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Driving under the (Cellular) Influence†

By Saurabh Bhargava and Vikram S. Pathania*

We investigate the causal link between driver cell phone use and 
crash rates by exploiting a natural experiment induced by the 9 pm 
price discontinuity that characterizes a majority of recent cellular 
plans. We first document a 7.2 percent jump in driver call likelihood 
at the 9 pm threshold. Using a prior period as a comparison, we next 
document no corresponding change in the relative crash rate. Our 
estimates imply an upper bound in the crash risk odds ratio of 3.0, 
which rejects the 4.3 asserted by Redelmeier and Tibshirani (1997). 
Additional panel analyses of cell phone ownership and cellular bans 
confirm our result. (JEL R41)

Does talking on a cell phone while driving increase your risk of a crash? The 
popular belief is that it does—a recent New York Times/CBS News sur-

vey found that 80 percent of Americans believe that cell phone use should be 
banned.1 This belief is echoed by recent research. Over the last few years, more 
than 125 published studies have examined the impact of driver cell phone use on 
vehicular crashes.2 In an influential paper published in the New England Journal 
of Medicine, Redelmeier and Tibshirani (1997)—henceforth, RT—concluded that 
cell phones increase the relative likelihood of a crash by a factor of 4.3. Laboratory 
and epidemiological studies have further compared the relative crash risk of phone 
use while driving to that produced by illicit levels of alcohol (RT; Strayer, Drews, 
and Crouch 2006).

If alcohol, however, is responsible for 40 percent of fatal and 7 percent of all 
crashes each year, as reported by the National Highway Traffic Safety Administration 

1 The survey relied on a sample of 829 adults and was administered by phone in October 2009. The question 
referred specifically to handheld cellular use. The survey is reported at http://www.nytimes.com/2009/11/02/tech-
nology/ 02textingside.html

2 As counted by McCartt, Hellinga, and Bratiman 2006.
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(NHTSA), then Figure 1 illustrates a puzzle. Cell phone ownership (i.e., cellular 
subscribers/population) has grown sharply since 1988, average use per subscriber 
has risen from 140 to 740 minutes a month since 1993, and surveys indicate that as 
many as 81 percent of cellular owners use their phones while driving—yet aggre-
gate crash rates have fallen substantially over this period.

No study has yet provided causal evidence of the relationship between cell phone 
use and crashes in the field. In this paper, we adopt a unique approach, and novel 
data, to estimate the causal link between cellular use and the crash rate. Specifically, 
we exploit a natural experiment which arises from a feature characterizing a large 
share of cellular phone plans from 2002 to 2005—a discontinuity in the marginal 
price of a phone call at 9 pm on weekdays.

We first provide evidence that this discontinuity in prices drives a sharp increase 
in the likelihood of calling for drivers using a proprietary dataset of calls from a 
leading network provider. Our data are restricted to calls routed through multiple 
cell phone towers in a contiguous region just outside of a major California down-
town area during an eleven day period in 2005. Given the mechanics of call routing 
and signal switching, the calls could have been placed only by callers in moving 
vehicles. While scaled for confidentiality, we estimate the data comprises 106,000 
to 477,000 calls placed by moving callers within a region spanned by 300 to 400 cell 
phone towers. To our knowledge, our paper is the first in the literature to use a large 
call-level dataset directly from a US provider, and moreover, it is the first to feature 
call data from moving vehicles.

Figure 2 presents this distribution of cell phones calls by likely drivers across 
Mondays to Thursdays, Fridays, and weekend evenings. While the downward slopes 
reflect the pattern of traffic across evenings, driver call likelihood rises by 7.2 percent 
at the 9 pm threshold when prices transition from “peak” to “off peak.” We find no 
comparable breaks in likelihood for neighboring hours or at 9 pm on weekends. We 
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Figure 1. Cellular Ownership and Crashes Per Vehicle Mile Traveled in the  
United States for 1988 to 2005



94	 AMERICAN ECONOMIC JOURNAL: ECONOMIC POLICY� AUGUST 2013

present additional evidence on cell phone calls (this time by drivers and nondrivers) 
and 30,000 pricing plans across 26 markets to affirm the sensitivity of cellular users 
to the 9 pm price threshold. The rise in call likelihood at 9 pm represents the first 
stage of our analysis.

We next test whether the rise in call likelihood at the threshold leads to a cor-
responding rise in the crash rate. In order to smooth crash counts that are subject to 
well recognized periodicity due to reporting conventions, we aggregate crashes into 
bins of varying sizes. While this strategy improves estimate precision, it introduces 
a bias due to potential covariate changes away from the threshold. To account for 
such movement in covariates, we adopt a double-difference approach to compare 
the change in crashes at the threshold to the analogous change in a control period 
prior to the prevalence of 9 pm pricing plans and characterized by low cellular use.

Figure 3 plots the universe of crashes for the state of California on Monday to 
Thursday evenings in 2005 and during the control period from 1995 to 1998.3 The 
plot, and subsequent regressions, indicate that crash rates in 2005, or in the extended 
time frame of 2002 to 2005, do not appear to change across the 9 pm threshold rela-
tive to the preperiod. We then generalize our crash analysis to include eight addi-
tional states for which we have the universe of crash data. Placebo tests of weekends 
and proximal hours, as well as robustness checks to account for the reporting bias 
in crashes, confirm that cell phone use does not result in a measurable increase in 
the crash rate.

Our estimates of the relative rise in crashes and call likelihood at 9 pm imply a 
3.0 upper bound in the crash risk odds ratio (and a 1 s.e. upper bound of 1.4) under 

3 The periodicity evident in Figure 3 is due to the aforementioned reporting bias in the timing of accident 
reports.
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Figure 2. Cell Phone Call Volume from Moving Vehicles for California from 8pm to 10pm in 2005
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credible assumptions regarding evening cell phone use. This not only rejects the 
4.3 fold increase in crash risk estimated by RT, but the confidence interval of our 
estimate fails to overlap with that of RT. The analysis further suggests that cellular 
use is not analogous to drunk driving as some policymakers and academics have 
averred. The upper bounds of this study easily rule out the crash risk of 7 associated 
with positive levels of blood alcohol and the crash risk of 13 associated with illegal 
limits of blood alcohol (Levitt and Porter 2001a).

Our finding is subject to caveats. First, we assess only the local average treat-
ment effect of cell phone use across all drivers and driving conditions around 9 pm 
from Mondays to Thursdays. Comparisons to other studies, including RT, should 
be tempered by the recognition that different estimates may reflect distinct local 
treatment effects. While we observe no obvious threats to the external validity of 
the present study, such validity rests on complicated differences in traffic patterns, 
driver composition, and the mix of call type at night from the remainder of the day. 
Second, while the upper bounds of our study may reject prevalent estimates of the 
literature, they may still constitute an economically significant level of crash risk. In 
light of this, we document the substantive implications of our confidence interval for 
the cost-benefit calculations of policymakers. Finally, our research design does not 
distinguish between handheld and hands-free use. However, we note that hands-free 
use was quite uncommon during our estimation period and that laboratory research 
has generally not found differences in crash risk across these technologies.

We employ two additional empirical approaches that confirm our finding that 
cell phone use is not associated with higher crash rates. A first approach exploits 
the nonlinear and heterogeneous take up of cell phone technology across the small-
est geographic regions for which data on cellular ownership is available. A second, 
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related, approach estimates the impact of recent legislative bans on handheld cell 
phones on fatal crashes in a number of states and municipalities.

We offer three main explanations to reconcile our findings with existing research. 
One possibility is that drivers compensate for the dangers of cell phone use by driv-
ing more carefully (Peltzman 1975). Hahn and Tetlock (1999) suggest a second 
explanation for the absence of an observable effect: drivers with some affinity for 
risk-taking may be substituting one source of risk (e.g., speaking with a passenger 
or listening to the radio) with another (i.e., cell phone use). A third possibility is 
that cell phones may be dangerous for some drivers or under particular driving con-
ditions, but are beneficial for other drivers or under alternative driving conditions 
(Kolko 2009).

Our findings have policy implications. Every state has considered some form 
of legislation to restrict the use of cell phones—or to require the use of hands-free 
devices—while driving for some or all groups of drivers, and 37 states already have 
such legislation on the books.4 Yet given the economic value of cell phone use to 
drivers (e.g., Hahn and Tetlock 1999; Hahn, Tetlock, and Burnet 2000; Lissy et al. 
2000; Cohen and Graham 2003), our paper casts doubt on at least some policies 
restricting driver cell phone usage. For instance, if current driving compensate for 
their phone use with more careful driving, then there may be a rationale for penal-
izing cellular use as a secondary, but not as a primary, offense. If cellular use is the 
product of risk substitution, then any legislative ban is inefficient. And if there is 
heterogeneity in the effect across drivers and driving conditions, then partial and 
targeted bans are appropriate. More broadly, we document how the confidence inter-
vals from this study sharply alter the value of statistical life that is implicit in such 
legislation.

The remainder of this paper proceeds as follows. Section I describes the back-
ground of research on the link between cell phones and crashes. The following sec-
tion outlines the empirical approach and accompanying results. In Section III, we 
report the sensitivity of our findings to underlying assumptions, attempt to reconcile 
our estimates with the existing research, and comment on policy implications. The 
final section concludes.

I.  Background

The sharp rise in cell phone ownership over the last several years has been paced 
by an equally impressive rise in research examining the effects of such ownership 
on vehicular crashes. One can classify most analyses of crash risk due to cellular 
use into one of four methodological categories: (i) Laboratory studies that focus on 
subject behavior in simulated, or highly controlled, driving conditions; (ii) natural-
istic studies of drivers on the actual road; (iii) correlational analyses of aggregate 
crash records and cell phone ownership; and (iv) longitudinal analyses of individual 
phone and crash records. Beyond estimating the impact of phone use on crashes, 

4 Nine have banned handheld cell phone use by all drivers and 28 other states have enacted partial bans primarily 
targeting younger drivers or those driving school busses (as reported by the Governors Highway Safety Association 
website in February 2012).
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other researchers have measured the frequency of such use by drivers. Several excel-
lent recent surveys of these literatures exist.5

Cell Phone Use and Crash Risk.—�In the standard experimental paradigm in the 
lab, a researcher assesses subject driving performance in a simulator across a variety 
of metrics (e.g., crash frequency, driving speed, reaction time for braking, following 
distance, obedience to traffic signals) under varying forms of distraction. These stud-
ies generally conclude that instructing subjects to use cell phones impairs driving by 
a factor of three to four (Strayer, Drews, and Johnston 2003) and compare the effects 
to illicit levels of intoxication (Strayer, Drews, and Crouch 2006). Importantly, 
this research finds no differences between handheld and hands-free devices (Caird 
et al. 2008). Simulations illuminate relative levels and types of impairment across 
distractions, but a shortcoming of such studies, however, is that it is unclear whether 
cell phone use in simulations is at all analogous to use in environments where driver 
well-being, or survival, is at stake.

A second set of approaches, naturalistic studies, employ visual and audio record-
ing devices to monitor behavior in authentic driving conditions. In the largest exam-
ple of this approach, researchers equipped 100 vehicles with cameras and sensors 
and tracked 241 primary and secondary drivers for over one year (NHTSA 2006). 
After amassing nearly 43,000 hours of driving data, the authors find no evidence 
that listening or speaking with a cellular device make drivers more likely to crash 
(i.e., a modest 1.3 relative crash-risk ratio, with a 95 percent CI of 0.93 to 1.90).6 
Like laboratory studies, naturalistic approaches pinpoint specific causes of driver 
impairment and characterize their relative danger. Given the high costs, however, the 
sample sizes are often too small and volunteer drivers too unrepresentative to infer 
crash risk (Lissy et al. 2000). Additionally, given the lack of exogenous variation 
in phone use, cellular use in this context may be endogenous to unobserved factors, 
(e.g., stress), that may be correlated with other forms of inattention or crash risk.

A third strategy, which generates absolute estimates of crash risk, is the com-
parison of aggregate trends in cell phone ownership with trends in crash rates at the 
local, state or national level. In a very credible example of this design, Kolko (2009) 
compares state-year variation in cellular ownership with fatal car crashes from 
1997 to 2005. After controlling for various covariates including state and year fixed 
effects, Kolko’s (2009) point estimates, while not statistically significant, imply that 
the introduction of cell phones led to a roughly 16 percent increase in the annual 
fatal crash rate (with a 95 percent CI of −7 to +39 percent).7 Kolko (2009) finds a 
smaller, but statistically significant, correlation between ownership and fatal crashes 
involving only poor driving conditions (i.e., wet roads or bad weather).

5 Examples of these surveys include Hahn and Prieger 2006; McCartt, Hellinga, and Bratiman 2006; Prieger 
and Hahn 2007; Caird et al. 2008. A working paper version of the present paper features a more detailed exposition.

6 The study does find that 78 percent of the 69 crashes and 65 percent of the 761 “near-crashes” committed by 
drivers in their sample were due to some form of driver inattention. The study also concludes that dialing a cell 
phone leads to a relative crash-risk ratio of 3.0.

7 The extrapolation to absolute crash risk assumes linearity in the influence of increasing cellular ownership on 
crashes.
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Kolko (2009) also examines the impact of state bans restricting handheld cell 
phone use with the same framework and finds a statistically significant negative 
impact of this legislation on the fatal crash rate. Another recent study compares 
collision claims for new vehicles, (i.e., under three years old), before and after the 
enactment of bans in California, Connecticut, New York, and Washington DC, to 
claims in nearby regions (HLDI 2009). Overall, the authors find no evidence that the 
legislation led to a subsequent decrease in claims.8

The high level of aggregation and the strong secular and nonlinear trend in 
overall crashes in the 1990s (see Figure 1) complicate this correlational approach. 
For example, panel analysis at the state-year level leaves open the possibility that 
unobserved state-specific and time-varying risk-factors—such safety technology or 
speeding laws—might also influence the crash rate.9 The present analysis attempts 
to address some of these shortcomings with more disaggregated data on owner-
ship, an extended time-series using years prior to the widespread introduction of 
cell phones as a control period, and controls for region specific linear and quadratic 
trends. Our attempts at replicating the Kolko (2009) estimates of the correlation 
between ownership and crashes, as well as the effects of legislation, indicate that the 
inclusion of region specific time trends or a control period eliminates evidence for 
a positive correlation.

A final class of studies tracks individual level phone use and driving behavior for 
a small number of drivers. The most widely cited of these is the analysis by RT. In 
their influential paper, the authors inspect crash records and detailed phone bills for 
699 Toronto drivers recently involved in a minor car crash.10 To control for heteroge-
neity in driver quality, the paper relies on a technique commonly employed in epide-
miological research—the “case cross-over method”—to study the health effects of 
transient exposure to a risk factor. For each driver, the authors compare exposure to 
cell phone use immediately prior to the crash, with exposure during a driver specific 
crash free control period before the crash occurred. Using a conditional logit regres-
sion, the paper infers that cell phone use increases the relative likelihood of a crash 
by a factor of 4.3 (with a 95 percent CI of 3.0 to 6.5) and no statistical difference 
between handheld (5.3) and hands-free devices (3.9).11 A more recent application 
of the case-crossover method in Australia finds that the use of cell phones increases 
crash risk by a factor of 4.1 and, again, finds no significant difference between hand-
held (4.9) and hands-free devices (3.8) (McEvoy et al. 2005).

While RT is considered perhaps the most influential of this, or any class, of stud-
ies, the study suffers from three principle drawbacks. First, the study relies on a very 

8 The study reports ten regression coefficients which correspond to specifications of various driver populations 
and control groups over an unspecified number of months. The regressions control for linear trends in both the con-
trol and treatment groups. None of the specifications yielded statistically significant evidence for a drop in claims.

9 While Kolko (2009) exploits weather and road conditions during a crash as an additional source of variation, 
it does not appear that the difference in point estimates between the examined subpopulations is statistically signifi-
cant. Table 3 of Kolko (2009) does not provide enough information to infer a statistical difference in point estimates 
for each of the four regressions whose results are reported (i.e., “good weather,” “dry road,” “bad weather,” and 
“wet road” conditions). Given the difference in the magnitude of the point estimates, and the size of the estimated 
standard errors, it seems unlikely that the difference between coefficients is statistically significant.

10 Analagous studies have not been conducted in the United States due to lack of access to billing records from 
domestic cell phone providers.

11 The study fails to find significant differences in increased crash risk across age or gender.
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unrepresentative sample of drivers recently involved in a crash (Hahn and Prieger 
2006). As evidence for such selection, Prieger and Hahn (2007) and Wilson et al. 
(2003) survey drivers and find that handheld cell phone users are actually more 
likely to crash even when not on the phone. Second, while the RT methodology 
controls for fixed driver characteristics, it does not control for time varying unob-
servables such as boredom or stress that may cause both cell phone use and poor 
driving.12 Finally, researchers have noted that the lack of precision with which RT 
infer the timing of crashes means that observed cell phone calls may have been 
placed immediately after, rather than before, a crash occurred.

In another epidemiological approach, Young and Schreiner (2009) investigate the 
risks associated with hands-free use of a popular voice-activated communication 
device embedded in select vehicles called OnStar. OnStar automatically places an 
emergency call in the event of a crash in which an airbag is deployed and further 
records the times of all calls including those automatically placed in an emergency. 
The study finds that from 2001 to 2003 hands-free calling among the nearly 3 million 
OnStar subscribers actually lowered crash risk by a factor of 0.62 (with a 95 percent 
CI of 0.37 to 1.05). While the study critically records the time of each crash accurately, 
because the study does not directly observe the driving time during the comparison 
period for which there are no calls placed, calculations of relative risk are sensitive to 
the assumptions that underlie the inference of such driving duration. If driving time is 
underestimated, the study inflates the crash risk in the comparison period and biases 
the relative risk estimate downwards. A second concern is that drivers in the compari-
son period may be using other types of cellular devices to make calls.13

Table 1 summarizes estimates of relative and absolute risk emerging from each 
of the described methodological classes. Translating across relative and absolute 
risk, however, critically relies on assumptions regarding the frequency of driver cell 
phone use.

Frequency of Cellular Use by Drivers.—�A handful of studies have attempted to 
estimate the frequency of cell phone use on the road. The most widely cited of these 
is the National Occupant Protection Use Survey (NOPUS) administered and pub-
lished (almost) every year since 2000 by the NHTSA. For the 2005 NOPUS, trained 
observers were dispatched from 8 am to 6 pm to 1,200 probabilistically sampled 
intersections nationwide in June 2005. Six percent of the 43,000 observed drivers 
were using a handheld cell phone. The authors estimate, using existing survey data, 
that an additional 4 percent of drivers were on hands-free phones resulting in a total 
usage of 10 percent (NHTSA 2005).14 NOPUS estimates that total use has been 
steadily increasing over the last several years: from 6 percent in 2002, 7 percent in 
2003, 8 percent in 2004 and 10 percent in 2005 (NHTSA 2002 to 2005). NOPUS 

12 Hahn and Tetlock (1999) suggest the possibility of worsening traffic conditions (e.g., poor weather or traffic 
congestion) as a possible example of this problem.

13 These criticisms were outlined by Braver, Lund, and McCartt in their critique published on the Insurance 
Institute for Highway Safety website in March 2009.

14 NOPUS also reports the incidence of observed “head-set” use which, in 2005, was 0.7 percent. The NOPUS 
estimate of total hands-free usage combines observed head-set usage with driver survey results (a survey by Stutts 
et al. 2003 entitled “Distractions in Everyday Driving”).
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also hints at heterogeneity in cellular use across driver age—but not gender—with 
handheld use alone approaching as high as 10 percent for drivers from 16 to 24 
years in 2005 (Glassbrenner 2005).15

Our calibrations ultimately rely on assumptions regarding nighttime cellular use. 
We are aware of only two studies that explicitly consider cell phone use at night. 
These studies suggest that cellular use in early night-time hours is not different 
from use during the day. In the first, conducted in 2006, authors equipped observ-
ers with night vision technology at 113 randomly selected intersections in Indiana 
from 9:30 pm to 5:45 am (Vivoda et al. 2008). The study finds handheld use to be 
6.9 percent among drivers from 9:30 pm to 12 am (N = 3774) which is higher than 
the corresponding NOPUS estimate of daytime use.16 A second study, conducted 
in 2001, specifically assesses cell phone use among high-speed drivers during 
various points in the day using photographic evidence from 40,000 drivers on the 
NJ Turnpike (Johnson et al. 2004). On average, only 1.5 percent of the high-speed 
drivers are on handheld phones which is half of the comparable NOPUS estimate. 
Again, authors find no significant difference between cellular usage during the late 
evening (i.e., from 8 pm to 12 am) and the afternoon (i.e., from 12 pm to 4 pm) for 

15 A second large-sample study of cellular use tracked long-term legislative compliance in Washington, DC, 
Maryland and Virginia (McCartt and Hellinga 2007). The study found 5.8 percent daytime handheld use in 2004. 
This figure is higher than the 4 percent handheld use estimated by NOPUS for 2004.

16 The study did find that usage dropped significantly after 2 am (i.e., they estimate 3.1 percent usage from 2 to 
4 am and 1.3 percent usage from 4 to 5:45 am).

Table 1—Effect of Cellular Use on Crash Risk: Comparison by Methodology

Relative risk Absolute risk

Present analysis 1.0 times collision risk 0% increase in crashes
  (9 pm discontinuity) (3.0 upper bound) (20% upper bound)

Experimental studies 3 to 4 times impairment 20 to 30% increase in crashes
(Strayer 2003, 2006) (extrapolated for 2005)

Naturalistic studies 1.3 times collision risk 3% increase in crashes
(NHTSA 2006) (extrapolated for 2005)

Police annotations 1.25 times collision risk 1% increase in crashes
(Lissy et. al. 2000)

Ownership and crash trends 2.6 times collision risk 16% increase in fatal crashes (not significant)
11% increase in bad weather fatal crashes

(Kolko 2009)

Individual crash records 4.3 times collision risk 33% increase in crashes
(RT) (extrapolated for 2005)

Notes: The table displays the relative and absolute crash risk implied by selected examples of each class of stud-
ies. In cases where relative or absolute crash risk was not explicitly calculated, we extrapolate such risk using basic 
assumptions of cell phone ownership, baseline usage, and in the case of the present analysis, the equivalence of 
volume increases and ownership increases. Extrapolations in absolute crash risk are made for 2005, and extrapola-
tions for relative risk are made using the assumption values associated with the year of the study. For example, to 
generate the absolute crash risk in 2005 associated with the RT estimate of 4.3 relative crash risk, we use the base-
line NOPUS usage in 2005 of 10 percent and then add the cellular and non-cellular driver crash risks (i.e., (0.9 × 1)  
+ (0.1 × 4.3)) to produce a 33 percent increase. 
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this particular class of drivers. Perhaps the most convincing evidence of cell phone 
use by drivers at night, relative to during the day, comes from the present analysis 
and is outlined in the Discussion.

Table 1 also compares the relative and absolute crash risk for representative stud-
ies in the literature as well as the present analysis. Calculation of absolute crash risk 
assumes the 10 percent NOPUS rate of cellular use in 2005, randomization in usage 
across driver type, and linearity in the influence of ownership on crashes.17

II.  Empirical Analysis

A. Description of Data

This paper relies on a wide array of data on cell phone ownership, cellular pricing 
plans, call likelihood, and crash records. These sources are enumerated in Table A1 
of the online Appendix. We briefly describe the most important data here and rel-
egate remaining detail to the online Appendix.

Cellular Ownership.—�Measures of cell phone ownership require data on the 
number of subscribers as well as the population in a given region. We collect data on 
subscribers by state for 1999 to 2007, nationally for 1985 to 2005, and by the FCC 
defined “Economic Area” for 2001 to 2005 and 2007 from the FCC and the Cellular 
Telephone Industry Association (CTIA).18 Figure A1 in the online Appendix depicts 
trends in cell phone ownership nationwide as well as the growth in the average usage 
of each phone per user.19 Overall, both ownership and usage increase exponentially 
over this period. By 2007, five of every six residents owned a cell phone despite only 
one of three owning a cell phone just eight years earlier.

Cellular Pricing Plans.—�The central empirical strategy of the paper exploits the 
possibility that a discontinuity in call price leads to a change in call likelihood. We 
estimate the market shares of pricing plans by provider from historical plan data col-
lected from 1999 to 2005 by Econ One Research, and from market share and plan 
turnover data from the FCC and S&P Industry Reports.20 The historical plan data 
covers 26 major markets, 30 providers, and over 30,000 pricing plans, and details 
each plan’s schedule of marginal call prices and the time threshold at which tiered 
plans transition from peak to off-peak pricing.

17 Assuming for example that cell phone use occurs during 10 percent of total driving time, then, ignoring 
selection, a relative crash risk of 4.3 translates to a 33 percent increase in total crashes. Relative crash risks can be 
calculated conversely. Accordingly, estimates of the effect of cell phone use on the change in total crashes range 
from 1 to 33 percent in absolute terms.

18 Historical population data was downloaded from the Bureau of Labor Statistics.
19 Data on average usage is reported in the annual CMRS Competition Reports published by the FTC.
20 The historical plan data comes from the “Econ One Wireless Survey: An Internet Survey of Cellular and PCS 

Pricing Plans.” It is generated from screen-shots of provider websites taken each year. Econ One Research provided 
this data to the authors as a courtesy for academic use. The FCC report is entitled “Annual Report to Congress on 
the State of Competition in the Commercial Mobile Radio Services Industry,” and is available on the FCC website.
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Call Likelihood.—�To illustrate the relationship between call volume and call 
pricing, we primarily rely on a large and proprietary dataset of calls by likely drivers 
during an eleven day period in 2005 acquired from a major network provider. The 
data are restricted to calls routed through multiple cell phone towers in a contiguous, 
highly populated, region in California spanned by the coverage of approximately 
300 to 400 towers (a single “switch”). The mechanics of signal switching are such 
that a call is originally routed by the tower emanating the strongest signal (typically 
the tower in closest proximity to the caller). A call in progress is rerouted through 
a second tower only when the differential in signal strength between the old and a 
new tower exceeds a certain threshold. Due to this switching design, signals from 
stationary or even ambulatory callers are almost always routed by a single tower.21 
Rare exceptions exist when a caller is walking through a region with large buildings 
that interfere with a given tower’s reception. However, our data are from a switch 
servicing a region just outside of downtown and thus avoids calls made within the 
city center. The 11 days of calls represents the longest near-continuous period in 
2005 during which data could be retrieved from the archives.22 While volumes are 
scaled for confidentiality, we can estimate that the data consists of 276,000 to 1.24 
million minutes of cell phone use over this period.23 At an average estimated dura-
tion of 2.6 minutes per call (calculated from a second dataset of calls from TNS 
Telecom and described below), this translates to 106,000 to 477,000 phone calls.

Two additional datasets of calls permit assessments of the price sensitivity of a 
broader population of cellular users that extends beyond drivers. The first additional 
dataset (hereafter, MIT) was acquired from researchers at the MIT Media Lab who 
implanted surveillance technology in cell phones to track subject movements, inter-
actions, and communication over the course of the academic year.24 A total of 65 
subjects placed approximately 80,000 outgoing cell phone calls from August 2004 
to May 2005. A second, more representative, dataset, features over 741,000 calls 
made by 9,864 cell phone users in 2000 and 2001 and is assembled from cell phone 
bills submitted by households randomly selected as a part of wider survey of tele-
communications behavior administered by TNS Telecom (hereafter, TNS). The 
online Appendix provides greater detail on these data.

Crash Records.—�Our analysis principally relies on two sources of crash data. 
First, the State Data System (SDS) provides data for the universe of reported crashes 
from 1990 to 2005 for California, Florida, Illinois, Kansas, Maryland, Mississippi, 
Missouri, Ohio, and Pennsylvania.25 A well recognized drawback of using a crash 
database based on self-reports is the presence of substantive periodic heaping. The 

21 Engineers from the network provider estimate that a given caller must travel at least approximately two miles 
before a call will switch towers. Therefore, our dataset almost certainly comprises calls made by callers in moving 
vehicles.

22 More precisely the calls are from a continuous 14-day period, but there are three days for which no data could 
be extracted.

23 The provider multiplied the data by some integer from two to nine to preserve the anonymity of the call 
volumes.

24 Eagle, Nathan, and Alex Pentland. 2006. “Reality Mining: Sensing Complex Social Systems.” Personal and 
Ubiquitous Computing 10 (4): 255–68.

25 A total of eighteen states participate in the SDS, but only nine states release crash data which covers a signifi-
cant portion of the desired time frame. A handful of state-years suffer from data limitations ranging from complete 
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trajectory of a crash record helps to illuminate the origins of this bias. Once a vehic-
ular crash is reported, police at the scene document various details of the incident, 
including the minute of the crash occurrence, and submits the paperwork to one of 
several possible state agencies. While states vary in the specifics that govern data 
collection and crash qualification criteria, crash records are ultimately centralized 
and sent once a year to the NHTSA where they are standardized and maintained.26 
Figure 4 illustrates the nature of the heaping in reports that characterizes a represen-
tative hour in 2005 across the states in our sample. A close examination indicates 
that nearly 11 percent of crash reports fall exactly on the hour, 31 percent are on the 
hour, half hour, or quarter hour, and 61 percent reside in a minute ending in either 
zero or five.

Second, the Fatality Analysis Reporting System (FARS), also administered by 
the NHTSA, provides data for the universe of fatal crash records from 1987 to 2007 
for each of the 50 states. FARS captures any vehicle crash resulting in a death within 
30 days of the collision. Like the SDS data, FARS suffers from severe periodicity in 
the specific minute of the crash reports.

Figure 1 depicts the trends in crashes, indexed to highway traffic volume, for each 
year from 1988 to 2007.27 The plot indicates a decrease in crashes over the last fif-
teen years, with a slight rise in the mid-1990s. Much of the drop in crash rates over 

unavailability to state-years for which a critical variable is not reported (e.g., Pennsylvania in 2002; Illinois in 2004 
and 2005).

26 States differ in the criteria used to qualify a crash for reporting. Minor crashes below a minimum dollar value 
(typically $400 to $500) or not requiring a tow-away may not be reported.

27 Crash data for this plot is from the General Estimates Survey, a national probability sample calculated by the 
NHTSA, and FARS.
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this period is attributable to the increasing prevalence and usage of safety devices as 
well as a decline in driver alcohol use. The mild rise in the mid-1990s can be at least 
partially attributed to relaxation in nationwide speeding regulations (NHTSA 2005). 
In recent years, there have been about 40,000 fatal crashes, and approximately six 
million total crashes reported each year nationwide.

B. Estimation Strategy and Identifying Assumptions

We articulate the estimation strategy and identifying assumptions through a con-
ceptual model. Let ln(Cras​h​rpwt​ ) refer to the log number of reported crashes in region 
r in either a “post” or “pre” period, indicated by p, during weekdays (i.e., Mondays 
to Thursdays) or weekends, indicated by w, at time of the day t. “Post” refers to the 
period characterized by high cell phone ownership and high plan conformity around 
a specific threshold (e.g., 2002 to 2005) (p = 1), while “pre” refers to the period of 
low average call likelihood and prior to the prevalence of 9 pm pricing plans (e.g., 
1995 to 1998) (p = 0). In this framework, reported crashes are jointly determined 
by the traffic level or changes in driver composition, Traffi​c​rpwt​, bias in the timing 
of the crash report, RepBia​s​rpwt​, and the covariate of interest, CallVo​l​rpwt​, which 
indicates the number of cell phones in use.

CallVo​l​rpwt​ describes the volume of cell phone use by drivers on the road. This 
measure is a product of the number of vehicles on the road, Traffi​c​rpwt​, and the 
likelihood of a given driver making a phone call, CallLik​e​rpwt​. This likelihood of 
making a call is determined by a set of long-run factors including the level of cell 
phone ownership, legislation, average rates of cellular pricing, and the sophistication 
of handset technology, as well as by short-run factors including variation in call 
price. A vector of additional covariates, X, such as speeding regulations, weather 
conditions and visibility, and the availability and adoption of safety technology may 
also directly influence the rate of crashes:

	 ln(Cras​h​rpwt​ ) = α + ​θ​
1
​Traffi​c​rpwt​ + ​θ​

2
​ RepBia​s​rpwt​ + ​θ​

3
​​ X​rpwt​ 

	 + λCallVo​l​rpwt​(CallLike, Traffic ) + ​ε​rpwt​ .

It is possible that drivers who use cell phones have a greater affinity for risk, 
and that the risk affinity, R, of drivers on the road produces a higher likelihood of 
entering into a crash: E(ε | R ) ≠ 0. Since CallLik​e​rpwt​ may also be a function of the 
risk affinity of drivers, ​  λ​ will be biased. One strategy through which to circumvent 
this bias is to assume that the distribution of unobserved driver risk is the same 
immediately before and after the 9 pm pricing threshold. Any break that we now 
observe in crashes can be attributed to a change in the remaining covariates.

One can characterize the change in crashes during some time window immedi-
ately before the threshold, ​t′​, from one immediately after the threshold, t, by calcu-
lating a first difference, ​D​r11t​ . We initially restrict focus to the postperiod and assume
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that X and long-run determinants of CallLik​e​rpwt​ are unchanged locally around the 
threshold to produce

	​ D​r11t​ = ln(Cras​h​r11t​ ) − ln(Cras​h​r11​t′​​ ) = ​θ​1​ΔTraffi​c​r11t​

	 + ​θ​2​ΔRepBia​s​r11t​ + λΔCallVo​l​r11t​ + ​v​r11t​ .

The change in call volume across the threshold, ΔCallVo​l​r11t​ , is now a function 
of changes linked to traffic and driver composition and short-run variation in call 
likelihood driven by price.

One might advocate the use of a standard regression discontinuity approach to 
estimate the effect of cellular use across the threshold. This approach would describe 
the change in crashes, induced by a fall in prices, by fitting higher order polynomials 
on either side of 9 pm on weekdays in recent years. Such a design assumes, however, 
that covariates other than cellular price change smoothly across the 9 pm threshold. 
The reporting bias, as well as the possibility of on-hour changes in traffic and driver 
mix, complicates a standard regression discontinuity design.28

In the face of covariates, such as traffic patterns, driver composition, or report-
ing bias, that may vary across this first difference, we calculate a second difference,  
D​D​rp1t​ , by comparing the first difference in crashes around the time threshold dur-
ing the postperiod from a similar difference calculated for the preperiod. Covariates 
whose variation is stable across each difference fall out of the equation:29

	 D​D​rp1t​ = ​D​r11t​ − ​D​r01t​ = λ(ΔCallVo​l​r11t​ − ΔCallVo​l​r01t​ ) + ​v​ rp1t .​ ′  ​

The double difference in crash rates is now simply a function of the residual change 
across the threshold in call volume. We can attribute the change in call volume, in turn, 
solely to relative changes in call price in the preperiod and postperiod. If the change in 
likelihood due to price is absent in the preperiod, then the double difference in price 
reduces to a single difference in price at 9 pm in the postperiod.30 Finally, to allay the 
concern that the differences in reporting bias or other unobserved factors may system-
atically vary across the preperiod and postperiod, as a placebo check, we can calculate 
analogous double differences for the weekend, D​D​rp0t​, and for proximal hours.

In the exposition that follows, we explicitly estimate the postperiod first differ-
ence in call volume, due strictly to an exogenous change in price, ΔCallVo​l​r11t​​|​−price​ ,  
and provide evidence that the comparable difference in the preperiod,  
ΔCallVo​l​r01t​​|​−price​, is either zero or negligible. We next estimate the change in the 
relative crash rate across the threshold in the post as compared to the preperiod,  

28 We estimate parametric RD fits around 9 pm and these results are available upon request. While estimates for 
the treatment period are sensitive to the choice of the fitted polynomial, we find nearly identical estimates for the 
treatment and control period for a given specification. This is consistent with the present analysis (and suggests that 
the RD is not fully accomodating either the heaping in crash reports or an unobserved change in other covariates 
across the threshold).

29 An example of a factor that might systematically change across the 9 pm threshold, but whose double differ-
ence should not change systematically across the preperiod and postperiods, is daylight.

30 Importantly, if one believes that call likelihood does change across the threshold in the preperiod, due to some 
unobserved factor, than the double difference in cell phone use must be scaled by the difference in the average level 
of call likelihood over the years. For example, if average likelihood is five times higher in the postperiod relative to 
the preperiod, then a 2 percent rise in 9 pm call likelihood in the preperiod, is only equivalent to a 0.4 percent change 
across the threshold in the postperiod.
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D​D​rp1t​. These two estimates ultimately permit us to back out the parameter of inter-
est, λ, as well as upper bounds for the crash risk associated with cellular use.

C. Change in Call Volume at 9 pm Threshold

Pricing Plans.—�Over the past decade, contracts for cell phones have been char-
acterized by a flat monthly fee which entitles subscribers to a specified number of 
minutes depending on the time of use. Any use in excess of this allotment is sub-
ject to relatively high marginal fees. For instance, a “900 Nation” plan offered by 
Cingular in 2006 allows 900 minutes of peak usage from 6 am to 9 pm each week-
day, unlimited use for off-peak periods after 9 pm and before 6 am on weekdays, 
and unlimited use all day on weekends.31 Marginal fees for excess usage commonly 
range from $0.35 to $0.45 per minute.

Figure 4 documents the share of cellular subscribers associated with each hourly 
threshold at which providers distinguish between peak and off-peak usage across 
major national markets from 1999 to 2005 (i.e., “legacy share”). We calculate 
annual legacy shares for each plan threshold with data on new subscribers (Econ 
One Research), inferred market shares for each category of pricing plans (FCC), 
and data on plan turnover (S&P Industry Reports). Specifically, we first calculate 
the unweighted proportion of provider plans associated with each threshold for each 
year and then weight these proportions by the yearly market share of each provider 
(see online Appendix Table A2). While we expect plans within a provider to vary in 
popularity, our estimation assumes that a proliferation of offerings is correlated with 
actual plan popularity. We assume new subscribers—including new adopters and 
those switching from existing plans—allocate themselves across providers and into 
plans in a distribution dictated by each year’s market share. For simplicity, we treat 
all subscribers in 1995 as new and conservatively assume that, from 1995 to 1999, 
market shares and provider plans are constant. The basic pattern of Figure 5 is not 
highly sensitive to such assumptions. The figure is a product of data on over 30,000 
cell phone plans from 1999 to 2005 across 26 major markets and 30 providers.

The figure suggests that from 2002 to 2005, 9 pm pricing plans were the most 
popular category of cellular plans with an approximate 55 percent share of all sub-
scribers. The prevalence of 9 pm plans during this period is even more striking if one 
were to plot the number, as opposed to share, of subscribers—or drivers who regu-
larly use their cell phone while driving—with 9 pm phone plans. Indeed, cellular 
ownership and usage by drivers exploded over this period, as ownership expanded 
by a factor of 2.5 and average call likelihood by drivers grew by an even larger fac-
tor. While plan data does not exist prior to 1999, numerous analyst and industry 
reports, as well as news articles, offer no evidence for a national 9 pm calling plan of 
any popularity in the years prior to 1999.32 Accordingly, we treat the years prior to 
1999 as a control for the analysis.

31 Actual plans often specify some large, but finite, limit for off-peak usage. These limits, sometimes marketed 
as “unlimited,” are typically 5,000 to 10,000 minutes.

32 The first national one-rate pricing plan was introduced by AT&T in mid 1998 according to an S&P Industry 
Survey. Other major providers quickly followed suit. It was after this innovation that national two-tiered plans 
proliferated and only gradually did plans converge to a 9 pm switching threshold. Moreover, due to low ownership 
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Call Likelihood.—�Does the existence of a sharp change in marginal pricing lead 
to a corresponding change in the propensity to call? A Pew Research Center sur-
vey of 1,503 people in 2006, reports that 44 percent of cell phone users delay their 
calls to avoid peak usage.33 In another survey of 30,000 cell phone users, those 
who exceeded their allotment were subject to “overage” fees which, on average, 
amounted to 50 to 60 percent of their usual bill.34 These surveys suggest that the 
price threshold during weekday evenings was salient for many users.

We explicitly test for the correspondence between the change in call price and 
usage at the plan threshold with the dataset of 106,000 to 477,000 cellular calls 
made by callers in moving vehicles in California during an 11-day period in 2005. 
Figure 2 depicts call volume for callers for each minute from 8 to 10 pm for Mondays 
to Thursdays, Fridays, and the weekend across the sample. A vertical line marks 
the 9 pm threshold at which time the marginal price of calls on weekdays—but not 
weekends—drops sharply. Critically, the figure reveals a discontinuity in the likeli-
hood of making a call on Mondays to Thursdays at 9 pm as compared to weekends 
and Fridays.35 Why might callers treat Friday as distinct from other weekdays? One 
speculates that this pattern in calls may be due to the lessened salience of the price 

and low usage (due, for example, to unwieldy handsets, poor coverage, and high prices), the absolute number of 
subscribers, as well as absolute minutes of cellular use, associated with any plan prior to 1999 is modest. We discuss 
the implications of low ownership and low monthly usage below.

33 Survey conducted by the Pew Research Center and published online in the Pew Internet and American Life 
Project in April 2006.

34 This is according to an analysis of 30,000 cell phone users conducted by Telephia as part of their Customer 
Value Metrics Service in 2006.

35 A regression analysis confirms that we can reject the that the rise in call likelihood on Fridays is equal to the 
analogous rise on other weekdays.
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change on Fridays—when a weekend of off-peak pricing awaits—as compared to 
other weekdays. This behavior is also evident in two additional datasets of cellular 
calls documented in the online Appendix.

Importantly, the fraction of users that subscribe to 9 pm plans for the provider for 
which we have direct data in 2005 is both lower than the same fraction for other pro-
viders in 2005 and is lower than the overall fraction across all providers in 2002 to 
2005 according to our analysis of legacy. Our provider began offering a highly pub-
licized alternative pricing plan in 2004 which featured an earlier switching hour.36 
Therefore, our observed first stage is, in this sense, a lower bound of the rise in call 
likelihood for the broader range of providers and years.

To formally estimate the size of the break in call likelihood in the hour following 
the Mondays to Thursdays pricing threshold, we estimate the following OLS model:

	 ln(Calls/Traffic​ )​t​ = α + γAfter  9 pmt + ​ε​t ​,

where Call​s​t​ denotes scaled calls for each minute t, and Traffi​c​t​ represents the 
traffic count for the region of consideration at each minute. We acquire traffic data 
from several thousand traffic counters located on roadways in the California region 
corresponding to the call data.37 After 9 pmt is a dummy variable indicating whether 
the call occurred on or after 9 pm and is the explanatory variable of interest. The 
model is estimated from 8 to 10 pm separately for Mondays to Thursdays, Fridays 
and weekends.38 Note that, due to the log specification, the scaling of the cellular 
call data now becomes immaterial to the estimated coefficient of interest.

The top panel of Table 2 reports the results of this analysis. The table confirms 
the pattern evident in the figures—call likelihood increases by 7.2 percent from 9 to 
10 pm on Mondays to Thursdays. There is a sharp local rise in call likelihood at 9 pm 
and this rise appears to persist until at least 10 pm. While changes to call likelihood 
away from the threshold could potentially be due to changes in factors unrelated to 
price (e.g., driver composition or propensity to call), unrelated to price, the size and 
stability of the increase is consistent with price playing a sustained role in height-
ened likelihood. Fridays feature a smaller, but still statistically significant, rise in 
call likelihood.

Our analysis relies on comparisons between the treatment period to an earlier 
control period from 1995 to 1998. While we cannot directly observe the change in 
call likelihood during the control period, we are persuaded that driver call likelihood 
did not sharply rise at 9 pm for two reasons. First, as previously noted, the control 
period is characterized by the absence of 9 pm calling plans. Second, while some-
what imprecisely estimated, there is no evidence for a rise in call likelihood across 
hours not associated with a price change. The lower panel of Table 2 examines the 

36 While we do not disclose the details of this calculation for confidentiality, the ratio of the rise in call volume 
at 9 pm and at this alternative hour, in our first stage data, is in approximate proportion to our estimate of the ratio 
of the legacy share of callers associated with both of these thresholds.

37 We download traffic data at the 30 second level from a California traffic database, called PeMS, for the rel-
evant region and time. The PeMS database is described in the online Appendix.

38 The analysis of Fridays relies on traffic data at the five-minute level since the more disaggregate data was not 
available for these days. Aggregating calls and estimating this regression at five-minute intervals produces a virtu-
ally identical point estimate for the coefficient of interest.
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local change in call likelihood for a series of placebo hours not associated with 
a pricing change including weekends at 9 pm as well as proximal and “compos-
ite” hours on other days. Moreover, given the low baseline call likelihood prior to 
1999—due to low cell phone ownership, low monthly average usage, and the scar-
city of hands-free technology during this period—any incidental rise in on-the-hour 
calling does not threaten the research design.39

39 To illustrate, suppose that in 1998 the rise at 9 pm in call likelihood among drivers is 2 percent. Allowing 
for an average baseline call likelihood during this period of 2 percent (given the 2000 NOPUS estimate of 4 per-
cent, and considering changes in ownership, monthly usage and availability of hands-free technology during the 
prior two years, we believe that 2 percent is a conservative estimate) yields a net change in call volume at 9 pm of 
0.04 percent (i.e., 0.02 × 0.02). Given that by 2005, average usage grew to 10 percent, producing an equivalent net 
change in the absolute number of cellular users in the treatment and control period would require only a 0.4 percent 

Table 2—Change in Call Likelihood at 9 pm Threshold

Dependent variable— 
ln(scaled calls/traffic) per minute

Monday to Thursday Friday

8:00–9:59 8:30–9:29 8:45–9:14 8:55–9:04 8:55–9:04
60 minutes 30 minutes 15 minutes 5 minutes 5 minutes

(1) (2) (3) (4) (5)
After 9 pm 0.072*** 0.067*** 0.082*** 0.070*** 0.041***

(0.004) (0.005) (0.006) (0.009) (0.008)

Observations N = 600 N = 300 N = 150 N = 50 N = 20

Monday to Thursday All days Weekend
8 pm 1 pm 5 to 10 pm 9 pm

(no 9 pm)
7:55–8:04 9:55–10:04 x:55–x:04 8:55–9:04
5 minutes 5 minutes 5 minutes 5 minutes

After 9 pm 0.025
(0.021)

After 8 pm 0.027*
(0.015)

After 10 pm 0.006
(0.018)

After hour −0.016
(0.027)

Observations N = 50 N = 50 N = 400 N = 20

Notes: The table estimates the change in call likelihood for moving callers across the pricing threshold and pres-
ents a series of placebo and robustness checks. The dependent variable is ln (scaled calls/traffic). Dummy variables 
denote a crash occuring on or after the hour indicated. The upper panel presents regression results for the change 
in call likelihood of moving callers from Mondays to Thursdays using varying windows across the 9  pm threshold, 
as well as the local change at 9  pm for Friday callers. The lower panel estimates the local change in moving call 
likelihood for proximal hours (i.e., 8 and 10 pm) during Mondays to Thursdays, evening hours from 5 to 10 pm, 
excluding 9 pm, across all days, and 9 pm on weekends. All specifications are estimated with OLS at the minute 
level, although Friday estimates rely on traffic data at the 5-minute level. Robust standard errors clustered by date 
are reported parenthetically.

*** Significant at the 1 percent level.
    * Significant at the 10 percent level.
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A skeptic might contend that some fraction of the callers in our dataset are pas-
sengers as opposed to drivers. While this is likely true, it is important to note that 
we rely on this data only as a measure of relative likelihood among moving callers 
across the day and specifically at 9 pm. We infer average call likelihood from the 
extensive literature that surveys such use (e.g., NOPUS). The composition of the 
data are a concern if passenger callers are differentially more sensitive at 9 pm to 
price changes than driver callers.

We can calculate the robustness of the driver first stage to the possibility that pas-
sengers are more responsive to prices than their driving counterparts. While we lack 
direct data on the price sensitivity or baseline call likelihood of passengers, we do 
have extensive evidence on drivers in single as compared to multiple occupant vehi-
cles. NOPUS reports that drivers in vehicles without passengers are 4 times more 
likely to be cellular users (NHTSA 2006). If phone use is heightened for single, as 
compared to accompanied, occupants, then we can initially assume that the baseline 
call likelihood of passengers is equivalent to that of drivers in multiple occupant 
vehicles. One may reasonably have competing intuitions as to whether passengers 
are more or less price sensitive at 9 pm than such drivers. However, using data on 
average vehicular occupancy, a calibration indicates that the magnitude of the first 
stage for drivers effectively drops from 7.2 percent to 6.8 percent if passengers are 
twice as price sensitive as drivers. If passenger baseline likelihood is also twice as 
high as assumed, then the effective first stage drops to 6.4 percent. Finally, if base-
line likelihood and price sensitivity are both three times as high as driver reference 
points, the magnitude of the first stage drops to 5.4 percent.40 If calls by passengers 
also distract drivers, even differential price sensitivity between drivers and passen-
gers would not be cause for concern with respect to the research design.

Generalizability of First Stage.—�We next assess whether the exhibited price sen-
sitivity generalizes across years, providers, and geography. A comparison of cellular 
ownership, using FCC data, reveals that 2005 ownership in the region associated 
with our primary first stage (78 percent) was roughly comparable to statewide own-
ership (68 percent) and national ownership (71 percent).

rise in calling at 9 pm in the treatment period. We arrive at this calculation by scaling the hypothetical preperiod 
9 pm rise in likelihood of 2 percent by the ratio of the 2005 and 1998 average call likelihood (10 percent/2 percent).

40 We calculate the effective driver first stage in the case of differential price sensitivity with (i) the share of 
single and multiple occupant vehicles on the road (2005 crash data for California indicates that 23 percent of the 
970,000 vehicles in the sample are multiple occupant); (ii) the baseline call likelihood of drivers in both vehicle 
types from NOPUS (13.3 percent and 3.3 percent, respectively, after handheld figures are scaled to account for 
handheld and hands-free use); (iii) an initial assumption that passengers share the calling norms of their accom-
panying drivers; (iv) and finally the assumption that multiple passengers are not on the phone simultaneously. The 
calibrations imply that even if baseline likelihood and price sensitivity are 2x higher for passengers than their driver 
counterparts, the effective first stage is 6.4 percent. If likelihood and price sensitivity are 3x higher for passengers, 
then the effective first stage is 5.4 percent. To illustrate the calculation for a 2x increase in both parameters, note 
that the passenger share of mobile individuals on the road is 19 percent (i.e., 0.23/(0.77 + 0.23 + 0.23)). Given the 
baseline likelihood across occupants, and an assumption of 2x higher passenger likelihood, the passenger share of 
total cellular usage is 13 percent (i.e., 2 × (0.19 × 0.033)/(2 × 0.19 × 0.033 + 0.19 × 0.033 + –0.63 × 0.134)). 
Next, if x is the rise in driver call likelihood at 9 pm, and we further assume that passengers are 2x as price sensitive 
as drivers, then, 0.87x + 0.13 × 2x = 7.2 percent which implies an effective driver first stage of x = 6.4 percent. 
It is worth noting that if one believes that cellular use by passengers is distracting, the figure should be treated as a 
lower bound of this exercise.
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The MIT and TNS datasets provide additional evidence through which one can 
generalize the price sensitivity of cellular use across time, geography, and provider 
(see online Appendix for full detail). Online Appendix Figure A2 plots 80,000 out-
going calls from the MIT data and depicts a sharp increase of 23 percent in calls 
made at 9 pm on Mondays to Thursdays but not Fridays, weekends or surrounding 
hours. Online Appendix Table A3 reports that, in the TNS data, the relative rise in 
call volume in the hour subsequent to a plan’s pricing threshold is also 23 percent on 
Mondays to Thursdays, and is smaller and statistically insignificant on other days.41

Collectively, these data document the price sensitivity of cell phone users across a 
variety of caller types, geographies, providers, time periods, and even pricing plans. 
While drivers may be less sensitive to a change in prices than the more general 
population of cellular users, we have no reason to believe that such sensitivity is an 
artifact of the region and time which characterizes the primary first stage data. We 
next turn to the question of whether crash rates respond to the increased cellular 
usage induced by a change in prices.

D. Change in Crash Rate at 9 pm Threshold

Reporting Bias.—�An analysis of crash rates demands first addressing the report-
ing bias in crash reports. One strategy through which to deal with heaping in crashes 
is to smooth the count data by choosing a unit of analysis which aggregates crashes 
into larger minute bins (e.g., intervals of 30 or 60 minutes). While aggregation 
accounts for misreporting within a bin, it does not remedy misreporting that may 
occur across bins. Aggregation additionally introduces its own imprecision in the 
estimates due to changing patterns in driving behavior away from the threshold. As 
a result, we rely on a double difference approach in addition to smoothing in order 
to adjust for heaping across bins and to increase the precision and accuracy of the 
estimates.42 Additionally, in a series of robustness checks we alter the strategy used 
to bin crashes and show that our results are insensitive to the econometric treatment 
of reporting bias at each hour, half-hour, or even five-minute intervals.

Crash Analysis.—�We turn first to the distribution of crashes around the pricing 
threshold in California for 2005. Figure 3 displays the pattern of average crashes 
across ten-minute intervals from Mondays to Thursdays in California from 8 to 
10 pm in 2005 as compared to the analogous pattern for the preperiod from 1995 
to 1998. The cyclicality of the plot is due to the aforementioned reporting bias. 
The vertical line marks the 9 pm pricing plan threshold. Figure A3 in the online 
Appendix compares Monday to Thursday crashes in California from 8 to 10 pm in 
2005 to a second control of weekend crashes. Neither plot provides evidence for a 
relative rise in crashes at the pricing threshold.

41 To test for the concern that the rise in calls at the switching threshold may be counterbalanced by a fall in call 
duration, we test for and find no evidence for a statistically significant fall in call duration at the threshold.

42 In an analytic model, available from the authors, we show that the double difference largely remedies com-
plications due to reporting bias so long as the bias, and the curvature of the crash trajectory, is comparable in the 
preperiod and postperiod.
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We formally estimate the relative change in crashes around 9 pm on Monday to 
Thursdays with the following Poisson model:43

	 E[Cras​h​symdtb​ | . ] = exp(α + β(Pos​t​y​ × After 9 pmb​ )​yb​ + ​γ​1​ After 9 pmb

	  + ​γ​2​Pos​t​y​ + ​ϕ ​ s​ + ​η​y​ + ​δ​m​ + ​ξ​d​ ),

where Cras​h​symdtb​ denotes crashes in state s, year y, month m, day of week d, date 
t, and minute bin b. Pos​t​y​ indicates whether the crash occurred in the treatment 
period where there is a shift in pricing at 9 pm, and After 9 pmb is a dummy variable 
indicating whether the crash occurred on or after 9 pm. The interaction term 
(Post × After 9 pm​ )​yb​ is the explanatory variable of interest. The model controls for 
state, year, month, and day of the week specific variation.

Intuitively, the experiment simulated by this regression is a comparison of the 
difference in precrash and postcrash around the threshold for symmetric estimation 
windows around 9 pm from Mondays to Thursdays. We initially estimate a baseline 
regression of daily crash counts for 60-minute windows before and on/after the 
threshold in California from 8 to 9:59 pm each day in 2005 as well as the control 
period from 1995 to 1998. In addition, we estimate the model for 30-minute win-
dows from 8:30 to 9:29 pm. The narrower estimation window around 9 pm is less 
likely to be confounded by unobservable changes in pre and post trends before or 
after the threshold, but is more sensitive to the problems raised by the reporting bias. 
As expected, standard errors increase for the tighter estimation windows. The choice 
of the control period is dictated by the low prevalence of 9 pm plans and low average 
call likelihood prior to 1999, as well as the trade-off between the added precision, 
and the possibility of introducing bias, associated with a lengthier period. Our esti-
mation results are robust to control periods of alternative lengths.44

The upper panel of Table 3 provides regression results for crashes in California. 
The first two columns report near-zero and insignificant point estimates for the inter-
action term of interest for both the baseline and the more narrow 30-minute window.

Our estimation approach relies on the constancy of important covariates across 
the threshold in the postperiod relative to the preperiod. We can explicitly test this 
assumption for traffic and reporting bias in California. First, we estimate the double-
difference of log traffic counts in a manner consistent with the above analysis using 
data from the PeMS traffic database.45 We find no evidence for a significant change 
in traffic across the 9 pm threshold relative to the control period.46 Second, to verify 
the constancy of reporting bias, at least for the 30-minute estimation, we test for a 

43 The estimation choice is dictated by the highly nonnormal shape of the crash count distribution. Many of the 
cells contain zero fatal crashes. Our results are also robust to estimations based on alternative specifications (e.g., 
the linear probability model, and negative binomial regression).

44 Results of these estimations are available from the authors upon request. Note that 1990 is the earliest pos-
sible bound for a control period due to data availability.

45 We note that PeMS covers freeway traffic only. The call data is from an area featuring a mix of freeway and 
surface roads. However, our spot analysis of surface road traffic, using counts from city DOT websites, indicates 
that traffic patterns around 9 pm are very similar across the two road types.

46 We estimate the double-difference regressions of log hourly traffic counts at the traffic station x date level 
in California for 8 to 10 pm, Monday to Thursday, in the preperiod and postperiod. The coefficient of interest is 
b = 0.0040, se = 0.0045 for 2005 and b = −0.0012, se = 0.0042 for 2002 to 2005. The regressions include fixed 
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change in the fraction of total crashes reported within the first 30 minutes of each 
hour in the post as compared to the preperiod. Again, we cannot reject the that this 
fraction is identical across periods.

Next, to heighten the precision in the regressions, we estimate the model for an 
extended period from 2002 to 2005 which corresponds to the duration of the first 
stage evidence. The remaining two columns of the upper panel show no evidence for 
a positive double difference in the crash rate for either the 30- or 60-minute window. 
Finally, we estimate the model for the full set of states for which we have crash data: 
California, Florida, Illinois, Kansas, Maryland, Mississippi, Missouri, Ohio, and 
Pennsylvania.47 The expanded state-year sample comprises approximately 8 million 
crashes. Online Appendix Figure A4 depicts the distribution of crashes in the pre 
and postperiod for the expanded sample of states.

effects to control for station, year, month, and day of the week specific variation. Errors are robust and clustered at 
the date level.

47 Some state-years are missing from the SDS data or do not report the time of accident which is required for 
our analysis. Specifically, Illinois is available only from 1996 to 2003, and Pennsylvania is missing data for 2002.

Table 3—Relative Prepost (Monday to Thursday) Change in Crash Rate at 9 pm Threshold 

Dependent variable—crashes per minute bin
California

2005 2002 to 2005

8:00–9:59 8:30–9:29 8:00–9:59 8:30–9:29
60-minute bin 30-minute bin 60-minute bin 30-minute bin

(1) (2) (3) (4)
Post × After 9 pm −0.001 0.004 −0.010 −0.012

(0.019) (0.024) (0.012) (0.016)

Observations N = 2,088 N = 2,088 N = 3,342 N = 3,342

Expanded states

2005 2002 to 2005

8:00–9:59 8:30–9:29 8:00–9:59 8:30–9:29
60-minute bin 30-minute bin 60-minute bin 30-minute bin

Post × After 9 pm −0.014 −0.003 −0.006 −0.002
(0.013) (0.015) (0.008) (0.010)

Observations N = 17,960 N = 13,784 N = 28,410 N = 21,726

Notes: The table presents the estimate of the change in crashes at 9 pm on Mondays to Thursdays in the post (i.e., 
2005, and 2002 to 2005) relative to the preperiod (1995 to 1998) as specified in the text. The Post × After 9 pm 
dummy denotes crashes occurring on or after 9 pm in the postperiod. The upper panel presents the results for 
California. The first two columns estimate the model using 60- and 30-minute bins respectively for 2005, while the 
next two columns present analagous results for 2002 to 2005. The bottom panel provides comparable results for 
the expanded set of states for which data is available: California, Florida, Illinois, Kansas, Maryland, Mississippi, 
Missouri, Ohio, and Pennsylvania. Pennsylvannia is missing data for 2002 and Illinois data is missing 1995, 2004, 
and 2005. Michigan and Ohio are excluded from the 30-minute specifications due to the absence of minute-level 
crash data. All specifications are Poisson regressions run at the state × date level. Fixed effects control for state, 
month, year, and day of week specific variation in crash rates where appropriate. Robust standard errors clustered 
by date are reported parenthetically.
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The lower panel of Table 3 presents regressions for the expanded set of states. 
Illinois is excluded from the 2005 analysis since no data are available for that year. 
The last column, with estimates for 30-minute windows, excludes Michigan and 
Ohio since these states provide the hour, but not minute, of each crash prior to 
2000.48 Extending the sample to multiple years reduces estimated standard errors but 
does not substantively change the point estimates. Our two favored specifications, 
for the expanded set of states and 60-minute bins, generate an upper bound of the 
relative change in the crash rate of 0.97 percent for 2002 to 2005 and 1.18 percent 
for 2005.49 Overall, the results provide no evidence for a positive relative change in 
the crash rate.50

We repeat our benchmark analysis for the subset of fatal crashes with FARS 
data. A benefit of expanding focus to fatal crashes is that, unlike the SDS data, it 
extends to all 50 states. A (statistical) drawback is that fatal crashes are 150 times 
less frequent than their nonfatal counterparts with just under 40,000 incidents per 
year. Moreover, the recording of fatal crashes suffers from the same reporting bias 
with large spikes on the hour and the half hour. Consequently our estimates are 
substantially noisier. The double difference estimate for change in fatal crashes at 9 
pm on Mondays to Thursdays in 2002 to 2005 compared to 1995 to 1998 is actually 
negative and marginally significant (b = −0.058, s.e.: 0.033). The corresponding 
placebo estimate for weekends is slightly positive and insignificant (b = 0.028, s.e.: 
0.042).51

Placebo and Robustness Checks.—�Table 4 reports the results of a series of pla-
cebo and robustness checks for the expanded year and state model. The first four 
columns of the upper panel present results of the baseline crash analysis for the 
8 and 10 pm hours for 30- and 60-minute windows. The final two columns of the 
panel report estimates of the model for weekends using 30- and 60-minute windows 
around 9 pm. The analysis confirms the absence of a strong negative change in the 
crash rate around the threshold for weekday proximal hours, or weekends at 9 pm, 
that could mask a potential effect of cellular use at 9 pm. Additionally, we estimate, 
but do not report in the table, triple difference estimates, using the change across 

48 We additionally estimate the model for a constant set of states across the 60-minute and 30-minute bins. 
Excluding Michigan, Ohio, and Illinois, the 60-minute coefficient for the Post × After 9 pm interaction for 2005 is 
b = −0.008, se = 0.013, and for 2002 to 2005 is b = −0.003, se = 0.009. The analogous estimate for the 30-min-
ute coefficient for 2005 is b = −0.003, se = 0.016 and for 2002 to 2005 is b = 0.000, se = 0.010.

49 Note that for coefficients near zero, the interpretation of a Poisson regression is similar to that of a percent 
change. Upper bounds of point estimates using a 95 percent confidence interval were produced by our statistical 
program but can also be calculated manually using the delta method.

50 One important assumption in the difference-in-difference analysis is that the trend in crashes is parallel in the 
preperiod and postperiod. As evidence for this identifying assumption, we test whether the crash rate in the post and 
preperiod have similar linear trends for varying windows around 9 pm. Poisson regressions test this assumption by 
modeling crashes across 1-, 15-, 30-, and 60-minute bins as a function of preperiod and postperiod specific linear 
time-trends and controls for day of week, month and year specific variation. We fail to reject the null hypothesis of 
identical trends for any reasonable level of significance and for varying time windows around 9 pm. Results of these 
estimations are available from the authors (also see Figures 3 and A4).

51 Just as in our benchmark analysis, a Poisson model estimates regressions at the state-date-bin level. We exam-
ine 60-minute bins before and after 9 pm in 2002 to 2005 using 1995 to 1998 as a control period. We include fixed 
effects to control for variation across state, year, month, and day of the week. Due to the large number of zero crash 
counts, we also estimate a negative binomial model and the results remain largely unchanged.
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proximal hours and 9 pm on weekends, as additional checks which are consistent 
with these results.52

The first column of the lower panel of Table 4 estimates the baseline specifica-
tions for a smaller window of 15 minutes. Despite being subject to considerable 
on-hour reporting biases, the estimate for the smaller window is comparable to esti-
mates for the lengthier windows but is less precise. The remaining columns of the 
lower panel present estimates for the standard windows after modifying the strategy 
used to allocate crashes to bins before and after the threshold. The new allocations 
address the possibility that the double difference approach does not adequately cor-
rect for the reporting bias. Accordingly, in Column 2, we shift the minute bin so 
that crashes reported from 8:01 to 9:00 are treated as having occurred prior to the 

52 We amend the expanded year and state model to calculate these triple difference estimates. The resulting coef-
ficient of the net change across the 30-minute window around 9 pm is b = −0.0082, se = 0.0138, when using the 
10 pm hour as a double difference control, and is b = 0.0004, se = 0.0135, when using 8 pm as a double difference 
control. We cannot produce the analogous triple difference using a 60-minute window for proximal hours without 
overlapping estimation periods. The triple difference estimate when using weekends as a double difference control, 
across 60-minute windows, is b = −0.0177, se = 0.0147.

Table 4—Relative Prepost (Monday to Thursday) Change at 9 pm— Placebo and Robustness Checks

Dependent variable—crashes per minute bin

Placebo checks
expanded states, 2002 to 2005

8 pm 10 pm Weekend

7:00–8:59 7:30–8:59 9:00–10:59 9:30–10:29 8:00–9:59 8:30–9:29
60-minute bin 30-minute bin 60-minute bin 30-minute bin 60-minute bin 30-minute bin

(1) (2) (3) (4) (5) (6)
Post × After “X” pm 0.006 0.002 −0.006 0.007 0.011 0.010

(0.007) (0.009) (0.007) (0.010) (0.012) (0.013)

Observations N = 28410 N = 21,726 N = 28,410 N = 21,726 N = 14,176 N = 10,840

Robustness checks
Expanded states, 2002 to 2005

8:45–9:14 8:01–10:00 8:01–9:59 8:01–10:00 8:01–9:59 8:31–9:29
15-minute bin 60-minute bin 59-minute bin 58-minute bin 48-minute bin 24-minute bin

Start bin :01 No :00 No :00, :30 No :05s No :05s

Post × After 9 pm 0.001 −0.013 −0.011 −0.004 −0.006 −0.017
(0.013) (0.008) (0.009) (0.009) (0.011) (0.015)

Observations N = 21,726 N = 21,726 N = 21,726 N = 21,726 N = 21,726 N = 21,726

Notes: The table presents results from placebo and robustness checks of the crash estimates for the baseline specifi-
cation of expanded states from 2002 to 2005, as specified in the text. The upper panel presents results from a series 
of placebo estimates for Mondays to Thursdays at 8 pm and 10 pm, as well as for 9 pm on weekends. All specifica-
tions are presented for both 60- and 30-minute windows across the threshold. The lower panel presents results from 
a series of robustness checks. The first column provides the double difference in relative crash change for a smaller 
15-minute window around the 9 pm threshold on Mondays to Thursdays. The remaining columns present the base-
line estimate, but after modifying the way in which the reporting bias is handled. In the second column, the 9 pm 
spike is included in the bin preceding rather than following 9 pm for a 60-minute estimate, while the final four col-
umns drop crashes at intervals as specified (these estimations exclude on-hour crashes) for small and large windows 
around the threshold. The expanded sample is identical to that described in Table 3. Robust standard errors clustered 
by date are reported parenthetically.
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threshold while crashes reported from 9:01 to 10:00 are treated as having occurred 
after the threshold. The next three columns of the panel estimates the baseline speci-
fication but after eliminating crashes reported at regular intervals that may be sub-
ject to reporting bias. First, we exclude crashes at exactly at 8:00 and 9:00 in both 
the pre and postperiods; we then additionally exclude crashes occurring at 8:30 and 
9:30; and, finally, we exclude crashes occurring at every five-minute increment. 
Omitting these data points does little to change the underlying pattern in point esti-
mates but does produce greater imprecision. The final column of the second panel 
eliminates each five-minute increment but for the shorter window. As a final test of 
robustness, we conduct, but do not report, separate regressions for each day of the 
week from Monday to Thursday and find no evidence for positive and significant 
crash increases.

In summary, the 9 pm pricing analysis provides no evidence for a relative increase 
in crashes at the threshold. The point estimates for the change in relative crash rates 
across the threshold are consistently near zero. The upper bound of the estimated 
relative change is 0.97 percent in the fully expanded specification and 1.18 percent 
for the expanded set of states in 2005.

E. Panel Analyses of Ownership, Legislation, and Crashes

We briefly describe two alternative empirical approaches which supplement and 
confirm our basic results. Full details of these approaches are provided in the online 
Appendix.

In the first alternative approach, we compare aggregate trends in crashes and cel-
lular ownership at the level of the state and EA. EAs are used by the FCC to denote 
regions of contiguous economic activity (172 nationwide) and represent the most 
disaggregated geographic units for which data on cellular ownership data are avail-
able. Our data includes the universe of crashes for approximately 60 EAs across nine 
states from 1990 to 2005, and for the universe of fatal crashes for all states from 1989 
to 2007. Using a panel regression with flexible controls for region and time trends, 
and a control period during which we know that ownership is trivial, we find no sta-
tistically significant link between change in ownership and crashes (b = −0.0004, 
s.e.: 0.0014 for all crashes; and b = 0.002, s.e.: 0.001 for fatal crashes).

In a second related approach, we estimate the influence of recent legislative 
bans restricting handheld cellular use by drivers in New York, New Jersey, and 
Connecticut, as well as the large municipalities of Chicago and Washington, DC. 
Noting that the effect of legislation on crashes is determined by both compliance 
as well as relative difference in crash risk associated with handheld and hands-free 
use, we use a panel analysis to trace the relative monthly time-path of fatal crashes 
in regions following the imposition of the bans.

Figure 6 depicts the raw monthly counts of fatal crashes for the months preceding 
and following the enactment of each complete ban for the regions of interest. With 
the possible exception of New York, the figure indicates no sharp drop in crashes 
for any of the regions during the five months following ban enactments (t + 5). 
We attribute the drop in crashes in New York, at least in part, to drops in traffic as a 
result of the attacks on September 11, 2001. In fact, the New York legislation, while 
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nominally enacted in November 2001, was not enforced with binding fines until 
March 2002 which corresponds to (t + 4) in the figure. Longer horizons reveal no 
systematic patterns across the regions. A more formal regression analysis, detailed 
in the online Appendix, also indicates that the legislation did not lead to a significant 
reduction in the fatal crash rate over short or longer run horizons.

III.  Discussion

Sensitivity of Results to Assumptions.—�The present analysis suggests the coun-
terintuitive finding that cell phone use by drivers is not associated with higher crash 
rates. Whether the upper bounds from the analysis are able to reject relative risk rates 
from existing research, including the 4.3 odds-ratio of RT, requires that we translate 
estimates of the change in crash rate at 9 pm to estimates of crash risk associated 
with cellular use. This translation depends on two key parameters linked with driver 
calling behavior—average call likelihood and the increase in call likelihood at 9 pm.

A first key parameter relates to the average call likelihood at 9 pm during the treat-
ment period. Evidence exists that usage during the evening is no lower than average 
use across the day. Beyond the two aforementioned studies that have concluded that 
cellular use in the evening is no different than it is during the day (Vivoda et al. 2008; 
Johnson et al. 2004), the most direct evidence of relative cellular usage across times 
of the day is from our own first stage data of 106,000 to 477,000 phone calls from 
2005. A minute level regression of the natural log of indexed call volume divided by 
traffic, for the hours from 8 am to 6 pm and 8 to 9 pm on Mondays to Thursdays, on 
an indicator signalling inclusion in the 8 to 9 pm hour, suggests that cellular usage, 
as a fraction of traffic, from 8 to 9 pm is significantly higher than the average use 
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during the NOPUS day (b = 0.317, s.e.: 0.004). A similar estimation indicates that 
usage at precisely 9 pm is also significantly higher than over the NOPUS period 
(b = 0.353, s.e.: 0.020). Together, the evidence suggests that the NOPUS estimates 
of daytime use (i.e., 7.8 percent from 2002 to 2005, and 10 percent in 2005) are 
legitimate, and even conservative, proxies for use during the late evening.

A second key parameter regards the rise in cellular call likelihood at 9 pm.53 The 
first stage data conservatively indicates a 7.2 percent increase in call likelihood from 
Mondays to Thursdays at the pricing threshold for likely drivers. Our calculations of 
legacy shares indicate that these data are from a provider and a period which almost 
certainly underrepresents the fraction of users at 9 pm as compared to other provid-
ers in 2005 or across 2002 to 2005.

To explore the sensitivity of our findings to variation in the above parameters, 
Table 5 compares the upper bounds of relative crash risk implied by our preferred 
estimates (i.e., expanded states from 2002 to 2005, and expanded states for 2005) 
across a range of values for average driver call likelihood and the change in call 
likelihood at 9 pm. For example, if average call likelihood is 7.8 percent, and 9 pm 
call likelihood rises by 7.2 percent, the 0.97 percent upper bound for the estimated 
change in the crash rate (expanded states from 2002 to 2005) implies a 95 percent 
upper bound in crash risk of 3.0 (and a 1 s.e. upper bound of 1.4).54 Fixing the change 
in 9 pm likelihood at 7.2 percent, an average call likelihood as low as 6 percent would 
reject RT (crash risk of 4.3) with an implied crash risk of 3.6 (expanded states from 
2002 to 2005). Moreover, to the extent that dialing intensity jumps discontinuously 
at 9 pm, assuming dialing is more dangerous than simply talking, then the pertinent 
baseline crash risk from the existing literature may be higher than 4.3.

Plausible Explanations for the Effect.—If cell phones are a source of distraction, 
given limits to attentional capacity, how is it that such phones have no, or perhaps 
very little, influence on crashes? There are a number of plausible explanations for 
why cell phone use may not raise crash frequency.

One explanation is that drivers who use cell phones compensate for the added 
distraction by modifying their driving behavior. Similar to the “Peltzman Effect,” 
popularized by Peltzman (1975) in the context of safety belts, drivers may slow 
down, pull over, shift to uncongested lanes, or simply heighten attention in response 
to making or receiving a cell phone call. In the online Appendix, we present a 

53 It is worthwhile to note that the estimated behavioral response at 9 pm is based on changes in cellular use 
rather than changes in cell phone ownership. This complicates the translation of the regression estimates to a rela-
tive crash risk. This concern can be allayed with a simple assumption equating the effects of increased usage with 
increased ownership.

54 The change in the indexed crash rate at 9 pm is the sum of the change due to cellular users and non-
users: Δ%CrashRat​e​t​ UB​ × CrashRat​e​t​ = ΔCrashRat​e​t​ Cell​ + ΔCrashRat​e​t​ Non−Cell​ = [x × ΔCellUs​e​t​ ]  
+ [1 × ΔNonCellUs​e​t​ ]. ΔCrashRat​e​ t​ Cell​ is the product of the relative crash risk associated with cellular use, x, and 
the change in normalized cellular use, ΔCellUs​e​t​, which is itself a product of the change in 9 pm call likelihood 
and average call likelihood during the period of interest. ΔCrashRat​e​ t​ Non−Cell​ is simply the product of the crash risk 
of drivers not on cellular phones, normalized to 1, and the change in the share of drivers that are nonusers at 9 pm 
(i.e., ΔNonCellUs​e​t​ ). Similarly, the baseline crash rate, CrashRat​e​t​, is a sum of the crash rates of cellular and 
noncellular users prior to 9 pm. The populated equation for the 2002 to 2005 estimate is 0.0097[1 × (1 − 0.078)  
+ x (0.078)] = [ x (0.072 × 0.078) + 1(−0.072 × 0.078)]. Solving for x yields 3.0.
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simple model that illustrates how compensation is a rational response for drivers 
who both benefit from, and are distracted by, cellular use. The laboratory evidence 
for such compensation is mixed. In driver simulations in the lab, several studies have 
found that drivers reduce their speeds slightly when subject to either handheld or  
hands-free use (see Caird et al. 2008 for a meta-analysis of 33 studies).55 However, 
some studies find a higher variance in such speeds (e.g., Rakauskas, Gugerty, and 
Ward 2004), while others find that cellular users actually increase speed (Rosenbloom 
2006).56 The few studies which examine cell phone distraction in repeated trials find 
evidence for learning (e.g., Shinar, Tractinsky, and Compton 2005).

There is field evidence consistent with compensation. In a study looking at cellular 
driving in both field and experimental settings, Mazzae et al. (2004) find significant 
degradation in various driver outcomes in simulated, but not real-life (as observed 
in a naturalistic study using camera equipped vehicles), driving. While measured 
imprecisely, the study also finds, consistent with compensation, that cellular usage 
is lower when traffic is more congested. The New Jersey Turnpike study also reports 
cellular usage at very high speeds (i.e., 15 mph over the speed limit) is 20 percent 
lower (statistically significant) than usage at moderate speeds (Johnson et al. 2004).

A second explanation is that the drivers who use cell phones have an affinity for 
risk (Hahn and Tetlock 1999). In this scenario, risk-loving drivers may simply use 
cell phones as a substitute for other distractions (e.g., talking to a fellow passenger, or 

55 Caird et al. (2008) estimates that the mean effect size difference in driver speed of hands-free use (positive 
number represents a slower speed) relative to a baseline control is r = 0.23 (with 95 percent CI of 0.06 to 0.40 and 
composite N = 495), while the mean effect size difference of handheld use relative to the same baseline control is 
r = 0.39 (with 95 percent CI of 0.26 to 0.52 and composite N = 160). The authors, however, characterize this level 
of compensation as not “appreciable.”

56 We thank an anonymous referee for bringing this study to our attention.

Table 5—Sensitivity of Crash Risk Implied by Upper Bounds of 9 pm Analysis

Crash risk implied by upper bounds

Expanded states (2002 to 2005) Expanded states (2005)
Baseline 9 pm call likelihood Baseline 9 pm call likelihood

9 pm Δ call likelihood 6% 7% 7.8% 9% 7% 7.8% 9% 10%
   

5.2% 4.8 4.3 3.9 3.5 5.2 4.8 4.3 3.9
   

6.2% 4.1 3.6 3.4 3.1 4.4 4.0 3.6 3.4
   

7.2% 3.6 3.2 3.0 2.7   3.8 3.5 3.2 3.0
   

8.2% 3.2 2.9 2.7 2.5 3.4 3.2 2.9 2.7
   

9.2% 3.0 2.7 2.5 2.3 3.1 2.9 2.6 2.5

Notes: This table presents the relative crash risk due to driver cell phone use implied by the upper bound of our 
benchmark analysis of the 9 pm price discontinuity for expanded states and 60-minute windows. The table dis-
plays the relative crash risk associated with varying estimates of baseline call likelihood, as well as estimates of the 
increase in call likelihood at 9 pm. The relative risk of crashing if using a cell phone while driving can be calculated 
by solving for x in the following expression: ub[1 × (1−b) + x(b)] = [x(bc) + 1(−bc)], where ub is the upper 
bound on our benchmark result, b is the baseline likelihood of cellular use by drivers, and c is the percent jump in 
likelihood at 9 pm. An illustrative calculation is outlined in the text.
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fiddling with radios, televisions or DVDs). Prieger and Hahn suggest that driver het-
erogeneity in riskiness leads most research to significantly overestimate the near zero 
impact of cell phone use on crashes (2007). In another study of 3,869 Canadian driv-
ers, authors also find that cellular users are more likely to incur traffic violations for 
risk-taking behaviors unrelated to cell phone use such as alcohol consumption, non-
moving violations, and seat belt non-use, than their counterparts (Wilson et al. 2003).

Finally, the effect of cellular use on crashes may be heterogeneous across driv-
ers.57 While the local average treatment effect may be zero, there may be drivers 
for whom the use of cell phones is detrimental, as well as some drivers for whom 
cell phones are beneficial. For example, cell phones may actually improve selective 
driver outcomes by alleviating boredom. The NHTSA reports that 100,000 crashes, 
and 1500 fatal crashes each year are attributable to driver fatigue or sleepiness 
(2004), and in the 100 car naturalistic study described above, 20 percent of crashes 
and 12 percent of near-crashes were linked to driver fatigue (NHTSA 2006).58

Limitations to the Result.—�We highlight two primary caveats to our main result. 
An initial caveat is that the finding reflects a local average treatment effect of the 
influence of cellular use around 9 pm. We discuss three ways in which the local-
ity of the estimate might affect its generalizability to other periods of the day (or 
its ability to be contrasted with findings from other research settings). First, one 
could plausibly argue that, relative to earlier in the day, crash risk due to cellular 
use at night is less hazardous due to diminished traffic. However, crash rates per 
vehicle mile travelled are actually significantly higher at night than during the day 
(NHTSA 2000). The elevated crash risk is likely due, in part, to lower visibility, 
higher average speeds, and possibly greater driver fatigue. To the extent that these 
factors could exacerbate the detriment of attentional distractions, cellular use may 
be just as, or more, deleterious at night than at other times of the day.59

Second, in the event of heterogeneity in cellular crash risk by driver type (e.g., by 
age or gender) it is possible that the particular mix of drivers who choose to call at 
9 pm may bias our results. For selection by driver type to downward bias our estimates, 
then the composition of drivers who call at 9 pm—which is determined by relative 
distribution of driver types on the road, the baseline rate of cellular use by type, and 
the price sensitivity at 9 pm by type—must have disproportionately lower crash risk 
associated with cellular use. While this bias is not simple to assess, we are not aware of 
evidence to suggest driver type is unrepresentative at night, and laboratory evidence 
does not find a significant difference in the relative impairment induced by cellular use 
between very young and old drivers (despite large differences in baseline crash risk).60

57 See Hahn and Prieger (2006) for a model of the heterogeneous effects of cellular use on crashes.
58 The dangers of fatigue may be particularly pronounced for drivers accustomed to driving long distances or 

long hours. To this point, the Federal Motor Carrier Safety Administration, in 2003, implicated fatigue as a fac-
tor in 13 percent of all fatal large-truck crashes (included in the “Report to Congress on the Large Truck Crash 
Causation” ).

59 Data on average hourly speeds for highway traffic in California from 2005, collected from the PeMS website 
described in the online Appendix, suggests that speeds from 9 to 10 pm are about 6 percent higher than speeds 
throughout the rest of the day.

60 The laboratory evidence on young and old drivers is from a study by David Strayer and Frank Drews that can 
be found here: http://www.psych.utah.edu/AppliedCognitionLab/Aging.pdf.
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Finally, an intriguing possibility is if calls vary in their capacity for distraction 
and our estimate is picking up an unrepresentative set of phone calls. Suppose calls 
are of two types—urgent and nonurgent and the latter type are more likely to be 
deferred until after 9 pm due to the price change. Then nonurgent calls would com-
prise a disproportionate share of the 9 pm jump in calls. If nonurgent calls are less 
anxiety provoking and otherwise less distracting, then this would cause our esti-
mates to be downward biased.61 While we have no direct evidence on such a pos-
sibility, we do note that to the extent that call duration reflects the content of a call, 
we check for and find no statistically significant difference in the duration of calls in 
the hour before and after the pricing threshold in the TNS data.

A second caveat is that while our point estimate suggests no link between cel-
lular use and crash risk, our 95 percent upper bounds still allows for a crash-risk 
ratio of up to 3.0 (1.4 and 0.9 for our 1 s.e. upper bounds). We cite three reasons 
why this level of precision may be economically meaningful. First, we are able to 
rule out the point estimates of the most influential studies—i.e., the 4.3 risk ratio 
of RT, a more recent case-crossover estimate of 4.1 (McEvoy et al. 2005), and the 
range of risk ratios from 3 to 4 produced by laboratory findings (Strayer 2003 and 
Strayer 2006)—in a large and policy relevant literature. References to these stud-
ies, and their estimates of crash risk, are pervasive in policy discourse. Second, the 
inconsistency of our findings from those of laboratory studies offers a specific but 
important caution in the translation of findings from the laboratory to the field. If 
cell phones do distract but such distractions are offset by more careful driving, sub-
stitution away from other risky behaviors, or the beneficial effects in counteracting 
fatigue, then the naive translation of the mechanisms posited by laboratory findings 
to policy prescriptions neglects the influence of possible alternative mechanisms. 
Our result highlights how field studies may be useful in illuminating the presence 
of alternative mechanisms—such as compensation, risk substitution, or fatigue—or 
interactions between known mechanisms and real-world variables that are important 
for understanding actual behavior. Lastly, the point estimate and confidence interval 
generated by our analysis appears to seriously affect the cost-benefit calculations 
used to determine policy on cellular bans. We comment on the policy implications 
of the findings below.

Implications for Welfare and Policy.—�While legislative bans on cellular use 
have become increasingly pervasive, the optimality of such policy depends on the 
mechanisms underlying crash risk as well as a weighing of pertinent costs and ben-
efits. As an example of the importance of mechanisms, if drivers compensate for 
cellular use with more careful driving, then there may be a rationale for penalizing 
cellular use as a secondary, but not as a primary, offense. Further, given that our 
results cannot rule out the detrimental influence of cell phones for certain subpopu-
lations, partial bans which target specific drivers may be appropriate. Partial bans of 
cell phone use by teenagers in several states suggests that policy makers believe in 

61 We thank an anonymous referee for suggesting this explanation.
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such heterogeneity in risk. More research is needed to clarify whether the influence 
of cell phones is heterogeneous across drivers (as well as driving conditions).

Abstracting from mechanistic understanding, bans regulating driver cell phone 
use balance benefits of use against possible harm to person or property. Other 
researchers have estimated the economic value of cell phones to drivers. The Harvard 
Center for Risk Analysis assessed the value of nonemergency cellular calls by driv-
ers at $43 billion annually (Cohen and Graham 2003), while the Cellular Telephone 
Industry Association reports that more than 200,000 emergency calls are made by 
drivers daily. Using such estimates as a departure point, we can calculate the value 
of statistical life implicit in decisions to enact cellular bans under varying estimates 
of crash risk (e.g., Ashenfelter and Greenstone 2004).

As illustration, presented in Table 6, if we focus exclusively on fatalities attrib-
uted to cell phone use (and ignore costs associated with injury and property dam-
age), then the 4.3 relative risk ratio of RT implies 13,000 fatalities and a value of 
life of $3.3 million, while the 6.5 upper bound of RT implies 22,000 fatalities with a 
value of life of $2.0 million.62 Our point estimate of 1.0 implies no additional fatali-
ties and an enormous valuation of life, while our 1 s.e. upper bound of 1.4 (expanded 
states from 2002 to 2005 sample) implies 1,600 fatalities at a statistical value of life 
of $27 million and our 95 percent upper bound implies 8,000 fatalities per year at a 
value of $5.4 million per life.

While estimates of life valuations implied by regulation vary considerably in 
the literature, in 2004 the US Department of Transportation reportedly employed a 
valuation of $3 million per life for regulation (Ashenfelter 2006). To the extent that  
the analogy to drunk driving motivates policy, we note that the odds-ratio of 7 (13) 
associated with positive (illicit) levels of blood alcohol implies a life valuation of 
$1.8 million ($0.9 million) for bans on drunk driving (Levitt and Porter 2001a). The 
final column of Table 6 compares the annual fatalities avoided from a ban on cellular 
use, implied by various parameter estimates, with the 13,582 fatalities attributable 
to illicit levels of alcohol use (NHTSA 2005). While societal tolerance for risk and 
uncertainty must also be considered given the imprecision of parameter estimates, 
these calculations illustrate the potentially high economic relevance of our confi-
dence intervals for reassessing optimal policy regarding cell phone use.

IV.  Conclusion

This paper exploits a natural experiment—the discontinuity in the marginal price 
of a cell phone call during weekday evenings—to estimate the influence of driver 
cell phone use on vehicular crashes. Using a wide array of data on crashes, owner-
ship, cell phone plans, average call likelihood, as well as rare datasets of actual cell 
phone calls, we find no evidence that an exogenous rise in call volume, induced 
by the change in cellular prices, leads to an increase in crashes. This result is at 
odds with much of the existing research. The most influential study on this topic, 
RT, suggests that cell phone use results in a 4.3 fold increase in relative crash risk, 

62 Hahn, Tetlock, and Burnett (2000) outline a more detailed method to account for the lifetime costs associated 
with mortality, injuries, property damage, lost productivity, and medical expenses.
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and equates the danger of cellular use to that of illicit levels of alcohol. The upper 
bounds of our estimates allow us to rule out the crash risk implied by RT under 
plausible assumptions of average call likelihood. Two additional empirical strategies 
confirm the absence of a relationship between phone use and crashes.

We note that this research does not imply that cell phone use is innocuous. It 
simply implies that current cellular use by drivers does not appear to cause a rise in 
crashes. It is possible that drivers who use such devices compensate for the added 
distraction by driving more carefully. Alternatively, it could be that risk-loving driv-
ers may treat cell phones as a substitute for other, equally debilitating, distractions. 
Finally, because we measure a local average treatment effect, it could be that cell 
phones are dangerous for certain drivers (or driving conditions) and are beneficial 
for others, or that our estimates reflect an unrepresentative time of day, mix of driv-
ers, or composition of calls.

In the least, we believe our findings should renew interest in empirical research 
examining the effects of cell phone use and reopen discussions on the costs and 
benefits of policy restricting such use. One direction of future research, which may 
prove particularly important to policy makers, is to investigate whether the influence 
of cellular use differs across types of drivers and driving conditions. Our research 
design allows for such an analysis of driver heterogeneity if one exploits differences 
in price sensitivity and average call likelihood across demographic groups as an 
additional source of treatment variation.

Finally, our findings could be used to help design future laboratory studies which 
may shed added light on the link between cellular use and crashes. For example, by 
introducing appropriate incentives, one could attempt to test the hypothesis of com-
pensation while other experiments could identify the presence of risk substitution or 
interactions between cellular use and fatigue.

Table 6—Value of a Statistical Life Implied by Cellular Bans

Analysis parameter
Relative risk 

odds ratio
Annual fatalities
avoided by ban

Implied
VSL (>)

Fatalities avoided 
versus  

drunk driving

9 pm point estimate 1.0 0 — 0%

9 pm point estimate + 1 s.e. 1.4 1,600 $27m 12%

9 pm upper bound 3.0 8,000 $5.4m 59%
         

RT 4.3 13,200 $3.3m 97%

RT upper bound 6.5 22,000 $2.0m 162%

Laboratory studies 3.0 to 4.0 8,000 to 12,000 $3.6m to $5.4m 59% to 78%

Notes: This table presents the value of statistical life (VSL) thresholds implied by legislative bans on cellular use 
and various crash-risk parameters. The table considers parameter estimates from the present 9 pm analysis, as well 
as the RT study and laboratory studies. The Levitt and Porter (2001a) crash risk pertains to any positive level of 
alcohol. Fatality calculations assumes 40,000 fatalities per year. VSL calculations assume an economic value of 
phone use of $43 billion each year (Cohen and Graham 2003). The final column compares the annual fatalities 
avoided by a legislative ban and implied by the parameter estimates with the 13,582 annual fatalities caused by 
drunk driving at illicit levels of intoxication (NHTSA 2005).
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