 1, then Wald showed that the maximum of Q;
is max{D;i, ..., D;;_;}. He showed that a good ap-
proximation to D;, is obtained from (3.17) and (3.18) with
the \; and \, interchanged.

We apply these results to the data with A, = .85, \,
= .95. It is easy to check that (3.16) is satisfied.

To find the lower limit of Q;, the four equations (for r
=0, 1, 2, 3) (3.17) must be solved. For example, for r
= 0 this equation is
a; az as as

=+ + +
q )\2q2 x23q3 A26q4

as
The roots of (3.17) for the values r = 0, 1, 2, 3 are go =
887, g1 = .938, g, = .964, and g; = .979. Next, the E,,
are found approximately from (3.18), and then Q; is the
minimum of the E,. Table 2 shows the results of such
calculations. The lower limit of Qs is found by using
(3.19). In this case, the root of (3.19) is ¢ = .986 and the
lower limit of Qs = \,'%¢° is .183.

To find the maximum value of Q;, the same procedure
is followed. Since the details are the same, only the final
results will be given. Table 3 shows both bounds.

+ =1-ae. (3.20)
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Table 2. Estimating the Minimum of
the Survival Probability
Eir min Q

i r gr Approximately Approximately
1 0 .887 .887 .887
2 0 .887 747

1 .938 747 747
3 0 .887 .598

1 .938 567

2 .964 .550 550
4 0 .887 455

1 .938 .408

2 .964 .364

3 979 .347 .347

3.5 Analysis of Vulnerability Areas of the Aircraft

Wald considered next the problem of determining the
vulnerability of different parts of the aircraft. The idea
here is that the location of the hits on returning aircraft
provides useful information on the vulnerability of var-
ious parts of the aircraft. Wald began with the premise
that one knows the conditional probability v;(i;, . . . , i)
that area m will receive i, hits given a total of i =
>k 1 im hits. He argued that v;(iy, . . . , ix) can be ex-
perimentally determined by firing dummy bullets at real
aircraft. The quantity of interest here is Q; (i1, . . . , ix),
the probability that an aircraft is not downed given i, hits
to area m, with >.% _, i,, = i. Wald first formulated the
problem in a very general setting, where it is essentially
intractable.

To make any progress, he needed to introduce an as-
sumption of independence. Thus, he assumed that if g(i)
is the probability that one hit on area i will not down the
aircraft and if y(i) is the conditional probability that area
i is hit given that one hit occurred, then

k
Qiiv, ..., i) = [I [q(m))™, (3.21)
m=1

i!

k

% II tvomi~. (3.22)
IT it ™!

m=1

In (3.21) and (3.22), it is understood that D % _, i,, = i.
Let 3(i) be the probability that area i is hit, given that the
aircraft received exactly one hit that did not down it. Then

‘yi(ila c e ey lk) =

Table 3. Lower and Upper Bounds on Q;

i Lower Bound on Q, Upper Bound on Q,
1 .887 .986
2 747 .826
3 .550 .631
4 .347 463
5 .183 .329
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by its definition
v(t)q(z) _
2 ¥()q(i)

i=1

8(@) = (3.23)

In (3.23), recognize the summation as the probability g
that a single shot did not down the aircraft. Under the
assumption of independence, g will satisfy (3.3) with g;
= g and may be replaced by the solution to that equation.
Equation (3.23) is rewritten as

3(g
y@)
where y(i) is assumed to be known from auxiliary tests

or equated with the proportion of surface area associated
with part i, and (i) may be estimated from the data as

E ZJ,a(Jl, .
2 2 (U +

q() = (3.24)

L) jk)
(i) =

c+jaCin, g (3-25)
The interpretation of 8(i) is that it is the ratio of the total
number of hits in area i of the returning aircraft to the
total number of hits on the returning aircraft. Thus, 3(;)
is empirically determined and g(i) is computed by apply-
ing (3.23) to the data. Such analyses have actually been
performed on real data, with success.

We apply this approach to the data. We have already
seen that the positive root of (3.3) with equal g; is go =
.851. Thus qo is the overall probability of surviving a hit.
The probability of surviving a hit to part i is given by
(3.24). The g in (3.4) is qo; (i) (the fraction of area oc-
cupied by part i) and 3(i) (the fraction of hits to part i)
were given along with the data. The results of the cal-
culations are shown in Table 4. For these data, the most
vulnerable portion of the aircraft is the engine area.

3.6 Effects of Sampling Errors

Wald considered sampling errors in the special case of
equal (but unknown) g;, and he derived confidence limits
for q.

In the absence of sampling errors, the x; are recursively
defined by (3.1) with equal p;. When there are sampling
errors, (3.1) is replaced by

i—1 i—1
X = ﬁi(l ->Xa- 2 x,-) ) (3.26)
Jj=0 Jj=1
Table 4. Probability of Surviving a
Single Hit to a Given Part
Probability of Surviving
Part a Single Hit
Entire Aircraft .851
Engine .588
Fuselage .940
Fuel System .973
Others .939

Joumal of the American Statistical Association, June 1984

where p; has the dlstrlbutlon of the success ratio in a
sequence of N; = N(1 — D izda; — > i=1 x;) independent
trials. Still assuming that x; = 0 for i > n (which is not
really true for the case with sampling errors), the basic
equation (3.3) becomes

Here g; = 1 — p; is an estimate for g; but the g;’s are
unknown.

Wald derived confidence bounds in the following man-
ner. Consider a hypothetical experiment in which b; is

(3.27)

=1 - aop.
QJ

_the fraction of aircraft that would be hit exactly i times

if dummy bullets were used. The distribution of Na; is
the same as the distribution of the number of successes
in a sequence of Nb; independent trials, each trial having
a probability of success g'. This gives

N i bl(l - ql)
E(a;/q') = b;, var(ai/q’) = ——-———Nqi . (3.28)
Summing (3.28) gives
E(E a,~/q‘> = > b =1 - a,,
i=1 i=1
& di o b1 - ¢Y)
var — | = i (329)
(igl ql> i=1 Nq

For moderate to large N, appeal to the central limit theo-
rem and conclude that if

I |
—12/2 —
j NV~ e dt = a,
then an a confidence interval for q is
" b1 — ) 12
1 - - )\u —_—
o (231 Ng'

n _ i 172
<1 —%+M<§9%%#% . (3.30)

coa;
=29
The only trouble with (3.30) is that the b; are not known.
Again appealing to limit theorems, Wald replaced b; by

a;/q’ (this replacement is accurate to O(1/\/n)). Hence
we obtain a confidence interval of the form

n a,~(l _ qi)>1/2

b= o= M (g’l Ng*
n a; n a,~(1 _ q,) 12
2 e 1 - a0+ Na| > N ) - (3.31)

i=1

A final simplification is achieved by another appeal to
a limit theorem. If go is the root of (3.3) with equal g;,
then as N — ©, g — qo, so Wald replaced g% by go* in
(3.31), and the resulting confidence limit is now very sim-
ple.

These results can be summarized in the following el-
egant fashion. If a; are subject to sampling error and q is
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the true parameter, then >,/ a/q’ is normally distrib-
uted with mean 1 — g, and variance given by (3.29).
To show how this works, we will derive the 95% and
99% confidence intervals for the data. The first step is to
find the positive solution, go, of (3.3) with equal g;. In
this case, go = .851. The second step is to find the ap-
proximate variance of D.7_; a;/q’. This variance is

n

2 ai(l — QOi)/N‘IOZi,

i=1

o =

(3.32)

and in this case we find ¢ = .01373. According to (3.31),
the confidence limits are found by solving

n
>
i=1

where A\, = 1.960, 2.576 for the 95% and 99% limits,
respectively. For the 95% confidence limit on go, the so-
lution of (3.33) gives [.797, .921] and for the 99% confi-
dence limit, [.782, .947].

|8

(3.33)

i
,.=1—aoi)\,,cr,

Q

3.7 Miscellany

SRG Memoranda 109 and 126 deal, very briefly, with
these topics: (a) factors that are nonconstant in combat,
(b) nonprobabilistic interpretation of the results, (c) the
situation when (i) are unknown, and (d) vulnerability to
different kinds of guns. The most interesting of these top-
ics is the last one, in which Wald generalizes the previous
work to include different kinds of weapons. Namely, in-
stead of working with g(i), the probability that an aircraft
survives a hit to part i, he works with g(i, j), the prob-
ability that an aircraft survives a hit to part i by weapon
type j. The generalization is conceptually straightfor-
ward, although the details are complicated.

4. DISCUSSION

In this section, we propose to reexamine Wald’s work
on aircraft survivability, relating his results to classical
statistical theory as well as to more recent statistical
thought. We believe that such a development makes
Wald’s recommendations more easily understood. It also
allows us to support the general conclusion that Wald’s
treatment of this problem was definitive, since, through
this reexamination, we are able to identify the optimal
character of Wald’s estimators and to explain why treat-
ment of more general problems is impossible with the data
Wald had available to him.

Let us consider the first data set. Wald does not ex-
plicitly discuss a model for the data he seeks to fit. It is
clear, however, that the appropriate model is multinom-
ial. It is also clear that there are missing data. It is useful
to picture the data as embedded in the following scheme.

XOl Xll XZI X3l X4l XSI
X12 X22 X42 XSZ (41)

where X;; = the number of aircraft returning with i hits,
and X, = the number of aircraft downed with i hits. Data

X3
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Set 1 amounts to X;;, i = 0, ..., 5, while X, i = 1,
..., 5 are unobservable. The multinomial distribution
based on 400 observations classified into 11 cells repre-
sents the full model for the collection {X;;}. Let the pa-
rameters of the full model be denoted by {p;;}. Wald pre-
fers to use the parameterization:

(1) poi, ..., ps1 (for which ao, . . ., as are the cor-
responding sample proportions in
Wald’s notation)
(2) Qla e e ey QS’ Where
Pi1
= . 4.2)
Q pit + pi2 (

Whatever the parameterization, the critical fact vis-a-vis
the estimation problem of interest is that the full model
is determined by 10 parameters while the available data
have only six degrees of freedom. Put another way, the
10-parameter model for the available data is not identi-
fiable; indeed, the likelihood depends on {p;2, . . . , ps2}
only through the value of >,7_, p;». The nonidentifiability
of the model for X;;, i = 0, ..., 5 explains the role of
the assumption

0, =4 foralli. 4.3)
This restriction renders the estimation problem well de-
fined. The necessity of identifiability also dictates the as-

sumption (for the purpose of analyzing the data set) that
the probability of sustaining more than five hits is zero.

We now turn to the derivation of the maximum like-
lihood estimators for the parameters of the multinomial
distribution with missing data under the restriction (4.3).
Initially, we write the likelihood as

5 5 400 — Z3_ o xi1
«2 < <H p“x.'|><] - 2 p“> .
i=0 i=0

The likelihood equations

are equivalent to

_ X
le—N

Now, the parametric analog of Wald’s fundamental equa-
tion (3.3) is

E%L=1*P01-

=t H qi

i=1

4.4)

The latter equation can be shown to be algebraically
equivalent to

> (pir + p2) = 1 = por, 4.5)

J=1

which simply specifies that all cell probabilities sum to



266

one. Under restriction (4.3), Equation (4.4) becomes

n

> 2

=

=1 — po1, (4.6)
specifying ¢ implicitly as a function of {p;;, i = 0, . . .,
n}. Now, let ¢ be the solution of (3.3), which, for the first
data set, can be written as

5
>
Jj=1

From the invariance property of the MLE’s, it is clear
that § is the MLE 'of the parameter q.

The regularity of the multinomial model implies the
asymptotic optimality of Wald’s estimators of the param-
eters {p;1} and p. Wald’s confidence interval for the sur-
vival probability g can be obtained via MLE theory and
thus, its optimality in large samples can be asserted. Since
interesting larger models cannot be treated with the data
available, Wald’s estimation results are, with a suffi-
ciently large sample size, the best possible. For larger
models, Wald appropriately turns to the development of
bounds on survival probabilities.

Two important areas of statistical analysis having some
bearing on Wald’s work have been developed since
Wald’s time. The first is the area of isotonic regression,
a subject treated in depth in the recent book by Barlow
et al. (1972). The second is the treatment of problems
with missing data via the EM algorithm (see Dempster,
Laird, and Rubin 1977). Isotonic regression would appear
to be an appropriate methodology in Wald’s problem,
since aircraft vulnerability undoubtedly increases with
the number of hits sustained; that is, it is reasonable to
expect that p; = p, = -+ = p,. In spite of its intuitive
appeal, the isotonic version of Wald’s problem suffers
from nonidentifiability, since ordering of parameters does
not reduce the dimension of the parameter space. Thus,
given Wald’s data, estimation via the methods of isotonic
regression proves impossible without additional assump-
tions. If complete data were available, the unrestricted
MLE’s for the g/’s are given by

i
] Xil ,
qu.:————-———— l'—_l,..
j=1 xi1+xi2

I\>

= =1 — por. @.7)

g

~

., S, 4.8)
The problem of ‘‘isotonizing’’ these estimates is formally
equivalent to the problem of estimating ordered binomial
parameters treated by Barlow et al. (1972, p. 102).

The EM algorithm does not help for similar reasons.
When the model is not identifiable, a starting value p©®
for the parameter produces expected X values, which in
turn produce p” = p©. In the reduced model, subject
to (4.3), one can treat maximum likelihood estimation
analytically, and there is no need to employ the EM al-
gorithm.

Let us now examine Wald’s estimators for the survival
probabilities of various aircraft sections. The portion of
the data set classifying hits by part can be viewed as
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embedded in the array

Yiu Yoy Y Ya N

Y12 Y22 Y32 Y42 N2 (49)
where Y;; = # of hits to part i on returning aircraft; Y,
= # of hits to part i on downed aircraft; N, = >,¢-, Yi;
N, = >#_, Ys. The data consist of Y;,i =1, ...,4

and N, while Y»,i = 1,. . .,4and N, are unobservable.
Define the following events:

A; = {the ith section is hit}
A = {the aircraft is hit}
B = {the aircraft is not downed}.
Wald’s parameters may be identified as
q = P(B| A), q(i) = P(B| A)
3() = P(A;| A N B),y(i) = P(A; | A). (4.10)

With complete data as pictured in (4.9), the MLE’s of
q(i) are simply

Y;

g@) = Y.+ 1, i=1,...,4. “.11)
With the incomplete data available to Wald, one must
make use of the structural relationship (3.23) (which is
immediate from the definitions in (4.10)) and the as-
sumption that y(i), i = 1, ..., 4 are known. Wald ex-
plicitly remarks on the impossibility of estimating y(i) and
q(i) simultaneously from his data. However, MLE’s for
{8())} and g may be obtained from the data, and the es-

timates

O
y(@)
are maximum likelihood estimates by invariance, pro-
vided these estimates lie in the unit interval. Wald does
not deal with estimation problems in which one or more
of the estimates ¢ (i) exceed one. In such cases, the MLE
of the vector (q(1), . . ., g(4)) lies on the boundary of the
parameter space, and its identification is tedious but

straightforward.

In our discussion of Wald’s formulation and solution
of a variety of problems dealing with aircraft survivabil-
ity, we have mentioned a number of assumptions he im-
posed to obtain closed-form solutions or efficient bounds.
These assumptions deserve scrutiny. Among the as-
sumptions one encounters are (a) constant vulnerability,
that is, g; = g, which is an independence assumption; (b)
known bounds on rate of growth of vulnerability, that is,
Mg = gj+1 = \2gq;; and (c) independence of survival
among and within areas of different vulnerability. The
main cause for concern regarding these assumptions is
that the data available do not provide a means for inves-
tigating their validity. Consider assumption (a), for ex-
ample. With complete data (corresponding to {x;;} in (4.1))

4@ i=1,...,4 4.12)
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one could investigate statistically, via a likelihood ratio
test or otherwise, the validity of the assumption g; = q.
With the type of data available to Wald, such an option
is not open because of the lack of identifiability of larger
models. Wald cautioned his readers that the solution he
provides should be used only “‘if it is known a priori that
g1 = ¢ = -+ = ¢q,.”” How and whether such a priori
knowledge could be garnered is open to debate. Wald
does provide an option for those who are more conser-
vative. The lower bounds for Q; may be considered con-
servative estimates of survival probabilities, although
they might often be too small to be useful. The dilemma
one encounters with the foregoing three assumptions
mentioned is similar to that faced in competing risks
methodology, where considerable recent work has fo-
cused on identifiability and bounds for survival proba-
bilities (see Tsiatis 1975 and Peterson 1976).

Viewing Wald’s work on aircraft survivability in light
of the state of the art at the time it was done, it seems to
us to be a remarkable piece of work. While the field of
statistics has grown considerably since the early 1940’s,
Wald’s work on this problem is difficult to improve upon.
Much of the work appears to be ad hoc—there are few
allusions to modeling and no reference to classical sta-
tistical approaches or results. By the sheer power of his
intuition, Wald was led to subtle structural relationships

JAMES O. BERGER*
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(e.g., Equations (3.3) and (3.24)), and was able to deal
with both structural and inferential questions in a defin-
itive way.

[Received May 1981. Revised March 1983.]
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Comment

The authors are to be congratulated on a fine paper.
They have distilled the key ideas in Wald’s work on air-
craft survivability, and have successfully related the ideas
to standard statistical methods. The bulk of this discus-
sion will be concerned with this relationship of the work
to standard statistical methods, particularly the use of
statistical models to describe the situation. Some atten-
tion will also be given to decision-theoretic issues.

1. STATISTICAL MODELING

As indicated in the paper, the primary quantities stud-
ied can be considered

P;; = P (i hits and survival)

= Qi')\i,

where

P (survival | i hits),

P (i hits),

Q:

z
I

and
Po* = P (not surviving) = 1 — >, Pi.
i=0

If the observations can be assumed to be independent,
and out of a total of » missions the data are

X1 = the number of aircraft that receive i hits
and survive,
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one could investigate statistically, via a likelihood ratio
test or otherwise, the validity of the assumption g; = g.
With the type of data available to Wald, such an option
is not open because of the lack of identifiability of larger
models. Wald cautioned his readers that the solution he
provides should be used only *‘if it is known a priori that
g1 = g2 = = q,.”" How and whether such a priori
knowledge could be garnered is open to debate. Wald
does provide an option for those who are more conser-
vative. The lower bounds for Q; may be considered con-
servative estimates of survival probabilities, although
they might often be too small to be useful. The dilemma
one encounters with the foregoing three assumptions
mentioned is similar to that faced in competing risks
methodology, where considerable recent work has fo-
cused on identifiability and bounds for survival proba-
bilities (see Tsiatis 1975 and Peterson 1976).
Viewing Wald’s work on aircraft survivability in light
of the state of the art at the time it was done, it seems to
us to be a remarkable piece of work. While the field of
statistics has grown considerably since the early 1940’s,
Wald’s work on this problem is difficult to improve upon.
Much of the work appears to be ad hoc—there are few
allusions to modeling and no reference to classical sta-
tistical approaches or results. By the sheer power of his
intuition, Wald was led to subtle structural relationships
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(e.g., Equations (3.3) and (3.24)), and was able to deal
with both structural and inferential questions in a defin-
itive way.

[Received May 1981. Revised March 1983.]
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Comment

The authors are to be congratulated on a fine paper.
They have distilled the key ideas in Wald’s work on air-
craft survivability, and have successfully related the ideas
to standard statistical methods. The bulk of this discus-
sion will be concerned with this relationship of the work
to standard statistical methods, particularly the use of
statistical models to describe the situation. Some atten-
tion will also be given to decision-theoretic issues.

1. STATISTICAL MODELING

As indicated in the paper, the primary quantities stud-

ied can be considered
P;, = P (i hits and survival)

Qi ) )\i’

where
Q; = P (survival | i hits),
A = P (l hltS),
and
Po* = P (not surviving) = 1 — >, Py.
i=0

If the observations can be assumed to be independent,
and out of a total of n missions the data are

X = the number of aircraft that receive i hits
and survive,
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n — > X = the number that do not
i=0

Xo* =

survive,

then the likelihood function for P = (Po*, Pyi, P21, . . .)
is proportional to

L(P) (H an") (Po*yXe*
i=0

00 o0 Xo¥*
[H Qi M)x"][l - > 0 )\i] . (D
i=0 i=0
In this framework, which is more or less that given in
Section 3 of Mangel and Samaniego, Wald’s model can
be described by the following assumptions:
(1) 0 = q‘
(i) Py =

(i.e., iid survival of each hit);
for i = 6 (or, more generally, for i for
which X,'] = 0)

We will return to the crucial assumption (i) later, but for
now will accept it. Assumption (ii) leaves an obvious un-
comfortable feeling, but probably makes no great differ-
ence for the type of data expected. A third assumption,
actually a lack of an assumption, is also a possible cause
for concern: Wald effectively leaves the \; (the proba-
bility of i hits) completely unrestricted, whereas it would
seem more natural to restrict the parameter space to con-
sist only of decreasing \;. (Actually, the \; are never even
mentioned in Wald’s work, an omission of some concern,
as we shall see.)

As mentioned in the paper, Wald’s analysis effectively
corresponds to a maximum likelihood analysis using (1)
and assumptions (i) and (ii). The results of this analysis
for the given data are ¢ = .851 and \; = X;1/[400 (.851)"].
The values of the \; for the data are given in Table 1, and
indeed they are not decreasing (As > A4). The possible
difference here seems minor but, as a theoretical point,
it seems desirable to ensure monotonicity of the \; in the
analysis. (Perhaps the most straightforward way of in-
corporating monotonicity is simply to put the (noninfor-
mative) uniform prior distribution on

A=[(}\0,...,)\5)127\i= l,)\oZ)\]E"'

a uniform prior on q (in [0,1]), and calculate the posterior
means, providing the numerical integration problem is
feasible.)

The most significant question that can be raised con-

= )‘5}9

Table 1. Model Fit

i A A X Xin
0 .8000 .8000 320.0 320
1 .0928 .0940 315 32
2 .0640 .0690 18.5 20
3 .0295 .0162 7.2 4
4 .0102 .0095 2.1 2
5 .0028 .0112 0.5 2
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cerning Wald’s analysis is that of overparameterization.
The parameters are (q, Ao, . . . , As), seven parameters
for the seven data values (Xo*, Xo1, . .., Xs1). Wald
attempts a model robustness study by finding lower and
upper bounds for the P;; (actually, for the Q;), but these
bounds are too disparate to be of much use (more on this
in Section 3). The best way to investigate model robust-
ness is usually just to try other possible models. What
follows is a minimally parameterized model, which is ac-
tually the model we produced when challenged in the
paper at the end of the Section 1.2 to analyze the data
before reading further. (For fear of overparameterization,
it is often helpful to start out by trying very small models.)
Consider the following assumptions:

D Qi =4q"
GG N=00-=N)v¥e [ —-eilfori=1.

Note that this is a three-parameter model, the parameters
being 0 = g =1,0 <\ < 1, and v > 0. Our thoughts
in choosing this model were (a) independence of effect
of hits is a reasonable starting point, and (b) the number
of hits might be approximately Poisson, except that some
planes may never come under effective fire (for a variety
of reasons), so that extra mass at zero hits is to be an-
ticipated. Thus Ao was left unrestricted, while the re-
maining \; were given the truncated Poisson distribution.
Of course, these assumptions can also be criticized, but
they seemed to be a plausible starting point. Note that
these assumptions bypass the need to make Wald’s as-
sumption (ii), and also will automatically result in de-
creasing \; (except possibly for Ao, which seemed so
likely to be large that monotonization would probably be
unnecessary).
Using the fact that

8

13

q' vy = e — 1,
1

the likelihood function (1) can be written (under our as-
sumptions and after some algebra) as

L(q, o, 'Y) —_ )\oXol(l _ )\o)n—Xm (e’ — 1)(Xo|—n)
X (q,y)Ean (e — eqv)(n—EXn)_

A routine maximum likelihood analysis for the given data
yields Ao = .8, § = .85, and ¥ = 1.38. How well this
model fits the data can be seen in Table 1, which presents
the estimated A; under this model, namely A\o* = .8 and

A= =AM F e A -e )i, i=1,
along with the expected observations,
Xo=n P, = n- g,

and the actual observations, X;;. For comparison pur-
poses, the unmodeled estimates A; for the \; are also
given.

The low-parameter model seems to fit the data ex-
tremely well. Of course, one would expect to be able to

This content downloaded from 132.174.254.12 on Sat, 13 May 2017 20:34:35 UTC
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fit seven decreasing data points well with some three-
parameter model, but not necessarily this well and not
necessarily with a model incorporating separate and very
specialized structures for the Q; and the \;. In any case,
the main feature of interest here is that the answers ob-
tained with this plausible three-parameter model are vir-
tually identical to those of Wald’s analysis (especially the
g), so that one can feel somewhat confident about the
model robustness of the answers.

Before moving on, it is worthwhile commenting that,
instead of the maximum likelihood analysis, a noninfor-
mative prior Bayesian analysis could have been per-
formed, using (say) a constant (generalized) prior on the
set

Q = {(qg, No, ¥): y > 0}.

The advantages of this would be (a) the constraint Ao =
N is automatically built in; (b) one does not have to worry
about having found only local maxima of the likelihood
function; and (c) with essentially no extra effort, the pos-
terior variances can be found, yielding good small-sample
variance estimates (an attractive alternative to the clas-
sical need to resort to large-sample theory).

Osqsl, Ao = A\,

2. ANALYSIS OF VULNERABILITY AREAS

It is in this aspect of the problem that statistical mod-
eling can reap greater rewards than Wald’s approach.
Wald needed to assume that the effects of hits on a given
area of the aircraft were independent (an assumption that
seemed to work reasonably well for the entire aircraft),
but this is unlikely to be true for certain vulnerable areas
of the aircraft. One obvious example is the important en-
gine area: A multi-engine aircraft might well be able to
fly with-one engine out, so that the effect of the first hit
to the engine area would be inconsequential, while a sec-
ond hit (to a different engine) could be fatal. It is not hard
to think up appropriate models for this situation, and no
identifiability problems arise as long as one also makes
some effort to model the probability of i hits to a given
area (combining, say, the ideas discussed earlier about
modeling A; with Wald’s ideas concerning the probability
that a single hit strikes a given area).

3. LOWER BOUNDS ON SURVIVABILITY

A large portion of Wald’s analysis is concerned with
obtaining lower bounds, Q;*, on Q;, the probability of
surviving i hits. One possible use of this would be to allow
the aircraft commander to abort a mission if the risk of
subsequent hits is too high, but common sense would
argue that the relevant factor in such a decision is not
how many hits have been sustained (which may even be
hard to determine during combat), but rather the amount
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of actual damage (say, fuel lost or engines destroyed) that
can be determined. Data allowing analysis of such oc-
currences would be hard to come by, and any such anal-
ysis would almost certainly involve detailed knowledge
about the workings of the aircraft.

A second possible use of the Q;* would be in bounding
the overall probability of mission survival, presumably
for logistic purposes. Clearly

¥ = P (survival)

=2 0\
i—0

=

™

Q,'* * )\,‘.

i=0

The difficulty with this use of the Q;* is that Wald de-
termined Q;* as Q;* = ming Q;, where P is the set of
probability structures such that Pyo*, Pq,, ..., Ps; are
equal to the sample proportions. Besides the lack of at-
tention to the effect of sampling error on the analysis,
there is the more basic problem that each Q; is minimized
separately over P, and each minimum is attained at a
different probability structure. Thus

2 Qi* * )\ia

min ¥V >
P i=0

so that one can get a better lower bound by simply min-

imizing ¥ directly over . Of course, this will be com-

putationally more difficult, which could well explain

Wald’s use of the Q/*, but today the additional compu-

tation would pose no serious problem.

As a final point, the use of lower bounds at all is prob-
ably unwise. Providing one can arrive at model-robust
estimates of survivability, use of the estimates discussed
in the previous paragraph will generally prove more val-
uable than use of lower bounds.

4. CONCLUSIONS

All nitpicking aside, the authors seem correct in their
conclusion that the answers Wald obtained could not be
greatly improved upon today. It can be argued, however,
that the methodology employed by Wald was much more
difficult and far less flexible than standard methodology
involving statistical modeling. Of course, Wald was work-
ing under computational limitations (although use of sim-
ple statistical models and maximum likelihood methods
would not necessarily have been harder computation-
ally), and could perhaps have been writing for a special
(nonstatistical) audience. Whatever the reasons for his
approach, we can admire his ingenuity while being thank-
ful for the availability of more powerful methods today.
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Rejoinder

MARC MANGEL and FRANCISCO J. SAMANIEGO

1. INTRODUCTION

In this rejoinder we reply to the published remarks of
Berger, respond to questions and comments that were
raised at the American Statistical Association annual
meeting in Toronto in August, 1983, and comment briefly
on our recently completed Monte Carlo study on the ro-
bustness of Wald’s methods.

2. REMARKS ON BERGER'’S DISCUSSION

We thank Berger for his thoughtful and thought-pro-
voking commentary on Wald’s paper and ours. We are
in general agreement with Berger on the main issues he
has raised: (a) careful modeling can produce an excellent
fit of Wald’s data, and the related statistical computations
are not that imposing; (b) some of Wald’s assumptions
are more troublesome than others; and (c) the lower
bounds produced by Wald are mathematically interesting
but of limited use in decision making. In spite of the con-
sonance of our views with Berger’s, there are one or two
points on which we differ.

In our Section 3, we described Wald’s first data set as
an incomplete sample from a multinomial distribution.
Berger criticized Wald’s assumption that the probability
of receiving more than five hits is zero. Actually, the
assumption is inconsequential in a multinomial model,
since every cell probability associated with an empty cell
would be estimated as zero. Thus, Wald’s estimator of
the parameter g surfaces as the MLE with or without
Wald’s assumption.

Berger’s three-parameter model for Wald’s first data
set is intriguing. We also tinkered with the Poisson model
a bit, but found the fit unacceptable. Berger’s idea and
rationale for separating the events {0 hits} and {at least
one hit} are appealing; it is the kind of idea that seems
obvious as soon as it is mentioned, but it is to Berger’s
credit that he thought of it. Berger mistakenly claims that
his model yields decreasing probabilities for 1, 2, 3, . . .
hits. Actually, the positive Poisson model with parameter
v has mode M = max([y], 1), where [‘] is the greatest
integer function. Thus, these probabilities increase up to
M and decrease thereafter. With Wald’s data, vy is esti-
mated to be 1.38, so that A; > A, > A3 > A4 > As in this
particular application. However, Berger’s model does not
guarantee this monotonicity. Furthermore, although the
Bayesian approach that Berger proposes in order to en-
sure the inequality Ao > A; can be expanded to cover \;
> v;+ for all i, one should not underestimate the diffi-

culties involved in implementing such an approach in a
- reasonable manner.

Having pointed out the lack of guaranteed monoton-
icity of the \;’s, we hasten to add that, in our view, Ber-
ger’s model nonetheless has substantial merit. Consider

the proposition that \; > \,, that is, that an aircraft is
more likely to receive one hit than it is to receive two
hits. It seems to us that this proposition is not an inviol-
able imperative. Indeed, the expected number of hits de-
pends quite crucially on the density of fire. Suppose all
400 planes in Wald’s first problem were sent on a mission
in which intense fire was anticipated. It might well be
true that virtually no aircraft would receive only one hit.
In fact, it might be that aircraft would be more likely to
receive 10 or 12 hits than only one. Berger’s model will
accommodate such situations, and it should be useful in
problems in which the number of hits (to aircraft receiving
at least one hit) is expected to have a unimodal distri-
bution. It is interesting that data analysis with the three-
parameter model yields the same estimate of g that Wald
obtained, which imparts a certain model robustness to
Wald’s results. One could also interpret this coincidence
as speaking to the model robustness of the approach Ber-
ger has taken.. We are in agreement with the limitations
of Wald’s results, as discussed by Berger in his Sections
2 and 3.

Motivated in part by Berger’s comments on robustness,
we conducted our own study on the robustness of Wald’s
methods. Although the complete details are presented
elsewhere (Mangel and Samaniego 1984), we wish to de-
scribe our results briefly. We studied two questions: (a)
If the assumption that g; = g for all j is violated, how
badly does one do in estimating the p,, using Wald’s
method? and (b) In the case of unequal g;, what are the
behavior and proper interpretation of Wald’s estimator
§¢? To answer these questions, we carried out a Monte
Carlo study in which data in (4.1) were repeatedly gen-
erated using a multinomial experiment with parameters
{p:;} chosen so that the g; were unequal but had the av-
erage ¢ = .851, as in Wald’s data. Our base case involved
equal g;. We measured departure from the true proba-
bilities p;» via a x2-like statistic. We found that Wald’s
model worked very well in a fairly generous neighbor-
hood of the central value ¢ = .851, and that the fit was
a monotonic function of the dispersion in the set {q,, . . .,
qs}. We also discovered that Wald’s estimator ¢ is an
excellent estimator of the average g, regardless of the
dispersion.

3. COMMENTS AND QUESTIONS
RAISED IN TORONTO

A discussant took exception to Wald’s derivations and
proposed the following alternative analysis. Retaining the

© Journal of the American Statistical Association
June 1984, Volume 79, Number 386
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notation of Section 4 of our article, let
pj1 = P{receive exactly j hits and survive}

pj2 = P{receive exactly j hits and go down}.
It follows that

1 = par = 2 (pj1 + pj2). R.1)
j=1
The following modeling assumption was then introduced

(apparently after Wald):

pialppn = (1 —q)q, j=1,2,.... (R2)
Using (R.2) in (R.1) yields
I - por = zpjl(l +EB)
=1 Pj1
1 20
= - 2 Dj1. (R3)
q =1
Thus
= , R.4
q 1 _ pm 2 P,l ( )
leading to the estimator
g = 2 a; (R.5)

l—ao

for q. For Wald’s data, one obtains ¢ = .75, which differs
from the estimate of .851 obtained by Wald. Further dis-
cussion failed to shed any light on the comparative merits
of the two estimators.

The confusion during the discussion at Toronto was due
in part to blind acceptance of the faulty premise that the
two estimators were estimating the same parameter. The
proper resolution of this apparent anomaly is that these
estimators are not competing against each other, but in-
stead are valid estimators of parameters in different
models. Modeling assumption (R.2) is equivalent to

pjl/(pjl + pjz) =q, j=1,2,...,n, (R.6)
which differs from the modeling assumption
pillppn + pi2) = ¢, j=1,2,...,n R

made .by Wald. Indeed, if fi, . .., f, are continuous,
increasing functions mapping (0, 1) onto itself, then the
modeling assumption

pillpj1 + pp2) = fil), j=1,2,...,n (RB)

for the multinomial data in (4.1) gives rise to a unique
MLE that can be obtained as the solution of the equation

R.9)

Each such model has a parameter g, but the estimator of
q in one model has no meaning as an estimator of g in
another model.

It remains to comment on the modeling assumptions
(R.6) and (R.7). Equations (R.6) constitute the assump-

2N

tion that the chance of surviving another hit, given sur-
vival thus far, is always the same. On the other hand,
equations (R.7) assert that the conditional probability of
surviving another hit, given survival thus far, depends on
the number of hits sustained thus far. Wald’s general
model, with

__pbn  _ fI g, j=1,..

i+t P iy ’
stipulates that these conditional probabilities are decreas-
ing. Wald’s assumption (R.7) asserts that these proba-
bilities decrease geometrically. It is thus clear that the
choice we have discussed is between two models rather
than between two estimators. Applications undoubtedly
exist in which either one of these models is more appro-
priate than the other.

A number of people have asked whether Wald’s work
has actually been used. We do not know whether it was
used during World War I1, although it was produced early
enough in the war to have been available. We do know
that during the Vietnam War, analysts at the Operations
Evaluation Group of the Center for Naval Analyses used
Wald’s techniques to study the survivability of the A-4
aircraft. Their analysis led to structural modifications that
improved the A-4’s survivability. Wald’s methods were
also used by analysts at Wright Patterson Air Force Base
in studying ways of improving the B-52’s survivability.
Cunningham and Hynd (1946) also provided perspective
on the use of statistical analysis during World War II.

One tactical use of this kind of work is the development
of rules for exiting from combat. The most important case
is the one in which different survival probabilities are
estimated (that is, where the g; are not constant). For
example, consider the result presented in Table 1 of our
article. The change in the exact value of the probability
of surviving i hits as i increases from 1 to 2 is .130, from
2 to 3 is .204, and from 3 to 4 is .235. When confronted
with such data, aviators could develop rules of thumb
such as, *‘Stay in combat with up to three hits, but leave
after the fourth.”” Similarly, having an estimate for the
survival probabilities would provide the mission planner
with one more piece of information that could be used to
determine the number of aircraft to send into a particular
combat mission.

One factor that Wald did not take into account, but that
is quite important, is the crew of the aircraft. Studies done
during World War II showed that the crew was an im-
portant consideration in determining survivability. For
example, crews that had already survived three missions
had a much higher probability of continued survival
(Morse 1977 discusses this point in more detail).

(R.10)

-5 N,
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PART I

AN EQUATION SATISFIED BY THE PROBABILITIES THAT A
PLANE WILL BE DOWNED BY i HITS!

INTRODUCTION

Denote by Pi (i=1,2,..., ad inf.) the probability that a plane
will be downed by i hits. Denote by p; the conditional prob-

ability that a plane will be downed by the i-th hit knowing that
the first i - 1 hits did not down the plane. Let Qi =1 - Pi and

q; = 1l - P; (i =1,2,+¢., ad inf.). It is clear that

Q; = SR PYRRL (1)
and

Pi = l - qlqzoo.qi . (2)

Suppose that pi and Pi (i =1,2,...) are unknown and our infor-
mation consists only of the following data concerning planes
participating in combat:

® The total number N of planes participating in combat.

e For any integer i (i = 0,1,2,...) the number Ai of

planes that received exactly i hits but have not been
downed, i.e., have returned from combat.

A

Denote the ratio -ﬁ-l- by a; (i = 0,1,2,...) and let L be the

proportion of planes lost. Then we have

2 a; =1-L. (3)
i=0 |

lThis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memoc 85 and
AMP memo 76.1.



The purpose of this memorandum is to draw inferences concerning
the unknown probabilities p; and P; on the basis of the known

quantities agys @1s Ansesey etc.

To simplify the discussion, we shall neglect sampling errors,
i.e., we shall assume that N is infinity. Furthermore, we shall
assume that

0 < p; < 1 (i =11,2,..., ad inf.). (4)

From equation 4 it follows that

0 <P, <1 (i =1,2,+.., @ad inf.). (5)

We shall assume that there exists a non-negative integer n such
that a, ? 0 but a; = 0 for i > n.

We shall also assume that there exists a positive integer m such
that the probability is zero that the number of hits received by
a plane is greater than or equal to m. Let m' be the smallest
integer with the property that the probability is zero that the
number of hits received by a plane is greater than or equal to

)

m'. Then the probability that the plane receives exactly m' - 1

hits is positive. We shall prove that m' = n + 1. Since a, > O,

it is clear that m' must be greater than n. To show that m'
cannot be greater than n + 1, let y be the proportion of planes
that received exactly m' - 1 hits. Then y > 0 and

y(1 - pyr_q) = apr_y- Sincey > Oand 1l - p vy > O, we have

ai_y; > 0. Since a; = 0 for 1 > n, we see that m' - 1 < n,
i.e., m'< n+ 1. Hence, m' = n + 1 must hold.
Denote by x; (i = 1,2,...) the ratio of the number of planes
downed by the i-th hit to the total number of planes
participating in combat. Since m' = n + 1, we obviously have
x; = 0 for i > n. It is clear that

n

2: X, = L =1 - aj —a; - ... —a . (6)

i=1



CALCULATION OF X IN TERMS OF Ayr Byrecerd pl,...,pn

Since the proportion of planes that received at least one hit is
equal to 1 - ayr we have

x; =Pyl -a)) . (7)

''he proportion of planes that received at least two hits and the
first hit did not down the plane is obviously equal to

1l - ao - al - xl. Hence,

X, = pz(l - a, - a; - xl). ‘ (8)

In general, we obtain

(i = 2,3’.00,1") (9)
Putting
Ci =l"'ao_al— e 00 -ai"'l r (lo)

egquation 9 can be written

Xy + pi(xl + cee + xi-l) = P;Cy (1 = 2,3,00e4n). (11)

Substituting i - 1 for i, we obtain from equation 11

+ eee + X,

Xjo1 Y Pi(xg i-2) T Pj_1%i1

(i = 3,4,400,n). (12)
Dividing by_pi_l, we obtain
Xi-1
5 + (xl + e.. + xi_z) =ci 3 (1 = 3,4,400,n). (13)
i-1 ‘



Adding x 1l - L = il X to both sides of
1-1 Pi_1 Pj; 17l
eguation 13, we obtain
di-1
X+ eee Xy ) =Cy 0" P,_] X1 (14)

(i = 3,4,00-,”"'1)0
From equations 11 and 14, we obtain

x. + A £ = p.c (15)
i TPi %17 p i-1) 7 Pi%i -
i-1
Hence,
P;d, '
17i-1 .
X pi(c1 Cl—l) —EI:I— Xi—l (1 = 3,4,...,n). (16)
Let
and
p.d. _
t; = —ihi-l (i = 3,4,...,0). (18)
Pi-1
Then equation 16 can be written as
Xy = di + t X5 (1 = 3,4,¢c00,n). (19)
P9y
Denote pl(l - ao) by dl’ -Pya; by d2, and —EI~ by t2; then we
have
X, = dl and X, = tle + d2 . (20)



From equations 19 and 20, we obtain

xl = dl
i-1
X; = j;l djtj+ltj+2 cee by 44y (i = 2,3,¢ec.,n). (21)

EQUATION SATISFIED BY Ayrecerdy

To derive an equation satisfied by Qyrecerdyr We shall express

n
3, Xy in terms of the quantities t;, and d, (i = 1,...,n).
i=1

Substituting i for i - 1 in equation 14, we obtain

(22)
i q. q: | i-1
1 1 .
X, = 3, X.=¢C, =——x. =c, -=— | 3 (d,t. ;...t.) +d.] .
1 §=1 Jj i p; 1 1 Pi i=1 J j+1 i i
Hence, in particular
n g n-=1 (23)
n
X = Y x.=c -—| 2 (d,t. ...t ) +d |=1L.
n =1 J n P, 3=1 J 3+l n n
. . Pn
Since Ch ~ L = anr and since tj+l cee tn = 5; qj ces gy We
obtain from equation 23
n-1 d.
- 2 ¢ =
an JZ"":]. PJ qj to qn +qnan_l 0. (24)

Dividing by 9y e+ 9y and substituting —pjaj_l for d., we obtain



a, . a1 _ n-1 d]
4y 0 9y 4y -+ 9p =1 PyT ece 94
2n 2n-1
= +
ql . ¢ » qn l LI qn_l
(25)
j=2 91 934 Py
n a
= -~ (1 -a ) =0
=1 dq - qj o
or
n a
§=1 qq e-- qj
If it is known a priori that 9y = «++ = 9,+ then our problem

is completely solved. The common value of Qyreeeedy is the

root (between 0 and 1) of the equation

n a.
P -4 =1-a .
j=1 g’ °

Q

It is easy to see that there exists exactly one root between zero
and one. We can certainly assume that gy 2 Ay > eee > - We

shall investigate the implications of these inequalities and
equation 26 later.

ALTERNATIVE DERIVATION OF EQUATION 26

Let bi be the hypothetical proportion of planes that would have

been hit exactly i times if dummy bullets would have been used.

Clearly b; > a Denote b; - aj by yi(i = 0,1,2,+4.,n), Of

i* i

course, b = a

n
o or i.e., Yy, = 0. We have Z% b; = 1. Clearly
J:

-6-



Hence,

P- l -q a s s q' a
_ 1 - 1 I S o
¥Y; = oo ai = ® . a, = : a. . (28)

n
Since )] y; = L, we obtain from equation 28
i=1

n a .

n
1 .
= L + 2 a. =1-a_ . {(29)
{=1 9y e 94 i=1 T °

4
A

sThis equation is the same as equation 26. This is a simpler
derivation than the derivation of equation 26 given before.
However, equations 21 and 22 (on which the derivation of equation
26 was based) will be needed later for other purposes.

As méntioned before, eguation 29 leads to a soiution of our
problem if it is known that Gy = eee = dpe In the next

memorandum (part II) we shall investigate the implications of
equation 29 under the condition that 9 29 2 eee 2 Q.

NUMERICAL EXAMPLES

N is the number of planes participating in combat. AO, Al' A2,
...,An are the number returning with no hits, one hit, two hits,

«eeo,n hits, respectively. Then

a. = ﬁ_ (1 = Olllzlf“'n)

il.e., a, is the proportion of planes returning with i hits. The

computations below were performed under the following two
assumptions:



e The bombing mission is representative so that there is no
sampling error.

® The probability that a plane will be shot down does not
depend on the number of previous non-destructive hits.

Example 1l: Let N = 400
and A, = 320 then a, = .80
Al = 32 a, = .08
A2 = 20 a, = .05
A3 = aj = .01
A4 = a, = . 005
A5 = ag = . 005

We assume ql = q2 = L. = q5 =4y where qi is the probability of

a plane surviving the i-~th hit, knowing that the first i - 1 hits
did not down the plane.

Then equation 26,

n aj
—_— =1 ~a_ ,
j:l ql ® o 0 qj O
reduces to
n a.
J=1l g
Substituting values of ai
.08 + .02 + .O; + .002 + .002 = .20
g q g g g



or

.200q5 - .080q4 - .050q3 - .Oquz - .005q - .005 = 0.

The Birge-vieta method of finding roots described in Marchant
Method No. 225 is used to solve this equation (table 1). We find

q=9; = . 851, p; = .149 where Pj is the probability of a plane

being downed by the i~th hit, knowing that the first i - 1 hits
did not down the plane.
X equals the ratio of the number of planes downed by the i-th

hit to the total number of planes participating in combat. Using
egquation 9

Xizpi(l—ao-dl_.o.—a- - X - X ~ sese — X. )

(L = 2,3,400,n)

for n = 5, we obtain
xl = pl(l - ao) = .030
= g = C - - - o} 3
x2 _;2(1 do al xl) 013
Xy = p3(l -a, - a; -a, - x; - x2) = ,004
X, = p4(l - a, - al - a2 - a3 - xl - x2 - x3) = ,002
x5 = ps(l - aO - al -a, -a; - a, - X = X,= Xy = x4) = ,001
Example 2: Let ao = .3, al = .2, a2 = .1, a3 = .1, a4 = ,05, and
a. = .05. Then the following results are obtained: ¢ = .87,
2
L) = l - c_i = 013, xl = 009, x2 = .05, X3 = .03, X4 = '02, and
x5 = ,01.

The value of g in the second example is nearly eqgual to the value
in the first example in spite ot the fact that the values a,

(i =0,1,.0.,5) differ considerably. The difference in the
values a; in these two examples is mainly due to the fact that

the probability that a plane will receive a hit is much smaller
in the first example than in the second example. The probability
that a plane will receive a hit has, of course, no relation to
the probability that a plane will be downed 1if it receives a

hit.



Assume ¢

+200
«200

«200

e 1 = v,

-.080
+.200

+.120
+.200

+.320

P

TAULE 1

-«050
+.120

+.070
+.320

+.390

Assume q = .9010 = y2

2000

22000

«2000

Assume q

«200000

«200000

+200000

+2000000

.2000000

.2000000

-,080000 -.050000 -.010000
+.1721777 +.078826 +.024758
+.091777 +.028826 +.014758
+.171777 +.226363 +.219179
+.263554 +.255189 +.,233937
Co
Yd = y3 . E: = .858887 - .007632
Assume q = .8512556 = ¥,
+.080000 -.050000 ~.01000¢
+.170251 +.076827 +.022837
+.090251t +,026627 +.012837
+.170251 +.221754 +.211606
+.260502 +.248531 +.224443
D

-.0800
+.1802

+,1002
+.1802

+.2804

-.0500
+.0903

+.0403
+.2526

+.2929

B
=]

-.010
+.070

+.060
+.390

+.450

- 0990

-.0100
+.0363

+.0263
+.2639

+.2902

= - == = .9 - .042113 = .858887
Y5 Y, 5 010

1

= .858887 = y,

©

~-.005% ~.005
+.060 +.055
+.055 +.050 = Ao
+.450

+.505 = Ay

+9010

-.0050 -.0050
+.,0237 +.0168
+,0187 +.0118 = B
+.2615

+.2802 = 81

-.005000 =-.005000
+.012675 +.806592
+,007675 +.001592 =
+.200925

+,208600 = C

= .B51255

-,005000 -.005000
+.010928 +.00504¢6
+.005928 +.000046 =
+.191058

+,196986 = D

¥g =Yy " 5T < «851255 - ,000234 = ,851021

1
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PART II

MAXIMUM VALUE OF THE PROBABILITY THAT A PLANE WILL BE DOWNED
BY A GIVEN NUMBER OF HITS!

The symbols defined and the results obtained in part I will be
used here without further explanation. The purpose of this

i
memorandum is to derive the least upper bound of Xi==§: xj and

Jj=1
that of Pi (i = 1,...,n) under the restriction that

95 Zqz 2 reesys an-

First, we shall show that Xy is a strictly increasing function

of pj for j < i . Let us replace pj by pj + A (A > 0) and let

us study the effect of this change on X)reeesX;. Denote the
changes in RKyreeorX, by Al,...,Ai, respectively. Clearly,

A = LR BN ) =A

1 0. It follows easily from equation 9 that

3=1 7

. > 0 and
AJ

Bit1 T TPye1 b4 -
Hence,

Aj+ Aj+l=(l‘PJ+l) Aj>0'

’

Similarly, we obtain from equation 9

Biez = “PyaalBy * by = Pyl - Py Ay
Hence,
by + 8541+ Byyp = (1 - Pyun) (L= Pyy) Ay > 0.
In general
By * Byyy toeee ¥ By = (1o Py e (1= by A5 0

(k‘:'l'ooo’i—j)

Hence, we have proved that Xi is a strictly increasing function

Of PJ (j = 1,...,i)o

lThis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo §7 and

AMP memo 76.2.
=11~



On the basis of the inequalities piz < we shall derive the

'
least upper bound of Xi' For the purposé of this derivation we
shall admit 0 and 1 as possible values of Py (i=1,+..,n), thus
making the domain of all possible points (pl,...,pn) to be a
closed and bounded subset of the n~dimensional Cartcsian space.
Since Xi is a continuous function of the probabilities Pir Py
etc. (X 1s a polynomial in pl,...,pi), the maximum of Xi exists

and coincides, of course, with the least upper bounhd. Hence,
our problem is to determine the maximum of Xi'

First, we show that the value of Xi is below the maximum if

Pp > Py Assume that P > 1< and let k be the smallest positive

integyer for which pk> By Obviously k > i. Let p3 = pj(l + €)
for 3 = 1,...,k=-1, and p5 = pj,(l - n) for 3 = k,k+1,...,n,

where € > 0 and n is a function nN{ e) of & determined so that
n
xs = L (xi is the proportion of planes that would have been
j:‘:l
brought down with the j-th hit 1if pi,...,pé were the true
probabilitieé). Since Xr (r = 1,...,n) is a strictly monotonic
tfunction of pl,...,pr, it is clear that for sufficiently small

such & function nNn{ &) exists. It is also clear that for suffi-
ciently small € the condition p'li pé < oo £ pé i tulfilled.
Since pj > pj (3 = 1,...,1), we see that Xi > Xi (Xi does not
depend on pé for r > i). Hence, we have proved that if

PyresssPy is a point at which Xi becomes a maximum, we must have

= ce.e =P

by = pi+1 n®

Now we shall show that if Xi is a maximum then Py = Py = ... =Py

For this purpose assume that pi > pl and we shall derive a con-
tradiction. Let J be the greatest integer for which pj= P
Since pi> Pyr we must have j < 1. Let pé = pr(l + ¢} for
r=1,...,] and pé = pr(l - nj) for r = j+1,...,1i, where

i i
€ > 0 and n is determined so that » x! = E:’ﬂ(° Then for the

=1k &

probabilities pi,...,pi, PippreerPy the proportion of lost

-12-



planes is not changed, i.e., it is equal to L. Now let p; = pi

for r > i. Then the proportion L' of lost planes corresponding
to pi,...,pé is less than L. Hence, there exists a positive

A so that the proportion L" of lost planes corresponding to the
probabilities pg = pé (1 + A) is equal to L. But, since p; > p;

i i
(r = 1,...,1) we must have ) x; 2: 5 > xy. Hence, we
j:l = 1=
arrived at a contradiction and our statement that P; =Py = «eo
P; is proved. Thus, we see that the maximum of X.l is reached

when P, =Py, = +ee = P
LEAST UPPER BOUND OF Pi

Now we shall calculate the least upper bound of Pi. Admitting

the values 0 and 1 for pj, the maximum of Pi exists and is equal

r

to the least upper bound of Pi' Since Pi =1 - dy +es G

maximizing P is the same as minimizing dy +++ 9j+ We know that

Uyreserqg, are subject to the restriction

_.__i_____ = ] - ao
lql L N qj

. (30)
j:

Let qi,...,qz be a set of values of Qyreeerdy (satisfying

equation 30) for which Ay oo 9y becomes a minimum. First, we

o _ o _ _ O o o}
show that 9y = 94y = v q, - Suppose that q, < q; -
Consider the set of probabilities qé = qg for r < 1 and qé = q?

for r > i. Then

D W
=1 SHIEEE J

-13~-



Hence, there exists a positive factor A < 1 so that

éi a.
__.._L_. = l -
1] n (4
§=1 qi N qj o}
where qg = Aqi (i=1,...,n}). Then

nn " o O (o}
qqu ..oo ql < qlq2 ] qi

in contradiction to our assumption that q? e q? is a minimum,

o]
Hence, we have proved that qi = .. = qn .

Now we show that there exists at most one value j such that

1> q? > . . Suppose there are two integers j and k such that

1> q? > qi > q? . Let j' be the smallest integer for which

q?, = q? and let k' be the largest integer for which qi, = qi .
- _ o - _ 1 o -~ _ 0

Let gy, = (1 + € dyve dpv= 755 9 (> 0y and g = q

for r # 3', # k'. Then

n a
— - _ 0 o Iy _
ql LI I qi had ql LI ) ql and Z _' ——— "_"_ < l ao .

r=1 d1 " Y

Hence, there exists a positive factor X < 1 such that

Zn:__*_.i.r___*.z_]_—ao'
r=1 91 -+ 9
where g* = Ag But g* q* < gy ... . = q° . q°, which
r r' l... 1 l.. i l LN i'

contradicts the assumption that qi P q? is a minimum. This

proves our statement.

~14~



It follows from our results that the minimum of 93 is the root of

the eguation

n ar
Z’ T =1 - ao . (32)
r=1 g

Now we shall calculate the minimum of 9;9,- First, we know that
9
9,9, under the restriction

= q2 (i > 2) if qlq2 be a minimum. Hence, we have to minimize

1 2 3 n _ _
43 EP) 2

a a a
- A 2 .3 n -

Q-G e 7 Teeet ) O (34)

43 92 93 93

(Lagrange multiplier = })
a 2a (n - 1l)a
A 2 3 n _

- & S o+~ + ..+ ———2 ) =0 . (35)

1\ a; q, q,

Because of equation 33, we can write equation 34 as follows:

a49

A 172
q, - = (L -a) =0; x= 53—
2 9, e} 1 a,

Substituting for XA in equation 35, we obtain

a 2a 3a {n - 1l)a
q 1 -2 + 3 + 4+”. 4 '™n - 0
1 1 - a, 2 3 n-1 (36)
9, q2 92 qz

~15-



or

a 2a (n - 1)a
1 2 3 n
ql = T—:~E— —_— + —5- + cee + o1 . (37)
° \9 ) EY)
On the other hand, from equation 33 we obtain
a a a
- 1 _2 3 n
o q, 9, 9,

Equating the right-hand sides of equations 37 and 38, we obtain

a 2a 3a (n - 2)a ‘

3 4 5 n

2 + 3 + 4 + ... *+ '—_'__—'_'n_l fand al = 0. (39)
9, EP) 95 95

It is clear that equation 39 has exactly one positive root. The
root is less than or equal to 1 if and only if

a3 + 2a4 + 3a5

+ «ee + (n - 2)an_£ aj -« (40)
Equations 38 and 39 have exactly one positive root in 9, and d,-

We shall show that if the roots satisfy the inequalities 1 > 9 > 9,0
then for these roots q;9, becomes a minimum. We can assume

that 2 < n, since the derivation of the minimum value of 4y - d
will be given later in this memorandum. It is clear that for any

n
!
value q; > y———%— equation 38 has exactly one positive root in

d4,. Denote this root by ¢(ql). Hence, ¢(ql) is defined for

a
all values q; > 1—:£5— « It is easy to see that
o

-16-



lim  ¢(q,) = +

1
Q- I-ao

Hence (assuming a > 0)

lim ¥(q;) = + =

Where ‘P(ql) = ql 4)((11)'

It is clear that lim ¢(ql) = 0, Since a, > 0, it follows from
g,*r ™ '
1

equation 38 that q, [ ¢(ql)]n-l has a positive lower bound when

dy> oo But then, since n > 2, lim q; ¢(ql) = + w. From
q,+> >
1

the relations lim w(ql) = lim W(ql).= + o it follows
ql’Tﬁ; qy> e

that the absolute minimum value of w(ql) is reached for some

positive value q; - Since equations 38 and 39 have exactly one

positive root in 9, and dyr the absolute minimum value of w(ql)

must be reached for this root. This proves our statement that
if the roots of equations 38 and 39 satisfy the inequalities
1> q, > Ay then for these roots qlq2 becomes a minimum con-
sistent with our restrictions on 9 and 9, £ 1 > q, 2 g9, is
not satisfied by the roots of equations 38 and 39, then a4 is

equal either to 1 or to g, and the minimum value of 9;9, is

either ¢(1) or q2 , where gq is the root of the equation

<17~



s

2 r
ééa —? = 1 = ao .

e

Now we shall determine the minimum of ql e qi (2 < 1 < nj).

First, we determine the minimum Mil of dy ee- 9y under the re-
1

striction that 9, = 9y. Thus, we have to minimize qlqz_ under
the restriction that
a a a &
1 2 3 n _
—_ 4+ + 5 + ... + —h-i = l—ao. (40a)
9p 9192 919 419
Using the Lagrange multiplier method, we obtain
. a a .
q3~l - éL ai + ee. T ———H%T_ = q;_l - éL (1 - ao) =
1 1 41492 1 (41)
and
, a 2a (n -~ l)a
(1 - l)qlq; 2 . éL —%— + —§§ + .. + = L = 0.
L9 92 92 (41a)
i-1
: 4;9
Substituting T a3 for X (the value of X obtained from

, o
equation 41), we obtain

a. 2a (n - 1)a
. 1 2 3 n B
(1 - l)ql - I—:—Eg _— + 5 + a0 + o1 = 0 .
92 93 92 (42)
From equation 40a
a a
. i~-1 2 n _
(i =~ l)ql i ay +— + ...+ /=3 = 0 . (43)
o} q2 q2

-18~



From equations 42 and 43, we obtain

(i - 2)a (i - 3)a i
(i - Da; + 2 4 > 3 — g,
q; 9, q; (44)

From Descartes' sign rule it follows that equation 44 has exactly
one positive root.

Let q; = qi and q, = qg be the roots of the equations 43 and
e} o} _ .0, 0,i-1 o} o
44, If 1 > ql > q2 , then Mil = ql(qz) . If 1> ql > q2 does

not hold, then M, is either (') or (q")l_l, where q' is the

root of the equation

n a.
————L. = 1 - a (45)
i=1 (q*)] ©

and q" is the root of the equation

a3 an
5 + a4 + ——m—m—"0n =1 - ao . (46)
(a")

(qm)"1

a

a
+ =2 4
l qll

Let Mir (r = 2,¢40,1=1) be the minimum of dy eee Q4 under the

restriction that qy = eee =44 < 1l and Qpypq = 95 Then Mir can
be calculated in the same way as Mil; we have merely to make the
substitutions
*
n = n-r + 1
*
* . *
aj = aj+r—l (] =1,000,n )
* ) *
95 = Yy4p-1 (3 = 1l,0.0.4n )
*

i"r"‘l,

-
]

* *
and we have to calculate the minimum of Qy eee Gy o Thus, we

have to solve the equations corresponding to equations 43 and 44,
i.e., the equations

-19-



* * * *
* * s * a a a x
(i - 1)ql - i———i; a, + 2 + 3 5t e n T =0
1 - a q* * x 07
o 2 (q,) (q,)
(43*)
and
* * .* * * *
* * (i - 2)a2 (i -~ 3)a3 (i - n )an*
(i - l)a, + + + .4 + = 0.
1 * * 2 * n*—l
* * o
Let 4 = vy and q, = v, be the positive roots of the equations
*
* * : . - i -1
43* and 44*. If 1 > vl > Vor then Mir vlv2 . If 1 > vl > v,
*
does not hold, then Mir is equal to either (v')l or
‘*
(v")l -l, where v' is the positive root of the equation
* *
n a. *
3 j =1-a, (45%)
=1 (v
and v" is the positive root of the equation
* * *
* a a a_g *
al+-—?1+ 32+...+———-—2;—:I=l—ao . (46*)
V" (V") (v")
The minimum M; of dy «es 9y (i = 2,3,...,n-1) is egqual to the

smallest of the i - 1 values Mil""’Mi

’ i-'l

How we shall determine the minimum of Gy e 9y - We show that
the minimum is reached when 9y = eee T Qp_ g = 1. Suppose that
this is not true and we shall derive a contradiction. Let j be
the smallest integer for which qj < 1 (j < n). Let qj = (1 + a)qj

- q -
(e > 0), q, = T—?E_E , and 49, = 9, for all r # j, # n.

Then ql... qn ces = ql... qn and

-20-



n a
r

<l"a .
o

r=1 61 s o ar

Hence, there exists a positive ) < 1 such that

n a
Z __;‘_...._r_____*,. = l-ao’
r=l-ql o0 qr

where

* * - -
But then q; e+ 9, < 9y e+ 9y = 9p - 9y in contradiction to

the assumption that 4y ++ dp is a minimum. Hence, we must have
qy = eee = Qg = 1. Then, from equation 26 it follows that the

minimum value of gy «-- 9y is given by

If i > 1 but < n, the computation of the minimum value of dy eee 94

is involved, since a large number of algebraic equations have to
be solved. In the next part we shall discuss some approximation
methods by means of which the amount of computational work can be
considerably reduced.
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PART III

APPROXIMATE DETERMINATION OF THE MAXIMUM VALUE OF THE PROBABILITY
THAT A PLANE WILL BE DOWNED BY A GIVEN NUMBER OF HITS1

The symbols defined in parts I and II will be used here without
further explanations. We have seen in part II that the exact
determination of the maximum value of Pi (i < n) involves a con-

slderable amount of computational work, since a large number of
algebraic equations have to be solved. The purpose of this
memorandum is to derive some approximations to the maximum of Pi

which can be computed much more easily than the exact wvalues,.

Let us denote the maximum of Pi by P? and let Q? = 1 - P? .

Thus, Q? is the minimum value of Qi‘ Before we derive approxi-
mate values of P? (or Q?) we shall discuss some simplifications

that can be made in calculating the exact value Pg (or Q?)

assuming 1 < i < n., We have seen in part II that Q? is equal to
the smallest of the i - 1 values Mil""'Mi io1® We shall

’
make some simplifications in calculating Mir (r = 1,...,1i-1).

For this purpose consider the equation

r . %4l ®n
—_— + + ees + nor 1l - aO - al — eee — ar 1° (47)
u av uv
ar
It is clear that for any value u > T =3 = - , equation
O . e r—l

47 has exactly one positive root in v, Denote this root by ¢_(u)
¥

a
r -

l-a-~... -2,
In all that follows we shall assume that ay >0 (i =1,0e4,n}.

Thus, ¢r(u) is defined for all values u >

We shall prove that

lim i-r _
- a_ <Ll [¢r(u)] ) = + (48)
‘ao —--.‘ar_l

lThis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 88 and
AMP memo 76.3.
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and
lim i-r
bow (U [fbr(u)] = to . (49)

It follows easily from equation 47 that if U~

- a ~ ses = 4a
o) r-1

then ¢r(u) + +w.. 8Since i > r, we see that equation 48 must

hold. It follows easily from equation 47 that 1lim ¢r(u) = 0,
u=+ o

We also see from eguation 47 that if u-»w, the product u q;r(uglnmr

must have a positive lower bound. Equation 49 follows from this

and the fact that lim ¢r(u) = 0.

U - oo

We have seen in part II that equatlons 43* and 44* have exactly

one positive root in the unknowns, ql and q2 Let the root in

* o ; . . * o
ql be ug.e Then the root in q2 is equal to ¢r(uir)

From equations 48 and 49 it follows that u [¢r(uﬂ 1=r s

a
strictly decreasing in the interval L3 <u < ul,,
l - ao = e ee - ar_l 1lr

. . , . . . o
and is strictly increasing in the interval uj,. <u< +to

Denote by ué the positive root of the equation

a a
—E + r;l + LI ] + o

u u

= 1 - a = ewe = ar_lo (50)

. . [] - ] m 1 c
It is clear that ur < 1 and ¢r(ur) ur « The value Mir is

equal to the smallest of the three values

. vy | 1=T i-r o o i-r
ul [}r(ur)J ' [¢r(l)] , and ug [¢r(uir)] .

A simplification in the calculation of Mir can be achieved by

the fact that in some areas Mir can be determined without

calculating the value u?r . We consider three cases.,

Case A: ul [¢r(ué)}i-r < [¢r(l)]l-r .

-23-



In this case,

= ul [q;r(ul;)]i'r if d—du- u[cpr(u)]i‘r > 0 for u = ul
and

Mir = u?r [¢r(u?r)]i—r if 5% u[@r(uﬂi-r < 0 for u = u'.
Case B: ué Fr(uéj]i—r > [¢r(l)]i—r .
In this case,

—Mir = [cpr(l)]i‘r if u[q;r(uili’r <0 forus=1
and

M= u§ Pq;r(u‘i’r)]i‘r ir 4 u[cpr(u)]i_r > 0 for u = 1.

- ) .

Case C: u! Ld’(ul',)]l_r = [‘b(l)] e

In this case,

_ .0 o i-r
Mir = Yir [¢(uir)] :

We can easily calculate the value of —gﬁ u[}k(u{}l-r for u = u
and u = 1. In fact, we have

. . . d¢_(u)
d i-r _ i1-r . i-r-1 r
aa [¢r(u)] = [¢r(u)] + (1 r)u [ér(u)] *—33—751)

de¢_(u)
and —e—— = g% can be obtained from equation 47 as follows.
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8 84 4
Denote i + ses + ner by G(u,v). Then
u uv uv
9
d¢ _(u) _dv _ _ 3u G(u,v)
du T du 3
(52)
a a a
-% —r- + r+l + see + nf
_ u uv v F
1 qr+l1 N 28p40 + + (n = rja,
u V2 V3 n-r+1l
qr+l + 28,42 + + (n - rja, r
v2 v3 Vn-r+l

On the basis of equations 51 and 52, we can easily obtain the

N -(1_ i-r = ] = i T
value of T [}r(u)] for u = uy and u = 1 if uy and ¢r(l)

have been calculated. If u = ué , then ¢r(u) =y = ué; if
u =1, then v = ¢r(l).
Since ¢r(l) is equal to the root of the equation in v

a a

r+l n

a-‘*‘ +oo.+ -=l"a'—a-o-o-a_
Y v ¢t j o 1 r-1 "'
it follows from equation 50 that
-— 1
¢r(l) - ur+l - (53)
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Thus, for carrying out the investigations of cases A, B, and C
for r = 1,...,i-1, we merely have to calculate ui,...,u!.

i
If we want to calculate Q? for all values i < n, then it seems
best to compute first the n quantities ui,...,ué.

4 ] — ] = ] 1 3
Since ul = ¢r(ur) and ¢r(l) ur+l’ we can say that Mir is

the smallest of the three wvalues

, Yi-r+l , i-r o o i-r
<ur> ' (ur+l> r and Yir [¢r(uir)] :

Since Q? is equal to the minimum of the i - 1 values,

Mil""'Mi i=17 we see that
r

0% <ty (54)

where

Min ‘}ui)i: (ué)i—l,..., (ui

t
I

2 '
1) ui] . (55)

If n is large, it can be expected that Q? will be nearly egual to

ti. Thus, ti can be used as an approximation to Q? . In order
to see how good this approximation is, we shall derive a lower

bound z; for Qi . If the difference ti -z is small, we are

certain to have a satisfactory approximation to Qg . If ti -z

is large, then ti still may be a good approximation to Q?, since

it may be that z, is considerably below Q? .

To obtain a lower bound zZ; of Q?, denote by yj (j = 0,1,¢0.,1-1)

the proportion of planes (number of planes divided by the total
number of planes participating in combat) that would be downed
out of the returning planes with j hits if they were subject to
i - j additional hits. Then

Pi = ¥, + Yy ¥ oees + Y, +ox) o+ X, + ce. + X - (56)
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It is clear that ajPi> yj (3 = 0,1,...,1i=1) and consequently
(ao + a1 + vo. + ai_l) Pi > Yo + Y, + e + Yio1 °

Hence,

yO + yl + o0 + yi-l
a, + a

< P. . (57)
1 T oeee Ta,_; i

Equation 56 can be written

yo + yl + see + yi-l

i)
]

(a. + «.. + a,

)

i (o] i-1 ao + eee *+ ai-l
(58)
x +..0 +x-
1 i
+ (l-aO_... _ai""l) l_a - ese = Aa. ¢

o i~1

y + * o ® +yi-l

Hence, P, is a weighted average of o and
i Y ao+..o+al_l

X, + e + X.
1

. Then, from equation 57 it follows that

l-ao—-...- ai-l
xl+... +x-

P. < - ~ ~ — . (59)

i 1 a, a, cos aj_y
Since yj > 0, we obtain from equations 56 and 59

+ ees t+ X,
X] * e+ X <P < T :l _ - :1 (60)
o °t i-1
Hence,
xl+...+xi
l-l"a - ... - a <Qi< l- (Xl+...+X1) . (61)
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In part II we have calculated the maximum value of xl + see T Xi'

Denote this maximum value by Ai’ Then a lower bound of Q? is
given by

z., = 1 - < Q? . (62)

NUMERICAL EXAMPLE

The same notation will be used as in the numerical examples for
part I. q; is the probability of a plane surviving the i-th hit,

knowing that the first i - 1 hits did not down the plane. Then
the probability that a plane will survive 1 hits is given by

Q; =919y »-- 95 -
In part I it was assumed that
ql = q2 F e =g, =g (say),

which is equivalent to the assumption that the probability that a
plane will be shot down does not depend on the number of previous

non-destructive hits. Under this assumption

The example below is based on the assumption that
ql ->_- q2 > ” & Z qn,

i.e., the probability of surviving the i + 1 hit is less than or
equal to the probability of surviving the i-th hit. 1In this
case, it is not possible to find an explicit formula for Qi' but

a lower bound can be obtained. That is, a value of Qi can be

found such that the actual value of Qi must lie above it. The

\ o)
greatest lower bound is denoted by Qi . Hence, we have

0

i Q5 -

1

If
P'=1-Q(;l
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P? is the least upper bound of Pi; that is, the probability of

being downed by i bullets cannot be greater than Pg.

Since the computation of the exact value of Q? is relatively
complex, an approximate formula has been developed. This

approximation is called ti and ti > Qg. Another approximation

(zi) is available such that z; £ Qg. However, z; is not as
accurate as ti. Whenever the full computation is to be omitted,
it is recommended that ti be used.

The observed data of example 1, part I, will be used. Thus,

ao = 080' al = 008’ az = 005’ a3 = oOl’ a4 = 0005’ a5 = ,005

The calculations are in three sections:

® The calculation of ti

v
o]

-® The calculation of zi

IA
©

® The exact value of Q?.

A o
1. Calculation of ti (tiz Qi)

(1) Calculate ué, the positive root of equation 50:

ar ar+l an

"—+ +...+'——-—=l—a-...—a .

u u2 un--r+l o) r~1
For r = 1, we obtain

al a2 a3 a, ag

——+—2—+—3-+—4—+——§=1-a°,

u u u” u u
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which reduces to

.20u” - .08u? - .05u° - .0lu? - .005u - .005 = 0

u! = ,851 .

42
u—+——2—+-—-§+—4=l-—a-—a

which reduces to

.l2u4 - .05u3 - .Olu2 - .005u = 0

ul = .722 .

L]
o
J
[}
I
*
o
)..4
c
|
L]
(e}
o
wu
o
1
£ ]
o
[an]
(921
1]
o

a
4 -
— + 5 = l-a -a, - a
u
which reduces to

1 =
u4 «333 .

(2) tl,...,t5 are given by equation 54:
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: 1 i~ ’
t; = Min [‘“i) cun T o r? (u;)] -

We have
1 = r = ] ' - ! = . .
ul . 851, u2 . 722, u3 .531, u4 333
Hence,

t, = Min Bui)] = ui
= ,851

, = Min [(ui)z, (uy)]
Min [.724, .722]
.722

o+
]

{1}

: 3 2
3 = Min [(u])7, (uy)", (u})]
Min [.616, .521, .531]
.521

ot
]

: 4 3 2
g = Min ftu)?, (uh) T, (up) T, (u})]
Min [.524, .376, .282, .333] -
.282

o+
"

t_. is not calculated since the exact value of Qg can be
easily obtained.

. (e}
2. Calculation of z; (zi < Qi)

The following values must be obtained:

9y’ the root of equation 26A

a a a a a
9 q 9 q g

This has already been obtained as ui . Thus q, = .851. The

have been calculated in part I:

values of xl,...,x5
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X, = .030, x2 = ,013, x3 = .004, x4 = ,002, x5 = ,001.
Ai = xl + x2 + s + X,
Al = xl = ,030
A2 = X + Xy = .043
A3 = X4 + X, + X5 . 047
A4 = Xy + X, + x, + Xy = .049
AS = % + X, + X3 + x, + Xe = .050.
From equation 62 the lower bounds z; are calculated:
A,
2y = l-r0a = <9 -
o .t i-1
Then
A
1 .030
Zl—l—l__a—l -T-Q—O-—-.850
o}
A
2 .043
z, = 1 - =1 - —= . 642
2 1l -~ o ~ 21 .12
A
3 .047
z, = 1 - =1 = .329
3 1 - a, - a; - a, .07
A
4 . 049
z = 1 - = ] -« —= = ,183
4 1 - aj —a; - a, - 33 .06
zg is not calculated since Qg can be obtained directly.
3. The Exact Value of Q?
We have z; such that

calculated ti and
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z, <Q) <t

i = (i =1,2,..4,5) .

i
The exact value of Q? is obtained as follows:

. i-r+l i-r o) (o) i-r
M;,~ Min ((u;) LMY r Yir [¢r(uir)] ] ’
o o\ . .
where Uiy and ¢r(uir) will be defined below.

Q _ .
0 = Min [Myj,euu,y ;)]

or combining these equations with the definition of ti we obtain

O .
Q, = Min {tl} = .851
(o] . (o] (o]
Q, = Min {t,, uy [ (uy)1}
() , o 0 2 o] o]
Qy = Min {tj, ug; [ ¢5(ugy)1% ugyl 6,003,
(o) . o o) 3 (o) o) 2 o) o)
Qq = Min {t, gl 6(ag)170 ugol g p(uyy)1% usl ¢30uy3)1
(o] O O (o]
It Uip ? 1, [¢rjuir)] > 1, or Uy, < ¢r(uir), then

(o] R . . .
ug,. ¢r(u?r)]l L is neglected in the equations above,

' a
0 5 . 005
Q = 7= Z = - - = = .091.
5 1 aO al a2 a3 a4 . 055

In the equation of Q? the additional quantities we have to
compute are

(@] o
Us1 ¢y (uyy)
(o] (o]
Usy ¢ (ugy)
O (o]
Y b,(u3y)
(e} (o]
Ug1 ) (uyy)
lo] O
Ug2 0y (uyy)
(e} o]
Us3 3(uy3)
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The following equations have exactly one positive root in qi, qz.

The root in g* i o . oot i * .
q s ulr, the root in q2 is ¢r(ulr)

1
a¥ a% ar,
* * * -
a5 (qz) (qz)
where qg satisfies
* * 7 * o * 1k * *
. . (1 2)a2 (1 3)a3 (1% n )an* _
a3 (%) (a3)

where

n* =n-r + 1

a* = a 4+ a, + ... + a

o 1 -1
* = 1 = *

aj aj+r~l (3 1,2,...,n%)

The details of the computation are given in tables 2 and 3.
TABLE 2

O * * * * * * * *
us i 3 E_ i_ ak aj a¥ a aj at
uzl 2 1 5 2 .80 .08 .05 .01 .005 .005
ugl 3 1 5 3 .80 .08 .05 .01  .005 .005
ugz 3 2 4 2 .88 .05 .01 .005 .005
uzl 4 1 5 4 .80 .08 .05 .01  .005 .005
uzz 4 2 4 3 .88 .05 .01  .005 .005
u23 4 33 2 .93 .0l  .005 .005
where
a0 = ,80, al .08, a2 = ,05, a3 = .01, a4 = ,005, a5 = .005
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—gE—

TABLE 3

Computatic;n
of Equation Numerical Equation Result
Obtained
° ' (i'-2)a5 (i'-;i)as (i"—é)az (i'-5)ag 4 2
¢ (u..) (i*~-1)a* + + + + yy = 0 .OB(qi) - .01(g¥)” -~ .01(q*) - .015 = 0 «774
1%21 1 N (@)? (at)® (a*) 2 2
2 2 2 2
a* a* a% ay
“21 a* + _3_’_ 32 + 43 + 54 - (1_‘;)‘!: J08 + .05 + .01 o + .005 5 + .005 < - .20q‘; 932
q; (q;) (q;) (q‘z') 774 (.774) («774) (774)
o (1'-2)a5 (i'-3)a§ (i'—s)az (i"-S)a; 4 3
¢ (u..) (i*-1)a* + + + + =0 W16(g¥)° + L05(q¥)” - ,005(q*) - .01 = 0 +463
1731 1 - ( .)2 . ( 1,,)3) (q* )4 2 2 2
1, a3 q3 P
a‘ a' ai a.
“31 at + 2,73 S+ 4 <+ 5 < = (1-at)q 08 + 205, =01 s+ =005 S+ .005 L= +20q8 1.968%
qE (qs) (qs) (q;) «463  (.463) {+463) (.463)
° (i'-2)a'2 (1"-3)3} (1'-4)&: 3
¢, (u..,) (i*-1)a* + + + -0 .05(q*,)” = .005(q*) - .01 = 0 642
2732 1 - ( ,,)2 (,)3 2 2
4 92 2
ar a¥ a%
ud, ats 20 2oy Lo ang o5 + 0L, 2008 2005 . q2qs .805
q; (q;) (q;) +642 (.642) (+642)

(1%-2)a%  (i*-3)a*  (i*-4)a*  (i*-5)a?

9,053 (i*-tag + 2, —2 4 . 4., < 5.0 .zu:;;)‘ + .10(q;)3 + .01(gn? - 005 = 0 .29¢
' * (q%) (q®) (q*)
92 92 @ 9




Computation
of

TABLE 3 (Continued)

Equation
a* a* at a¥
a* + 2 by L] + 5

oy (@? @’ (e

4

(1'-2)&5 (i'-S)d; (i'-d)!z

(1'-1)5; +

2
* *
a3 (q3)
ﬂ.. !' l.
3 4
L4 — ——
a1 + + 2 +

+
(q;)3

= (1~ *
1 a'o)q‘

(L'-Z)aa (1'-3)5'3

=0

(1'-1)a; + + 3
13 *
a3 (q3)
ar a¥
at + 2 + 3

q; (qi)

a . o o ,,2
1.968 > 1 (u31 ¢ (u31)) is not used.

b

64402 > ¥V

1

° o ,.3
lu41 ¢1(u41)] is not used.

e .0 o ,,2
2,108 > 1..u42[02(u‘2)) is not used.

4 o, . ©O o
«387 < bqlugy) & u‘3(¢3(u‘3)] is not used.

7 - (g

- (1-a;)q§

=0

Numerical Equation

- .ZOqz

205 _.01 S+ .005 S+ +005
.290  (.290) (+290) (.290)
0ta? + L01tag? - 005 = 0
o5 4 201 =005 S+ .005 S~ g
+338  (.338) (.338)
2 .
-01(gy)” - .005 = 0
01 + 2005, _.005 «o7gs

«707 (-707)2

Result
Obtained

6.402b

.338

2.108°

707

+387



Substituting the values from table 3 in equation A and neglecting
several terms as explained in table 3, we have

0] = .851
0, = Min {.722, .721} = .721
Q3 = Min {521, .517} = .517
0y = -282
0of = .091

The results obtained are shown in table 4.

TABLE 4
T -
1 . 851 .851 .851 . 851
2 .642 .721 . 722 «724
3 «329 «517 .521 .616
4 .183 «282 . 282 .524
-5 - .091 - .446

Thus, with the observed data, this example, if all the
information available about the qi's is that

ql_>_q2>--°_>_q50

all we can say about the Qi is that

Q12.085' Q2_>_o72' Q3_>_052’ Q4->_028' Q5= .09 .
Note that
(o}
2] =09 =t =49, -
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This is always true.

It is interesting to compare Qg with the values of Qi obtained
under the assumption that all the qi's are equal and have the

value qo. Under this assumption,

(i =1,2,...,5).

2

(0] o ) . 3
In table 4, Q1 = g, and Q2 is very close to 9, - Q3 and g

O

differ by approximately .1l and the agreement between Q? and
qé gets progressively worse. It will usually be true that q;

and Q? are approximately equal for small values of i, but will

differ widely as i increases.
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PART IV

MINIMUM AND MAXIMUM VALUE OF THE PROBABILITY THAT A PLANE
WILL BE DOWNED BY A GIVEN NUMBER OF HITS CALCULATED UNDER
SOME FURTHER RESTRICTIONS ON THE

PROBABILITIES ql""'qnl

In parts I, II, and III we merely assumed that ql > q, 2 e > q,

In many cases we may have some further a priori knowledge
concerning the values Qpreeer9ye We shall consider

here the case when it is known a priori that Alqjs 541 < Aij

() = 1,+«4.,n=1), where Al and 12 (Al < A2 < 1) are known

positive constants.
We shall also assume that

n a .
—_— -

;éi .(é_l) <1l-a . (63)
A
1

Since ay + a, + ce. + a, <1 -~ agr the inequality in equation

63 is certainly fulfilled if kl is sufficiently near 1. It
follows immediately from equations 63 and 26 that 9y < 1.

CALCULATION OF THE MINIMUM VALUE OF Qi =1 - Pi (1 < n)

Let qi,...,qg be the values of Qyreeerdy for which Qi becomes

a minimum. We shall prove the following.
Lemma l: The relations

q?+l = Azq? (3 = i eee,n=1) (64)
must hold.

Proof:. Suppose that the relation in equation 64 does not hold
for at least one value j > i and we shall derive a contradiction.

lThis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 89 and
AMP memo 76.4.
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Let qé = q: for r = 1,...,1 and q!

J+l = )\ij! fOf j = i,o..’n_l.

Then we have

v n a.
= 62 o -
qi .- 9} =q; ... q; and ggi aT—TT%~a§ <1=ag. (65)

Hence, there exists a positive value A < 1 such that

n a.
=1 - a
. o !

where qg = Aq5 (1 =1,+..,n). But then

o) o
qz can q; < qi cee qi qp eee q;

in contradiction to our assumption that q? e q? is a minimum.

Hence, Lemma 1 is proved.

Lemma 2: If j 1is the smallest integer such that q§+l = A2q§ for

all k Zj, then qg = }\ fOI‘ r = 2’3’oot,j—l.

o
lqr-l

Proof: Assume that Lemma 2 does not hold and we shall derive a
contradiction. Let u be the smallest integer greater than one

such that qﬁ > quz—l . It follows from the definition of the
integer u that if u > 2, then qﬁ_l = Alqi_z. From assumption 63

it follows that qi < 1. Hence, if we replace qﬁ_l by

q&_1= (1 + e)qi_l € > O), then for sufficiently small e the
inequalities Alqr < 41 < xzqr (r = 1,¢s.,n-1) will not be
disturbed. Let v be the smallest integer greater than or equal
to u such that q$+l < Azqs . Since by assumption j is the

smallest integer such that q§+l = kzqi for all k > j, we must

h . < A,Q.
ave qj qu_
qo

o) v oo \4 ; . : . s
q, by 9, = T+ Ve shall not disturb the inequalities

1 Hence, v < j-1l. It is clear that replacing
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o
q

= O vy .V _ O
q&-l = (1 +¥ du-1 9% T ¢€ ¢ and qé = 9y

for r ¥ u, # v, then Alqi < qi+l < Azqi (k = 1,...,n=-1) is ful-
filled. Furthermore, we have

o le) i& a5
q' s e q! = q I ) q- and —‘—'L'—. < 1 - a
1 1 1 i j=1 gy e qj

Hence, there exists a positive A < 1 such that

n a.
_d -3 -
;gi ] .-+ 95 %o

and q; = Aqi (3 =1,...,n). But then

q ... q}f <aqj ees q!

_ o o
i i =9 e 9y

1

in contradiction to the assumption that qg ceo q? is a minimum,

Hence, Lemma 2 is proved,

Let Eir (r = 1,.4.,1-1) be the minimum value of Qi under the

]

restriction that qj+l = Azq- for j = r+l,...,n—; and qj+l = Alqj
for 3 = 1,.04yr=1, From Lemma 1 and 2 it follows that the mini-

mum of Q, is equal to the smallest of the i - 1 values E.,,...,E, .
i il i,i-1

The computation of the exact value of Eir can be carried out

in a way similar to the computation of Mir described in part

II. Since these computations are involved if n is large, we shall
discuss here an approximation method.

Let EIr (r = 1,40.,1i-1) be the value of Qi if q. for

. j+1 = Aqu
541 = Alqj for j = 1l,.¢e.,r. Furthermore,
ke ;
let Eio be the value of Qi if qj+l

if n is large, the minimum of E¥*
i,r=-1

to Eir’ Hence, we obtain an approximation to the minimum of Qi

j = r+l,...,n-1 and q

= )\ij (] = l,.0.,n-1). Then,
and E;r will be nearly equal

*
0' i,i-l.
The quantity Eir can be computed as follows. Let 9, be the

by taking the minimum of the i numbers E; Eil""'E

positive root in g of the equation
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r+l1 a. n-r-1 a .
> el + 2 cdld) =1-a
§=1 J(%—l) ' 4§31 r(r+l)+rj j(j+l1) o)
J 2 2 r+l+j
A ! A A2
(66)

(r = O,l’o-o'i—l)o

Then
r(§+l) r(i-r-1) (1—r)§rﬂﬁi) ;
* =
By = M A Ip -

(67)

MINIMUM OF Qn

Let qi,...,qg be values of dpreesrdy for which Qn becomes a
L o _ o L. _ _

minimum, We shall prove that qj+l = quj {3 =1,...,n=-1).

0

Assume that there exists a value j < n such that q§+l > Alqj

and we shall derive a contradiction. Let u be the smallest
integer such that q3+l > Alqﬁ and let v be the largest integer
o)

— V l ’
such that Au+1 > A]q . Let g' = (1 + €)g_. (¢ > 0), q! 1= T+ =

and qj = q? for j # u, # v+l. Then for sufficiently
\ ' ' = -
small € we shall have Alqr < 9p41 < Azqé (r = 1l,¢04a,n=1).

Furthermore, we have

n a.
o o j
d; eo- q' =4d; ... 9. and Y, = - <1-a_ .
1 n 1 n =1 gy e qj o]
Hence, there exists a positive A < 1 such thatvq; = qs

(3 = 1,...,n) and

~l D



But then qi coe q; < qi cos qg in contradiction to the assumption

that qg coe qg is a minimum. Hence, our statement is proved.

If g is the root of the equation

then the minimum of Qn is equal to A 2 qn .
MAXIMUM OF Qi (i < n)

Let qI,...,q; be values of dyreeesdy for which Qi becomes a

maximum. We shall prove the following:

Lemma 3: The relations

= Alq* (] = i'oo-'n-’l) (68)

*
93+1 3

must hold.

Proof: Assume that there exists an integer j > i such that
q§+l > Alqg'and we shall derive a contradiction. Let qé = q;

for r = 1,...,1i and let qg!

J+l = Alq! (j = i’oco'n—l). Then

J
n . a._
q' oo q! =q* "o q*- and Z —'T_—'_J___" > l-a
1 i 1 i =1 qy e qj o)

Hence, there exists a value A > 1 such that
—_— -
Z n ‘oo qll = l aO’

where qg = Aqé
contradiction to the assumption that qi cre qg is a maximum,

(3 = l,...,n). But then qj ... g} > g} ... q¥ in

Hence, Lemma 3 is proved.
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- ] 3 * *
Lemma 4: If for some j < 1 we have qj+l > Alqj, then

* - * = Y -
qk+l = Azqk for k l,...,3-1.

Proof: Assume that q§+l
exists an integer k < j-1 such that q;+l < Azqi . We shall

> Alqg for some j < i and that there

derive a contradiction from this assumption. Let u be the
smallest integer such that g* < Azqa . Furthermore, let v be

u+l
the smallest integer greater than or equal to u + 1 such that
q*
* * ] : - u
9541 > Alqv . It is clear that v < j. Let Q) = T {e > 0),
q& = (1 + €) q; , and q; = q; for r # u, # v. Then for suffi-

ciently small € we have

' s = -

Furthermore, we have

> l - a .
O

Hence, there exists a value A > 1 such that

n a.

Z qn J q
j=1 91 === %

” - ] ) = 4 [1] ” * n 3
where qj Agl (3 1,...,n). But then qy e-- 9} > 9] .-+ 9} in

contradiction to the assumption that qi e qg is a maximum.

Let Dir (r = 1,¢4e4,i~1) be the maximum of Qi undetr the restric-

tion that qj+l = Alqj for j = r+l,...,n~-1 and qj+l

j = l,eee,r~1. From Lemma 3 and 4 it follows that the maximum of

Qi is equal to the maximum of the i - 1 values Dil""'Di i-1°
[

The computation of the exact value of Dir can be carried out in a

= Aij for

way similar to the computation of Mir in part II. Since these

computations are involved if n is large, we shall discuss here
only an approximation method.
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* = i - » i
Let Dir {r l,...,1i-1) be the value of Qi if qj+l

j = r+l,...,n=1 and Qiypq = kzq. for j = 1,...,r. Furthermore,

] J
* i = 1 = -
- let Dio be the value of Qi if qj+l Alqj ] l,«¢.,n=-1). Then,

if Al is not much below one, the maximum of D;r and D; r-1
’

(r = 1,¢4s,1i=1) will be nearly equal to Dir' Hence, we obtain an

approximation to the maximum value of Qi by taking the largest of

i * [ ) D*- . -
the i values Dio' D i-1

= Alqj for

The value of_D’i‘r can be determined as follows. Let 9, be the
root in q of the equation

%i% - .aj +nT§fl ar+lfj. = 1 ~a .

=1 1(3-1) =1 r(r+l)+jr j(j+1) . o]
X 2 J X 2 2 2 r+1+j
2 q 2 1 q

Then
r(r+l) . (i~r-1) (i-r)
" S > +{i-r-1) N 5 i
ir 2 1 9y *

MAXIMUM OF Qn

We shall prove that the maximum of O is reached when qj+l= Aij
(3 = i,+..,n=-1). Denote by qi e q; the values of 9y -+ 4
for which Qn becomes a maximum. We shall assume that there

exists a value j < n such that q§+l < Azqg and we shall derive

a contradiction from this assumption. Let u be the smallest and
v be the largest integer such that q3+l < Azq; and qg* < Azqs .

n

v+1l
q*
Let q& = I—THE e > 0), q¢+l = (1 + g) q$+l, and q; = q; for

r # u, # v+tl. Then for sufficiently small e we shall have
' ' ] - -
Alqr < Aprl < Azqr (r = l,¢e0e,n=1).
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Furthermore, we have

o

n q.
qi LAY q' =qji “ e e q; and ng m> l"ao . )

Hence, there exists a value A > 1 such that qg = Aqﬁ

(3 = 1,...,n) and

n a._.
S —d—p =1 -a_.
97 S| o

J=1

But then q; o q; > qi o q; in contradiction to the assumption

that qi coe q; is a maximum. Hence, our statement is proved.
The maximum of Qn is equal to

n{n-1)
2 n ‘'

XZ g

where q is the root of the equation

NUMERICAL EXAMPLE

The same notation will be used as in the previous numerical
examples. The assumption of no sampling error, which is common
to all the previous examples, is retained. In part I it was
assumed that the q; the probability of a plane surviving the

i-th hit, knowing that the first i - 1 hits did not down the
plane, were equal for all i (ql =g, = ... =4, =dy (say)).

Under this assumption, the exact value of the probability of a
plane surviving i hits is given by .

In part III it was assumed that q > 9, 2 ees Z,qn . Since no

lower limit is assumed in the decrease from 9 to 9, only a

l’
-46-



lower bound to the Qi could be obtained. The assumption here is

that the decrease from q; to g lies between definite limits.

i+l
Therefore, both an upper and lower bound for the Qi can be

obtained.

We assume that

My S 9540 £ 09

where Xl < Az < 1 and such that the expression

n a.
_
& Igem T % (a)
A, 2

1

is satisfied.

The exact solution is tedious but close approximations to the
upper and lower bounds to the Qi for i < n can be obtained by

the following procedure. The set of hypothetical data used is

a, = . 780 as = .010
a; = .070 = .005
a, = . 040 = 005
Xl = .80 Xz = .90

Condition A is satisfied, since by substitution

.07 + 204 .01, .005, 005 _ 54539,

8 (.8 (.&)% (.31

which is less than

l—ao='22-

THE LOWER LIMIT OF Qi

The first step is to solve equation 66. This involves the
solution of the following four equations for positive roots 9,7

gl' 921 93.
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a a a a a
1 2 3 4 5 _ _
- + N 5 + x3 3 + x6 3 + xlo g = 1 ao = ,22 (B)
.07 .042 . .013 s .005 o+ .005 -2
q .9q . 7299 .531441q .3486789
5 4 3 2 _
2245 - .07q% - .044444q” - 01371707 - .009408g - .014340 = 0
g - 08440
a a a a a
1 2 3 4 5 . .
— T2 MRV t 334 t 6.5 1-a, (<
d 14 124 1729 17424
.07 .03 . .01 4 .005 - .005 =22
q . 8q (.64)(.9)g (.512)(.729)q (.4096)(.531441)q
5 4 3 2
22q> - .07g" - .05g” - .017361q" - .013396g - .022970 = O
gl - -904.
a a a a
1 2 3 4 5
_—+x2+x33+x5x4+x7x35_l a5 (D)
9 14 19 1724 x!
07 . .03 N .013 . .005 - .005 - 22
q . 89 .5129 (.32768)(.9)d (.209715)(.729)q
5 4 3 2
.22q° - .07q" - .05g~ - .019531q” - .016954q - .032705 = 0
9, = ,941.

-4 8-



1, %2 83 94 g
—t St z33tgat I 513 (E)
1 MIT NI Za A
.07 , .og . .0;3 , 2005 . .005 C -2
g .8q% .512q°  .262144q%  (.134218)(.9)q
5 4 3 2

«22q° - 079" - .059° - .019531g" - .0190739 - .041392 = 0

gy = .964 .

Next, calculate the i numbers defined by

a(i,r) Ab(i,r) i

E;r = 1 2 gr (r = O,I'Ooo’i_l)'
where

a(i,r) = ELEEi—il +r(i-r - 1)

b(i,r) = (1 -~ r)(; -r -1)

9o = . 844

93 f . 904

9, = f94l

g5 = .964

The minimum of the E;r (r = 0,40e,1i-1) will be the lower limit of

Qi' The computations are given in table 5.
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TABLE 5

COMPUTATION OF LOWER LIMIT OF Qi

. : . i
Q; i r a(i,r) b(i,r) 9, 9, E¥
Q, 1 0 0 0 .844 .844 .844

Min [Eioj = .844
Q, 2 0 0 1 .844 | .712 .641

2 1 1 0 .904 | .817 .654

Min [E§,, E%;] = .64l

9, 3 0 0 3 .844 .601 .438
3 1 2 1 .904 .739 426
3 2 3 0 | .o941 .833 427
Min [E%,, EX , E%X,] = .426
2, 4 0 0 6 .844 .507 .270
4 1 3 3 .904 .668 .249
4 2 5 1 .941 | .784 .231
4 3 6 0 .964 .864 .226
Min [EX, E%,, E},. Ej;] = .226
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The lower limit of Q5 can be obtained directly. The lower limit
of

_ 4105

where g is the positive root of

a a a a

a
1 2 3 4 5
— + + + + = 1-a
2 33 6.4 © 3105 o
q M9 Md Aa AMd
07 .o; . .013 N .005 .+ .005 - = .22
q .89 .512q .262144q .107374q

q = 0974 .

The ;ower limit of
s = (.8)70(.974) = .094 .
THE UPPER LIMIT OF Qi
The computations for the upper limit of Ql arg entirely analogous

to the computations of the lower limit., First, we solve the
equations of part 1V, which for this example are the following:

a a a a a
—+ e e e =1 - 5
q Md A4 MaT Mg
.07 .og . .013 . .005 o+ .005 - = .22
q . 8q .512q .262144q .107374q
5 4 3 2 _
.22q°> - .079% - .05gq° - .019531g% - .019073q - .046566 = 0
g* = ,974
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* =
93 . 851
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a a a a aQ
L2y 3+ 44 > =1 -a
UL P B NN I A N o
q 24 2M4 2M9 2749
.07 .og . .01 - .005 - .005 ,
q .9q (.81)(.8)q (.729)(.512)q (.6561)(.262144)q
5 4 3 2
.22q° - .07q° - .044444q> - .0154329° - .013396q - .029071 = O
* =
97 . 905
a a a a a
2 L 3 . 4 2 _-1-a
gl a3q3 gt 33,75 o
q 24 24 2Md 2M4d
07 .og N .013 N .005 . .005 - = .22
q . 9q .729q (.59049)(.8)q (.512)(.478297)q
5 4 3 2
.22q° - .07q" - .044444q" - .013717q° - .010584q - .020417 = O
* =
95 869
a a a a
Ay 243 42 > _ -1 -a
o2 3353 6.4 9, 5 o
g 29 24 24 2M4
.07 .04 .01 .005 .005
+ 5+ 3+ 7t g = .22
q . 9q .729q .531441q (.387420)(.8)q
5 4 3 2
.22q° - .07q - .044444q> - .013717q° - .009408q - .016132 = O



Next, calculate the i numbers defined by

a(i,r b(i,r *j .

D{r = )2( '¥) Al( 'r) 9, (r = 0,1,40.,1i~1),
where

a(i,r) = 5—(-5732-&1 +r(i-r - 1)

, i - i - r - 1

b(i,r) =4 r)(J?: )

g; = .974
= gi = 0905

g§ = . 869

gg = ,851

The maximum of the Dfr (r = 0,s0e,1i=1) will be the upper limit of
Qi‘ The computations are given in table 6.

The upper limit of Q5 can be obtained directly. The limit of

_ .10 _*5

where g* is the positive root of

e R R R S

q Ad A9 Aa Ay a”
07 + .Og + .Ol3 + .005 7+ .005 : = .22
q .99 «729q .531441q «348678q

q* = .844.
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TABLE 6

COMPUTATION OF UPPER LIMIT OF Qi

. . * *i *
Qi a(i,r) b(i,r) g5 9. Dir
Ql 0 .974 974 974
* - .
Max {Dloj 974
Q2 1 .974 .949 .759
0 .905 .819 .737
Max [D = .759
o, 3 .974 .924 .473
1 .905 .741 .480
0 .869 .656 .478
Max [D 2] =
2, 6 .974 .890 .236
3 .905% .671 .250
1 .869 .570 .269
0 .851 .524 .279
* =
Max [D4O' DZl' DZZ, DZ3] .279
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The upper limit of

Qg = (.9)'9(.844)° = .149

Summarizing the results, the upper and lower limits of the
probability of a plane surviving i hits are given by

.844 < Ql < .974
.641 <« 02 < .759
.426 < Q3 < .480
.226 < Q4 < .279
.094 < 05 < .149
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PART V

SUBDIVISION OF THE PLANE INTO SEVERAL
EQUI-VULNERABILITY AREAS!

In parts I through IV we have considered the probability that a
plane will be downed by a hit without any reference to the part
of the plane that receives the hit, Undoubtedly, the probability
of downing a plane by a hit will depend considerably upon the
part that receives the hit. The purpose of this memorandum is to
extend the previous results to the more general case where the
probability of downing a plane by a hit depends oh the part of
the plane sustaining the hit. To carry out this generalization
of the theory, we shall subdivide the plane into k equi-~
vulnerability areas Al,...,Ak. For any set of non-negative

integers il""'i let P(il,...,ik) be the probability that a

k

plane will be downed if the area Al receives il hits, the area

A2 receives 12 hits,..., and the area Ak receives ik~hits. Let

Q(il'.o.,ik) = l - P(il’o-o,ik). Then Q(il'o.u,ik) iS the prOb—
ability that the plane will not be downed if the areas Al,...,Ak

receive il,...,i hits, respectively. We shall assume that

k
Q(il,...,ik) is a symmetric function of the arguments il""'i

k.
To estimate the value of Q(il,...,ik) from the damage to

returning planes, we need to know the probability distribution of
hits over the k areas Al,...,Ak knowing merely the total number

of hits received. 1In other words, for any positive integer i we
need to know the conditional probability Yl(il,...,ik) that the

areas Al,...,Ak will receive il,...,ik hits, respectively,
knowing that the total number of hits is i. Of course,
Yi(il,...,ik) is defined only for values il,...,ik for which

i, + +4. + i, =1 . To avoid confusion, it should be emphasized

1 k
that the probability Yi(il,...,ik) is determined under the

lThis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 396 and
AMP memo 76.5.
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assumption that dummy bullets are used. It can easily be shown
that it is impossible to estimate both Yi(il""'ik) and

Q(il""'ik) from the damage to returning planes only. To see

this, assume that k is equal to 2 and all hits on the returning
planes were located in the area A . This fact could be explained

in two different ways. One explanation could be that
Yi(il,iz) = 0 for 12 > 0. The other possible explanation would be that

Q(il,iz) = 0 for i, > 0, Hence, it is impossible to estimate

2
both Yi(il,iz) and Q(il,iz). Fortunately, Yi(il,...,ik) can be

assumed to be known a priori (on the basis of the dispersion of
the guns), or can be established experimentally by firing with
dummy bullets and recording the hits scored. Thus, in what
follows we shall assume that Yi(il"°°'ik) is known for any set
of integers il""'ik‘

Clearly, the probability that i hits will not down the plane is
given by

Q=2 eee 2 YViligseeerip)QUigseesiy), (69)
'k t1

where the summation is to be taken over all non-negative integers
il,...,ik for which i1 + eeo *+ ik =i,

Let si (il,...,ik) be the conditional probability that the areas
Al’oo.'Ak 1'...'ik

plane received 1 hits and that the plane was not downed. Then we
have

received i hits, respectively, knowing that the

Yy reeerd QU pennyiy)
S (i sennriy) = 2 gi 1 £, (70)

Of course, si(il,...,ik) is defined only for non-negative
integers Iireeesdy for which i + 00 + i, =1
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The probability Gi(il,...,ik) can be determined from the distri-
bution of hits on returning planes. In fact, let a(il,...,ik)

be the proportion of planes (out of the total number of planes
participating in combat) that returned with i. hits on area A

1 1’
12 hits on area A2""' and lk hits on area Ak' Then we
obviously have
ali,,...,1i)
. . _ 1 k
6i(1l,...,lk) = = (71)

From equations 70 and 71, we obtain

Qia(ll,...,lk)

Q(11,...,1k) = aiYi(il""'ik) (i = i, + . + 1k)

(72)

Since Qi can be estimated by methods described in parts I through

IV, estimates of Q(il,...,ik) can be obtained from equation 72.
According to equation 29, the probabilities Ql,...,Qn satisfy the
equation

Sl

. Q. o

j=1 J
We have assumed that 4 2 dg 2 see 2 9y This is equivalent to
stating that

Q. Q.

i+l o T+ for § < i . (74)

A similar assumption can be made with respect to the prob-
abilities Q(il""’ik)‘ In fact, the conditional probability

that an additional hit on the area Ar will not down the plane
knowing that the areas Al""'Ak have already sustained

il,...,ik hits, respectively, is given by
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Q(ll,...,lr_l, 1r+l, 1r+l""'lk)

Q(il'...’ir—l' ir, 1r+l,.oo'ik) ¢ (75)

Obviously, we can assume that if

iy < i < i

_<_lll ]2_ 2!”‘ljk_ k

then

Q(ll'...'lr—l’lr+l’lr+l’...'lk) Q(]l'-oo'Jr-l,]r+l,3r+l'--.’]k)

v —— + < ~ v - —
Q(ll""’lr-—l’lr'lr+l"'”1k) - Q(Jl""’Jr-l'Jr’Jr+1""’Jk7

(76)
for r = 1,2,...,k.

Hence, the possible values of Ql""’Qn are restricted to those

for which equation 73 is fulfilled and for which the quantities
Q(il,...,ik) computed from equation 72 are less than or equal to
one and satisfy the inequalities of equation 76. It should be
remarked that the inequalities of equation 76 do not follow from

the inequalities of equation 74. From equation 72 and the
inequality Q(il,...,ik) < 1, it follows that

aiyi(ll,...,lk)

i - a(il,ooo’ik)

. (77)

If the right-~hand side expression in equation 77 happens to be
less than one, then equation 77 imposes a restriction on Qi'
Since
a(i ,...'i )
1 k . .
Z oooZ a. =Z ....Z Yi(ll’ooo’lk) =l
i i i ip i,

(the summation is taken over all values il,...,ik for which

il+ ees + ik = i), we must have either
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aiYi(ll,...,lk) _

a(il,...,ik)
for all values il,...,ik for which il + v + ik =1i, or

aiYi(ll,...,lk)

aliy o) ¢ 1

at least for one set of values il""'ik satisfying the condition

il + s.. + ik = 1 , Hence, equation 77 gives an upper bound for
Qi whenever there exists a set of integers il,...,ik such that
L.+ ees + 1, =1

1l , K i and

)

a(il,...,ik

o AV (qreeeriy)

It is of interest to investigate the case of independence, i.e.,
the case when the probability that an additional hit will not
down the plane does not depend on the number and distribution of
hits already received. Denote by g(i) the probability that a
single hit on the area A will not down the plane. Then under

the assumption of independence we have
i i

[q(2)1 2 ... [qx)1 © . (78)

|
Q(ilroaorik) = [CI(l)]

Hence, the only unknown probabilities are g(l),...,q9(k).

Let Y(i) be the conditional probability that the area Ai is hit
knowing that the plane received exactly one hit., Obviously

. . il 1 1y
Yi(ll,...,lk) = T - F [Y(1)] oo [Y(k)] . (79)

l. s e lk-
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Similarly, let §(i) be the conditional probability that the area
Ai is hit knowing that the plane received exactly one hit and

this hit did not down the plane. Because of the assumption of
independence, we have

. . i! il ik
Gi(ll'oo.’lk) il! .'.Tk! [G(l)] LR [6(k)] L (80)
Furthermore, we have
Y(i)q(i)
i=1

Since the probability g that a single hit does not down the plane

k
is equal to Y. ¥(i)g(i), we obtain from equation 81
i=1
oy 68(1)
q(i1) = Y1) @ - (82)

Because of the assumption of independence, we see that ¢&(i) is
equal to the ratio of the total number of hits in the area Ai of

the returning planes to the total number of hits received by the
returning planes. That is

? * e 0 ZJ: jia(.jl'.o.,jk)
(i) = k 1 . (83)
Z e o 0 Z (]l + e + jk)a(jl'...'jk)
Jx J1

Since Y(i) is assumed to be known and since §(i) can be computed
from equation 83, we see from equation 82 that g(i) can be
determined as soon as the value of g is known. The value of g
can be obtained by solving the equation

n aj N
‘Z — = 1-a, . (84)
=1 g
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NUMERICAL EXAMPLE

In the examples for parts I, III, and IV we have estimated the
probability that a plane will be downed without reference to the
part of the plane that receives the hit. However, the vulner-
ability of a particular part (say the motors) may be of interest
and this example illustrates the methods of estimating part
vulnerabilities under the following assumptions:

e The number of planes participating in combat is large so
that sampling errors can be neglected.

e The probability that a hit will down the plane does not
depend on the number of previous non-destructive hits. That

is, q = q, = ... =q = q

e Given that a shot has hit the plane, the probability that
it hit a particular part is assumed to be known. In this
example it is put equal to the ratio of the area of this

" part to the total surface area of the plane.!

® The division of the plane into several parts is repre-
sentative of all the planes of the mission. If the types of
planes are radically different so that no representative
division is possible, we may consider the different classes
of planes separately.

Consider the following example. Of 400 planes on a bombing
mission, 359 return. Of these, 240 were not hit, 68 had one hit,
29 had two hits, 12 had three hits, and 10 had four hits.
Following the example in part I we have

N = 400,
whence

A = 240 a_ = .600
o o
Al = 68 al = .170
A2 = 29 a, = .072
A3 = 12 azy = .030
A4 = 10 a, = . 025

1By area is meant here the component of the area perpendic-
ular to the direction of the enemy attack. If this direction
varies during the combat, some proper average direction may be
taken.
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As before, the probability that a single hit will not down the
plane is given by the root of

[+]

[
ol

|
Oww
'

%o
0

|

Il
o
I
o

a
2
+—5+

o %

19]

which reduces to

.4qg - .170q§ - .072q§ - .030q_ - .025 = 0

and

qo = 0850'

Suppose that we are interested in estimating the vulnerability of
the engines, the fuselage, and the fuel system. Assume that the
following data 1s representative of all the planes of the
mission:

Ratio of
area of part
to total
Part number Description Area of part area (Yv(i))
1 2 engines 35 sq. ft 32 - 269
J ©orEe 130 ~
2 ' Fuselage 45 s ft — = 346
9 q. tt- 130  °
3 Fuel system ' 20 sq. ft 20 _ .154
‘ ) 130 '
30 _
4 All other parts _30 sq. ft. T30 = .231
Total area 130 sq. ft.

The ratio of the area of the i-th part to the total area is
designated Y(i). Given that the plane is hit, by the third
assumption, Y(i) is the probability that this hit occurred on
part i. Thus
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Y(1) = .269
Y(2) = .346
Y(3) = .154
Y(4) = .231

The only additional information we require is the number of hits
on each part. Let the observed number of hits be 202. 1In
general, the total number of hits (on returning planes) must be
equal to

Ai + 2A2 + 3A3+ +nAn

and in this example

Al + 2A2 + 3A3 + 4A4 = 68 + 2(29) + 3(12) + 4(10) = 202

The hits on the returning planes were distributed as follows:

Ratio of number of hits
observed on part to

Number of hits total number of observed
Part number observed on part hits (&8(i))
1 39 .193
2 78 . 386
3 31 .154
4 54 .267

Total number of hits 202

The ratio of the number of hits on part i to the total number of
hits on surviving planes is designated &§(i). Then g(i), the
probability that a hit on the i-th part does not down the plane,
is given by

.y 8(4)
q(l) - -Y(i) qo ]
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whence

(o]
—
=
~

.193

q(l) = (1) % = T269 (.
_ 8(2) _ .386
a(2) = 315y 9% = T34¢
§(3) .154

U3 =373y % = 7158

5(4) .267

.}.

a(4)

<
>
S’ |

(.

95 = T337 (-

850) = .61
850) = .95
850) = .85
850) = .98

The results may be summarized as follows:

Probability of Probability of being
surviving a single downed by a single
Part hit (gq(i)) hit (1 - g(i))
Entire plane .85 .15
Engines .61 . 39
Fuselage .95 .05
Fuel system .85 .15
Other parts .98 .02

Thus, for the observed data of this hypothetical example, the
engine area is the most vulnerable in the sense that a hit there
is most likely to down the plane. The fuselage has a relatively

low vulnerability.

~65-



PART VI
SAMPLING ERRORS1

In parts I through V we have assumed that the total number of
planes participating in combat is so large that sampling errors
can be neglected altogether. However, in practice N is not
excessively large and therefore it is desirable to take sampling
errors into account. We shall deal here with the case when

9y = dpeee = A, =9 (say) and we shall derive confidence limits for

the unknown probability q.

If there were no sampling errors, then we would have

Xi=p(l—ao_al'_na-_a' _xl-x = ees — X.

(1= 2,3,00.),

where p = 1 - . However, because of sampling errors we shall
have the eguation

X. =5-(l—a ™ o e s - a. —'Xl- e o 0 —Xi—l), (86)

where Ei is distributed like the success ratio in a sequenice of
Ny = N(L —aj = @) = eee =85 1 = X} = oee = Xj.1) independent
trials, the probability of success in a single trial being equal
to p.

Let ai =1 - Ei . Then, according to equation 26 we have

n a.
—d - ’
L — — o
J——L ql e qj

lThis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 103 and
AMP memo 76.6.
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provided that xi = (0 for i > n. In part I we have shown that

X, = 0 for i > n if there are no sampling errors. This is not
necessarily true if sampling errors are taken into account. However,
in the case of independence, i.e., when q; =4 (i =1,2,c04}, X5

<o
is very small for i > n so that Z: x; can be neglected.

i=n+1
In fact, if the number of planes that received more than n hits
were not negligibly small, it follows from the assumption of
independence that the probability is very high that at least some
of these planes would return. Since no plane returned with more

[o0]

than n hits, for practical purposes we may assume that 2: Xi=0°

In what follows we shall make this assumption. i=n+l

Each of the quantities al""'an can be considered as a sample

estimate of the unknown probability g. However, the quantities
qpreeerd, are unknown. It is merely known that they satisfy

the relation in equation 87. Confidence limits for g may be
derived on the basis of equation 87. However, we shall use
another more direct approach.

To derive confidence limits for the unknown probability ¢ we shall
consider the hypothetical proportion bi of planes that would have

been hit exactly 1 times i1f dummy bullets would have been used.
We shall treat the quantities bl""'bk as fixed (but unknown)

constants. This assumption does not involve any loss of
generality, since the confidence limits for g obtained on the
basis of this assumption remain valid also when bl""'bk are

random variables. Clearly, the probability distribution of Na ;

(i =1,...,n) .is the same as the distribution of the number of
successes in a sequence of Nbi independent trials, the prob-

ability of success in a single trial being ql. Hence

i T 1§
E(Nai) = q hbi (88)

2 _ i i
o (Nay) = mb.g (1 - q") . (89)
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From equations 88 and 89 we obtain

24
i i
of
i
2 (i pi(1 - a7)
ag _J_: = i . (91)
q Ng
a; & 2n
Since the variates ——, —5s s are independently distributed,
q d

and since a; is nearly normally distributed if N is not small, we

can assume with very good approximation that the sum

a, :
2 (92)
i=1l g

M=

is normally distributed. We obtain from equations 90 and 91

n ai n

n a, n b.(1 - g
2 .
g Z _]J_.' = Z = i . (94)
i=1l g i=1 Ng
For any positive o < 1 let A, be the value for which
S _ &
o
.]. 2 e dt = a
- 27
o

The set of all values g for which the inequality

n b. (1 - qi) n a. n b.(l - gt
1 -a -2\ > O < > <1 -a 4] 5 it m 97y
¢y i=1 Ng® i1 ¢ ~ ° @ i i
1 q a i=1 3e} {(95)
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is fulfilled forms a confidence set for the unknown probability g
with confidence coefficient o . However, formula 95 cannot be
used, since it involves the unknown quantities b,...,bn. Since
a.
—% converges stochastically to bi as N+ », we change the stan-
g9

a, 1
dard deviation of 2}—%-only by a quantity of order less thanﬂ/ﬁ

g

Il

if we replace bi by _% . Thus, the set of values g that satisfy

the inegualities

is an approximation to a confidence set with confidence
coefficient ¢ .

Denote by g the root of the equation in g

nooa.
S5 4 =1 ag -
1 q]

Then 95 con&erqes stochastically to q as N +- «. A considerable

simplification can be achieved in the computation of the
confidence set by substituting 9, for q in the expression of the

standard deviation of 2:—% . The error introduced by this substi-
|

tution is small if N is large. Making this substitution, the

inequalities defining the confidence set are given by

n n a, i .

i o ) n o a. {1l -q) (
R > ¢ L 4 c1-a e [3 oSl (97)
i1 Ny i=1 q ¢ & Jdi= Nqil
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Hence, the confidence set is an interval. The upper end point of
the confidence interval is the root of the equation

n
, 21 8
i=1l ¢ i=1 Nqol (28)

and the lower end point of the confidence interval is the root ot
the equation

a,

n
> =

. 2. * (
i=1 o i=1 Nqol (99)

I
—

1

21}

+
o
M=

NUMERICAL EXAMPLE

In all previous examples 1t was assumed that Ai {the number ot

planes returning with 1 hits) was compiled from such a large
number of observations that they were not subject to sampling
errors. If it is further assumed that the probability g that a
hit will down a plane does not depend on the number of previous
non-destructive hits, it is possible to obtain an exact solution
tor the probability that a hit will down a plane. Here we
introduce the possibility that the AO,...,An are subjecct to

sampling errors but retain the assumption of independence. Under
these less regtrictive assumptions we cannot obtain the cxact
solution for g, but for any positive number o < 1 we can construct
two functions of the data, called confidence limits, such that
the statement that g lies between the confidence limits will be
true 100a percent of the time in the long run. The confidence
limits are calculated for o = .95 and .99.
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Under the assumptions of part I, it was proved that no planes
received more hits than the greatest number of hits observed on a
returning plane, This is not necessarily true when the possi-
bility of sampling error is introduced, but it is retained as an
assumption, since the error involved is small.

If the a; are subject to sampling error, and q is the true para-
meter,

o

L)
>4 (A)
1

Q0

will be approximately normally distributed with mean value 1 - a.

In outlining the steps necessary to calculate the confidence
limits, the following hypothetical set of data will be used.
Given

By
N = 500 ai =
Ao = .400 a, = . 80
Al = 40 al = ,08
A2 = 25 a2 = .05
A3 = a3 = ,01
A4 = a4 = ,006
A5 = a5 = ,004

475

The first step is to find the value 9y s for which expression A is
equal to its mean value, by finding the positive root of

a a a a a
¢ a° a> q° q
We obtain
.20q°> - .08q% - .05¢> - .01q% - .006q - .004 = 0
q. = .850 .

@]
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The next step is to calculate the standard deviation of
expression A. This can be shown to be approximately equal to

i
n ai(l - qo)
o= /3 :
i=1 Ng 2t
o
1 2 3 4 5
a;(l-q.) a, (1-q7) a(1-q’) a4(l—qo)_ ag(1-q7)
+ + + , +
N 2 N 4 N 6 N 8 N 10
95 5 ) R N
= .01226 .
n a;
Knowing that 2: -5 is approximately normally distributed with
i=l g ‘
mean value 1 - a, and the standard deviation o, we can determine

a.
the range in which 2:—% can be expected to be 100a percent of
q

the time (say 95 and 99 percent) by determining A
such that

and A

95 29

“A 95
A 2
L f’gg exp (_.‘_é; at = .99
Vv 2 \
.99

From the table or the areas of a normal curve, it is found that

A = 1.959964

. 95
A g9 2.575829 .

il

We can now calculate the confidence limits for each value of a by
finding the two values of g for which the equality sign of the
following expression holds:
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the confidence limits are the

It follows that for each o,
positive roots of the equation

n a;
z — =1 - a i}‘o'
i=1 g °©~"a
a Ao .0122678;a 1 - ag —A,0 1 - &, +Aa0
.95 1.959964 .024044 .175956 .224044
.231600

.99 2.575829 .031600 .168400

.95 the confidence limits of 9, are the positive rocts ot

For o =
ecuation
& a, a a a
21, 2 _% T -% = .175956,
3] of q G !

which reduces to
.l75956q5 - .08q4 - .05q3 - .Olqz - J006g - .004 =0
q = .912,

and equation

a a. a. a ag
1, _% _% + _% + =3 = .224044,
¢ 9 9 g g

which reduces to

. 224084g° - .08g% - .05¢° - .01g° - .006g - .004 = O

g = .801.

Similarly, for o = .99 we have
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168400¢> - .08qF - .05¢° - .01q2 - .006q - .004 =0
q = -935

231600¢° - .08q% - .05a° - 012 - .006q - .004 =0
q = .787

Summarizing the results we find that the 95-percent confidence
1imits of g are .801 and .912, and that the 99-percent confidence
1imits are .787 and .935.

—74-



PART VII
MISCELLANEOUS REMARKSI

1. Factors that may vary from combat to combat but influence the
probability of surviving a hit., The factors that influence the
probability of surviving a hit may be classified into two groups.
The first group contains those factors that do not vary from
combat to combat. This does not necessarily mean that the factor
in question has a fixed value of all combats; the factor may be a
random variable whose probability distribution does not vary from
combat to combat. The second group comprises those factors whose
probability distribution cannot be assumed to be the same for all
combats. To make predictions as to the proportions of planes
that will be downed in future combats, it is necessary to study
the dependence of the probability g of surviving a hit on the
factors in the second group. In part V we have already taken
into account such a factor. In part V we have considered a
subdivision of the plane into several equi-vulnerability areas
Al""'Ak and we expressed the probability of survival as a func-

tion of the part of the plane that received the hit. Since the
probability of hitting a certain part of the plane depends on the
angle of attack, this probability may vary from combat to combat.
Thus, it is desirable to study the dependence of the probability
of survival on the part of the plane that received the hit. In
addition to ‘the factors represented by the different parts of the
plane, there may also be other factors, such as the type of gun
used by the enemy, etc., which belong to the second group. There
are no theoretical difficulties whatsoever in extending the
theory in part V to any number and type of factors. To
illustrate this, let us assume that the factors to be taken into
account are the different parts Al""'Ak of the plane and the

different guns Iyreeer9y used by the enemy. Let g(i,j) be the
probability of surviving a hit on part Al knowing that the bullet
has been fired by gun gj. We may order the km pairs (i,j) in a

sequence. We shall denote g(i,j) by g(u) if the pair (i,j) is
the u-th element in the ordered sequence of pairs. The problem
of determining the unknown probabilities g(u) (u = 1l,...,km) can
be treated in exactly the same way as the problem discussed in

lyhis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 109 and
AMP memo 76.7.
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part V assuming that the plane consists of km parts. Any hit on

part Ai by a bullet from gun gj can be considered as a hit on

part Au in the problem discussed in part V where (i,j) 1s the

u-th element in the ordered sequence of pairs.

2. Non-probabilistic interpretation of the results. It is
interesting to note that a purely arithmetic iInterpretation of
the results of parts I through V can be given. Instead of
defining q; as the probability of surviving the i-th hit knowing

thaet the previous 1 - 1 hits did not down the plane, we define S
as follows: Let M.l be the number of planes that received at least
i hits and the i-th hit did not down the plane, and let 2 be the

total number of planes that received at least 1 hits. Then

M.
qi = ﬁi . Thus, qi is defined in terms of what actually hap-
i .
pened in the particular combat under consideration. To distin-

guish this definition of q; from the probabilistic definition, we

M

shall denote the ratio ﬁ% by ai’ “he quantity q is unknown,
i

since we do not know the distribution of hits on the planes that
did not return. However, it follows from the results of part I
that these quantities must satisfy equation 26. If we can assume
that in the particular combat under consideration we have
Ei T eee ¥ ﬁn then the common value q of these guantities is the

root of the equation
a.
g

Assuming that 61 > 52 > eee > ﬁn , the minimum value Q? of Q.

derived in parts III and IV can be interpreted as the minimux

value of 61 ECTRERRC P

The minimum and maximum values of Qi derived in part IV can also

be interpreted as minimum and maximum values of 6i= El"’ ay if

we assume that the inequalities Alaj < aj+l < Azaj (3 = L,e0e,n=1)
are fulfilled. Similarly, a pure arithmetic interpretation of

the results of part V can be given.
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3. The case when Y(i) is unknown. In part V we have assumed
that the probabilities ¥(l),...,Y(k) are known. Since the
exposed areas of the different parts Al,...,Ak depend on the

angle of attack, and since this angle may vary during the combat,
it may sometimes be difficult to estimate the probabilities
Y(1),ee.,Y(k). Thus, it may be of interest to investigate the
question whether any inference as to the probabilities
q(l),e+s,9(k) can be drawn when Y(1l),...,Y(k) are entirely unknown.
We shall see that frequently a useful lower bound for g(i) can
still be obtained. 1In fact, the value g*(i) of gq(i), calculated
under the assumption that the parts Aj(j # 1) are not vulnerable

(q(3j) = 1), is certainly a lower bound of the true value g(i).
Considering only the hits on part Ai’ a lower bound of g*{(i), and

therefore also of (i), is given by the root of the equation

*

a

= ] - a(’; ’ (100)

il

n
r=1 q
where a; (r = 0,1,...,n) is the ratio of the number of planes
returned with exactly r hits on part A; to the total number of
planes participating in combat.
The lower limit obtained from equation 100 will be a useful one
if it is not near zero. The root of equation 100 will be

n
considerably above zero if 2: a; is not very small as compared

r=1
with 1 - ag. ‘This can be expected to happen whenever both Y(i)

and gq(1) are considerably above zero.
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PART VIII
VULNERABILITY OF A PLANE TO DIFFERENT TYPES OF GUNS1

In part V we discussed the case where the plane is subdivided
into several equi-vulnerability areas (parts) and we dealt with
the problem of determining the vulnerability of each of these
parts. It was pointed out in part VII that the method described
in part V can be applied to the more general problem of esti-
mating the probability q(i,j) that a plane will survive a hit on
part i caused by a bullet fired from gun j. However, this method
is based on the assumption that the value of Y(i,j) is known
where Y(i,j) is the conditional probability that part i is hit by
gun j knowing that a hit has been scored. In practice it may be
difficult to determine the value of Y(i,3j) since the proportions
in which the different guns are used by the enethy may be unknown.
On the other hand, it seems likely that frequently we shall be
able to estimate the conditional probability Y(i]lj) that part i
is hit knowing that a hit has been scored by gun j. The purpose
of this memorandum is to investigate the question whether q(i,j)
can be estimated from the data assuming that merely the quan-
tities Y(ilj) are known a priori. 1In what follows we shall
restrict ourselves to the case of independence, i.e., it will be
assumed that the probability of surviving a hit does not depend
on the non-destructive hits already received.

Let 8(i,j) be the conditional probability that part i is hit by
gun j knowing that a hit has been scored and the plane survived
the hit. Furthermore, let q be the probability that the plane
survives a hit (not knowing which part was hit and which gun

scored the hit). Then, similar to equation 82, we shall have
. i,73
a(i,3) ="$'((_i’,_3]‘)7q : (101)

Let g(j) be the probability that the plane will survive a hit by
gun j (not knowing the part hit). Then obviously

ali) =2 Y (il)ali,i) . (102)
1

Let 8(ilj) be the conditional probability that part i is hit by
gun j knowing that a hit has been scored by gun j and the plane
survived the hit. Clearly

lthis part of "A Method of Estimating Plane Vulnerability
Based on Damage of Survivors" was published as SRG memo 126 and
AMP memo 76.8.
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s(ili) = v(ildgli,j) _ xdljdaig) (103)

2vilidaling) a(3)
1

From equation 103, we obtain

ati, = a0 (104)

The quantity &§(ilj) can be estimated on the basis of the observed
hits on the returning planes. The best sample estimate of §(ilj)
is the ratio of the number of hits scored by gun j on part i of
the returning planes to the total number of hits scored by gun j
on the returning planes. Thus, on the basis of equation 104, the
probability g(i,j) can be determined if g(3j) is known.

Now we shall investigate the question whether g(j) can be
estimated. First, we shall consider the case when it is known a
priori that a certain part of the plane, say part 1, is not

vulnerable. Then g(i,j) = 1 and we obtain from equation 104
o 8(L1d)
Sy 400 (109)
Hence,
. Y(11]7
q(j) = Gflljj-; : (106)

Thus, in this case our problem is solved. If no part of the
plane can be assumed to be invulnerable, then we can still obtain
upper limits for g(j). In fact, since g(i,j) < 1, we obtain from
equation 104 -

‘ Y(il3)
q(3) £ SCIT3) ° (107)

Denote by p(j) the minimum of g(ilj) with respect to 1. Then

we have
a(j) < o(3) . (108)

If there is a part of the airplane that is only slightly
vulnerable (this is usually the case), then g(j) will not be much
below p(j). Let the part ij be the part of the plane least
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vulnerable to gun j. If q(ij,j) has the same value for any gun

j, then qg(j) is proportional to P(j). Thus, the error is perhaps
not serious if we assume that q(j) is proportional to p{(j), i.e.,
a(3j) = xe(3). (109)

The proportionality factor ) can be determined as follows. From
equations 101 and 104 we obtain

5(i,3) _ .y 8(il3)
L5y @ = ap(3) Y3y (110)
Hence,
I T e
Denote ¢, 5(i,j) by s5(j). Then,
i
s(ilj) = —'3-8(—%—3—3;1 . (112)

From equations 111 and 112 we obtain

5(3)Y(il3)
AC) (113)

AY(i,j) = g

Since

Y OY(ili) =1,
i
we obtain from equatiocn 113
S MIDIRIETE NS DRI S (114)
7T 5 )

But

22 Y(i,3) = 1.
J 1
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Hence,

(115)

A==c32:%¥%%- .
3]

Since §(j) and p(j) are known quantities, the proportionality
factor A can be obtained from equation 115. The probability q is
the root of the equation

n a.
2: '—% =1-3
J=1 g

where aj denotes the ratio of the number of planes returned with

exactly j hits to the total number of planes participating in
combat.

NUMERICAL EXAMPLE

In part V, the case of a plane subdivided into several equi-
vulnerability areas was discussed, and the vulnerability of each
part was estimated. The same method can be extended to solve the
more general problem of estimating the probability that a plane
will survive a hit on part i caused by a bullet fired from gun j,
if assumptions corresponding to those of part V are made. The
first three of the four assumptions that must be made to apply
the method of part V directly are identical with those made in
part V. They are:

e The number of planes participating in combat is large so
that sampling errors can be neglected.

e The probability that a hit will not down the plane does
not depend on the number of previous non-destructive
hits. That is, qQy =9y = eee =g (say), where q; is the

conditional probability that the i-th hit will not down
the plane, knowing that the plane is hit,

® The division of the plane into several parts is
representative of all planes of the mission.

The fourth assumption necessary to apply the method of part Vv
directly usually cannot be fulfilled in practice. It is:

e Given that a shot has hit the plane, the probability that

it hit a particular part, and was fired from a particular
type of gun, is known.
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These probabilities depend upon the proportions in which differ-
ent guns are used by the enemy. To overcome this difficulty a
method that does not depend on these proportions is developed in
part VIII. The assumptions necessary for the method of part VIII
differ from those of part V only in that the fourth assumption is
replaced by:

® Given that a shot has hit the plane, and given that it
was fired by a particular type of gun, the probability
that it hit a particular part is known.

The information necessary to satisfy this assumption is more
readily available, and in the numerical example that follows a
simplified method is suggested for estimating these
probabilities.

The Data

The numerical example will be an analysis of a set of hypotheti-
cal data, which is based on an assumed record of damage of sur-
viving planes of a mission of 1,000 planes dispatched to attack
an enemy objective. Of the 1,000 planes dispatched, 634 (N)
actually attacked the objective. Thirty-two planes were lost
(L=32) in combat and the number of hits on returning planes was:

Ai = number of planes returning with 1 hits

A = 386
Ap = 120 (&)
A, = 47
A, = 22
A, = 16
A, = 11

The total number of hits on all returning planes is

A, + 2A_, + 3A, + 4A, + LBA_. =

1 2 3 4 5
(B)
120 + 2x47 + 3x22 + 4x1l6 + 5x11 = 399 .

These 399 hits were made by three types of enemy ammunition:
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Bl Flak
824 20-mm aircraft cannon

B 7.9-mm aircraft machine gun

3

and the hits by these different types of ammunition were also
recorded by part of airplane hit:

Forward fuselage

Engine

Full system

O 0O 0 0O
= W

Remainder

The necessary information from the record of damage is given in
table 7.

TABLE 7
NUMBER OF HITS OF VARIOUS TYPES BY PARTS

Forward Fuel

fuselage, Engine, system, Remainder, §$Eal
Cl C2 C3 C4 parts
Flak, Bl 17 25 50 202 294
20~-mm 8 7 17 18 50
cannon, B
2
7. 9—mm 7 13 17 18 55
machine
gun, B3 L . . L L
Total all 32 45 84 238 399
types

A Method of Estimating the Probability of Hitting a Particular
Part Given That a Shot of a Particular Ammunition Has Hit the

Planel

The conditional probability that a plane will be hit on the i~-th
area, knowing that the hit is of the j-th type, must be deter-
mined from other sources of information than the record of

lNecessary for fourth assumption.
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damage. Although a simplified method is used in this example,
more accurate estimates can be made if more technical data is at
hand. The first step is to make definite boundaries for the
areas Cl' CZ' C3, C4. Next, assume that each type of enemy fire

Bl' B2, B3 has an average angle of fire 6

assume that the probability of hitting a part of the plane from a
given angle is equal to the ratio of the exposed area of that
part from the given angle to the total area exposed from that
angle.

17 82, 63 Finally,

In this example it is assumed that flak (Bl) has the average

angle of attack of 45 degrees in front of and below the plane,
whereas 20-mm cannon and 7.9-mm machine gun fire both hit the

plane head-on on the average. The area C1 is so bounded that it

includes areas which, if hit, will endanger the pilot and

co-pilot. Area C2 includes the engine area and area C, consists

essentially of the area covering the fuel tanks. The results of
computations, based on the above assumptions, are assumed to be

as follows, where Y(CilBj)l represents the probability that a hit
is on part Ci knowing it is of type Bj (as estimated by deter-
mining the ratio of the area of Ci to the total area as viewed

from the angle ej associated with ammunition Bj).

(C)

Y(cllsl) = ,.058 v(cllsz) = .143 V(Cl[B3) = .,143
Y(clel) = ,092 v(czlaz) = .248 Y(C2|B3) = .248
7(C3IB1) = .174 Y(c3|32) = .303 7(C3IB3) = .303
v(c4lsl) = .676 Y(C4l82) = .306 ?(C4|B3) = . 306

lthis notation differs from the previous notation of part

VIII. 1In the first part of part VIII, Y(ilj) is used with the
understanding that the first subscript refers to the part hit and
the second subscript refers to the type of bullet. In the
numerical example, the relationship is made explicit by letting
Ci stand for the i-th part (or component) and Bj for the j-th

type of bullet. The same device is used throughout this example.
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Computations for Method of Part VIII

Let q(Ci,Bj) be the probability of surviving a hit on part Ci by

gun Bj' By equation 104, we have

s(ciIBj)
Q(Ci;Bj) = 7TEIT§;7 Q(Bj) . (D)

where 6(CilBj) is the probability of being hit on part Ci'
knowing that the hit was scored by a bullet from gun Bj and that
the plane survived; Y(CiIBj) is the probability of being hit on
part Ci' knowing that the hit was scored by a bullet of type Bj:
and q(Bj) is the probability that a plane will survive a hit of
type Bj' knowing that the plane is hit. This can be estimated by
taking the ratio of the number of hits of type Bj on part Ci to
the total number of hits of type Bj on returning planes.

Applying this method to the table we obtain

(E)
6(C1|Bl) = .058 a(clle) = ,160 6(C1|B3) = ,127
a(czisl) = .085 5(c2|32) = ,140 a(c2|33) = .236
5(C3|Bl) = .170 5(c3|32) = , 340 6(C3|B3) = .309
5(C4|Bl) = .687 5(c4|52) = , 360 6(C4|B3) = ,327

The final quantity required to calculate q(Ci,Bj) by equation D
is q(Bj). By equation 109, we have

q(Bj) = AD(Bj) ' (F)

V(CilB.)

H Ci Bj

where o(Bj) is the minimum of with respect to 1i.
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(5.} = min {Y(CllBj) ’Y(Clej) ,Y(C3|Bj) 'Y(C4IBj)}
3 S(C,TB;T "8TC,TBy7 "3TC,TB,) "3(C,TB.)
. .058  .092 .174  .676
P(Bj) = min 55w » “555 * “170 ’ 687
= min {l y 1 , 1 ’ .984'
= .984
(G)
. .143  .248  .303  .306
A(By) = min  \"755 * 140 ' 340 ' .380
= min {.894 , >l .891 , .850]
= .850
L .143  .248  .303  .306
P(By) = min 555, 7336 ¢ 309 ' .327
= min {>l ’ >l r 0981 I 0936}
= .936
The constant multiplier A is defined by equation 115
5(B.)
(H)

where G(Bj) is the conditional probability that a hit is of type

B..
J

The determination of g is identical with the procedure of part
VII. From equation 26

we substitute the values of equation Al

4 3 2

248q° ~ 120q? - 47¢3 - 22q% - 16q - 11 = 0 (1)
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The root is .930 (= Ay say) .

The values G(Bj) are obtained directly from table 7 by taking the
ratio of hits of type Bj on returning planes to the total number

of hits on returning planes.

294
399
50
8(83) = 339

_ 55 _
8(By) = 555 = -138

s(Bl) . 737

.125 (J)

Substituting the results of equations G, I, and J in equatién H,
we obtain: :

§(B.)
A=a. Y J
o O(Bj)
_ .737  .125  .138
= .930 {.984 * 850 * 7936

.93C (1.0433)
= .9703

Substituting in equation F

a(B,) = (.9703) (.984) = .955
a(B,) = (.9703) (.850) = .825 (K)
a(By) = (.9703) (.936) = .908

The probabilities q(Ci,Bj) can now be determined from equation D

by using the values given in equations C, E, and K.

s(ciIBj)
Q(Ci.Bj) = 7TEIT§;T Q(Bj)
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q(C;,B)) = (.058) (.955)/.058 = .955
q(C,,By) = (.085) (.955)/.092 = .882 -
q(Cy,B)) = (.170) (.955)/.174 = .933

q(C,,By) = (.687) (.955)/.676 = .971

q(C,,B,) = (.160) (.825)/.143 = .923

q(C,,B,) = (.140) (.825)/.248 = .466

q(Cy,B,) = (.340) (.825)/.303 = .926 (L)

q(C,,B,) = (.360) (.825)/.306 = .971

a(c ,B,) = (.127) (.908)/.143 = .806

qa(c,,B;) = (.236) (.908)/.248 = .864

qa(Cy,By) = (.309) (.908)/.303 = .926

q(C,,By) = (.327) (.908)/.306 = .970

Comments on Results

The vulnerability of a plane to a hit of type Bj on part C; is

the probability that a plane will be destroyed if it receives a
hit of type Bj on part Ci' Let P(Ci,Bj) represent this vulner-

ability. The numerical value of P(Ci,Bj) is obtained from the

set L and the relationship

P(Ci'Bj) =1 - q(CiIBj) (M)

The vulnerability of a plane to a hit to type Bj on part Ci is
given in table 8.

This analysis of the hypothetical data would lead to the
conclusion that the plane is most vulnerable to a hit on the
engine area if the type of bullet is not specified, and is most
vulnerable to a hit by a 20-mm cannon shell if the part hit is
not specified. The greatest probability of being destroyed is
.534, and occurs when a plane is hit by a 20-mm cannon shell
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on the engine area. The next most vulnerable event is a hit by a
7.9~-mm machine gun bullet on the cockpit. These, and other
conclusions that can be made from the table of vulnerabilities
derived by the method of analysis of part VIII, can be used as
guides for locating protective armor and can be used to make a
prediction of the estimated loss of a future mission.

TABLE 8

VULNERABILITY OF A PLANE TO A HIT OF A SPECIFIED TYPE
ON A SPECIFIED PART

Vulner-
ability to
specified
type of
hit when
Forward Fuel area is un-
fuselage Engine  system Remainder specified
Flak, B1 . 045 .118 .067 .029 . 045
cannon, B
2
7. 9-mm .194 .136 .074 .030 . 092
machine
gun, B3
Vulnerability
to hit on
specified area
when type of
hit is un-
specified® 114 .179 .074 .038 .070?

4These vulnerabilities are calculated using the method of
part V, and assuming that the Y(Ci), the probability that part

Ci is hit, knowing that the plane is hit, are as follows:

Y(Ci) = ,084 v(c2) = ,128 7(c3) = ,212 Y(C4) = .576

Prhis is the probability that a plane will be destroyed by a
hit, when neither the part hit nor the type of bullet is
specified.
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