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studies with a numerical outcom o et or iy o

e factor, a categorical treatment (or risk) f;
. _ , actor,
anddalnumerlcal con-foundmg factor. Under these conditions, the general linear
model can be applied to the problem of estimating treatment effects. The

analysis of covariance (ANCOV A repr i icati i
e ot ) represents the main application of the linear
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The general linear mode] r
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are all numerical, the linea
variables are all categorical

epresents the outcome value as a linear combination
variables. G_enerally speaking, when these variables
r model is called a regression model. When the
» We refer to the analysis of variance (ANOVA).
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While both regression and analysis of variance can be formally subsumed under
the general linear model, the two techniques have traditionally been treated as
distinct. This historical separation occurred for two reasons. First, before
high-speed comptters were in general use, computational aspects of statistical
techniques were of much interest. The most efficient computational procedures
for regression and ANOVA were quite different. Second, the two methods
tended to be applied to different sorts of problems.

The analysis of variance is usually thought of as a technique for comparing
the means of two or more populations on the basis of samples from each. In
practice, these populations often correspond to different treatment groups, so
that differences in population means may be evidence for corresponding dif-
ferences in treatment effects.

The ANOV A calculations involve a division of the total sample variance into
within-group and between-group components. The within-group component
provides an estimate of error variance, while the between-group component
estimates error variance plus a function of the differences among treatment
means. The ratio of between- to within-group variance provides a test of the nuil
hypothesis that all means are equal. Moreover, the differences among group
means provide unbiased estimates of the corresponding population mean dif-
ferences, and standard errors based on the within-group variance provide con-
fidence intervals for these differences and tests of their significance.

Regression analysis, on the other hand;is primarily used to model relationships
between variables. With it, we can estimate the form of a relationship between
a response variable and a number of inputs. We can try to find that combination
of variables which is most strongly related to the variation in the response.

The analysis of covariance represents a marriage of these two techniques. Its
first use in the literature was by R. A. Fisher (1932), who viewed the technique
as one that “combines the advantages and reconciles the requirements of the
two very widely applicable procedures known as regression and analysis of
variance.” ’

Combining regression and ANOVA provides the powerful advantage of
making possible comparisons among treatment groups differing prior to treat-
ment. Suppose we can identify a variable X that is related to the outcome, Y,
and on which treatment groups have different means. We shall assume for
simplicity that X is the only variable on which the groups differ. Then, if we knew

the relationship between Y and X, we could appropriately adjust the observed
differences on Y to take account of the differences on X.

8.2 EXAMPLE: NUTRITION STUDY COMPARING URBAN

AND RURAL CHILDREN

Greenberg (1953) described a nutrition study designed to compare growth
of children in an urban environment with that of rural children. Data were ob-
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tained on the heights of children in the two samples: one from an urban private
school anfi one from a rural public school. Differences in growth between these
groups might be the result of the different environmental influences operating
on tl.1e children. In particular, the rural children might be experiencing some
nu_trlFional deprivation relative to their urban counterpafts‘. In the terminology
of this book, height would be the response or outcome factor and nutrition the
risk factor of interest.

The data are shown in Table 8.1. An analysis of variance conducted on the
bclght data reveals that the observed difference between the groups (2.8 cm)
1s not statistically significant. So it might be concluded that there is no evidence

(ljl,ere for a difference in nourishment between the urban and rural school chil-
ren.

Table 8.1 Height and Age of Private and Rural School Children in a Study
in North Carolina in 1948

- Private School Rural School
ge Height Age i
Students (months) (cm) (mofths) I‘Ez;ﬁ;“
1 109 137.6 121 139.0
2 113 147.8 121 140.9
3 115 136.8 128 134.9
4 116 140.7 129 149.5
5 119 132.7 131 148.7
6 120 145.4 132 131.0
7 121 135.0 133 142.3
8 124 133.0 134 139.9
9 126 148.5 138 142.9
10 129 . 1483 138 147.7
11 130 147.5 138 147.7
12 _ 133 148.8 140 134.6
3 134 133.2 140 135.8
14 135 ’ 148.7 140 1485
15 137 152.0 '
16 139 150.6
17 o141 165.3
18 ' 142 149.9
Mean 126.8 144.5 133:1 141.7

Reprinted, by permission, from Greenberg (1953), Table 1.

Bc?fore reaching this conclusion, however, we should consider whether there
are lllfely to be confounding factors. One variable that comes immediately to
mind is age. The data on age are also presented in Table 8.1. The mean age for
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the rural children is 6.3 months greater than that of the urban children. In a
sense; then, the rural children have an “unfair advantage” conferred by their
greater average age. Thus we might expect that if the age distributions were the
same, the difference in average height between the groups would be even larger
than the observed 2.8 cm. The analysis of covariance allows us to adjust the
2.8-cm difference to obtain a better (less-biased) estimate of the difference
between groups that would have been observed had the mean ages in the two
groups been equal. As we shall see in Section 8.3, ANCOVA produces an esti-
mated difference of 5.5 cm, which is significant at the .05 level.

In addition to the bias reduction described above, another benefit results from
the combination of regression analysis and ANOVA. Suppose that within
treatment groups, a substantial proportion of the variance in ¥ can be explained
by variation in X. In carrying out an ANOVA, we would like the within-group
variance to reflect only random error. Regression analysis can be used to remove
that part of the error attributable to X and thereby to increase the precision of
group comparisons.

The Greenberg (1953) example mentioned above can be used to illustrate
this point as well. It is clear from Table 8.1 that a substantial proportion of the
variation in height is attributable to variation in age. Put differently, if all
children in a group were of the same age, the variation in heights within that
group would be substantially reduced. Since the relationship between height
and age over this range is quite linear, we can estimate the pure error variation
by taking residuals* around the regression line relating the two variables. In
effect, this is what ANCOV A does, and when a high proportion of within-group
variance is explained by the covariate, a large increase in precision results.

In summary, then, ANCOVA combines the advantages of regression and
ANOVA in comparing treatments by providing two important benefits. First,
by estimating the form of the relationship between outcome and covariate, an
appropriate adjustment can be made to remove biases resulting from group
differences on the covariate. This advantage is of importance primarily in
nonrandomized studies, where such group differences are likely to occur. Second,
by reducing the variation within groups, the precision of estimates and tests used
to compare groups can be increased. This advantage may be valuable in both
randomized and nonrandomized studies.

By combining the advantages of ANOVA and regression, ANCOVA provides
a powerful tool for estimating treatment effects. As noted by Fisher, however,
the technique also “reconciles the requirements” of the techniques. Thus, to be
valid, the ANCOVA must be used in situations satisfying the requirements for

* The residual corresponding to a given observation is defined as the difference between the actual
observed Y and the value predicted by substituting the corresponding X value into the regression
equation.
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both techniques. Put differently, the usefulness of the ANCOVA rests on the
validity of a certain mathematical model for the generation of data, which in
turn rests on a set of assumptions. To obtain the advantages of both regression
and ANOVA, we must be willing to assert that a somewhat restrictive model
is valid.

In the remainder of this chapter, we will attempt to provide enough under-
standing of the rationale and assumptions underlying ANCOVA to enable the
reader to understand when ANCOVA can be used and how to interpret the re-
sults generated. Since the actual calculations involved in carrying out the analysis
are complex, they are almost always performed by a computer, and it would be
unnecessarily confusing to present the formulas here. For the reader interested
in more detail, a technical appendix containing some basic formulas is included
at the end of this chapter. More extensive discussions can be found in Cochran
(1957) and Winer (1971, Chap. 10).

8.3 THE GENERAL ANCOVA MODEL AND METHOD

To understand the rationale underlying the use of ANCOVA in nonran-
domized studies, it is helpful to begin with a somewhat idealized situation.
Suppose that on the basis of extensive prior research, the relationship between
an outcome and confounding factor can be specified. For example, it might be
known that for rural school children, the relationship between height and age
over the age range being considered can be expressed as

" Average height = 75 + 0.5 (age).

Suppose that a particular group of rural children have been exposed to some
special treatment, such as a dietary supplement. At the time they are measured
this group has a mean age of 132 months and a mean height of 147 cm. Suppose
further that another group has been exposed to a different treatment and is
measured when the children are 120 months old on the average. The average
height of this group is 133 cm.

Since the groups differ on mean age, it is not obvious which treatment has
been more effective. To make a fair comparison, we must remove the effect of
the confounding variable age. However, using the relationship specified above
we know that the expected height for the two groups without any special treat-
ment is given by:

Group 1: Average height = 75 + 0.5(132) = 141 cm
Group 2: Average height = 75 + 0.5(120) = 135 cm.

Therefore, the effects of the treatments are:
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Group 1: 'Effect = observed — expected = 147 — 141 = 6 cm
Group 2: Effect = observed — expected = 133 - 131 = =2 cm.

and the difference between them is 8 cm. _ o

Alternatively, we can say that because the groups differ by 12 months in age,
the relationship predicts that they will differ by 6 cm. So we could effectively
“adjust” the comparison between the two groups by subtracting 6 cm from the
difference between them. Since the observed difference is 14 cm, this would leave
8 cm attributable to the difference in treatments received.. .

Because we are assuming in this example a known baseline relationship against
which to measuré performance under the treatments, we can obtain an a.bsolu.t,e
measure of effect for each treatment (6 cm and —2 cm). In most practical sit-
uations, we do not have available such an external standard, and we must use
only data obtained during the study. Thus an absolute measure of effect fpr each
group is impossible. On the other hand, it may still be possible to obtain frgm
the data an estimate of the coefficient (0.5 cm/month in our example) relating
outcome level to confounding variable. So it may be possible to adjust the ob-
served difference to remove the effect of age from the comparison. In effect, this
is how ANCOVA is used to estimate treatment effects in nonrandomized
comparative studies. _ . ‘

The basic model underlying the use of the standard analysis of covariance
asserts that there is a linear relationship bétween the outcome Y and the covaria}tc
X with identical slopes in the two groups, but possibly different intercepts. With
two treatment groups, we can write the basic model as*

Y=a +8X+e in group 1 (treatment) @.1)
Y=o+ BX +e in group 0 (control),

where

o = expected value of Y when X = 0 for group 1 ,
oo = expected value of ¥ when X = 0 for group 0

= random variable representing error
(expectation O for any given X).

Let X represent the sample mean of all the X observations in bo.th groups, X I
the mean for group 1, and X the mean for group 0. Figure 8.1 1'llustra.tcs this
situation. Note that the direct comparison of Y; and Y will be biased since X

* For the reader familiar with regression analysis, this model can be represented as a two-'variable
regression model with variables X and a dummy variable taking the value 1 in group 1 and 0 in group

0.
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> Xo. In fact, taking means in (8.1) yields.

Yi=a + BX; + &

Yo=ao+ BXo + 2,
so that

E(Y,— )70)_= a; — oo+ B(X; — Xp). (8.2)

Group 1 regression

Group O regression

e

ol
Xe
Y

Figure 8.1. Standard ANCOVA assumptions.

Note that from (8.1), we can interpret o
bfetwecn the outcomes of the two individuals wi
different groups. This difference will represent
treatments unless there is some other variable
the two subjects. To estimate o) — ag,
but must adjust each of these to move t
X*. Let us define the “adjusted”

— g as the expected difference
th the same value of X but in two
the differential effect of the two
related to ¥ which distinguishes
we cannot simply subtract ¥, from ¥,

hem, in effect, to a common X value, say
mean of ¥ for group 1 as

Yi,=7Y, - B(X: — X*).

Y1, may be interpreted as an estimate of

the mean out
group 1 whose X value is X*. Similarly, teome for members of

Yoo = Yo~ B(Xo — X*#)

es:}matcs the mean outcome for members of group 0 whose X value is X*. To
es :Yma}te Ll?e difference between the means of the two groups at the same value
(in this case X*), we can smlply take the difference of these two adjusted
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means:
Yie— Yoo = Y1 — B(X) — X*) — [Yo — B(Xo — X*)]
=Y, — Yo — B(X1 — Xo). (8.3)

This adjusted group mean difference is an unbiased estimator of o¢; — .

For simplicity, we have not discussed how the value of 3 necessary to perform
the adjustments is actually obtained. In practice, we rarely have any a priori
theoretical basis for determining the value of 8 and must therefore use the data
to obtain an estimate, 5. The ANCOVA calculations provide us with an unbiased
estimator based on the relationship between ¥ and X within the two groups. Thus
the adjusted difference is of the form

Yia — You = ¥1 — Yo — B(X; — Xo). (8.4)

It can be shown that the substitution of an unbiased estimate 3 for the unknown
true value 3 still yields an unbiased estimate of o; — g under the model specified
by (8.1). )

In Appendix 8A we present the formula usually used to compute 3. It is called
a pooled within-group regression coefficient, because it combines data on the
relationship between ¥ and X in both groups. This combination of data provides
high precision and is valid under our assumption that the regression lines are
parallel. -

We should mention in passing that this pooled coefficient is not found by
calculating a regression coefficient from the data on both groups taken together
as a single group, as is sometimes proposed. This latter approach may be viewed
as comparing the mean residuals for the two groups around the overall regression
line fitted to the entire sample. It is incorrect, however, in the sense that it does
not yield an unbiased estimate of 3 or of the effect oy — g under the model given
by (8.1).

Using the standard ANCOV A calculations (see Appendix 84), we obtain
for the Greenberg (1953) example:

B = 0.42 cm/month,
and because
X; = 126.8 months
and
H Xo = 133.1 months,

the adjusted difference is

Y1 — Yoo = 2.8 — 0.42(126.8 — 133.1) = 5.5 cm.
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The initial difference of 2.8 cm in favor of the urban children has, after adjust-
ment, been nearly doubled. ‘

We may ask at this point whether this adjusted difference is statistically
significant. To answer this question, we can look at the standard error provided
as part of the ANCOV A calculations. This standard error can be used to perform
a f test of

Ho O = Aap.

More generally, when there are more than two treatment groups (say K groups),
ANCOVA provides an F test of

Hy=ai=ay=a3=+--= ag.

If this test proves significant, we can reject the null hypothesis that all treatment
groups have the same intercept. In this case we must conclude either that the
treatments are differentially effective or that there is some unmeasured variable
related to outcomes on which the groups vary (i.e., another confounding factor).

In the Greenberg (1953) example, a ¢ test for the difference of adjusted means

results in a ¢ value of 2.12, which is significant at the .05 level. So when age is
taken into account, there appears to be a significant difference in height between
the two samples.

8.4 ASSUMPTIONS UNDERLYING THE USE OF ANCOVA

In Section 8.3 we presented the basic model underlying the use of ANCOVA
in the simple situation with two treatment groups and one covariate. This model
is summarized by (8.1). While this statement of the model appears simple, it
implies a large number of conditions that must be satisfied. Since the user must
verify that these conditions hold, we present in this section a listing of the as-

sumptions. With each of these, we indicate the consequences of failures to satisfy |

the assumption and how these can be detected in practice. The next section
considers some ways of reducing the biases introduced by such failures.

Like any mathematical model attempting to represent reality, the ANCOVA
model is never perfectly true. It is only a more-or-less accurate abstraction. So,
although we may for simplicity discuss whether or not a particular condition
holds in a particular situation, it should be remembered that such statements
are only approximate. The real question is whether the ANCOVA model is good
enough not to result in misleading results. With this caveat in mind, we now
proceed to list the ANCOVA assumptions.

1. Equality of regression slopes. ANCOVA assumes that the relationship
between Y and X in each group differs only in terms of the intercept (a:;) but
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not the slope (8). This assumption is cssentia! if we are to have the posslbzllt};
of interpreting tihc difference between the lines (a_l - ‘ao)_ as a measure O

treatment effect. The problem of nonparallel regressions in d}ffcrcnt t'reatme,gt
groups is discussed in Section 3.3 and is a gene.ra_l problem 1_nv0‘1ved 12 ;11 Fl’:lh_-
justment strategies. The nature of the difﬁcul‘_cy is illustrated in Flgfxre_d. 1 el
expected difference between two individual§ in different groups thk.\ 1hent1cs

X values depends on X. Thus there is no unique summary value which can be
interpreted as the treatment effect.

Group 1 regression

—ag + B — B} X

Group O regression

AN

&
> ¢
x

Figure 8.2. Nonparallel linear regressions in two groups.

In such a situation we say there is an interaction between the tr.eatment efffsct
and the covariate. If an interaction is suspected, it'is wgrthwhl’le to'examme
carefully the graph of ¥ versus X in the two groups. VISUfil inspection will usually
be adequate to detect serious departures from parallelism. ¢

A formal statistical test for the equality of slopes can also.be conducted.
such a test is carried out, and the null hypothesis of slopes rg]ected, we cac;mot
apply ANCOVA. If, on the other hand, the pull hyppthesns is not rejected, w?
still cannot be sure that the slopes are identical. This is a g_er}eral property 0
statistical tests. Our ability to assert that the null hy_potbe:S}s in fact holds if it
is not rejected is related to the “power” of the test, whxgh is difficult to @m;)sutc.
Generally speaking, however, the power increases with the sample size. Soa .
statistical test can provide evidence on whether the slopes are equal, but no

certainty unless the sample sizes are very large. . ‘ ‘
2. Linearity. The ANCOVA assumes a linegr rcl.atlc.mshlp between ¥ and
X. The simplest, and usually adequate, test of linearity is to plot a graph of Y
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versus X in each group. Formal statistical tests of linearity are available if there
is any doubt. The simplest involves calculating the regression line in each group
and examining the residuals. Standard texts on regression analysis (e.g., Draper
and Smith, 1966; Chatterjee and Price, 1977; Mosteller and Tukey, 1977)
provide more detail.

3. Covariate measured without error. In some situations, the variable thought
to be linearly related to ¥ cannot be measured directly, and an imperfect sub-
stitute containing some measurement error must be used. In Section 5.2 we
discussed the issues of measurement error and reliability in some detail. When
the observed X, consisting in part of error, is used in the ANCOVA model, both
estimates and tests may be affected. In both randomized and nonrandomized
studies, the precision of the estimated effect and the power of statistical tests
will generally decrease as the reliability decreases. Further, in nonrandomized
studies, measurement error will introduce bias in situations where using the true
X yields an unbiased estimate (see Cochran, 1968; Elashoff, 1969). When even
the true X would result in bias, the effect of measurement error is more complex.

Sometimes a fallible variable may even be preferable to a corresponding true

score (Weisberg, 1979), although such situations are extremely rare.in practice.
As a general rule, it is desirable whenever possible to use variables with high
reliability.

4. No unmeasured confounding variables. The existence of unmeasured
variables which are related to the outcome and have unequal distributions in
the treatment groups is a general problem in the analysis of nonrandomized
studies (Section 5.1). Let us consider what happens when an ANCOVA is
performed which does not consider such a variable. Suppose that there exists
a variable Z with means Z; and Z,, for the groups. Then, instead of (8.1), the
true model might be described by

_ Y=p=0;+BX+vyZ +e i=0,1. 8.5)
In this case, the appropriate adjustment becomes
Y=Y =8 —-X)-v(Z:-Z) i=0,1.

Thus if we adjust using X only as a covariate, and if Z; = Zo, we have adjusted
for only part of the differences between groups which is related to Y. Further
discussion of this issue can be found in Cochran and Rubin (197 3), Cronbach
etal. (1977), and Weisberg (1979).-

5. Errors independent of each other. The error terms (e) in the model are
random variables which are assumed to be probabilistically independent of one
another. This means that the value of the error term corresponding to any ob-
servation has no systematic relationship to that of any other error term.

Nonindependence of errors can affect the validity of tests used to compare
treatment groups, but will not introduce bias into the estimates of treatment
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effects. Nonindependence is difficult to detect empirically, and there is usually
no reason to suspect its occurrence. However, in some situations there may be
theoretical considerations suggesting nonindependence. Suppose, for instance,
that the rural children in our example actually came from a small number of
families. Then we might expect high correlations between the error terms cor-
responding to children in the same family. Roughly speaking, the effect of such
intercorrelations is to reduce the effective sample size on which inferences are
based. That is, the precision is lower than would be expected on the basis of the
sample size used.

6. Equality of error variance. Ordinarily, as in most applications of linear
models, it is assumed that all error terms have the same variance. In an AN-
COVA situation, it is possible that the treatment grops have different error
variances. The estimates of treatment effects will still be unbiased in this case,
but the validity of tests may be affected. If there is some reason to suspect this
inequality of error variances, the residuals from the fitted lines in the two groups
can be compared. If the variances of these residuals differ greatly, caution in
the interpretation of test results is advised (see Glass et al., 1972). :

7. Normality of errors. For the ANCOVA tests to be strictly valid, it must
be assumed that the errors follow a normal distribution. Departures from nor-
mality may affect statistical tests and the properties of estimators in a variety
of ways, depending on the actual form of the error distribution. The normality
assumption can be tested by examining the distribution of residuals. While severe
departures from normality may affect the properties of tests, ANCOVA appears
to be generally rather robust (see Elashoff, 1969; Glass et al., 1972). Thus most
researchers assume that the normality assumption is not critical.

8.5 DEALING WITH DEPARTURES FROM THE
ASSUMPTIONS y

As indicated ifl Section 8.4, several assumptions underlie the use of ANCO-
VA. Departures from these assumptions may result in biased effect estimates
and/or a loss of precision in statistical tests and estimates. While the precision
of a statistical procedure is important when the sample size is not large, our
primary emphasis in this book has been on the reduction of bias in nonran-
domized studies.

In this section we consider what can be done when various departures from
the standard ANCOVA assumptions are suspected. Of the seven conditions
discussed in Section 8.4, only four bear seriously on the possibility of bias: lin- .
earity of the relationship between ¥ and X, same slopes for regression lines in
the two groups, absence of measurement error in the covariate, and absence of
other unmeasured covariates.
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8.5.1 Nonparallel Regressions

As in Section 8.4, we consider first the case of linear but nonparallel regres-
sions. This is the situatjon illustrated in Figure 8.2. Since the slopes of the lines,
as well as their intercepts, differ in the two groups, the-basic model becomes

Y+ ai+BiX+e i=0,1. (86)

From (8.6) the difference between the expected outcomes of the individuals
with the same X but in different groups is given by '

ay — op+ (81— Bo)X.

That is, the treatment effect is a linear function of X. To estimate this function,
we can compute estimates of §j and 3 separately from the two treatment groups
and form

Yi=Yi- /- X)
Yoa = Yo — Bo(Xo ~ X),

the treatment means adjusted to an arbitrary point X. Taking the difference
yields an unbiased estimated of the treatment effect for any X:

Yie—Yoa =71 — Yo — B1(X) = X) + Bo(Xo — X). 8.7

If a single summary value is desired, some “typical” value of X must be in-
serted in this expression. This might be X, the mean of X in the two groups to-
gether, or the mean from some other standard population. The choice of an X
value at which to estimate the treatment effect must be guided by logical rather
than statistical considerations. The value should be one that is of practical im-
portance. For example, if we know that the treatment will be applied in the future
to individuals with an average value that is at least approximately known, we
may whish to estimate the effect at this value.

In many situations, the individuals to receive treatment in the future are ex-
pected to be similar to those receiving treatment during the study. So we might
wish to choose X = X in (8.7). We then obtain

Yia — Yoo = Y1 — Yo — Bo(X1 — Xo). (8.8)
This is of the same form as the standard ANCOVA estimate of the treatment
mean difference except that (3o, the estimate based on control group data only
has replaced 3, the estimate based on pooling the data from both groups. This
estimate, first suggested by Belson (1956) and later analyzed by Cochran (1969),
is not widely known but offers advantages over the usual estimate in some sit-
uations.
Suppose first that the usual ANCOVA model (8.1) holds. In this case the
Belson estimate is unbiased but somewhat less precise (larger variance) than
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he usual estimate. On the other hand, particularly if the control group receives
 traditional treatment modality, there may be outside evidence and/or a large
:ample available to estimate Bo- These factors may outweigh the loss of data from
‘he treatment group. .

If the true slopes in the two groups are different, the Belson estimate still has
a meaningful interpretation. As noted above, it represents an estimate of the

difference in outcomes for individuals with an X value of X. That is, it estimates

the effect for a typical individual in the group that received the treatment.

Note that in one sense, (8.7) is more general than the usual ANCOVA model.
The usual model represents the special case when 81 = Bo. On the other hand,
unless 3; = Bo, we cannot use the pooled estimate of 3, based on combined data
from the two groups. Estimating separate coefficients, as in (8.7), entails the
use of smaller samples for each estimated coefficient. For modest sample sizes,
this may lead to a slight decrease in precision.

The methods we have so far considered for comparing treatments when re-
gression lines are nonparallel involve specifying a particular covariate value and
estimating the effect conditional on this value. If we have some reason for fo-
cusing attention on a particular X value, or set of values, this approach will be
useful. In some situations, however, we may be more interested in identifying
the set of X values for which each treatment is preferable. Figure 8.2 illustrates
a situation where for all X values of practical interest, treatment 1 is superior.
In Figure 8.3, however, we have a case where treatment 1 is superior for small
values of the covariate but inferior for large values. Knowing even approximately
where the break-even point is located could have important practical implica-
tions.

L4
Group O regression

Group 1 regression

_><I|L
>

X

gure 8.3, Crossing linear regressions in two groups.
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Bec_ause our e§t_imates of the regression coefficients 8; and Bo are subject to
§amp11ng variability, we cannot specify the crossing point exactly. However, it
is ppssiblc to determine a region of X values where the treatment effect is sig-
n.1flc‘a'ntly positive or significantly negative, at a specified level of statistical
s1g{11flcance. For other values of X, we cannot make a useful statement about
which treatment is superior. This approach is known as the Johnson-Neyman
techpique (Johnson and Neyman, 1936). A good exposition of the technical
details and some refinements of the original procedure can be found in Potthoff
(1964), and a less technical exposition in Walker and Lev (1959, Chap. 14).

8.5.2 Nonlinear Regressions

The secqnd major threat to the validity of the ANCOVA is nonlinearity of
the regressions of Y and X. There are essentially three cases to consider here.
The first is illustrated by the solid lines in F igure 8.4: the regressions of ¥ on X

are nonlinear but parallel in the two groups. The treatment effect is in principle

clearly defined, but may be difficult to estimate in practice.

/7

e

%, x

Figure 8.4. Parallel nonlinear regressions.

. Le't us consider first what happens when we carry out a standard ANCOVA
in this situation. Loosely speaking, if X, and Xy are not too far apart, and the
curvature of the regression not too great, the fitted lines will be approximately
parallel and not too misleading. The farther apart X; and X are, the more dif-
ferent will be the slopes of the curve at the X values in the two g’roups and the
greater will be the difference in the estimated slopes of the two regressi,on lines.
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(The dashed lines in Figure 8.4 illustrate the two different linear regressions.)
So, we will be faced with all the problems of nonparallel regression described
above.

One way to handle suspected nonlinearity is to model the nonlinear regressions.
By making a transformation of the X variable, we may obtain a much better fit
to the observations. For example, we might find that a model of the form

Y=a,'+,3\//_\,+€

adequately describes the data. A standard ANCOVA can then be carried out
using /X rather than X as the covariate.

The second case to consider is that of a nonlinear relationship between ¥ and
X which is not necessarily parallel for the two groups, but which can be turned
into a standard model by appropriate transformations of ¥ and Jor X. For ex-
ample, suppose that the model is given by

Y =exp (a; + BX + &).
Then
logY=0a;+08X+e

Thus using a logarithmic transformation on Y will allow the standard ANCOVA
to be-employed. Of course, it must be remembered after the analysis that the
effect is defined in transformed (in this case, logarithmic) units. So it may be
necessary to trgnsform back to the original units in order to interpret the esti-
mated effect. For example, suppose that an ANCOVA on the log scale produces
an estimate

! oy — ap = 3.
Then in terms of the original model, we have

_|exp (o + BX + ¢) for treatment 0,
exp(3+ag+X+e) for treatment 1.

Note that
exp(3+ g+ BX+e)=exp(3)exp(ag+BX+e)

= (20.1) exp(ao + BX + &).

So the estimated effect of changing from treatment O to treatment 1 is to mul-
tiply the response by a factor of about 20.

Finding the appropriate transformations is largely a matter of trial and error.
Standard statistical texts offer some guidance (see, e.g., Chatterjee and Price,
1977; Draper and Smith, 1966; Mosteller and Tukey, 1977; Tukey, 1977).

The third case involves nonlinear, nonparallel regressions where no suitable
transformation can be found. In this case, both interpretational and technical



156 ;
ANALYSIS OF COVARIANCE

f;lr:blems be‘come very diffi'cult. Some recent research has been conducted on
comparison of quadratic regressions (Rogosa, 1977; Borich et aj 1976;

Wunderlich and Borich 1973), but i
, » but in general the analyst
to fit separate regressions for the two groups. Yot can dono better than

8.5.3 Measurement Error

. "l;lhe third.possible thrcat to the validity of ANCOVA is measurement error
In the covariate. Classical measurement theory (see Lord and Novick 1968)

adjustment.

Suppose that if we knew the true covariate scores, an ANCOVA model using

them WOul aCCuIately dCS be t € d ta Olllctllllcs t € equat on Ielat n
d Cri h ata. S
( h 1 S 1 g

cauations . .
Sglt;znnogst. If we use our 1mp§rfcctly reliable, but observable, covariate the re-

uiting S turns out to be a blaseq estimate of the 3 in the structura] cq’uation
n will result, with the nature of the bias depending

than trying to assess i S ]
analyses. precisely the degree of reliability and adj

8.5.4 Multiple Confounding Variables

F'ir_lally, we discuss the situation wh
addition to those related to our meas

these in our adjustment. For example

Yi =B - X) - 4(Z, - 7).
C.OIIItl.blni‘ng the gbility to use transformations of the
nuitivariate adjustments allows great flexibility in fitting an appropriate model]

I h ata. hlS ﬂ y g 9
) lllt must h cver,
f(‘) t c d l CXIb , NOwey 9 be WClg]le([ against the "eed to Ver lf
that all assum pthHS are met m thls more COmPICX Sltua thIl

data with the capability for

asurable) covariates are known as structural
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We discussed above the problems in the single covariate situation resulting
from possible differences in regression siopes, nonlinearity, and measurement
error. With multiple covariates these problems are compounded. When several
covariates are involved, we cannot use simple graphical methods to help in as-
sessing the validity of assumptions, and models for measurement error become
extremely complex. '

The data analyst is faced with a dilemma. To obtain a good fit to the data for
each group and include all potential confounding factors, he or she is tempted
to include several covariates. But the more covariates included, the greater the
potential problems in meeting and verifying the basic ANCOVA assump-
tions.

Now it might be though that the analyst should simply include the one or two
most important possible confounding factors, expecting to eliminate most of
the bias and avoiding the complexity of multiple covariates. While this procedure
may often work well, there are situations where it can be quite misleading. It

may even result in an estimate of treatment effect that is more biased than the
unadjusted difference of group means. An artificial example of this phenomenon
was given in Section 5.1. As another example of how this might occur, suppose
that in the Greenberg (1953) data the rural children were not only older, but
also tended to have shorter parents in such a way that the effects of these two
factors, age and heredity; were exactly counterbalanced. Then, by using AN-
COVA to adjust for age differences between groups, we would unwittingly create
an artificial difference between the groups.

This example illustrates the care which is necessary in drawing inferences
on the basis of ANCOVA. While a preponderance of short parents in one group
might be an obvious factor to take into account, a confounding variable may be
much more difficult to identify in other practical problems. It would be nice to
give some simple guidelines for dealing with this problem. Unfortunately, there
is no way to guarantee that the ANCOV A model is correctly specified. As with
other statistical adjustment strategies considered in this book, tHe investigator
may be criticized for omitting a particular confounding variable thought by
someone else to be important. The general discussion of this problem contained

in Chapter 5 includes some broad guidelines on choosing an adequate covariate
set. A more detailed discussion of the issues in the context of ANCOVA is
presented by Weisberg (1979), and some practical guidelines are offered by -
Cochran (1965).

APPENDIX 8A FORMULAS FOR ANALYSIS-OF-
COVARIANCE CALCULATIONS

We consider the general situation where K treatments are being compared.
These will be indexed by k = 1, 2, .. ., K. Let X;; and Yy represent the covariate
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and outcome values for individual ; in group k. Let Xy and Y, be the means for

the ny individuals in grou ]
( p k. Then we can define the between-
sums of squares and cross-products by Broup (ireatment)

K — —
Txx kgl hy (Xk - X)2

K — —
1), ='k§l (Y —Y)2

K
T,y = kgl (X — X) (Y, - V),

where X and ¥ are the

grand means of X s .
define within-group (c and Y across all groups. Similarly, we

rror) sums of squares and cross-products:.

K
Exx = kz:l Z (Xik = Xk)z
= 1
K —
Eyy = kZI 2 (Y —Yi)?
=17

K
E, = -kzl 2 (X = X ) (Y — V),
=1 i

where 2; indicates the sum over

the quantity ndividuals within each group. We also define

S = total number of subjects minus number of groups
and, using the definitions above we definé
Six = Tex + E,,
Sy =Ty, + Ey,
Sy = Ty +E,,.

Then we can calculate the residual mean squares for treatments and error:
2 L¥:
_ X,
s2= Eyy——ﬂ)/(f— 1)
Exx

2 2
2 [ _Sx, EZ
‘i (T” o +E—xf)/(K —D
These can be used to calculate an F statis

tic to test th i
treatment effects are equal: © null Bypothesis that all

3
i
a4
NI

REFERENCES 1

Under the null hypothesis this ratio has an F distribution with K — 1 and
f = 1 degrees of freedom. The estimated regression coefficient of ¥ on X is

» FE
= _XZ.
6 Exx

From the definitions of Ey, and E,, given above, it is clear why this is called a
pooled within-group estimator. The estimated standard error for the adjusted
difference between two group means (say group 0 and group 1) is given by

1 1 (X1 —Xo)?
sd=se\/—+—+M:

no ni Exx

when ng and n; are the sample sizes of the two groups. A test of the null hy-
pothesis that the adjusted difference is zero is provided by the statistic

) t___I—/l—I_/o—B()_(l—)_(O)

Sq »
Under the null hypothesis, it has a ¢ distribution with f — 1 degrees of
freedom.
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Logit analysis can be applied in comparative studies to estimate the effect _o_f
a risk factor on a dichotomous outcome factor as measured by the odds ratio.
The usefulness of logit analysis is its ability to adjust for many confound'mg
variables simultaneously. These confounding variables can be either categorical
or numerical. _ ‘

We will begin by motivating the mathematical model that underlies logit
analysis (Section 9.1).and showing how logit analysis can be used to .control for
a confounding yariable (Section 9.2). Details of various aspects of 1.mplem,e_'n-
tation are given in Sections 9.3 to 9.8 with some additional ma'themam‘:al details
in Appendix 9A. Initially, discussion is restricted to cohort. studies; the differences
applicable to case-control studies are presented in Section 9.6.
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