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Abstract The value of a diagnostic test lies in its
ability to detect patients with disease (its sensitivity)
and to exclude patients without disease (its specifici-
ty). For tests with binary outcomes, these measures
are fixed. For tests with a continuous scale of values,
various cutoff points can be selected to adjust the
sensitivity and specificity of the test to conform with

HEN a doctor orders atest, he has, on the basis of his

knowledge and experience, a certain impression of
its reliability. Does the test have many falsely positive or
negative results? Moreover, whatever the result, will the
findings play a determining part in shaping the doctor’s
decision, or will they affect his diagnosis only in a minor
and complementary way? The answer to such questions
need not depend merely on impression. A number of
critical methods are available to evaluate diagnostic (or,
for that matter, therapeutic) procedures. In addition, crit-
ical evaluation is necessary so that use of given diagnostic
procedures can be justified in these days of limited re-
sources and spiralling costs for medical care.

This primer describes three methods to achieve such
critical evaluation. Though the methods go by names for-
eign to most physicians, their basic principles are relative-
ly simple. In essence, they consider the ability of a diagnos-
tic procedure to detect patients with disease while simulta-
neously excluding patients without disease. They also take
into account goals of the physician requesting the test —
for example, is he concerned primarily with health or
financial cost-benefit relations, or is he concerned only
with the amount of diagnostic information contained in
the test? The technical terms used for the three methods
to be described are the decision matrix, the receiver op-
erating characteristic (ROC) curve and information
theory. Once a diagnostic procedure has been evaluated
by one of these technics, simple algebraic manipulations
can be performed so that the result of a test can be applied
to a particular patient; a formula called Bayes’s theorem is
used for this purpose.
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the physician’s goals. Principles of statistical de-
cision theory and information theory suggest
technics for objectively determining these cutoff
points, depending upon whether the physician is
concerned with health costs, with financial costs, or
with the information content of the test. (N Engl J
Med 293:211-215, 1975)

DEecisioN MATRIX

By use of a decision matrix we can logically relate the re-
sults of a diagnostic test to the clinical or pathologic out-
come. This type of analysis is most easily applied to the
simple decision of whether disease is present, D+, or
absent, D—, when the test is abnormal (i.e., positive), T +,
ornormal (i.e., negative), T —. When, asshownin Table 1,
these two binary results are plotted on a two- X -two table
to show the four possible combinations (indicated by a, b, ¢
and d), a decision matrix is formed.

Each of the four combinations can be used to evaluate
the test by comparing its results to the actual presence or
absence of disease (i.e., four ratios may be formed). The
so-called true-positive (TP) ratio is the proportion of pos-
itive tests in all patients who actually have the disease, or

a_ . This value expresses probability (P) that patients
a+b
with the disease will have abnormal test results, and can be
written as the “conditional probability” P(T +|D+)* —
i.e., the probability that a patient with disease, D+, will
have a positive test, T +. The true-positive ratio expresses
the sensitivity of the examination. It measures the fraction
of patients with disease that will be detected by the diag-
nostic test in question.

The false-positive (FP) ratiois the proportion of positive
tests in all patients who do not have disease, or _€_ . It

c+d
is the probability that patients without disease will have ab-
normal test results, P(T +|D—).

The true-negative (TN) ratio is the proportion of neg-
ative tests in all patients who do not have the disease, or

_d__ . It is the probability that patients without disease
c+d

*A ‘‘conditional probability’’ is written, as a matter of convention, witha
vertical bar before the given state or condition that is present or absent. It
does notimply division.
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Table 1. AGeneral Decision Matrix.

TeST PRESENCE OF DISEASE
RESULTS
PRESENT ABSENT TOTALS
®+) (©-)
Abnormal (T+) a c a+c
Normal (T-) b d b+d
Totals a+b c+d

will have negative test results, P(T —|D—). This ratio ex-
presses the specificity of the examination. It measures the
fraction of patients who will be correctly identified as hav-
ing nodisease. Itisequalto (1 — FPratio).

The false-negative (FN) ratio is the proportion of neg-

. It is the

ative tests in all patients with disease, or b
a+b

probability that patients with disease will have negative

testresults, P(T —|D+). Itisequal to (1 — TPratio).

Obviously, a good diagnostic examination has a high TP
ratio and a low FP ratio; it correctly identifies a large por-
tion of diseased patients without incorrectly including pa-
tients without disease. The ratio of the TP ratio to the FP
ratio is known as the likelihood ratio, L. Obviously, tests
with high likelihood ratios are better discriminators of dis-
ease than those with low ones.

These test characteristics may be illustrated with a spe-
cificexample. In astudy on the use of liver scans for detect-
ing disease in 344 patients, the actual state of the liver was
determined either by biopsy or at autopsy.! When the ac-
tual numbers as determined by the scans and by the mor-
phologic examinations are put into the decision matrix,
the following table emerges (Table 2).

We may calculate the characteristics of the liver scan to
be as follows:

True-positive ratio =P(T+ [D+) = _ 231 =09
231 4+ 27

False-positiveratio = P(T+[D—) =_32___ =0.37.
32454

True-negativeratio =P(T—D—) =_34 __ =0.63 =(1-0.37).
54+ 32

False-negativeratio = P(T —|D+) =27L =0.10 = (1 —0.90).

+231

Thus, the liver scan is 90 per cent sensitive and 63 per
cent specific. It will detect 90 per cent of patients with liver
disease and will correctly classify 63 per cent of those
without disease.

Tue ROC Curve

General Characteristics

Few tests have simple binary outcomes and thus cannot
be classified as just positive or negative. Instead, most
yield a continuous scale of values, of which one of several
can be selected as a cutoff point to differentiate subjects
with and without disease. The cutoff point chosen de-
pends on the relative costs associated with classifying pa-

July 31, 1975

Table 2. Correlation of Liver Scan Data with Pathological Out-

come.
ScaN Liver DiISEASE No Disease TotaLs
PRESENT (p-)
o+)
Abnormal T+ 231 32 263
Normal T- 27 54 81
Totals 258 86 344

tients with disease as normal versus classifying normal pa-
tients as diseased. In screening for a potentially fatal dis-
ease with a fairly safe treatment, for example, we would be
likely to accept a large proportion of false-positive diag-
noses to ensure that our test discovers almost all diseased
patients —i.e., that it has high sensitivity. Patients with hy-
pothyroidism fall into this category because of the high
morbidity associated with failing to diagnose and treat this
disease and the low morbidity associated with treating eu-
thyroid patients with replacement therapy. For less seri-
ous conditions or more dangerous treatments, on the oth-
er hand, we are willing to miss more diseased patients to
reduce the number of false-positive diagnoses.

If we select a cutoff point that makes the test very sensi-
tive to detect as many patients with actual disease as possi-
ble, the number of false-positive diagnoses unavoidably
increases; in other words, the more sensitive the examina-
tion, the less specific it becomes. To help us determine the
most advantageous cutoff point, we first construct a graph
plotting true-positive (TP) ratios (i.e., the expression of
sensitivity) against false-positive (FP) ratios. The resulting
plot, which takes the shape of a smooth, concave curve, is
know as an “ROC curve” (receiver-operating-characteris-
ticcurve).

A hypothetical ROC curve was constructed (Fig. 1) with
the assumption that a laboratory examination has a range

TP RATIO

i A 1 1
[ 0.2 04 06 ['X]
FP RATIO

Figure 1. Hypothetical ROC Curve
The vertical scale is the TP ratio, and the horizontal scale the
FP ratio. At one extreme point, A, the test has poor sensitivity
(TP ratio = 0.30) but good specificity (FP ratio = 0.07). At the
other extreme, E, the test has high sensitivity (TP ratio = 1)
but poor specificity (FP ratio = 0.70).
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of values, any one of which can be used to separate normal
from diseased patients (Table 3). The proportion of sub-
jects classified as normal or abnormal on the basis of this
test then depends upon where this cutoff point is placed.
When test results larger than those corresponding to the
value at point A are considered abnormal, only 30 per cent
of the diseased patients are detected, but there are no
false-positive diagnoses. At this cutoff point the test has
great specificity but very poor sensitivity. When test re-
sults greater than those corresponding to the value at
point C are considered abnormal, 70 per cent of patients
with disease are detected, but 10 per cent of subjects
without disease have abnormal results. When a low cutoff
value (point E) is used to separate those with disease from
those without, all patients with disease are identified, but
at the expense of including a large proportion of patients
(70 per cent) without disease. The location of a cutoff
point along an ROC curve is called an “operating posi-
tion.”

Table 3. Correlation of Cutoff Point and True-Positive and
False-Positive Ratios for aHypothetical ROC Curve.

PROPORTION OF PATIENTS HAVING
ABNORMAL TEST RESULTS

CutoFF PoINT

PATIENTS WITH DISEASE
(TRUE -POSITIVE RATIO)

PATIENTS WITHOUT DISEASE
(FALSE - POSITIVE RATIO)

A 0.30 0.00
B 0.45 0.02
C 0.70 0.10
D 0.90 0.25
E 1.00 0.70

Selection of a Cutoff Point

Selection of an appropriate cutoff point is aided by
knowledge of the probability of disease in the patient pop-
ulation of interest. This probability of disease in any given
member of the group as a whole is called the prior or pre-
test (that is, before the results of the test in the given mem-
ber are obtained) probability and may be designated as
P(D+). The prior or pretest probability of no disease may
be designated as P(D—). For illustrative purposes in sub-
sequent examples, we shall assume that the hypothetical
test described in Table 3 was performed on a group of pa-
tients of whom 30 per cent have disease {P(D+) = 0.30}
and 70 per centdo not {P(D—) = 0.70}.*

Selection of an appropriate cutoff point is also aided by
knowledge of the costs associated with errors in diagnosis
— both false-positive and false-negative errors. We are
generally interested in the additional costs associated with
these errors in comparison with the costs associated with
anideal or perfect test. Costs can be divided into those that
pertain to health and those that pertain to money.

*The ratio of the probability of disease to the probability of no disease,
gg_"‘) , is known as the prior odds and is usually designated by the Greek
-)
letter omega, (2. In this example the prior odds are 3:7. The prior probability
of disease can be calculated from the prior odds by the following relations:

PD+) =_Q .
1+ Q.
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Health costs make use of two major indexes, mortality
and morbidity, and are usually the basis of decisions in-
volving patient management. Varying mortality patterns
are most conveniently evaluated by computing and com-
paring, for various diagnostic tests and therapeutic regi-
mens, an index called “person-years”; a person-year is de-
fined as one person surviving for one year.* Person-years
do not take into account the morbidity, pain and anxiety
associated with the diagnostic tests and therapeutic regi-
mens. [tis possible, therefore, that the morbidity associat-
ed with the best treatment regimen (measured in terms of
person-years) would be sufficiently high so that a given pa-
tient would prefer a less effective regimen. Ideally, physi-
cians should take patients’ preferences regarding mortali-
ty and morbidity into account when making decisions in
their behalf. Some weighting of mortality and morbidity
should probably be performed, and the resulting index
called “healthy person-years of life” rather than person-
years of life alone.

Financial costs have two major components. There are
the medical bills themselves, paid by the patient or some
third party. In addition, since death or disability may pre-
vent patients from supporting themselves or others, there
may be additional costs to society and insurers for support
of patients or their dependents. Evenif these support costs
cannot be exactly determined, it is clear that use of medical
bills alone to determine the cost of diagnosis and treat-
ment underestimates the total financial costs.

When health costs are most important and are used to
select a cutoff point between normal and abnormal re-
sults, we want to minimize differences in person-years (or,
ideally, healthy person-years) between our diagnosis and
treatment and that existing for perfect diagnosis and op-
timal treatment. If we let the additional cost in person-
years associated with a false negative diagnosis be AC
and with a false-positive diagnosis be AC;, we can deter-
mine from statistical decision theory? that the optimal op-
erating position on the ROC curve occurs where the slope
of the ROC curve equals

AC ip P(D—) ).

ACy, P(D+)
For example, on the average, if the cost of missing a
diagnosis is high and the cost of mistakenly treating pa-
tients is low, intuition tells us to operate at a point near E
on the ROC curve (Fig. 1) where we treat all patients with
disease. The formula supports this estimate because un-
der these conditions, the ratio AC, /AC, is small, and
the slope of the curve changes only slightly near E. On the
other hand, if the therapeutic results of treating a disease
are of marginal value, and the health costs of treating a
patient without disease are high, intuition tells us to oper-

*This definition implies that one year of life for two individuals is the same
as two years of life for one person and that all years of life are valued
equally.

Derivation of expression (1) can be found in Signal Detection and Recogni-
tion by Human Observers, edited by John A. Swets, New York, John Wiley
and Sons, 1964. Itis based on considerations related to expected value. Ex-
pected value is defined here as the sum, considering all potential outcomes
of a decision, of the products of the probabilities of outcome, and the value
attached to each outcome.
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ate at a position near point A where the slope, like
AC, /ACy, ,issteep. Finally, if the likelihood of disease in
the patient is very small (that s, the ratio of the probability
of no disease to disease is large), we again choose a point
near A; this situation occurs in screening programs.

When financial costs are our criterion for selection of a
cutoff point, the same principles apply except that now the
additional costs relate to money. ACy, , for example, is the
extra cost associated with unnecessary diagnostic and per-
haps therapeutic regimens, whereas AC,,, is the addition-
al cost caused by the progression of untreated disease.

In many cases we do not have accurate estimates of the
additional health or financial costs associated with errors
in diagnosis. One approach to this problem is to choose a
cutoff point that minimizes our mistakes. This position
may be designated by M,;, and occurs where the slope of
the ROC curve equals P(D—)/P(D+). For example, for
the population where P(D—) = 0.70 and P(D +) = 0.30
the position occurs where the slope equals

PD—) - 070 _ 933,
P(D+) 0.30

This position is near point C of the ROC curve in Figure 1.

Itisimportant to emphasize that the cutoff point chosen
is best only for the measure of costs selected. Thus, if costs
are based on mortality, the resulting operating position
should yield the lowest average mortality. If costs are
based on finances, the lowest average financial cost results.
This resulting cutoff point need not be the same as that as-
sociated with the lowest average mortality. In addition,
the cutoff point that minimizes mistakes may differ from
both these points.

In evaluating various therapeutic or diagnostic pro-
cedures, these health and financial costs are initially esti-
mated independently. To relate diagnostic or treatment
(health) costs to financial costs we may calculate an average
financial cost required to achieve a given unit of health
(e.g., person-years) for each procedure; this is an average
cost. In comparing various therapeutic or diagnostic pro-
cedures, a cost called a marginal cost may be calculated.
This cost is the financial cost of achieving one additional
unit of health (e.g., one more person-year) by one proce-
dure over another. For example, if one treatment costing
$15,000 yields five person-years of life and another cost-
ing $8,000 yields three person-years of health, the mar-
ginal cost of each additional person-year resulting from
the first treatment is $3,500 {(15,000-8,000)/5-3)}. For
diagnostic procedures the same principles apply except
that now the average cost relates to finding a patient with
disease and the marginal cost relates to finding an addi-
tional patient with disease using one diagnostic procedure
as compared with another. Such diagnostic procedures
can be either different tests or different cutoff points ap-
plied to the results of a single test.

INFORMATION THEORY

General Characteristics

Information theory has been used as one of several pos-
sible means for selecting a cutoff point along the ROC
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curve.? In this context, information is defined as a reduc-
tion in uncertainty; thus, the greater the difference be-
tween the certainty of a diagnosis after a test is performed
and the certainty before itis performed, the greater the in-
formation content of test. Accordingly, if the certainty
about a given diagnosis is already high, little information
is gained from an additional diagnostic test. For example,
results of a serum ceruloplasmin level in a patient with
Kayser-Fleischer rings and ataxia provide less informa-
tion than results of a similar test in a brother of a child with
Wilson’s disease. In the former instance we are fairly cer-
tain of the diagnosis on the basis of physical findings —
that is, our pretest probability estimate is already close
to 1.0. In the latter instance, on the other hand, we are
less certain; our pretest probability is lower, around 0.25,
and we therefore gain much more information from a se-
rum ceruloplasmin measurement. Obviously, if we think
that one disease is as likely to be present as not, our pretest
probability is 0.50; in this case, we gain information from a
test that will help us go from a completely uncertain 50:50
state to one of greater certainty.

Selection of a Cutoff Point

A theoretical relation exists between the maximum in-
formation content obtainable from a perfect test (TP ra-
tio = 1, FPratio = 0) and the frequency of the disease in
question; this relation is described by a smooth curve hav-
ing a continuous range of values (Fig. 2). Because most
tests are not perfect, however, the theoretical maximum
value is seldom achieved. The actual value depends upon
the TP and FP ratios. Tests that have a continuous scale of
values and thus a number of possible discrete cutoff points
have different amounts of information associated with
each cutoff point as well as with each prior probability. For
example, we can calculate* the information content for
each of the cutoff points on the ROC curve presented
in Figure 1, and to show that for prior probabilities of 0.25,
0.50and 0.75, the information content at point D is higher
than that for points A, B, C and E. The cutoff point of a
diagnostic test having a value closest to the theoretical
one is the one that maximizes the information content of
the test. This point is said to have an information content
of [ __ .

Baves’s THEOREM

Once a diagnostic test has been evaluated so that its
characteristics (i.e., sensitivity and specificity) are known,
it is possible to formulate new probability statements
about the presence or absence of disease in a particular pa-
tient examined by the diagnostic test. These probability
statements are called posterior or post-test probabilities
because they reflect the test results. If a patient has an ab-
normal test result the probability of disease is written as
P(D+|T+)andif he hasanormal testresult, itis written as

*We calculated these results by evaluating a complex algebraic ex-
pression derived and discussed in detail by Metz.2 This expression makes
use of the TP and FP ratios of the test (or, in our case, of the ratios cor-
responding to varying cutoff points) and of the prior probability with which
weareconcerned.
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Figure 2. Information Content of a Test as a Function of the
Prior Probability of Disease.

The maximum information content theoretically obtainable

occurs with a perfect test (TP ratio = 1, and FP ratio = 0); its

maximum value is 1.0 and occurs where the prior probability

is 0.5 (solid line). The circles represent the maximum informa-

tion content (Im) for the hypothetical ROC curive (Fig. 1) at

three prior probabilities; these three values of Im.care asso-
ciated with point D onthe ROC curve.

P(D+|T —). Bayes's* theorem is a technic that allows us to
calculate these posterior probabilities that we wish to
know from information that we already know beforehand
(“a priori”) about the implications of a diagnostic test. For
example, if we wish to estimate the probability of disease in
a patient with an abnormal test result we must know the
probabilities that the diagnostic test will be positive in pa-
tients with and without disease —the TP and FP ratios —
and an estimate of the prior probabilities, P(D+) and
P(D—). The following formulais used:

P(T+|D+) P(D+)
P(T+|D+)P(D+)+ P(T+|D—)P(D-)

P(D+|T+) =

Alternatively, if we wish to know the probability that a pa-
tient with a normal test result has disease, we need to know
the TN and FN ratios as well as P(D+) and P(D—). The
relevant formulais:

P(D+|T—) = P(T—|D+) P(D+) ).

P(T—|D+)P(D+) + P(T—|D—)P(D-)

*The Reverend Thomas Bayes (1702-1761) was the author of the first
treatise on one type of inductive inference. He is believed to be responsible
for the following statement written in 1736: *‘It is not the business of a
Mathematician to show that a strait line or circle can be drawn, but he tells
you what he means by these; and if you understand him, you may proceed
further with him; and it would not be to the purpose to object that there is no
such thing in nature as a true strait line or perfectcircle, for this is none of his
concern; he is not inquiring how things are in matter of fact, but supposing
things to be in a certain way, what are the consequences to be deduced from
them; and all that is to be demanded of him is, that his suppositions be intelli-
gible, and his inferences just from the suppositions he makes.””
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As a specific example illustrating these formulas consider
the hypothetical test (Table 3, Fig. 1) performed on a
group of patients 30 per cent of whom are estimated to
have disease. Let us assume that we have used point D as
our cutoff point. The probability of disease in a patient
with an abnormal test is calculated from equation (2) and is

(0.90) (0.30)
(0.90)(0.30) + (0.25)(0.70)

Thus, the abnormal test has changed the probability of
disease in a patient from 0.30t0 0.61, a factor of two. If, on
the other hand, the patient has a normal test his probabili-
ty of disease is calculated from equation (3) and becomes

(0.10) (0.30)
(0.10)(0.30) + (0.75)(0.70)

= 0.61.

PD+|T+) =

= 0.05.

P(D+[T—) =

A negative test has reduced the probability of disease from
0.30 t0 0.05, a factor of six. In this context, the test is more
useful in ruling out disease thanin detectingit.

The difference between posterior and prior proba-
bilities is strongly dependent upon the true-positive and
false-positive ratios for the diagnostic test. A nomogram
relating both prior and posterior probabilities to these
ratios has been constructed for a wide range of test
sensitivities.? For tests that are “perfectly sensitive” (TP
ratio = 1.0), a family of curves relating prior to posterior
probability can be constructed for varying false-positive
ratios.*

The elementary principles enumerated in this prim-
er have been discussed in more detail by Lusted® and
by Barnoon and Wolfe.® These authors point out that
these principles can be applied to a wide range of clinical
problems from clinical decisions involving individual
patients to matters of public-health policy. Several articles
in this issue are devoted to examples of these types of anal-
yses.
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