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Standardization and stratification are related adjustment procedures that are
applicable when the confounding factor is categorical. The outcome and risk
factors may be either categorical or numerical, except that for application to

cohort studies, the risk factor must be categorical, and for case-control studi_es,_

the outcome must be categorical.

The goal of any adjustment procedure is to correct for differences in the
confounding factor distributions between the treatment groups. Standardization
does this by estimating what would have been observed had the confounding
factor distributions been the same in the two groups being compared. In the data
to be presented in Section 7.1, for example, the rates of death due to breast cancer
are compared for two groups of women. The two groups of women differ with
respect to age, an important confounding factor when comparing death rates.
Standardization in this case estimates death rates based on a common age dis-
tribution. This common age distribution, or more generally, the common con-
founding factor distribution is taken from some other group, known as the
standard population; hence the term “standardization.”

The term “stratification,” when applied to adjustment procedures, can be -

used in two ways. The first and more general use is to describe any adjustment
procedure that divides the study population into groups (strata) based on the
values of the confounding factors and then combines information across groups
to provide an estimate of the treatment effect. In this general sense, standard-
ization is a stratified procedure where the standard population provides the basis
for combining informatjon across strata.

In this book, however, the terms “stratification” or “stratified analysis” will
only be used in a second, more restrictive, way. This second usage is consistent
with the first in that the study population is divided into strata and information
is combined across groups. The restriction is that the basis for combining across

groups be some statistical criterion, such as maximum likelihood or minimum -

variance, without reference to any standard population.

Standardization and stratification are employed for two purposes: (a) to
provide summary statistics for comparing different populations with respect
to such items as mortality, price levels, or accident rates; and (b) to yield esti-
mators of the difference in rates or means between two populations or of the
relative risk (€) or odds ratio () that are unbiased, or at least approximately
so.

In Section 7.1 we present the principles of standardization for the simple case
of a cohort study with dichotomous risk and outcome factors. Some consider-
ations in the choice of a standard population and standardization procedure are
given in Sections 7.2 and 7.3, respectively; the bias and precision of standardized
estimators are discussed in Section 7.4; and the extension to case-control studies
is considered in Section 7.5. General formulas for direct and indirect stan-
dardization and more detailed bias considerations are given in Appendix 7A.

Stratification is introduced in Section 7.6 with emphasis on estimators of the
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odds ratio. The odds ratio estimators are considered in greater mathematical
detail in Appendix 7B. The extension of standardization and strati'ficatio.n to
numerical outcomes and multiple confounding factors is presented in Sections
7.7 and 7.8. _ o

If the confounﬁing variable is numerical, standardization and s'.cratlflcatlon
can be applied by first categorizing the confounding variable .(as in Taple ?.1
for the numerical confounding variable, age). The effects of this categorization
on the bias of the stratified estimators are discussed in Chapter 13. For now, it
is sufficient to note that the estimators will always be biased, even in la.rge
samples. Comments in this chapter on bias are for a categqrical confounding
variable (except when considering McKinlay’s work in Section 7.6.2). For the
case of a numerical confounding variable, Cochran’s work (1968) for frequency
matching (Section 6.7) gives some guidance for choosing the nu'mber and sizes
of the strata. Logit analysis (Chapter 9) and analysis of covariance (Chapter
8) are alternative procedures that do not require stratifying a numerical con-
founding variable.

7.1 STANDARDIZATION—EXAMPLE AND BASIC
INFORMATION

The data in Table 7.1 on breast cancer death rates among females aged 25
or older is based on work by Herring (1936, Tables I and II). In this case, the
risk factor is marital status with two categories, single (never married) and
married (including widows and divorcees), and the outcome is death due to b.rgas.t
cancer. The breast cancer death rates, per 100,000 population, of 15.2 for single
women and 32.3 for women who were ever married are called crude (or unad-
justed) death rates because they have not been adjusted for any possible con-
founding. Crude rates are calculated by simply ignoring any possible cgnfqundmg
factors. For example, the crude rate for single women is found by dividing the
average annual number of deaths due to breast cancer (1438) by the total pop-
ulation of single women (94.73). The crude relative risk of death due to breast
cancer is 2.1 = 32.3 + 15.2, purporting to indicate that women who marry are
more than twice as likely to die of breast cancer as are women who never
marry. .

An examination of the death rates by age—the age-specific rates—indicates
that age is an important factor. Age is a confounding factor in this circumstance
because death rates increase with age and the ages of married and single women
differ; the married women tend to be older (80% of the single women are younger
than 35 as compared to only 35% of the women who had married). (The defi-
nition of a confounding factor is given in Section 2.1.) A fair comparison of the
cancer death rates requires that age, at least, be adjusted for.

One approach to adjustment is direct standardization. This approach asks
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Table 7.1 Breast Cancer Mortality in Females in the United States (1929-

1931)
Single Women - Ever-Married Women All Women

Average Average Average

Annual Annual Annual

Breast Breast Breast

Cancer Cancer Cancer
death rate death rate death rate

1930 (per 1930 (per 1930 (per

Popuiation 100,000  Population 100,000  Populat;on 100,000
Age (yr) (100,000's) population) (100,000's) population) (100,000's) population)

15-34 76.15 0.6 89.57 2.5 165.72 1.6
35-44 7.59 249 61.65 17.9 69.24 18.7
45-54 T 522 74.7 . 46.67 43.1 51.89 46'2
55-64 343 119.7 31.11 70.7 34.54 75.5
65-74 1.88 139.4 18.14 89.4 20.02 94.1
275 ﬂ 303.8 7.80 137.7 8.25 146.8
Total 94.73 152 254.94 323 349.67 776
Average annual
number of 1438 8228 9666
deaths

how marny cancer deaths would have occurred if the age distribution for both
the married and single women had been the same as in some standard population
but the age-specific rates were the same as observed? In this example, a naturai
st'and'ard is the 1930 age distribution of all women in the United States. The
directly standardized cancer mortality rates are (per 100,000 population):

Single women:

(165.72) (0.6) + - - - + (8.25) (303.8) _ 15,131.27
349.67 = a0y B3

Married women:

(165.72) (2.5) + -+ - + (8.25) (137.7) _ 9257.95
349.67 T 34967

Single women have a higher age-adjusted mortality rate, and the directly
stan-dardlzed relative risk is P = 26.5/43.3 = 0.6, indicating that, after cbr-
recting for age differences, women who marry actually have a lower risk of dying
of breast cancer than do women who remain single. Note that 8P is the ratio of
the expeo?ted.numbers of cancer deaths in the standard population based on the
age-specific death rates for married women (9257.95) to the expected number

26.5.
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of deaths in the standard population based on the rates for single women
(15,131.27).

An alternative approach is indirect standardization. This approach asks how
many cancer deaths would have occurred among single women if the age dis-
tributions for the single and married women were the same as observed, but the
age-specific mortality rates had been the same as in some standard population?
As we will see in Section 7.3, when applying indirect standardization, it is best
to select the “standard population” to be one of the two groups being com-
pared.

The results of indirect standardization are often quoted as standard mortality
(or morbidity) ratios, which are ratios of the observed deaths for each category
of the risk factor to the expected deaths given the standard age-specific rates.
The indirectly standardized rate for each risk factor category is then found by
multiplying the standard mortality ratio for that category by the crude rate for
the standard population. (The rationale for this round about calculation of a
standardized rate is given in Section 7A.2.) Indirectly standardized relative risks,
61, are found as ratios of the indirectly standardized rates. In the special case
where the standard rates are taken to be those corresponding to one of the two
groups being compared, the standard mortality ratio itself turns out to be a
relative risk.

For our example, taking the standard rates to be the age-specific breast cancer

death rates for married women, the expécted deaths for single women are

(76:15) (2.5) + - - - + (0.45) (137.7) = 1023.8.

The standard mortality ratio is then 1.40 = 1438 < 1023.8, indicating that there
were 40% more deaths among single women than would have been expected if
their age-specific rates had been the same as for married women. The indirectly
standardized breast cancer death rate for single women is found by multiplying
the standard mortality ratio by the crude mortality rate for the married
women: ’

; (1.40)(32.3) = 45.2.

The indirectly standardized relative risk comparing married to single women
is then

The standard mortality ratio of 1.40 is the inverse relative risk, that is, of re-
maining single compared to getting married.

It is common for different standardization procedures to yield different
standardized rates and estimates of relative risk as occurred here. This em-
phasizes that the primary purpose of standardization is to provide a single
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summary statistic (mortality rates here) for each category of the risk factor so
that the categories may be compared. The numbers that are most meaningful
are the age-specific mortality rates, and standardization is not a substitute for
reporting the specific rates.

To emphasize this point further, look again at the specific rates in Table 7.1.
For women under the age of 35, married women have a slightly higher breast
cancer death rate than do single women; for women age 35 or over, single women
have the higher breast cancer mortality rate, and the difference and ratio of the
rates varies with age. This is an example of interaction between the confounding
factor age and the treatment effect (Section 3.3). This interaction is an important
fact that is not conveyed by the reporting of a single relative risk, standardized
or not. One consequence of this is that a different choice of a standard population
could have resulted in standardized rates that, like the crude rates, were higher
for married women than for single. The choice of standard thus becomes an
important issue. Some guidelines for choosing the standard will be discussed

in Section 7.2. Spiegelman and Marks (1966) and Keyfitz (1966) give examples

of how different choices for the standard population can affect the standardized
rates and relative risks. Keyfitz compares the 1963 female mortality rates in
11 countries using three different standard age distributions and finds that the
ranking of the countries depends on the choice of standard.

The direct and indirect methods are the most important standardization
procedures, but not the only ones. There are-'many standardized indices that have
been developed for particular fields. Kitagawa (1964, 1966) discusses many of
these alternatives, particularly with reference to demography.

7.2 CHOICE OF STANDARD POPULATION

The choice of standard population is, in general, a contextual decision. When
standardization is being’ employed for comparison purposes, there are two
commonsense guidelines for choesing the standard population. The first is to
use the data for the entire population that the study subjects are chosen from.
This was done for the breast cancer mortality example by using the data for all
women in the United States in 1930 as the standard for direct standardization.
If the population data are not available, an alternative is to combine all the risk
factor groups (i.e., take the standard population to be the entire sample being
studied). The rationale behind this alternative is that summing over the risk
factor should yield a “population” that approximates the real population of in-
terest. This approach will approximate the population well if the sampling
fractions in the risk factor groups are equal, or nearlyso; the approximation will
be poor, if, for example, the subjects in one category of the risk factor are all
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persons known to have been exposed to the risk factor and the subjects in the
second category are only a portion of those not exposed.

The second guideline is applicable in cases where all but one category of the
risk factor correspond to a treatment of some sort, and the remaining category
corresponds to the absence of a treatment. Then, the nontreatment category is
a reasonable choice of standard population. For example, when Cochran (1968)
standardized lung cancer rates for age, he chose the nonsmokers to be the
standard population. The cigarette smokers and cigar and/or pipe smokers were
two “treatment” groups.

As discussed in Section 7.1, the choice of standard can make a difference in
the comparison of risk factor groups. Therefore, it is important to report the
specific rates. If a single summary statistic is still required, the standard should
be picked to resemble the risk factor groups as much as possible, so as to preserve,
to the extent possible, the meaningfulness of the standardized comparison. For
the data of Table 7.1, for example, the 1960 age distribution of males in Mexico
would be an inappropriate choice of standard.

7.3 CHOICE OF STANDARDIZATION PROCEDURE

The choice of standardization procedure can depend on many considerations.
If the total sample size and specific rates for the categories of the risk factor are
known but the numbers of individuals at each level of the confounding factor
are not known, then directly standardized rates can be calculated but indirectly
standardized rates cannot. Conversely, indirectly standardized rates can be
calculated if the specific rates are not known but the total number of deaths
(outcomes) and the specific rates for the standard are known.

There is one important caution regarding indirect standardization. It is pos-
sible to have two categories of the risk factor with identical specif;c rates but
different indirectly standardized rates. To see this, consider the artificial data
in Table 7.2, with three risk factor groups and two categories in the confounding
factor. The specific rates for the first two risk factor categories are identical so
a proper adjustment procedure should yield a relative risk of 1.0. The crude rates
are 0.82 for the first category and 0.18 for the second, so the crude relative risk
is 4.56, reflecting the very different confounding factor distributions in the twa
groups being compared.

Now consider the direct and indirect standardized relative risks with the total
of the three risk factor groups as the standard population. Following the pro-
cedures of Section 7.1, the directly standardized rates for the first two risk factor
categories are both 0.50, so the directly standardized relative risk is 1.0. The
indirectly standardized rates are 0.62 for the first risk factor category and 0.26
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Table 7.2 Artificial Data to Demonstrate Comparability Problem of
-Indirect Standardization

Risk Factor Category
1 2 3 Total
Confounding Factor  Sample Sample Sample Sample
Category Size Rate Size Rate . Size Rate Size Rate
1 900 09 .100 0.9 1000 0.5 2000 0.7

100 0.1 900 0.1 1000 0.5 2000 0.3

for the second, yielding an indirectly standardized relative risk of 2.38. This result
is more reasonable than the crude relative risk of 4.56, but still not good. The
indirect method would only have worked in this example if the specific rates in
the standard population happened to be the same as for categories 1 and 2 of
the risk factor.

Indirect standardization is best used only for comparing two groups when one

of those groups is the standard. In that case, the two methods of standardization-

are equivalent, in the sense that equal estimates of § can be obtained by particular
choices of the standard for each method. In addition, the indirectly standardized
rates will be equal if all the specific rates are equal. Mathematical details are
given in Sections 7A.3 and 7A 4.

7.4 STATISTICAL CONSIDERATIONS FOR
STANDARDIZATION

As with other adjustment techniques, standardized estimation of treatment
effects is most meaningful when the treatment effect is constant over the con-
founding factor strata [i.e., when there is no interaction (Section 3.3)]. In this
section we will consider the bias and precision (variance) of the standardized
estimators of the constant treatment effect, whether relative risk or differénce
of rates.

7.4.1 Bias

If the difference in risk factor rates is the same for each category of the con-
founding factor, direct standardization yields unbiased estimates of the difference
between the risk factor rates. For estimating the relative risk, if the sample
relative risks are the same, say 8, within each category of the confounding factor,
then the directly standardized estimate of relative risk is also equal to § (as
demonstrated in Section 7A.3.1). This implies that the directly standardized
relative risk will be approximately unbiased in large samples.

In general, the indirectly standardized estimators of both parameters are
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biased. An exception occurs when comparing two groups by means of relative
risk and one of these groups is the standard (see Section 7A.4). Indirect stan-
dardization does not yield unbiased estimates of the difference between the rates
because the standard mortality ratio is a ratio.

7.4.2 Precision

Indirect standardization has been found to be more precise than direct stan-
dardization for estimating rates (Bishop, 1967) and relative risks (Goldman,
1971). Goldman. further showed that the precision of directly standardized
relative risks could be improved by first applying the log-linear model technique
(Chapter 10) and then directly standardizing using the fitted rates. Details are
presented in Bishop (1967), Goldman (1971), and Bishop et al. (1974, Sec.
4.3). ‘

7.5 EXTENSION OF STANDARDIZATION TO CASE-
- CONTROL STUDIES

Since we cannot estimate rates directly (see Section 3.1), much of the previous
material is not applicable to case-control studies. We must instead ask how to
obtain a standardized estimate of the odds ratio. Miettinen (1972) developed
a procedure motivated by the idea, presented in Section 7.1, that the standardized
relative risks are ratios of expected numbers of deaths (or other dichotomous
outcomes). For case-control studies, Miettinen proposed using the ratio of the
expected numbers of cases in the two risk factor groups, where the expectation
is based on a standard distribution of numbers of controls. Letting Cg, a4, and
¢, denote standard numbers of controls, observed numbers of cases, and ob-
served numbers of controls, respectively, where k denotes the catggories of the
confounding factor and r the categories of the risk factor (r = 1 if the risk factor
is present; r = 0 if not), the standardized estimator of the odds ratio is

K
P Cr(ax/c1k)

{pM ==
K
k; Cr(aor/cox)

To see that \,AbM is the ratio of the “expected” number of cases in the two risk
factor groups, let 4,4 be the number of cases corresponding to Cy controls in
the risk factor present group. To find 4, set the ratio of expected numbers of
cases to controls equal to the observed ratio

Ak _ 21k
Ce Cue
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and solve for 4 :

Craix
Ay =——.
Clk
Similarly,
Craor
Aoy =—.
Cok

Summing A4, over the K confounding factor strata yields the total number of
expected cases, the numerator of Y#. The ratio Y/ then compares the number
of cases expected in the risk-factor-present group to the number expected in the
risk-factor-absent group, based on the same standard distribution of controls
(the Cx). Considerations in the choice of standard, discussed in Section 7.2, apply
here as well. .

Miettinen shows that /™ can be written as a weighted average of the odds
ratios from each of the K confounding factor strata (the specific odds ratios).
Therefore, if the odds ratios, ¥4, are constant over all categories of the con-

founding factor, Y™ will be an approximately unbiased estimator of y in large
samples (within each stratum). ;

7.6 STRATIFICATION

The method of stratification differs from standardization in that a statistical
criterion, such as minimum variance, rather than a standard population, is the
basis for combining across confounding factor strata. In this section we will cover
the best-studied case of stratification, that of estimating the odds ratio for di-
chotomous risk and outcome factors in either cohort or case-control studies.
Throughout Section 7.6 it will be assumed that the odds ratio is the same in all
the confounding factor strata. The formulas for the various estimators are

presented in Appendix 7B. Stratified estimation of the difference of means is
covered in Section 7.7 o

7.6.1 Estimators of the Odds Ratio

A large number of estimators of the odds ratio have been proposed. Gart
(1962) presented the maximum likelihood estimator and (1966) a modification
to Woolf’s (1955) estimator (the “modified Woolf” estimator). Birch’s (1964)
and Gart’s (1970) estimators are approximations to yet another estimator, the
conditional maximum likelihood estimator (Gart, 1970). Goodman (1969)
Qroposcd approximations to the maximum likelihood and conditional maximum
likelihood estimators. A well-known estimator is that of Mantel and Haenszel

(1959).
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There are two different maximum likelihood estimators, usual and conditional,
because there are two different sampling situations to be considered. As the
theoretical properties of the various estimators depend on which sampling sit-
uation is appropriate, we must begin with an explanation of the two cases, spe-
cifically emphasizing what is meant by a large sample in each of the two
cases. '

Consider the situation where, within each confounding factor stratum there
is some number of subjects in each of the two study groups, and suppose tha.
we wish to add more subjects so as to increase the total sample size. Then, there
are two choices: more subjects can be added to the existing strata; or new strata
can be added with corresponding, additional subjects.

The first case is the most commonly considered. Often the number of strata
is fixed by the nature of the situation. For example, if the confounding factor
was sex, the number of strata are fixed at two and the sample size can be in-
creased only by adding more males and females. In such a situation, “large
sample” means that the sample sizes in each study group within each strata are
large, regardless of the number of strata.

Consider now a study that is conducted cooperatively in many institutions,
and suppose that institution is the confounding variable of interest. Each stratum
will then consist of the subjects from a particular institution. In this study a larger
sample could be obtained in two ways. The first would be as above, namely
adding subjects from each currently participating institution. The second is to
add more institutions and select subjects from the new institutions. For every
additional institution there will be an additional stratum for the confounding
factor. “Large sample” in this second case means that the number of confounding
factor strata is large, regardless of the sample sizes within each stratum.

To summarize, there are two definitions of large sample. In the first, the
sample sizes within each stratum are large; in the second, the number of strata
are large. This distinction is important because estimators can behave differently
in the two cases. In particular, the properties of the (usual) maxinjum likelihood
estimator apply only in the first case. The second case requires a different esti-
mator, the conditional maximum likelihood estimator. Each maximum likelihood
estimator will be approximately unbiased and normally distributed in large
samples.as defined for the appropriate sampling scheme (Gart, 1962; Andersen,
1970).

The numerical difficulties in solving for the conditional maximum likelihood
estimator led Birch (1964) and Goodman (1969) to propose approximations
that are easier to calculate. The Birch and Goodman estimators are unbiased
in large samples only if the odds ratio is 1. In terms of bias considerations, the
conditional maximum likelihood estimator is therefore preferable. Gart’s (1970)
approximation to the conditional maximum likelihood estimator is applicable
if the sample sizes within each stratum are large. This approximation will be
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approximately unbiased when both the number of strata and sample sizes within

each stratum are large. Although the unbiasedness holds for any value of the

f)dds ratio, rpquiriqg both the number of strata and the samiple sizes to be large
18 very restrictive.

The (1_15ual) maximum likelihood estimator that is appropriate when the
samp.le_51zes are large within each stratum is the basis of comparison for the
Temaining estimators. In the appropriate large samples, this estimator is ap-
proximately unbiased and no other unbiased estimator has a lower variance. In
large samples, then, this is a good choice of estimator. .

Woolf’s (1955) estimator is equivalent, in the sense of having the same
la‘rge-sample distribution, to the maximum likelihood estimator. However, as
“.u_ll be shown in detail in Section 7B.2, this estimator cannot be calculateéi if
either of the observed proportions in any stratum is 0 or 1. In practice this means
ic Woolf estimator will be virtually useless when dealing with rare outcomes
in cohort studies or rare risk factors in case-control studies.

Gart (1966) suggested a modification to the Woolf estimator that does not
suffe‘r from this problem while retaining the large-sample equivalence to the
rna)‘umum‘ likelihood estimator. There are thus three estimators thét are
Equ.lvalent in large's.amples: the maximum likelihood, Woolf, and modified Woolf
instslen;:etlit(());sig;at is known about their small-.sample properties is considered

The Ma{ltel—Haenszel (1959) estimator is also approximately unbiased and
norm.:fllly distributed in large samples (large within each stratum), but its vari-
ance is larger than that of the maximum likelihood estimator unless the odds
ratiois 1 (Hauck, 1979). In large samples, then, one of the three equivalent es-
timators noted above would be preferable to the Mantel-Haenszel estimator.

7.6.2 Comparisons of Odds Ratio Estimators

Using simulation, McKinlay (1975) compared the bias, precision, and mean
squared error of the modified Woolf, Mantel-Haenszel, and Birch ’estimatbrs
for the case of a numerical confounding variable that is stratified into various
n}lmbers of strata. As mentioned earlier, all the standardized and stratified es-
Flm?ltors will be biased in such a case, even in large samples. McKinla ’s work
is discussed in greater detail in Section 12.2.2, ’ ‘

Bascd. on the mean squared errors of the estimators, McKinlay recommended
thq modified Woolf estimator, but with some reservations. The modified Woolf
f:stlmator h:as a smaller variance than the Mantel-Haenszel estimator and this
is r.eﬂectec.i In the mean squared errors. However, the bias of the modifi;:d Woolf
estimator increases with increasing number of strata. McKinlay noted that “onl
Mantel and Haenszel’s estimator consistently removed bias in all the simulatcc)il
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situations considered—a property which is masked in this investigation by the
relatively large variance” (p. 863). In terms of bias removal, then, the Man-
tel-Haenszel estimator is to be preferred. In addition, the difference in mean
squared errors between the Mantel-Haenszel and modified Woolf estimators
became negligible for the large samples (total sample size of 600) in McKinlay’s
study.

In an unpublished study, W. Hauck, F. Leahy, and S. Anderson addressed
the question of whether McKinlay’s 1975 results are applicable to the case of
a categorical confounding factor where the estimators would be approximately
unbiased in large samples. This study was patterned after McKinlay’s 1975 study
and compared the modified Woolf, Mantel-Haenszel, and (usual) maximum
likelihood estimators. In terms of bias, the modified Woolf was least and max-
imum likelihood most biased, except for increasing values of the odds ratio and
large sample sizes where the Mantel-Haenszel estimator was the least biased
and the modified Woolf the most. However, the bias was small for all three es-
timators for the sample sizes and number of strata considered by McKinlay. In
terms of variance and mean squared error, the modified Woolf was more precise,
sometimes considerably so, than the other two and the maximum likelihood
estimator least precise. :

In another simulation study with a numerical confounding factor and large
samples (total §amplc sizes of 200 to 1000), McKinlay (1978) compared the
Mantel-Haenszel estimator, Gart’s (1970) asymptotic approximation to the
conditional maximum likelihood estimator, and the modified Woolf estimator.
The results for the modified Woolf and Mantel-Haenszel estimators were similar
to her 1975 results, namely that the Woolf estimator was usually most precise
but ihat its bias tended to increase with increasing numbers of strata from 2 to
10, while the Mantel-Haenszel estimator was preferable in terms of bias, par-
ticularly for the larger number of strata. The Gart estimator, a close approxi-
mation to the conditional maximum likelihood estimator in the cages considered
by McKinlay, was never better than the Mantel-Haenszel estimator in terms
of either bias or precision.

The three studies agree that“on purely bias considerations, the Mantel-
Haenszel estimator is best, selected over the modified Woolf estimator on the
grounds of consistency. If precision is taken into account by considering mean
squared error, then, for the cases considered, the modified Woolf estimator is
best.

This is an example of a common statistical problem of making a trade-off
between bias and precision. Since the modified Woolf estimator is sometimes
considerably more precise, and since the biases of all the estimators considered
are not large, this would seem to be the estimator of choice. What is of concern,
however, is the tendency for the bias of the modified Woolf estimator to increase
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w'1th Increasing number of strata for a given total sample size and with increasing
distance of the odds ratio from the null value of 1. This implies that the modified
Woolf estimator is more sensitive to the sample sizes within each stratum than
1s the Mantel-Haenszel estimator. Consequently, the modified Woolf estimator
can be clearly preferred only for a small number of strata with large sample sizes

WI:tI.nn each stratum; otherwise, the Mantel-Haenszel estimator is a good
choice. :

7.7 STANDARDIZATION AND STRATIFICATION FOR
NUMERICAL OUTCOME VARIABLES

The‘standardization results of Sections 7.1 to 7.3 and Appendix 7A apply to
n_u.rm?rlcal.outcome variables with mean responses replacing the rates. The
p_rmf:lpal difference in using a numerical outcome is that interest generally 'shifts
to dlfferences, such as the difference in means, instead of ratios, such as the
relative risk. If the mean treatment difference 7 = o) — o is cons’tant over all
lg?vels of the confounding factor, direct standardization will yield-unbiased es-
timates of the treatment effect. As with the difference of rates, indirect stan-
dardization yields biased estimates. ' ’

Stratified estimators of the mean treatment difference have the form of a

weighted combination of the difference of means withi i
in each of t
factor strata: he confounding

To minimize the variance of the stratified estimator, the weights, the vy, are -
.ch,o_s.en, where possible, inversely proportional to the variance of I_’; k= I_’o;( In
the simplest case, the variance of each observation is constant in both risk fac;tor
groups and in all confounding factor strata. Then

1

1 -1
vp =—+—] .
(”Ok nlk) -1

Kalton (1968) discusses the choice of the weights in detail, including the use

of estimated variances. If the weights are constants; such as in (7.1), the stratified

estimator will be unbiased. If the weights depend on the sample data, as by the

use of estimated variances, the stratified esti i i
ted var ) mators are biased, but the b i
become negligible in large samples. el
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7.8 EXTENSION TO MORE THAN ONE CONFOUNDING
FACTOR

More than one categorical confounding factor can easily be handled by
treating them together as one confounding factor. For example, two dichotomous
confounding factors can be combined to form a single four-category confounding
factor. However, as the number of confounding factors increases, the number
of categories in the combined confounding factor can grow very quickly. This
leads to the problem of small numbers in each category of the confounding factor
and consequently, poorly determined specific rates or means.

There are really only two solutions to this problem. The first is to be selective
in choosing confounding factors to adjust for. The second is to first apply the
log-linear model technique (see Section 7.4.2). An extreme situation is that the
number of categories in the combined confounding factor may be so large that
some of the sample sizes on which the specific rates would be based are zero.
Direct standardization cannot then be applied. Application of log-linear analysis
eliminates the zeros.

Indirect standardization is frequently advocated because it is more precise
than direct standardization, particularly in the presence of small numbers. This
is true because indirect standardization does not use the specific rates, which
will be poorly determined in small samples. As elaborated upon earlier, the
general use of indirect standardization is not recommended. However, if there
are too many confounding factor categories and many zeros, precluding the use
of direct standardization, indirect standardization can still be applied and be
better than the crude rates.

For purposes of stratification, Miettinen (1976) has proposed a method for
reducing a set of confounding factors, whether numerical or discrete, to a single
numerical confounding factor. The resulting confounding factor, “confounder
score” in Miettinen’s terminology, can then be categorized and the procedures
of Section 7.1 or 7.6 applied. This method may be applied to eitHer cohort or
case-control studies, as long as both the outcome and risk factors are dichoto-
mous.

The basis of Miettinen’s proposal, as for discriminant matching (Section
6.10.4), is to use a discriminant function to distinguish (discriminate) between
cases and noncases. This discriminant function depends on the value of the risk
factor and the confounding factors. (This is stated for eohort studies; for case-
control studies, distinguish instead between the risk-factor-present and risk-
factor-absent groups. The discriminant function will then depend on the values
of the outcome and the confounding factors.) The confounder score for each
individual is obtained by evaluating the discriminant function for that person,
assuming that the person is in the risk-factor-absent group, regardless of which
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risk factor group he or she is actually in. (For case-control studies, the function
is evaluated assuming the person to be a control.) The motivation for this method
is that the confounder score is a single variable that may be interpreted as a risk
score that takes into account all variables except the risk factor.

7.9 HYPOTHESIS TESTING

In conjunction with the estimation problem, it is frequently desired to test
the hypothesis that the risk factor has no effect on the outcome. Testsof § = 1
based on standardized relative risks can be done by using a standard normal
distribution test. The necessary standard error formulas are given by Chiang
(1961) and Keyfitz (1966).

Tests for the odds ratio related to stratified estimators are due to Mantel and
Haenszel (1959) and Gart (1962), the latter being related to Woolf’s estimator,
and for the difference of rates due to Cochran (1954). The odds ratio procedures
allow us to test whether the odds ratio is the same in all confounding factor strata
(i.e., test whether the no interaction assumption is valid), and then whether the
common value of the odds ratio differs from 1. Cochran’s procedure does the
same for the difference of rates, testing whether the common value of the dif-
ference differs from zero. Alternatives are likelihood ratio tests in log-linear
analysis (Chapter 10). Much of this material is reviewed by Gart (1971), whose
paper contains an extensive bibliography, and by Fleiss (1973, Chap. 10).

APPENDIX 7A° MATHEMATICAL DETAILS OF
STANDARDIZATION

At this point, the assumption of a dichotomous risk factor will be loosened
to allow a general categorical risk factor. It will still be assumed that the response
is dichotomous, so that the discussion will be in terms of rates, and that the data
were obtained from a cohort study. No assumption is made regarding the choice
of the standard population. It may, for example, correspond to one of the cate-
gories of the risk factor.

7A.1 Notation

Let R and K denote the number of categories in the risk factor and con-
founding factor, respectively. Lowercase letters, r and &, will be used as the
corresponding indices. Let Drk denote the observed rate based on #,; individuals
for the rth category of the risk factor and the kth category of the confounding
factor. For the example in Table 7. 1, there are R = 2 categories of the risk factor
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marital status, K = 6 categories of the confounding factor age, ar_1d, for example,
nyp = 76.15 X 10° women in the group corresponding to the flr_st‘catcgory of
marital status and the first category of age, and py¢ = 137.7 X 1073 is th.e breast
cancer death rate for women in the second marital stat}ls category and sixth age
category. The standard population has N individuals in thg kth category of the
confounding factor, with a corresponding rate of P,. If an index is replaced by
a dot, it indicates summation over that index. For example,

K
ne = 3 e
k=1
The crude rate for the rth category of the risk factor is then found as

1 X
pr(': = Z RrkDrik,
N k=1
and for the standard population it is
L f NP
P=— 2D
N. k=1
7A.2 Computation of Directly and Indirectly Standardized Rates

The directly standardized rate for the rth category of the risk factor is

1 X
pP == Nipr-
) N k=1 ]
The standard mortality ratio (SMR) is
K
2 MrkPri c

SMR, =% = Pr .,

K K
2 naPr (3/n) 3 naPy
K= =1

and the indirectly standardized rate is
pl=SMR, X P.
We can see here why the roundabout calculation of indirectly standardized

rates, beginning with the computation of the standard mo;tality ratio, is nec-
essary. The straightforward analog of direct standardization would be to use

1 K
— 2 naPr
Ry k=1

as the indirectly standardized rate. This, however, is the rate for the standard
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population directly standardized to the confounding factor distribution in the
rth category of the risk factor and so is-not a rate that reflects the influence of
the risk factor category. The standard mortality ratio acts as a correction factor
to the standard population rate, P. The standard mortality ratio is the ratio of
observed to expected deaths in the rth risk factor group, where the expectation
is with respect to the standard population specific rates. The standard mortality
ratio, then, indicates how much P should be changed to reflect the specific rates
in the risk factor group. ’

7A.3 Bias of Indirect Standardization

The bias and consequent interpretability problems of indirect standardization
are sufficiently important to be elaborated further. Estimation of the relative
risk, 0, and difference of rates, A, are considered separately. In Section 7A 4,
the one case where the bias of the indirectly standardized relative risk can be
eliminated is given.

7A.3.1 Relative Risk. We will show that when the relative risk is constant -

and equal to & within each category of the confounding factor category, direct
standardization will be unbiased in large samples. On the other hand, the indi-
rectly standardized relative risk can remain biased, no matter how large the
samples.* :

Consider a two-category risk factor—present (» = 1) and absent (r =0)—and

an arbitrary standard population. From Section 7A.2 the directly standardized
relative risk is

Z Nipix
R ) (7.2)
2 Nipox
k=1
and the indirectly standardized relative risk is

| _SMR,
SMR,

L

=

o—

p

M=

K
lnlkplk kZ ny Py
=1
= : (7.3)

K
noxPok kZ norPy
=1

x
]

T

* To be precise, direct standardization yields a consistent estimate of 0, indirect standardization
does not. :
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Suppose that the sample relative risks within each category. of the confqunding
factor are all equal to 8, thatis, p1z = 8pox for all k. (This will be approximately
the case in large samples within each stratum.) Then we have, from (7.2),

K
2. Nebpor
o=t =y,

K
> Nipok
k=1

regardless of the choice of standard population. Direct standar.dization i.s do.ing
the right thing by yielding the common value, 0, as the standardized relative risk.
For the indirectly standardized relative risk, on the other hand, we have from

(7.3):

X X
3 nlprk/kZ1 ny Py

~ k=1 =

I — ’

=0 - P
2. noxPok / kZl noxPr
=1 =

which is not, in general, equal to 8. If, instead, we take the standard population
to be one of the risk factor groups, say r = 0, so that P, = poy for all k, we
have : .

K
kZ nikPik
~ =1
b =

n1kPok

T M=

M=

nikPort
k= _ 8. ’

K
2. nigpPok
£=1

The result of this section, taken together with the result to be prescpted. in
Section 7A.4, says that there is only one case where indirqct st.andardllzatlon
does the right thing in terms of properly estimating the relative risk, but in tl.lat
case the same answer can be obtained by direct standardization. From a bias
point of view, there is thus no reason for choosing indirect stanfiardization.

7A.3.2 Difference of Rates. Now consider direct and indirect standard-
ization as estimators of the difference of rates. For direct standardization,

K .
> Ne(pix — pox)-

: 1
D_ D__1
P1 — Do N &
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If the expected value of P1k ~ Pok is some constant A for each category of the
confounding factor, then the difference of the directly standardized rates is an
unbiased estimator of A for any sample size. »

For indirect standardization, the difference of standardized rates is

P~ pb=P(SMR, — SMRy,)

K K
2 nuPik Y noxpox
k=1 . k=1

=P (7.4)

K K
2 niePr 2 noPr
k=1 ) k=1

The expectation of this difference will be something other than A regardless of
the sample size, except for one very special case.

Take the standard to be the risk-factor-absent group, as in Section 7A.3.1.
Although the difference of indirectly standardized rates is still biased, the form

of the estimator is informative. Substituting poy for P, and p§ for Pin (7.4),
we obtain

K
2 nu(Pik — pox)

2_ MixPok
k=1

Now suppose that, for all &, Pk — Pox = A, as would be approximately the case
in large samples. Then,

K
(1/no) /;1 nokPok
(1/n1) k§1 R1xDok

This means that, in large samples, p} — b will be biased unless A = 0, and that
the greater the confounding, the greater the bias. [The term in brackets in (7.5)
can be viewed as a measure of the extent to which the confounding factor dis-
tribution in the two risk factor groups differ.]

7A.4 Equivalence of Direct and Indirect Standardization

Whether or not the relative risk is constant within each category of the con-
founding factor, as was assumed in Section 7A.3, direct and indirect standard-
ization are equivalent if the standard population is taken to be one of the risk
factor groups. First, equivalent means that, by choosing the standard appro-
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priately for each type of standardization, the two methods will yield the same

estimate of the relative risk. _
Suppose that the risk-factor-present group (» = 1) is chosen as the standard

for direct standardization. Then,

Ny =n for all &,

and consequently,

PP =pf.
For the risk-factor-abscnt group,
1 K
P =— 3 nupok
ni. k=1
and therefore
K
2. NPk
A k=1
D=
g K
2. MikDok

If the other risk factor group, the risk-factor-absent group (» = 0), is chosen as
the standard for indirect standardization, then

Pr = pox for all &

and
C
PE) = Po-
For the risk-factor-present group,
X 4
2. nkPik
| o pC k=l .
P1= Do P
2. MiPok
k=1
and therefore
K
ni1kP1k
fr =1 = fp.
) K
> nikPok
k=1

Note, however, that neither the two sets of standalrdizcld ratcg nor ghcir differ-
ences are equal; that is, pb = p®, p! # p?, and pl — p} = p? — p?.
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APPENDIX 7B STRATIFIED ESTIMATORS OF THE ODDS
RATIO

I.n this appendix various mathematical details regarding the five prineipal
estimators—maximum likelihood, conditional maximum likelihood, Woolf,
modified Woolf, and Mantel-Haenszel—of the odds ratio will be given. The

estimators due to Birch and Goodman will not be considered, since they are not:

approximately unbiased in large samples.

The notation for sample quantities is given in Section 7A.1. In addition, the
population rate for the kth confounding factor category and rth risk factor
category is denoted Py, (r = 0, L and k = 1, .. ., K). The no-interaction as-

sumption is that the odds ratio is the same in each confounding factor
stratum: '

_ PriQox

= fork=1,---K, .
O11Pox (7.6)

where Oy = 1 — Py

7B.1 Maximum Likelihood and Conditional Likelihood Estimators

The likelihood (ignoring the binomial coefficients) is
K et 3 s -5
L= ] PQil PO,
k=1

where the s« are the numbers of “successes” (p,x = syx/frx). In this form there
appear to be 2K parameters to estimate, the P, but actually there are only K
+1 1ndepen'dent parameters, owing to the no-interaction assumption (7.6). To
reparametrize, let v denote the natural log of the odds ratio y and let

1k

P
pk=ln(—) fork=1,..- K.
Ok

The natural log of the likelihood is then

K
l= Z:l [s160% + m1x In Q1 + sox(px — ¥) + nox In Qokl, ()

where the Q¢ are functions of -y and the pg.

The (usual) maximum likelihood estimator of vy is found by differentiating
(7.7) with respect to -y and the px and then solving for the K + 1 unknowns. If
the sample sizes within each stratum, the n,, are all large, the maximum like-

lihood estimator of -y, ¥mr, Will be approximately normally distributed with
mean 7y and variance W~1 (Gart, 1962), where
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W= k§1 [(noxPoxQox) ™" + (nixP1xQue) 174 (7-8)

The maximum likelihood estimator of the odds ratio y is

Yume = exp(Ym),

which will be approximately normally distributed with mean ¥ and variance
2/ W. The variance of Y. can be estimated by replacing each P in (7.8) with
the corresponding pr«.

This maximum likelihood estimator is identical to that obtained by logit
analysis (Chapter 9), using the method of Section 9.8 to handle a confounding
factor with more than two categories.

In the alternative asymptotic case, where the number of categories, K, in-
creases, the maximum likelihood estimator given above is not appropriate; as
the number of categories increases, the number of parameters also increases,
violating one of the assumptions required for the properties of maximum like-
lihood estimators to hold. In such cases, an alternative maximum likelihood
estimator, the conditional maximum likelihood estimator, is appropriate. The
term “conditional” comes from the fact that this procedure is based on the
likelihood of ¥ conditioned on the sufficient statistics for the K nuisance pa-
rameters, the pg. This likelihood is (Gart, 1970)

Stk \bk — S1k

min(‘l\_f:.mk) (nl.k) ( ok ) .‘J/j
Jj=max(0,tx~nox) \ J Ik —J
where 1 = s + Sox 18 thcAsufﬁcicnt statistic for px. The conditional maximum
likelihood estimator of ¥, Ycmu, is that value of  which maximizes L. Thomas
(1975) considers the numerical problem of solving for the maxim'}zing value.

Andersen (1970) considers the properties of conditional maximum likelihood
estimators in general. Applying his results to this problem, we obtain that YomL
will be approximately normally distributed with mean Y when K is large. The
variance formula is not illuminating; the variance can be estimated as the re-
ciprocal of the second derivative of —L". '

Birch (1964) showed that Ycmu is the solution of a polynomial equation that
involves an expectation taken with respect to the conditional distributions in
(7.9). Gart’s (1970) approximation to the conditional maximum likelihood es-
timator is based on approximating this expected value by using a large sample
(large n,x) approximation. This estimator, Yamy (A for asymptotic), is the so-
lution to

K
L= H (79)
k=1

, K
V s1= 2§
k=1
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where s = Y X,-, 514 and each §, satisfies

Silnor — ti + 8k) _ Dant
(tx — Sk )(mip — 3¢)

Again, Thomas (1975) considers the numerical problems of solving for
VAML.

Gart’s approximation to the conditional maximum likelihood estimator does
require large n, to be valid, but, unlike the approximations due to Birch and
Goodman, is valid for all value of the odds ratio, not just y = 1.

7B.2 Woolf and Modified Woolf Estimators

The estimator of the log odds ratio proposed by Woolf (1955) is a weighted
average of the estimators of the log odds ratio from each of the strata:

K A
2 wik¥k
N k=1
Yw =—"————
w
where
4 =In Preqor) _ n [Fretnor = soi) (7.10)
ChkPOIc} l(nlk — S1k)Sok
wi = [(noxporgor) ™" + (miapiagie) =11}
_1 ok + Bik -1
lsok(nox = sox) ~ s1(nix = 110
K o
w = Z Wk. (7.11)

k=1

wi! is an estimate of the variance of 44, so the Woolf estimator is based on
weighting inversely proportional to the variance.

From (7.10) it is clear that the Woolf estimator cannot be calculated if any
Pri OF grg is zero. A modification that avoids this problem is based on work of
Haldane (1955) and Anscombe (1956). They independently showed that a less

biased estimator of the log odds ratio from the kth confounding factor stratum
is

n (s1x + 0.5)(nox — sox + 0.5)].
(mi — s1x + 0.5)(sor + 0.5)]”

that is, just add 0.5 to each of the four quantities in the sample odds ratio formula.
Ga;t (1966) suggested a modified Woolf estimator of the form

=1 (7.12)
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K oAt
> Wik
2 k=
YMw = w
where

. nox+ 1 + met1 . ]_1
Wk = l(sok + d.S)(nok — s+ 0.5) (51 +05) (g —sue t 0.5)]

K I3
w=3 wp (7.13)
k=1

The results of Gart and Zweifel (1967), who considered various estimators of
the log odds and estimators of the variances of the log odds estimators, suggest
that (wy)~" is generally the least biased estimator of the variance of & [An
alternative modification to the weights, not considered here, was suggested by
Haldane (1955).] , :

For the asymptotic case of large n,, the Woolf and modified Woolf estimators
have the same large-sample distribution as the maximum likelihood estimator.
In particular, the asymptotic variances are equal, so the two Woolf estimators,
as well as the maximum likelihood estimator, are asymptotically efficient. Es-
timated variances for the Woolf and modified Woolf estimators are w1 (7.11)
and (w)~! (7.13), respectively.

7B.3 Mantel-Haenszel Estimator

Mantel and Haenszel (1959) proposed the estimator

I = f sik(nox = sox) / X (nix = SiedSok
= 3 ST SO
M k=1 R+ nok k=1 Nkt Rox
K mpu
=y Zk¥k, ,
k=1 m

where

il
my=|—+—"| qiePok

Nk Nok
K
m= Y mg.
k=1

Hauck (1979) has shown that if the n, are large, the Mantel-Haenszel estimator
is approximately normally distributed with mean Y and variance

K
y? kZl MiWy!

Ve (7.14)
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where .
1 1
M= |—+—| 01xPox
M1k Nok
K
M=% M
k=1

Wi' = (noxPorQoik)~! + (1P Qrp)~ L.

A sufficient condition for the variance of the Mantel-Haenszel estimator (7.14)
to be equal to that of the maximum likelihood estimator W/ wyisy = 1.
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In this chapter we consider an adj
is ch adjustment strategy that is a i
studies with a numerical outcom o et or iy o

e factor, a categorical treatment (or risk) f;
. _ , actor,
anddalnumerlcal con-foundmg factor. Under these conditions, the general linear
model can be applied to the problem of estimating treatment effects. The

analysis of covariance (ANCOV A repr i icati i
e ot ) represents the main application of the linear

8.1 BACKGROUND

The general linear mode] r
(weighted sum) of measured
are all numerical, the linea
variables are all categorical

epresents the outcome value as a linear combination
variables. G_enerally speaking, when these variables
r model is called a regression model. When the
» We refer to the analysis of variance (ANOVA).
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While both regression and analysis of variance can be formally subsumed under
the general linear model, the two techniques have traditionally been treated as
distinct. This historical separation occurred for two reasons. First, before
high-speed comptters were in general use, computational aspects of statistical
techniques were of much interest. The most efficient computational procedures
for regression and ANOVA were quite different. Second, the two methods
tended to be applied to different sorts of problems.

The analysis of variance is usually thought of as a technique for comparing
the means of two or more populations on the basis of samples from each. In
practice, these populations often correspond to different treatment groups, so
that differences in population means may be evidence for corresponding dif-
ferences in treatment effects.

The ANOV A calculations involve a division of the total sample variance into
within-group and between-group components. The within-group component
provides an estimate of error variance, while the between-group component
estimates error variance plus a function of the differences among treatment
means. The ratio of between- to within-group variance provides a test of the nuil
hypothesis that all means are equal. Moreover, the differences among group
means provide unbiased estimates of the corresponding population mean dif-
ferences, and standard errors based on the within-group variance provide con-
fidence intervals for these differences and tests of their significance.

Regression analysis, on the other hand;is primarily used to model relationships
between variables. With it, we can estimate the form of a relationship between
a response variable and a number of inputs. We can try to find that combination
of variables which is most strongly related to the variation in the response.

The analysis of covariance represents a marriage of these two techniques. Its
first use in the literature was by R. A. Fisher (1932), who viewed the technique
as one that “combines the advantages and reconciles the requirements of the
two very widely applicable procedures known as regression and analysis of
variance.” ’

Combining regression and ANOVA provides the powerful advantage of
making possible comparisons among treatment groups differing prior to treat-
ment. Suppose we can identify a variable X that is related to the outcome, Y,
and on which treatment groups have different means. We shall assume for
simplicity that X is the only variable on which the groups differ. Then, if we knew

the relationship between Y and X, we could appropriately adjust the observed
differences on Y to take account of the differences on X.

8.2 EXAMPLE: NUTRITION STUDY COMPARING URBAN

AND RURAL CHILDREN

Greenberg (1953) described a nutrition study designed to compare growth
of children in an urban environment with that of rural children. Data were ob-



