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SUMMARY

Latent class models can be used to assess diagnostic test performance when there is no perfectly accurate
gold standard test available for comparison. These models usually assume independent errors between the
tests, conditional on the true disease state of the subject. Maximum likelihood estimates of the prevalence of
the disease and the error rates of diagnostic tests are then obtained. This paper examines the impact of error
dependencies between binary diagnostic tests on the parameter estimates obtained from the latent class
models. The independence model often gives parameter estimates having relatively small bias, but in some
situations (for example, when disease prevalence is low and the tests have low specificity, such as in
population screening) the bias may be more serious. ( 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Diagnostic tests and observations use clinical information to classify subjects by disease status. In
the simplest situation, the classification is binary (disease/no disease). To assess the performance
of a given diagnostic method, one requires probabilistic estimates of the accuracy of the method
conditional on the true disease state of the subject. For a binary test, one may express test
performance in terms of sensitivity (the probability of a correct, positive result for a true disease
case) and specificity (the probability of a correct, negative result for a true non-case). The
complements of these parameters are known as the false negative and false positive rates,
respectively.

Clinicians using a diagnostic test may prefer to estimate the conditional probability of being
a case, given that a positive test result has been obtained; this parameter is known as the positive
predictive value and can be expressed as a simple function of the sensitivity, specificity and disease
prevalence (or the prior probability of being a case).1 Similarly, one may obtain the negative
predictive value, the probability of being a non-case, conditional on having a negative test result.
Generalizations of test error rates and predictive values to multi-level tests are possible.1

The preferred situation for the estimation of diagnostic test performance is when samples of
disease cases and non-cases are available, whose status are known without error. The estimation



of sensitivity and specificity is then straightforward, being based on binomial sampling theory.
Such error-free classification requires a ‘gold standard’ measurement of disease status, but in
many practical clinical situations, a gold standard method does not exist; the assessment of each
subject must then remain probabilistic. Commonly, one assumes that the best available method is
the gold standard. Comparison of the diagnostic test to a method that is not truly a gold standard
leads to biased results.2 Even if there is a perfect gold standard available, it may involve invasive,
expensive and potentially hazardous techniques, for example, tissue biopsy of a suspected cancer.
Ethical considerations often preclude the use of such measurements on all subjects, especially on
individuals intended to serve as non-cases.

The use of latent class models has been proposed to deal with the common situation when there
is no gold standard available.2,3 In the typical application of the method, one makes several
observations or tests on each subject, presumes all of the observations are potentially subject to
error, and in particular, assumes none represents a gold standard. Examples include the use of
three different tests in screening for colorectal cancer,4 several alternative diagnostic criteria for
the diagnosis of autism,5 evaluation of several tissue biopsy samples from heart transplant
patients to determine the occurrence of cardiac tissue rejection,6 and the evaluation of chest
X-rays for evidence of pleural thickening in hard-rock miners.7

Three observations per subject is the minimum amount of information needed for uncon-
strained estimation of the relevant test parameters, with each observation classifying subjects as
diseased or not diseased. One presumes that each subject is indeed truly in one or the other of
these states, but direct observation is not possible. The unobserved, true state is known as the
latent variable. The likelihood can be written in terms of seven parameters (three sensitivity
values, three specificity values and the disease prevalence in the sample). With the total sample
size regarded as fixed, there are seven degrees of freedom available, and seven parameters to
estimate, so the likelihood model is saturated.

One of the key assumptions in almost all the theoretical development and diagnostic ap-
plications to date is conditional independence of the errors. While an independence model
may be appropriate in some situations, in other cases it is a strong assumption that may not be
justified.

We consider the impact of the error dependencies between binary tests on parameter estimates
obtained from latent class models based on the usual (but now false) assumption of independent
errors. Using simulation results, we assess the bias in the latent class parameters as a function of
the pattern and strength of the error dependence, and of the parameter values themselves. We also
evaluate the accuracy of their asymptotic standard errors. Recommendations are made concern-
ing the situations in which the independence model may produce badly biased results.

2. METHODS

2.1. Terminology and notation

The notation developed here closely follows that presented by Walter and Irwig.2 The true
prevalence of the disease is h. The false negative rate for the ith test is b

i
; this is the probability that

the ith test classifies a subject who is truly positive for the disease as not having the disease. The
probability that the ith test classifies a subject who truly does not have the disease as a disease
case is the false positive rate, given by a

i
. Thus, the sensitivity and specificity of the ith test are

1!b
i
and 1!a

i
, respectively.
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If there are r binary tests that classify each subject, then there are 2r possible combinations of
classifications for each subject. We refer to these combinations as outcome categories. For r"3
there are 23"8 outcome categories. We represent the classification of the ith test by the random
variable X

i
where

X
i
"G

0

1

if the classification is negative,

if the classification is positive.

We represent the true disease status of the subject by ½ where

½"G
0

1

if the subject is negative,

if the subject is positive.

The number of outcome categories determines the number of statistical degrees of freedom, d.f.,
available for estimation. For a fixed number of subjects there are 2r!1 d.f.

2.2. Maximum likelihood parameter estimation

We show probabilities and likelihoods for r"3; extensions to r'3 are straightforward. We
calculate the probability that a subject is in a particular outcome category conditional on the
subject’s true disease status. The unconditional probability that a subject is classified as negative
by all three tests is the sum of the two conditional probabilities:

Pr(X
1
"0, X

2
"0, X

3
"0)"Pr(½"1)Pr(X

1
"0, X

2
"0, X

3
"0 D½"1)

#Pr(½"0)Pr(X
1
"0, X

2
"0, X

3
"0 D½"0)

"hb
1
b
2
b
3
#(1!h )(1!a

1
) (1!a

2
) (1!a

3
).

There are eight such unconditional probabilities

Pr(X
1
"x

1
, X

2
"x

2
, X

3
"x

3
)"h

3
<
i/1

b1~xi
i

(1!b
i
)xi#(1!h)

3
<
i/1

axi
i

(1!a
i
)1~xi . (1)

In general, for r tests and n subjects where n(x) are classified as the vector x"(x
1
, x

2
, 2 , x

r
)

such that +x n (x)"n, the likelihood function for the whole data set is proportional to the joint
probability function

¸J<
x Ch

r
<
i/1

b1~xi
i

(1!b
i
)xi#(1!h )

r
<
i/1

axi
i
(1!a

i
)1~xiD

n (x)
.

For estimation purposes, it is more convenient to maximize ln(¸ ) rather than ¸. We can use direct
numerical maximization, or we can adopt the EM algorithm.8 We can obtain large sample
variances and covariances from the inverse of the expected Fisher information matrix; details
appear elsewhere.9 The maximization provides the maximum likelihood estimates of the para-
meters.

2.3. Development of dependence parameters

We quantify the conditional dependence of classification errors between tests as terms to add to
the independent conditional probabilities, following the approach used by Vacek.10 Because the
dependence is conditional, we define separate terms for truly positive subjects and truly negative
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subjects. The dependence between tests i and j is d
ij

for truly positive subjects and e
ij

for truly
negative subjects. We consider only positive associations since negative associations are unlikely
to occur in practice; hence, d

ij
*0 and e

ij
*0, for all i"1, 2, 2 , r and j"1, 2, 2 , r, iOj.

We modify the independent unconditional probabilities (1) to incorporate dependence between
pairs of tests as follows:

Pr(X
1
"x

1
, X

2
"x

2
, X

3
"x

3
)"h C

3
<
i/1

b1~xi
i

(1!b
i
)xi#

3
+

i, j, i:j

(!1)Dxi~xj
Dd

ijD
#(1!h) C

3
<
i/1

axi
i
(1!a

i
)1~xi#

3
+

i,j, i:j

(!1)Dxi~xj
D e

ijD . (2)

Note a constraint on the probabilities for a true positive case when X
1

is held constant (while the
other tests may vary):

Pr(X
1
"0 D½"1)"b

1
and Pr(X

1
"1 D½"1)"1!b

1
.

First, the probability that test 1 classifies a truly positive subject as negative is equated to b
1
. The

second equation is a consequence of the first. There are similar constraints for negative subjects
and for the other tests. The development of the dependence terms d

ij
and e

ij
respect these

constraints. When dependence is present we have from (2):

E (X
1
D½"1)"(1!b

1
)b

2
b
3
!d

12
!d

13
#d

23
#(1!b

1
)b

2
(1!b

3
)!d

12
#d

13
!d

23

#(1!b
1
) (1!b

2
)b

3
#d

12
!d

13
!d

23

#(1!b
1
) (1!b

2
) (1!b

3
)#d

12
#d

13
#d

23

"1!b
1
.

Similarly, E (X
2
D½"1)"1!b

2
, and so on. Thus, the addition of the dependence terms leaves

the expected values of the observations unchanged and we do not violate the constraints.
We now consider the interpretation of the dependence terms in terms of corresponding

covariances. For instance, it can be shown that E (X
1
X

2
D½"1)"(1!b

1
) (1!b

2
)#2d

12
. So,

cov(X
1
, X

2
D½"1)"2d

12
. Thus, d

12
"1/2 cov(X

1
, X

2
D½"1). Hence, d

12
is one half of the

conditional covariance between the classifications of tests 1 and 2 for true cases. Similarly, e
12

is
one half of the conditional covariance between the classifications of tests 1 and 2 for the true
non-cases. We can formulate the other dependence parameters that involve test 3 similarly. When
r"4 there are four constraints. One can show that d

12
"1/4 cov(X

1
, X

2
D½"1) and similarly

for the other dependence parameters.
This paper concentrates on situations with r"3 and r"4, and restricts attention to pairwise

dependence terms that, as shown above, have an intuitive interpretation in terms of covariances.
Higher order dependencies are possible in principle, but they are more difficult to rationalize, and
less likely to occur in practice.

Others have recently begun to investigate conditional dependence between diagnostic tests
using other approaches to representing the dependence. Qu et al. have developed random effects
models to model the conditional dependence between tests in latent class analysis.11 Brenner has
assessed the correlation of diagnostic test errors and has shown that the correlation can bias
reliability indices using numerical examples.12
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2.4. Bounds on dependence parameter values

The dependence parameters are bounded because they are defined in terms of probabilities. We
consider positive associations, so we need only consider the maxima for the dependence para-
meter values. These are determined by h, a and b for four cases of interest:

(i) dependence between tests 1 and 2 when r"3;
(ii) equal dependence between all pairs of tests when r"3;
(iii) dependence between tests 1 and 2 when r"4;
(iv) equal dependence between all pairs of tests when r"4.

We consider a, b(50 per cent, which covers most practical situations.
For case (i), we consider the dependence between tests 1 and 2 when classifying true cases. For

a true case the probability of an outcome is

Pr(X
1
"x

1
, X

2
"x

2
, X

3
"x

3
D½"1)"

3
<
i/1

[b(1~xi)
i

(1!b
i
)xi]#(!1)Dx1~x2

Dd
12

and for each (x
1
, x

2
, x

3
), 0)Pr(x

1
, x

2
, x

3
D½"1))1. So one can calculate restrictions for

d
12

for each outcome. One can show (see the Appendix) that d
12

is constrained by

d
12
)b

1
(1!b

2
)b

3
and d

12
)(1!b

1
)b

2
b
3
.

Similarly, one can determine

e
12
)a

1
(1!a

2
)a

3
and e

12
)(1!a

1
)a

2
a
3
.

For case (ii) there is equal dependence, d or e, between all three pairs of tests. We can follow
a similar procedure to determine the maximum value for the dependence parameters. For a true
case

Pr(x"(x
1
, x

2
, x

3
) D½"1)"

3
<
i/1

b(1~xi)
i

(1!b
i
)xi#[(!1)Dx1~x2

D
#(!1)Dx1~x3

D
#(!1)Dx2~x3

D] d.

One can show that the maximum value of d is determined by requiring

d)b
1
b
2
(1!b

3
), d)b

1
(1!b

2
)b

3
and d)(1!b

1
)b

2
b
3
.

Similarly, we determine the maximum value of e by requiring

e)a
1
a
2
(1!a

3
), e)a

1
(1!a

2
)a

3
and e)(1!a

1
)a

2
a
3
.

We determine the maximum values for r"4 similarly. Consider dependence between tests
1 and 2 in case (iii). We use the constraints

d
12
)b

1
(1!b

2
)b

3
b
4

and d
12
)(1!b

1
)b

2
b
3
b
4

to determine the maximum value of d
12

when r"4 with dependence only between tests 1 and 2.
The constraints

e
12
)a

1
(1!a

2
)a

3
a
4

and e
12
)(1!a

1
)a

2
a
3
a
4

determine the maximum value for e
12

in this situation.
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In case (iv) there is equal dependence, d or e, between all paris of tests. Using a similar (although
lengthier) method, one can show that the maximum for d is determined by restricting

d)
1

2

4
+
i/1

bxi
i
(1!b

i
)1~xi

for all configurations where +4
i/1

x
i
"2, that is, for individuals with two positive and two

negative observations. Similarly, one can show that

e)
1

2

4
+
i/1

axi
i
(1!a

i
)1~xi

for all configuration where +4
i/1

x
i
"2.

2.5. Outcome summaries

For each set of parameter values (a, b, h, d and e) we replicated the simulation to generate
a sample distribution of estimates for a, b and h and calculated the estimated bias, by subtracting
the input parameter value from the sample mean, and standard deviation of each parameter. We
summarized results in tables and graphs to show trends in bias for various combinations of a,
b and h.

We compared the true standard deviation of the simulated estimates with the estimated
standard error from large sample theory obtained from the Latent program (this is a software
program developed by S. D. Walter) using expected frequencies as input. We use the ratio of
standard error to standard deviation as an outcome summary for this comparison.

2.6. Selection of parameter values

The input parameters required for each simulation are: h; b
1
, b

2
, 2 , b

r
; a

1
a
2
, 2 , a

r
; d

ij
and e

ij
,

for i"1, 2, 2 , r and j"1, 2, 2 , r and iOj ; the number of subjects in the sample, n; and the
number of replications, R. Explanations of how we chose or calculated these values follow:

Prevalence: We set prevalence, h, at 5, 15 and 40 per cent, considered to be low, medium and
high. Values over 50 per cent were excluded, but one can infer their expected results by
symmetry. Suppose h"60 per cent for a given condition and a

1
"10 per cent and b

1
"25 per

cent. We can infer results for this scenario by considering the complementary event where
h"40 per cent and a

1
"25 per cent and b

1
"10 per cent.

Error rates: We set the error rates (a and b) at 10 per cent and 25 per cent. Their combinations
represent situations where all tests are equally accurate.
Dependence parameters: We express the dependence parameters as proportions of their upper
bounds. We set the dependence values at no dependence, one half of maximum dependence and
maximum dependence.
Sample size: We set the sample size, n, at 2000 for simulations with r"3 and at 4000 for
simulations with r"4. These numbers were sufficiently large to avoid small outcome category
frequencies ((5).
Number of replications: We determined the number of replications, R, needed for each combi-
nation of the above parameter values so that at the 5 per cent significance level there is at least
80 per cent power to detect a meaningful difference between the mean of the parameter
estimates and the true parameter value, if such difference truly exists. We defined a meaningful
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difference as a bias of 20 per cent or more. Let / be a general parameter of interest where /
0

is
its true value and /

1
is a meaningfully different result for the mean of the estimates. Then

R"C
p (za@2#zb)
/

0
!/

1
D
2

where za@2"1.96 and zb"0.84.13 We estimated p from its large sample expected value. For
any particular set of parameter values we determined R by the single parameter value that
required the largest sample size providing that this size was at least 30, to avoid unstable results
due to small sample sizes.

2.7. Simulation runs

We carried out simulations for all selected combinations of a, b and h with each simulation
replicated R times to obtain the means and standard deviations of the parameter estimates. We
show typical results indicating general effects of various types of error dependence for r"3 or
r"4. We concentrate on the situation where there exists a pair of dependent tests while other
tests are independent.

We ran the simulations on a 486DX computer with 4 Mbytes of memory and a 220 Mbyte hard
drive using programs written in Borland Pascal, version 7.0. The values for h, a, b, d, e and n were
input to the simulation program, which calculated the probability of a subject being in each
outcome category, using equation (2). We used these probabilities to classify subjects into the
outcome categories. We then input the resulting total frequencies of subjects in each outcome
category into a latent class model to obtain estimates of the parameters. For the purpose of this
study the Latent program was translated to Borland Pascal from FORTRAN by adapting the
logic and rewriting the code. The latent class model estimates were obtained under an assumption
of independence of errors between tests.

3. RESULTS

3.1. Bias

Dependence between two tests means that they classify subjects equivalently more often than
when they are independent and the frequency of concordant errors will increase. If one mistakenly
assumes independence, then the estimated probability that two concordant misclasifications are
correct will increase. Thus, we expect the error rates for the dependent tests to be underestimated
in the latent class model assuming independence. We anticipate similar effects with more than two
dependent tests.

3.1.1. Three test case (r"3)

Table I shows, for h"15 per cent only, the results from a simulation in which r"3 and where
there was dependence between tests 1 and 2 when classifying both positive and negative subjects
(d and e terms). Figures 1(a) to (d) show graphs of the bias in the error rate estimates by level of
dependence, for all values of h.

We will focus our description of the results mainly on the error rates. The true error rates for
the two dependent tests are, by definition, identical. The only differences in their results were due
to random variation, so, arbitrarily, only the error rates for test 1 are shown in the tables and
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Table I. Means and standard deviations of parameter estimates in the case of three tests (r"3), with
dependence between tests 1 and 2 when classifying cases and non-cases, true prevalence (h)"15 per cent

True error Dep.* Mean of estimates (%) (standard deviation (%))
rates

h b
1

b
3

a
1

a
3

b"10% 0 15·09 (1·05) 10·72 (2·64) 8·93 (2·49) 10·14 (0·92) 10·09 (0·86)
a"10% 0·5 14·82 (1·03) 6·01 (2·90) 12·73 (2·82) 9·40 (0·93) 10·72 (0·91)

1 15·00 (0·82) 2·32 (2·20) 16·06 (2·32) 8·86 (0·77) 10·95 (0·65)

b"10% 0 15·09 (2·23) 9·91 (4·94) 9·98 (4·65) 24·98 (1·37) 24·94 (1·65)
a"25% 0·5 18·55 (1·10) 0·62 (1·41) 26·67 (2·82) 19·93 (1·17) 25·99 (1·09)

1 24·07 (0·82) 0·00 (0·00) 34·45 (2·53) 13·74 (0·80) 24·81 (0·88)

b"25% 0 15·55 (1·77) 25·38 (4·05) 26·18 (6·05) 9·73 (0·96) 9·72 (1·24)
a"10% 0·5 13·90 (1·00) 14·73 (3·51) 29·71 (3·98) 9·18 (1·13) 11·47 (0·86)

1 13·02 (0·95) 5·81 (3·68) 32·41 (3·67) 8·75 (0·85) 12·62 (0·83)

b"25% 0 14·95 (4.56) 25·17 (7·62) 21·79 (9·12) 24·88 (1·82) 24·85 (2·09)
a"25% 0·5 15·57 (1·30) 1·44 (2·34) 39·32 (3·09) 20·68 (1·39) 27·28 (0·96)

1 21·76 (1·10) 0·00 (0·00) 44·38 (2·71) 14·04 (1·30) 26·49 (1·12)

*Proportion of maximum dependence between tests 1 and 2 for both cases and non-cases
b represents the true false negative rates, b

1
"b

2
"b

3a represents the true false positive rates, a
1
"a

2
"a

3

figures. No meaningful bias occurred in the false negative rate for the independent test (b
3
) when

a"10 per cent. In addition, at high prevalences and low levels of dependence the dependent tests’
false negative rates (b

1
and b

2
) were not bias. However, these rates for the dependent tests are

seriously underestimated and the independent test’s false negative rate (b
3
) is overestimated when

h is low and when a"25 per cent. Figures 1(a) and (b) show the trends in bias for the dependent
and independent tests, respectively.

The effects on the false positive rates are weaker. The false positive rates for the dependent tests
(a

1
and a

2
) are sometimes underestimated. At h"5 per cent and h"15 per cent this under-

estimation is only strong when a"25 per cent (Figure 1(c)). The independent test’s false positive
rate (a

3
) is mostly not affected by the dependence except when h"40 per cent and b"25 per

cent which results in slight overestimation (Figure 1(d)).
The results of simulations that involved only one kind of dependence between tests 1 and

2 (that is, when classifying true non-cases or when classifying true cases) are not shown here in
detail, but we describe their main features below. These features help in the interpretation of the
trends found for the earlier simulation where both types of dependency were present.

Dependence when classifying truly negative subjects (e terms only) causes overestimation of
h (when there is a non-zero false positive rate) since simultaneous misclassifications, by tests 1 and
2, of negative subjects as positive are more likely. This leads to an overabundance of concordant
positive classifications, implying positive bias in the estimate of h and negative bias in the false
positive rate estimates for the dependent tests (a

1
and a

2
). When a is high, the biases are larger

since more false positive errors occur. The biases are also large if h is low because there are more
negative subjects available to be classified equivalently by the dependent tests. The false negative
rates for the dependent tests (b

1
and b

2
) are underestimated while the false negative rate for the

independent test (b
3
) is slightly overestimated, especially for low h and high a.
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(a) Absolute bias in dependent FNR (b
1
) versus dependence for each true prevalence by true error rates

(b) Absolute bias in independent FNR (b
3
) versus dependence for each true prevalence by true error rates

Figure 1. Three tests (r"3) with dependence between tests 1 and 2 when classifying cases and non-cases.

Statist. Med., 16, 2157—2175 (1997)( 1997 by John Wiley & Sons, Ltd.



(c) Absolute bias in dependent FPR (a
1
) versus dependence for each true prevalence by true error rates

(d) Absolute bias in independent FPR (a
3
) versus dependence for each true prevalence by true error rates

Figure 1. (Continued)

2166 V. TORRANCE-RYNARD AND S. WALTER

Statist. Med., 16, 2157—2175 (1997) ( 1997 by John Wiley & Sons, Ltd.



Table II. Means and standard deviations of parameter estimates in the case of three tests (r"3), with
dependence between tests 1 and 2 set such that the covariance between test 1 and 2 is equal to the four test

(r"4) case when classifying cases and non-cases, true prevalence (h)"15 per cent

True error Dep.* Mean of estimates (%) (standard deviation (%))
rates (2]Dep

for r"4) h b
1

b
3

a
1

a
3

b"10% 0 15·09 (0·98) 9·92 (2·41) 10·38 (2·14) 10·08 (0·70) 9·74 (0·64)
a"10% 0·5 14·95 (1·00) 9·88 (2·40) 11·31 (2·36) 9·44 (0·79) 10·26 (0·76)

1 15·00 (1·07) 8·14 (2·20) 11·54 (2·62) 9·70 (0·86) 10·28 (0·94)

b"10% 0 15·00 (1·98) 9·15 (4·66) 9·35 (5·38) 24·91 (1·56) 25·09 (1·31)
a"25% 0·5 15·67 (1·56) 2·91 (3·51) 19·37 (3·87) 23·25 (1·26) 26·09 (1·31)

1 18·29 (1·05) 0·41 (0·90) 25·59 (2·64) 20·24 (1·12) 25·78 (1·25)

b"25% 0 14·73 (1·25) 24·20 (5·05) 23·50 (3·73) 10·03 (0·89) 9·94 (0·89)
a"10% 0·5 14·58 (1·27) 21·73 (4·67) 28·17 (3·90) 9·59 (0·73) 10·39 (1·00)

1 13·91 (1·33) 18·27 (4·78) 27·09 (3·78) 9·42 (0·94) 11·12 (1·06)

b"25% 0 15·22 (3.51) 25·23 (5·97) 24·78 (5·50) 24·66 (1·56) 25·06 (1·66)
a"25% 0·5 14·46 (3·21) 10·89 (7·76) 33·40 (5·11) 23·25 (1·93) 27·03 (1·45)

1 15·14 (0·90) 0·98 (2·08) 38·43 (3·03) 20·66 (0·95) 27·61 (0·81)

*Proportion of maximum dependence between tests 1 and 2 for both cases and non-cases in the corresponding four test
case (r"4), that is, d

12
(r"3)"2d

12
(r"4)

b represents the true false negative rates, b
1
"b

2
"b

3a represents the true false positive rates, a
1
"a

2
"a

3

Dependence when classifying positive subjects (d terms) causes the dependent tests to classify
truly positive subjects equivalently more often than under independence. Thus, the effects are
‘symmetric’ to those just described. The bias is made stronger by high b. High h also leads to large
bias because of the presence of more true cases to misclassify.

The type of dependence that leads to the larger bias, when both types are present, is determined
by h. If h(50 per cent then the strongest bias comes from the e terms as seen in Table I and
Figures 1(a) to (d). If h'50 per cent then greater bias results from the d terms.

3.1.2. Comparison of three tests (r"3) to four tests (r"4)

When r changes, d and e represent different proportions of the conditional covariance between the
two dependent tests. For r"3, d

12
(3 obs)"1/2cov(X

1
, X

2
D½"1), but for r"4, d

12
(4 obs)"

1/4 cov(X
1
, X

2
D½"1). To assess validly the effect of adding a further independent test to

a situation where there is dependence between tests 1 and 2, the covariance between tests 1 and
2 should remain constant. To achieve this objective, we constrained d for further simulations with
r"3 such that

d
12

(r"3)"2d
12

(r"4) (3)

with a similar constraint on e
12

. We ran the simulations for r"4 using the three dependence
levels as before: no dependence; half of maximum dependence, and maximum dependence. We
then set dependence values for corresponding simulations with r"3 using equation (3). Table II
and Figure 2 show the results for r"3 and Table III and Figure 3 show the corresponding results
for r"4.
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(a) Absolute bias in dependent FNR (b
1
) versus dependence for each true prevalence by true error rates

(b) Absolute bias in independent FNR (b
3
) versus dependence for each true prevalence by true error rates

Figure 2. Three tests (r"3) with dependence between tests 1 and 2 set such that the covariance between test 1 and 2 is
equal to the four test (r"4) case when classifying cases and non-cases
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(c) Absolute bias in dependent FPR (a
1
) versus dependence for each true prevalence by true error rates

(d) Absolute bias in independent FPR (a
3
) versus dependence for each true prevalence by true error rates

Figure 2. (Continued)
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Table III. Means and standard deviations of parameter estimates in the case of four tests (r"4), with
dependence between tests 1 and 2 when classifying cases and non-cases, true prevalence (h)"15 per cent

True error Dep.* Mean of estimates (%) (standard deviation (%))
rates

h b
1

b
3

a
1

a
3

b"10% 0 14·99 (0·60) 10·04 (0·88) 9·66 (1·59) 9·81 (0·47) 9·97 (0·50)
a"10% 0·5 14·90 (0·67) 9·25 (1·25) 10·09 (1·54) 10·03 (0·61) 10·07 (0·45)

1 15·08 (0·51) 9·36 (1·74) 10·27 (1·46) 9·82 (0·55) 10·05 (0·48)

b"10% 0 15·07 (0·87) 9·44 (2·08) 10·25 (2·25) 24·82 (0·76) 25·05 (0·80)
a"25% 0·5 16·06 (0·82) 5·25 (1·55) 15·25 (1·97) 23·26 (0·75) 25·17 (0·83)

1 17·15 (0·79) 0·84 (1·03) 20·73 (2·34) 21·25 (0·69) 25·69 (0·84)

b"25% 0 14·80 (0·75) 23·90 (2·29) 23·88 (2·52) 9·94 (0·66) 10·18 (0·51)
a"10% 0·5 15·11 (0·76) 22·95 (2·28) 25·43 (2·44) 9·66 (0·53) 10·25 (0·66)

1 15·07 (0·76) 20·87 (2·44) 26·14 (2·93) 9·37 (0·61) 10·41 (0·56)

b"25% 0 15·01 (1.84) 25·23 (4·33) 24·53 (4·19) 25·00 (0·76) 25·01 (0·93)
a"25% 0·5 15·37 (1·73) 13·46 (3·61) 31·69 (3·44) 22·64 (1·15) 25·84 (0·83)

1 16·16 (0·95) 3·59 (2·45) 38·25 (2·53) 20·26 (0·85) 26·99 (0·71)

*Proportion of maximum dependence between tests 1 and 2 for both cases and non-cases
b represents the true false negative rates, b

1
"b

2
"b

3
"b

4a represents the true false positive rates, a
1
"a

2
"a

3
"a

4

The patterns of bias are similar to those described earlier in Table I and Figure 1. In general,
the bias is slightly greater when r"3 than when r"4. For example, at maximum dependence
when b"10 per cent and a"10 per cent, the mean of the estimates of b

1
was 8·14 per cent when

r"3 (Table II) and less biased at 9·36 per cent when r"4 (Table III). Exceptions occur for the
false negative rate estimates for the dependent tests (b

1
and b

2
) when h is low at 5 per cent and a is

high at 25 per cent, and for the false positive rate estimates for the dependent tests (a
1

and a
2
)

when h is high at 40 per cent and both a and b are high at 25 per cent.
These exceptions aside, the addition of a fourth independent test helps to ‘dilute’ the effect of

the dependence between tests 1 and 2. Concordant misclassifications by the dependent tests are
less likely to be considered correct when a fourth independent observation is available, and bias is
thus typically reduced.

3.1.3. Dependence between all pairs of tests

A positive dependence between all pairs of tests when classifying the cases and non-cases will
result in similar underestimation of the error rates of all tests. There is more agreement between
tests then under independence, leading to bias. High error rates (a when h is low and b when h is
high) lead to larger bias.

3.2. Variability of estimates

We compared the standard error estimates from the Latent program to the empirical standard
deviations of the simulation estimates for r"3 with dependence between two tests with respect to
cases and non-cases. The estimates were very close, with most ratios of standard error to standard
deviation being close to one. When the bias forced the error rate parameter estimates to zero
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(a) Absolute bias in dependent FNR (b
1
) versus dependence for each true prevalence by true error rates

(b) Absolute bias in independent FNR (b
3
) versus dependence for each true prevalence by true error rates

Figure 3. Four tests (r"4) with dependence between tests 1 and 2 when classifying cases and non-cases
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(c) Absolute bias in dependent FPR (a
1
) versus dependence for each true prevalence by true error rates

(d) Absolute bias in independent FPR (a
3
) versus dependence for each true prevalence by true error rates

Figure 3. (Continued).
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(when h was small and error rates were high) the ratios became large, but in these cases of severe
bias the standard error estimates are of less interest anyway. When h"40 per cent, meaning that
the bias is small, the ratios stayed close to 1, ranging from 0·68 to 1·38.

4. DISCUSSION

We feel the latent class method is useful in many situations, even in the presence of conditional
dependence between tests. The method often provides unbiased estimates, but in some situations,
substantial bias occurs and one must interpret the estimates from the independence model with
caution.

Specifically, when the false positive rates are high and the prevalence is low, conditional
dependence between two diagnostic tests can lead to serious bias in the estimates of all the
parameters except the independent test’s false positive rate. This situation occurs commonly in
population screening where one desires tests to have high sensitivity and lower specificity. This
kind of a test has been referred to as SnNout, meaning that it has a sufficiently high Sensitivity so
that a Negative result rules out the disease.1 Therefore, one should approach the use of latent class
methods to evaluate screening tests for a rare disease cautiously.

The presence of any dependence between the tests with respect to false positive classifications,
meaning any commonalties when classifying non-cases that lead to concordant false positive
classifications, cause seriously underestimated error rates for these tests, especially for the false
negative rates. Equivalently, the specificity and especially the sensitivity of the two dependent
tests are overestimated, leading to a false sense of confidence regarding their performance. Most
care should be taken at very low prevalences where even a slight dependence results in very biased
results. As the prevalence increases, the latent class estimates become relatively unbiased even in
the presence of dependence, but even at prevalences near 50 per cent, if the false positive rate is
high then dependence still causes some bias in most of the error rates. By symmetry, the latent
class model estimates, under an assumption of independence, are also seriously biased when the
prevalence is very high and the false negative rates are high.

The addition of one or more independent tests reduces the bias. One needs to balance
this advantage against the extra cost and logistical difficulty of making the additional
observations, and a possibly larger sample size to support the estimation of a larger number
of error rate parameters. Although we have not considered cases with more than four tests, one
may presume that inclusion of further independent diagnostic information will reduce bias even
more; note, however, that the number of parameters involved increases rapidly with the number
of tests.

The validity of the independence assumption depends on the circumstances. For example,
test/retest observations by the same individual will often involve correlated errors. The errors of
different observers may be less dependent, but even here there may be problems. Suppose, for
example, that the observations are made by physicians who have undergone similar medical
training. There may be certain types of disease cases that have a higher probability of being
‘missed’ by each of the observers, thus creating a dependence between the errors for true disease
cases. A similar problem arises if the disease, rather than being binary, has a spectrum of severity;
then patients close to the diagnostic threshold have a relatively high probability of misclassifica-
tion, while patients far from the threshold are more easily classified correctly. Overall the
spectrum of cases will have positive dependence between the errors associated with a discrete
classification. On the other hand, clinical tests that are fundamentally different, such as a blood
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test and an X-ray, are more likely to satisfy the independence assumption, as their classifications
are based on different biological characteristics of the disease manifestation.

As described earlier, when r"3 the model is saturated. If r'3, however, there are excess
degrees of freedom which can be exploited to evaluate the goodness-of-fit (GOF) of the model. In
particular, use of a GOF test is one mechanism to examine the evidence for a departure from the
independence model. We did estimate the power of the GOF test in our simulations when r"4.
As expected, higher power was found when the degree of dependence, and thus the bias, was
larger. Lower power was found if the bias in the estimates was small, which occurred mainly when
the false positive rates were low. These results are preliminary, and further work is needed to
establish the power curves and associated required sample sizes for a wider range of situations
than those covered in our simulations.

APPENDIX

When tests 1 and 2 agree, d
12

adds to the probability that must remain less than or equal to 1.
Therefore

d
12
)1!

3
<
i/1

[b(1~xi)
i

(1!b
i
)xi].

Since b
i
)0·5, b

i
)1!b

i
the most strict restriction when tests 1 and 2 agree is

d
12
)1!(1!b

1
)(1!b

2
) (1!b

3
). (1)

When tests 1 and 2 disagree, d
12

subtracts from the probability that must remain greater than or
equal to 0. Therefore

d
12
)

3
<
i/1

[b(1~xi)
i

(1!b
i
)xi].

Thus, the most strict restrictions when tests 1 and 2 disagree are

d
12
)b

1
(1!b

2
)b

3
(2)
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d
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)(1!b

1
)b

2
b
3
. (3)

Consider (1)!(2):
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since b
1
b
3
)b

1
(1!b

3
) and all other terms are positive. Thus (2) is a stricter restriction than (1)

and similarly (3) is also stricter than (1). Therefore, the maximum value for d
12

is determined by
restricting

d
12
)b

1
(1!b

2
)b

3
and d

12
)(1!b

1
)b

2
b
3
.
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