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Before presenting the various methods for controlling bias, we will raise several 
important caveats. The basic theme of this chapter is that the validity of any 
statistical adjustment rests on a set of assumptions which may be difficult to 
verify. In addition to an understanding of technical details, judgment is required 
in order to apply these techniques properly. Since a certain amount of practical 
experience is necessary to develop good judgment, we can offer no simple for- 
mulas. However, we can point out the major problems that arise in practice and 
some general approaches which are helpful in dealing with them. 

5.1 OMITTED CONFOUNDING VARIABLES 

In order to obtain a valid estimate of the treatment effect, the analyst must 
be sure that the variables used for adjustment include.al1 important confounding 
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factors. In Chapter 2 we defined a confounding factor as a variable that has the 
following properties: 

1. Is statistically associated with the risk factor. 
2. Directly af ects the outcome. f 

The main problem is to verify part 2 of this definition. The judgment that a 
particular variable exerts a direct causal influence on the outcome cannot be 
based on statistical considerations; it requires a logical argument or evidence 
from other investigations. 

For example, suppose that we are investigating the effectiveness of an edu- 
cational program aimed at improving the reading ability of elementary school 
children. Two classes are being compared, one receiving the new program and 
one utilizing the standard curriculum. The children have been rated on scales 
indicating the level of parent education and family economic circumstances. 
Suppose that the class receiving the new program contains a higher proportion 
of poor children. Then, if poverty is thought to have a direct influence on reading 
ability, it can be considered a confounding factor. But poverty may be closely 
linked to parent education in a complex causal relationship. Although some of 
the effect of parent education may be attributable to economic circumstances 
per se, there may be an independent coniponent related to education itself. So 
even if we compared two equally poor children receiving identical treatments, 
we would still expect diffqrences in parents' education to result in different ex- 
pected reading abilities. That is, conditional on economic status, parent education 
still constitutes a confounding factor. 

Now it might seem that including either education or economic status as 
adjustment variables would be reasonable, even though using both would be 
better. Moreover, if there exist other unmeasured variables mediating the effects 
of these two variables in combination, failure to include them w d l d  not seem 
very serious. In randomized studies that is in fact the case. Omitting a relevant 
variable results in less precise estimation, but the estimate of effect is unbiased. 
In nonrandomized studies, however, serious problems can result. 

To see more clearly the nature of these problems, let us consider a hypothetical 
example. Suppose that in reality there are only two confounding factors, X I  and 
X2. Tables 5.1 and 5.2 display the joint frequency distribution of X I  and X 2  and 
the average outcome values given X I  and X 2  under the treatment and control 
conditions. From the calculations shown in Table 5.2, it is clear that if we do not 
adjust a t  all, we will estimate the treatment effect as 

Estimateof effect = 51.25 - 61.25 = -10. 

However, we can see that for each possible combination of XI and X 2  values, 



Table 5.1 Joint and Marginal Frequency Distributions o f  XI and XZa 

Treatment Group Comparison Group 

x2 xz 
0 1 Total 0 I Total 

x 1 

I 

a Each factor has two levels, denoted by 0 and I .  

Table 5.2 Average Outcome Values 

Treatment Group Comparison 

xz xz 
0 I 0 1 

Estimated average outcomes ignoring XI and XZ: 
I OO(10) + 50(90) + 50(90) + 25( 10) = 

,25 Treatment group: 
200 

lOO(90) + 50(10) + 50(10) + 25(90) - 6 ,  ,25 
Comparison group: - 

200 

Estimated average ourcomes adjusting for X I  only: 

Treatment group: X I  = 0 
100(10) + 50(90) = 55,0 

100 

lOO(90) + 50(10) 
Comparison group: Xi = 0 = 95.0 

100 

the average outcome is equal for the two groups. That is, the treatment really 
has no effect, and our estimate is therefore incorrect. 
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Now let us adjust this estimate, by conditioning on values of X I  alone. This 
simple method for correcting bias constitutes a special case of stratification, 
which is described in detail in Chapter 7. From the information at the bottom 
of Table 5.2, we obtain 

Estimate of effect = (estimate given X I  = O)P(X, = 0) 
+ (estimate given X I  = I)P(XI = 1) 

In this example, adjustment by X, alone results in no reduction of bias. Similarly 
adjustment by X ,  alone removes no bias. Together, however, the two variables 
eliminate bias completely. More complex examples can be developed in which the 
bias when adjusting by each variable individually actually increases, although 
using both together eliminates all bias. Fortunately, such extreme situations are 
rare. 

Of course, there is never a guarantee that all important variables have been 
considered. It is the analyst's responsibility to present evidence that for indi- 
viduals who are equal in terms of variables included, there is no variable that 
still satisfies conditions I and 2 given at the beginning of this section. More 
precisely, if a variable does satisfy these conditions, its marginal effect must be 
very small. 

Note also that in our example, the marginal distributions of X I  and Xz are 
identical in the two groups. So it might appear that they are not confounding 
variables according to t$e definition given in Chapter 2. But if we apply the 
definition to the joint distribution, we see that it does apply to the pair (XI,  Xz), 
which togetper constitute a confounding factor. 

The dilem a posed by statistical adjustments is that no matter what variables k' we include in the analysis (XI in our example), there may be an omitted variable 
(X2 in our example) that together with the included variables constitutes a 
confounding variable. Moreover, it is not enough to demonstrate that all plausible 
confounding variables excluded have similar distributions across groups. As with 
our example, such a variable may still be important in combination with others. 
So the analyst dus t  be fairly certain that no variable has been left out which 
mediates the causal effect of those variables included. 

It is clear that judgment and experience are necessary in selecting variables. 
Also, close collaboration between statisticians and scientists in both the design 
and analysis of a study is highly desirable. The problems in selecting variables 
are primarily substantive and not statistical, although there are some statistical 
guidelines that may often prove useful. 

Cochran (1 965) suggests that the background variables be divided into three 
classes: 
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1. A small number of major variables for w h i ~ h  some kind of matching or 
adjustment is considered essential. These are usually determined by knowledge 
of the specific subject matter and review of the literature. 

2. Variables that may require matching or adjustment. 
3. Variables that are believed to be unimportant or for which data are not 

available. 

Decisions regarding the variables that fall in category 2 can be very difficult. 
The problem is similar to that of model specification in the context of multiple 
regression (see Cox and Snell, 1974; Mosteller and Tukey, 1977, Chap. 16). In 
regression analysis, we want to include enough relevant variables to ensure that 
the resulting model is a correct description of the relationship between an out- 
come variable and a set of input variables. A commonly used criterion for the 
importance of a particular variable, given a set of other variables, is the decrease 
in the proportion of explained variation when that variable is excluded. Since 
this number depends on which other variables are also included in the analysis, 
no unique measure of "importance" can be defined. However, by calculating 
this quantity for each variable in a proposed set and trying various plausible sets, 
it is often possible to get a sense of which variables play the most important causal 
roles. 

In choosing variables for statistical adjustment, a similar idea can be applied. 
for each variable of a given set, the change in the adjustment that would result 
from omitting it can be calculated. By examining various possible combinations, 
we can sometimes get a good sense of which variables are the confounding fac- 
tors. For example, suppose that one particular variable consistently makes a large 
difference in the estimated effect, regardless of which other variables are in- 
cluded, while all other variables have smaller effects that depend strongly on 
the composition of the whole variables set. In such a situation we would be sat- 
isfied to use only this one variable in our analysis. 

While part 2 of the definition given at the beginning of this section is hardest 
to verify, part 1 is also important. A variable that is strongly related to outcome 
is confounding only of its distribution differs appreciably across the treatment 
groups. So before tackling the more difficult task described above, the analyst 
may want to reduce the number of potential factors by eliminating those vari- 
ables with similar distributions across groups. However, as noted above, joint 
distributions as well as those of each variable separately must be considered. 

In this context, an appreciable difference among treatment groups is not 
necessarily the same as a statistically significant difference. Significance tests 
place the burden of proof on the rejection of the null hypothesis. As we indicated 
in Chapter 2, a large difference will not be statistically significant if it has an 
even larger standard error. In small studies, associations between background 
variables and the treatment which are large enough to dictate the estimate of 
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treatment effect may not be statistically significant. The opposite problem can 
occur in large studies. Weak association between treatment and background 
variables may be statistically significant and yet be too small to affect the esti- 
mate of treatment effect. 

A systematic method for examining the joint distributions of background 
variables is discriminant analysis. The discriminant function is defined as that 
linear combination of the background variables which maximizes the ratio of 
the "between-group" component of variance to the "within-group" component. 
Among all linear combinations of the original variables, the discriminant is the 
one which best separates the two groups. A thorough discussion of discriminant 
analysis is given by Lachenbruch (1975). 

Having obtained the discriminant function, we can examine the joint distri- 
butions of those variables which enter into it most prominently. Alternatively, 
we can take the discriminant function itself as a single new confounding factor. 
Since the discriminant will generally include small contributions from many 
relatively unimportant background variables, we may wish to screen out some 
variables a t  the outset. 

Further discussion of the variable selection problem in the context of discri- 
minant analysis is given by Cochran (1964). H e  considers whether the effect 
of including specific variables in the discriminant functions can be assessed from 
the discriminating power of those variables considered individually. Although 
standard statistical theory warns that it cannot, an examination of 12 well-known 
numerical examples from the statistical literature revealed the following: 

1. Most correlations (among background variables) are positive. 
2. It is usually safe to exclude from a discriminant, before computing it, a 

group of variables whose individual discriminatory powers are poor, except for 
any such variate that has negative correlations with most of the individually good 
discriminators. Y 

3. The performance of the discriminant function can be predicted satisfac- 
torily from a knowledge of the performance of the individual variables as dis- 
criminators and of the average correlation coefficient among the variables. 

We close this section with a brief discussion of those variables for which data 
are not available (Cochran's class 3). As noted above, failure to collect data on 
an important confounding variable can put the results of the study in serious 
question, particularly when the magnitude of the estimated treatment effect 
is small (even if it is statistically significant). However, when the magnitude of 
the treatment effect is large, one can often say that, even if an important con- 
founding factor had been overlooked, it could not have accounted for the size 
of the observed effect. Bross (1966, 1967) has devised a quantification of this 
argument which he calls the "size rule." The basic idea behind the size rule is 
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to specify, for a given observed association between treatment and outcome, how 
large the associations between treatment and confounding factor and between 
confounding factor and outcome must be to explain away the observed treatment 
effect. However, as noted by McKinlay (1975), the derivation of Bross's rules 
requires assumptions that limit the applicability of his results. 

5.2 MEASUREMENT ERROR 

Many observed variables really reflect two kinds of information. In part the 
value of the variable is governed by some stable individual characteristic that 
can be expected to relate to other characteristics in a systematic way. In part, 
however, it is determined by "random" fluctuations related to the particular 
circumstances under which the observation happened to be taken. This error 
component can vary across measurement situations even if the individual has 
not changed. 

Measurement error is particularly troublesome in the fields of education and 
psychology, where the variables studied are often scores on psychometric tests. 
Many extraneous factors besides stable individual differences may influence 
test scores. Psychometricians have developed the concept of reliability as a way 
to quantify the amount of measurement error. Loosely speaking, the reliability 
represents the proportion of total variation comprised by variation in the 
underlying true score. The higher the reliability, the more confidence we can 
have that something real is being measured. . 

However, true scores are not directly observable. So various indirect methods 
must be used to assess the reliability of a variable measured with error, or fallible 
variable. For example, under certain assumptions, the correlation between scores 
of the same test given individuals at  two different points in time can be used to 
estimate the reliability. For our purposes, the general concepts of measurement 
error and reliability will suffice. The reader interested in more detail on these 
concepts is referred to Lord and Novick (1 968). We now consider the effects 
of measurement error on statistical adjustments. 

One way to describe the effects of measurement error is in terms of omitted 
confounding variables. The presence of error in the observed variable means that 
there exists, in effect, an additional variable (error) that ought to be included 
along with the observed score as a confounding factor. To see this more clearly, 
suppose that there exists a dichotomous confounding variable T (for true score) 
which can have values 0 and 1. 

The frequencies of the two possible values of T in the two groups are given 
in Table 5.3 together with the average outcome conditional on each T value. For 
simplicity, we assume that the real treatment effect is 0. Then if we knew T for 
each individual, we could calculate separate estimates of the treatment effect 
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within the two groups (T = 0; T = I). Except for sampling fluctuation, the 
correct value of 0 would result. 

Table 5.3 Frequencies and Average Outcomes for T = 0 and T = I 

Frequencies 
Treatment Comparison 

T 0 100 25 

1 100 175 

Total 200 Average Outcomes 200 

T 0 50 
I I00 

Now assume that T cannot be observed directly, but we can measure a variable 
X that reflects both T and measurement error E ,  where 

Then there is a joint distribution of X and E in each treatment group. For ex- 
ample, consider the distribution shown in Table 5.4. The relationship among 
T, X,  and E can be expressed as in Table 5.5, and the average outcome values 
are as given in Table 5.6. From Table 5.6 it is clear that if we could obtain in- 
formation on E as well as that for X, the pair (X, E )  would constitute a con- 
founding factor. Using X algne corresponds to the use of X I  in the example of 
Section 5.1, and E plays the role of X z .  

C 

Table 5.4 Joint Frequency Distributions o f  X and Ea 

Treatment Group Comparison Group 
E E 

o I Total 0 1 Total 

X 
1 80 100 140 145 

Total 160 40 200 

a Each factor has two levels, denoted by 0 and 1. 
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Table 5.5 Relationship among T, X, and E 

Table 5.6 Mean Outcome as a Function o f  Xand E 

Treatment Group 
E 

0 1 

X 
1 

Comparison Group 
E 

0 1 

X 
1 

The main point of this section is that measurement error constitutes one special 
form in which an omitted confounding factor can arise. By adjusting on the basis 
of a fallible variable, we are ignoring the variable E, which is the discrepancy 
between X and the true score T. If we knew both X and E, we would know T and 
could adjust on it. 

Of course, there is an implicit assumption here that adjustment on T would 
eliminate all bias. If this is not the case, the relationship between adjustment 

! 
) 

on the basis of X versus T is more complicated. The reader interested in more 
details is referred to Weisberg (1979). 

5.3 THE REGRESSION EFFECT 

Measurement error represents one very common example of omitted con- 
founding variables. Another is the phenomenon of regression effects (see 
Thorndike, 1942). Mathematically, regression effects can be easily explained, 
but heuristic interpretations are often confusing. Rather than attempt a general 
exposition, we will discuss regression effects in the context of a concrete ex- 
ample. 

Suppose that a remedial program is given to a group of children in a particular 
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school. The aim is to improve their reading ability. A pretest is given prior to 
the intervention and a posttest just after the program. A hypothetical data set 
is presented in Table 5.7. From these data we can calculate the mean score a t  
the two testing points. 

Pretest mean = 10.0 
Posttest mean = 13.0 

S o  the children have gained 3.0 points during the course of the program. But 
this 3.0 points represents the sum of a treatment effect plus any natural matu- 
ration that might have occurred anyway. In Chapter 12 we consider this par- 
ticular kind of confounding in more detail. Our purpose here is simply to illustrate 
how regression effects can occur. 

Table 5.7 Hypothetical Data on Treatment Group to Illustrate Regression 
Effecta 

Pretest Posttest Score 
Score 8 9 10 11 12 13 14 15 16 

13 1 1 1 1 
12 1 1 2 1 1 
11 1 - 2 3 3 2 1 
10 1 1 3 4 3 1 I 
9 1 2 3 3 2 1 
8 1 1 2 1 1 
7 1 1 1 1 
6 
5 

Reprinted, by permission from dampbell and Stanley (1966), Fig. IA, qopyright 1966, American 
Educational Research Association, Washington, D.C. 

a Numbers indicate how many children received the particular combination of p$test and posttest 
scores. 

Instead of looking a t  the entire group of children, let us focus on those who 
are farthest from the mean. Children with scores of 7 on the pretest receive an 
average score of 11.5 on the posttest. Although they start out 3 points below the 
mean, they end up only 1.5 points below the posttest mean. Those scoring 13 on 
the pretest (3 points above the mean) end up with an average posttest score of 
14.5, which is only 1.5 points above the mean. 

In general, any group of children selected on the basis of their pretest scores 
will (on the average) have posttest scores closer to the mean. This phenomenon 
is known as regression toward the mean. It results from imperfect correlation 
between pretest and posttest. 
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To understand the effect of regression toward the mean on methods for con- 
trolling bias, imagine that a comparison group has been selected from a nearby 
school. The data on these comparison children are shown in Table 5.8. For this 
comparison group 

Comparison pretest mean = 8.0 
Comparison posttest mean = 10.0 

Because the groups started out at  different levels (10.0 for treatment vs. 8.0 for 
comparison), a straightforward comparison of the posttest scores may be bi- 
ased. 

Table 5.8 Hypothetical Data on Comparison Group from a Different 
Schoola 

Posttest 
Pretest 7 8 9 10 1 1  12 13 14 15 

a Numbers indicate how many children received the particular combination of pretest and posttest 
scores. 

One common approach in such situations is to match individuals with identical 
scores in the two groups. (Matching is discussed in detail in Chapter 6 . )  For 

I example, we could compare the average scores of individuals with pretest scores 
of 7. Then, because these individuals all start out equal, we might expect the 
comparison to yield an unbiased estimate of the treatment effect. To see what 
actually happens in this situation, suppose that the true treatment effect is really 
zero. That is, the changes between pretest and posttest are entirely the result 
of natural growth. 

Now consider what happens when we compare across groups. We have already 
seen that the 4 children scoring 7 on the pretest obtain an average of 11.5. What 
about the 12 children scoring 7 in the comparison school? These have an average 
posttest score of only 9.5. They have regressed toward the mean of their own 
population, which is 10.0 rather than 13.0. As a result, the estimated effect is 
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Because of differential regression to the mean in the two groups, a regression 
effect is generated. Even though there is no treatment effect, the treatment group 
appears to be doing better than the comparison group. Controlling for the pretest 
score in this manner does not eliminate bias completely. 

We have presented this example at  length because it represents the kind of 
explanation that is often given for biased estimates of effect after matching or 
statistical adjustment. Moreover, unlike our previous example, it illustrates the 
problem in the context of numerical confounding variables. However, the crux 
of the problem posed by the regression effect is simply that the variables used 
in carrying out the adjustment (e.g., a pretest or test on a related skill) represent 
an incomplete description of the differences between groups. That is, we have 
omitted some important confounding factors. The different joint distributions 
of pretest and pbsttest in the two groups represent another way to describe the 
fact that, conditional on the pretest, there still exist confounding factors that 
can bias the treatment comparison. Two children with identical pretest scores, 
but in different schools, do not have the same expectation on the posttest. For 
example, one school may already have a remedial reading program for younger 
children that tends to inflate pretest performance. Unless we include a variable 
that reflects the effect of this remedial program, the analysis can be seriously 
biased. 

5.4 SPECIFYING A MATHEMATICAL MODEL 

So far we have discussed possible problems relating to the variables used for 
adjustment, but have not focused on the particular method of analysis. For il- 
lustrative purposes, we have introduced simple forms of matching, or stratifi- 
cation, because they allow the basic issues to be seen clearly. However, the ad- 
equacy of statistical adjustment in an actual situation depends not only on using 
the correct variables, buthlso on applying a technique whose assumptions are 
valid. 

Most of the methods we present in this book assume a particular mathematical 
form for the relationship among outcomes, risk variables, and covariates. These 
mathematical models will be discussed in detail in later chapters. Our purpose 
in this section is to discuss the general issue of proper model specification. 

For simplicity we assume that only a single variable X is needed for adjust- 
ment. While in general the problems of model error and incomplete covariates 
are intertwined, we wish here to isolate the modeling problems. Let us define 

Y = outcome variable (numerical). 

a; = treatment effect for individual i 

Now in general the treatment effect may vary across individuals and may even 
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be systematically related to X  (in Chapters 2 and 3 we discussed this issue of 
interaction). We shall assume here that the effect is the same for every 
subject. 

Further, to highlight the main issues, we assume that there is no treatment 
effect; that is ai = 0 for all individuals. Figure 5.1 is an illustration of a typical 
relationship between Y and X  in this situation. Then there exists some mathe- 
matical function, g(X) ,  relating X  and the expected value of Y. That is, the av- 
erage value of Y is given by g(X) .  Now, in general, this function may differ in 
the two treatment groups. But with no treatment effect this would mean that 
the groups differed on some additional factor besides X .  So because we are as- 
suming X  to be the only confounding variable, this function must be the same 
in both groups. 

Figure 5.1 Typical relationship between average outcome and confounding factor. 

/ Now, g ( X )  is itself a variable. Moreover, because the distribution of X  can 
differ in the two treatment groups, so can the distribution of g(X) .  Let 

E l  [ g ( X ) ]  = expected value of g ( X )  in treatment group 
Eo[g(X) ]  = expected value of g ( X )  in comparison group 

Then we can define the bias in estimating the (zero) treatment effect as 

That is, on the average, the difference between the group means depends on the 
distributions of X  in the two groups and the functional form of the relationship 
between outcome and covariate. 

Because X  can be measured in the two groups, its distribution can be deter- 
mined. So if the mathematical form of g  can be specified, the amount of bias 

can be estimated and subtracted from the raw mean difference. How, then, might 
this function be found? 

Recall that so far we have been assuming that the treatment effect is zero, 
so that the same functional form holds for both groups. Now, let us suppose that 
the treatment has an unknown effect we wish to estimate but that it is constant 
across individuals. Then 

y = g ( x )  for comparison group 

Y = a + g ( X )  for treatment group 

and 

E ( Y ~  -Yo )  = a + 77.  

So we want to divide the total mean difference into two components, a part (a)  
attributable to the treatment and a part (77) resulting from differences between 
groups on the distribution of X .  There are two possible ways to accomplish this: 
( a )  use the comparison group data only to estimate g  and then calculate a, and 
( 6 )  fit a model including both g(X)  and a directly, using all the data on both 
groups. 

Although in general it is possible to estimate any functional form, there is one 
class of mathematical functions that is particularly convenient: the linear 
functions. With only one X, a linear relationship has the form 

The graph of such a function is a straight line. A useful property of linear 
functions is that the average value of a function of X  is the function of the average 
vaiue of X .  This means that 

- - 
E ( Y ~  - Yo) = a + p  + PX1 - ( p  + OXo). 

= a + p ( X l - X o )  = a+., ,  ' 

that is, 
v 

77 = @ ( X I  - Xo) .  
Therefore, we can form the estimate " 

& = Y1 - Yo - @(XI - X o ) ,  
and we will have 

The details of this approach will be elaborated upon in Chapter 8, where we refer 
to it as the analtsis of covariance. 

The assumption of linearity greatly facilitates the analysis of data from 
nonrandomized studies. This assumption is at the heart of several techniques 
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discussed in this book. Although it may seem that linearity is a very strong 
condition, it still allows a certain amount of flexibility when used in conjunction 
with transformation of the data. Even though the relationship between Y and 
X-may not be linear, it may be possible to rescale either or both to bring about 
linearity. For example, if the relationship between Y and X is exponential, 

g(X) = ep+Bx, 

Then 

log g(X) = p + px. 
So by using the logarithm of Y as the outcome measure, a linear model analysis 
is possible. 

The estimation of g(X) as the basis for statistical adjustment allows a much 
more efficient use of the data than do such approaches as matching or stratifi- 
cation, which do not depend on a model. In matching, for instance, it may be 
difficult to find a large enough number of close matches to allow precise esti- 
mation. This issue is discussed in detail in Chapter 6 .  By assuming a mathe- 
matical structure, we may be able to estimate a precisely using relatively small 
sample sizes. 

On the other hand, if the model used turns out to be incorrect, our results may 
be misleading. Suppose, for example, that we are using the comparison group 
data to estimate g(X) in the absence of the treatment, and that g(X) actually 
has the nonlinear form illustrated in Figure 5.2. The numbers at  the bottom of 
Figure 5.2 represent the X values for comparison (0) and treatment group (1) 
subjects. Suppose that we estimate a linear model based on comparison group 

I Actual curve for comparison group 

Average 
outcome, E(Y) 

Estimated curve for comparison group 

1 = treated individual 
0 = comparison individual 

X 

Figure 5.2 Model misspecijication. 
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data. Then for individuals with high X values, the linear function underestimates 
their expected outcome. For those with low X values, the expected outcome is 
overestimated. the treatment group tends to lie near the high end, as shown 
in Figure 5.2, and the control group near the low end, the actual outcome dif- 
ference TJ produced by this difference will be much larger than that estimated 
on the basis of linearity. The estimate of a will be correspondingly biased. 

It is hard to say how severe the departure from the assumed model must be 
to cause serious problems. Determining an adequate model requires judgment 
as well as a knowledge of particular statistical methods. In each of the subsequent 
chapters on individual techniques, more detail will be given on the model as- 
sumptions and how they can be verified. 

Finally, we note that problems of variable selection, including measurement 
error and regression effects, are intertwined with those of model selection. A 
correctly specified model must include appropriate variables and,have a proper 
mathematical form. When we transform a variable, we change both the variable 
and the functional form. What matters is whether the model and variables 
ultimately employed in the analysis accurately represent the underlying phe- 
nomenon. 

5.5 SAMPLING ERROR 

Throughout the previous discussion we have largely ignored the fact that 
analyses are often based on small or moderate sample sizes. We have focused 
on problems that will cause the estimated effect to deviate from the actual effect 
even with very large samples. We now discuss an additional source of error, that 
attributable to sample fluctuation. 

For illustrative purposes, suppose that the true model underlying a set of data 
is given by the following equations: Y 

Treatment: Average outcome = 5 + X 

Comparison: Average outcome = 2 + X 

This situation is illustrated in Figure 5.3. The treatment effect is 3 in this ex- 
ample. 

Of course, in a real situation we will not know the exact relationship between 
X and the outcome. The problems in using the wrong mathematical model were 
discussed in Section 5.4. We showed, for example, that using a linear function 
when a nonlinear one is appropriate can lead to bias in estimating the treatment 
effect. Now let us assume that the functional form is in fact linear, but that we 
must estimate the slope and intercept from a given set of data. The sets of ob- 
served values may look as shown in Figure 5.4. The model states that on the 
average, for a given value of X, the treated individuals have a value 5 + X and 



Average 
outcome, E f  Y) 

X 

Figure 5.3 Linear relationship between average outcome and confounding factor constant 
treatment effect. 

Average 
outcome, E ( Y )  

0 1 2 3 4 5 6 7 8  

X 
Figure 5.4 Scatter of actual obseruations around expected ualue. 
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the control subjects 2 + X. However, the individual scores fluctuate randomly 
about these lines. If the number of subjects is very large, it is possible to estimate 
the true intercepts and slopes with great precision. However, with a sample of 
only 20 or 30 in each group, there can be substantial variation in these estimates 
from sample to sample. 

Without going into detail on statistical techniques, let us imagine that we are 
estimating the slope using the data from the two groups combined. The difference 
between the estimated intercepts is then the estimator of the treatment effect. 
For 10 independent samples with 20 in each group, we would obtain results that 
vary around the true value of 3, but differ from sample to sample. The estimator 
may be correct on the average and therefore be what is called by statisticians 
an unbiased estimator, as mentioned in Chapter 2. However, for any particular 
sample there will be a sampling error, which may be substantial. The sampling 
error will generally become smaller and smaller as the sample size increases, 
although for some estimators it is not negligible, even for very large samples. 
A precise consideration of these matters would involve technicalities beyond 
the level of this book. Unless otherwise stated, we can assume that sampling error 
will disappear for a large-enough sample size. 

5.6 SEPARATION OF GROUPS ON A CONFOUNDING 
FACTOR 

In order for a confounding factor to create substantial bias in estimating a 
treatment effect, its distribution in the two treatment groups must differ sig- 
nificantly. However, if the groups are very widely separated on a confounding 
variable used in the analysis, certain problems mentioned in the previous sections 
become particularly severe. Figure 5.5 illustrates the situation where the groups 
are widely separated on a variable X. We have mentioned that one basic ap- 
proach to bias control is the comparison of individuals with identidl (or similar) 
values of X. This matching, if exact, will remove any bias attributable to X re- 
gardless of the functional form of the relationship between outcome and X. But 
it is clear that if the groups are completely-separated, no matches can be found. 
More generally, if there is little overlap, datches may be found for only a small 

3 proportion of subjects. The feasibility of matching with different degrees of 
separation is discussed more completely in Chapter 6. 

A second problem is that extreme separation may be an indicator that the two 
groups are quite different in character. So there are likely to be other variables 
on which they differ that are related to the outcome. It may be difficult to find 
a few variables that capture all the relevant variation. For example, suppose that 
the treatment group includes only individuals under 35 years of age and the 
control group contains only individuals over 35. Then the groups represent dif- 



64 SOME GENERAL CONSIDERATIONS IN CONTROLLING BIAS 

I 
X 

Pigure 5.5 Wide separalion of groups on lhe confounding factor. 

Outcome 

ferent "generations," with quite different experiences a t  comparable ages and 
quite different life-styles. I t  may be meaningless to compare such groups. 

A third problem is the loss of precision in estimating a model relating the 
expected outcome to  the confounding variable. In Section 5.4 we mentioned that 
one approach is to estimate the function on the basis of the comparison group 
data only. However, when the groups are widely separated, there will be very 
few observations on comparison subjects in the range of X values occupied by 
the treatment group, and so it will be hard to obtain a precise estimate. In the 
case of complete separation, we must rely on extrapolation of the estimated 
function completely beyond the range of the data, a procedure that is always 
hazardous. 

If we assume a known functional form and a constant treatment effect, we 
can, instead, estimate the treatment effect from the data on both groups. 
However, if there are very few observations in the range where the two distri- 

I butions overlap, we must rely heavily on model assumptions, such as the as- 
sumption of no interaction. An incorrect model specification will be very difficult 
to detect. 

The problem of complete, or near-complete, separation may sometimes arise 
from the desire to give a certain treatment to those who are thought to need it 
most. Thus there may be a conflict between research design criteria and ethical 
considerations. Sometimes this conflict can be resolved by an imaginatively 
designed study. Mather et al. (1971) report on a study of 1203 episodes of acute 
myocardial infarction (heart attacks). The purpose of the study was to compare 
home care by the family doctor with hospital treatment initially in an intensive 
care unit. Normally, such a comparison would be impossible-the less severely 
ill patients would be sent home, the emergency cases to the intensive care unit. 
We can imagine an index of "severity" being measured on each patient. This 

Average outcome 

0 
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would clearly satisfy our definition of a confounding factor, but the distribution 
of this factor within the home-care and hospital-care group would not have 
substantial overlap. 

Here, however, there was agreement between various hospitals and doctors 
participating in the study that while some patients would clearly need hospi- 
talization and others should clearly be treated at  home, there were some patients 
for whom the decision was not clear-cut. For these patients, randomization was 
used to decide between home care and hospitalization. The decision on accept- 
ability of a random assignment was made by the patient's own doctor, before 
he knew what the result of the randomization would be. 

In all, 343 cases were allocated at random, and subsequent analysis confirmed 
that the randomized groups did not differ substantially in composition with 
respect to other background variables, such as age, past history of heart disease, 
and blood pressure when first examined. It was found that the randomized group 
treated at  home had a 44% lower mortality than did the7andomized group 
treated in the hospital. As might be expected, the experience of the other two 
groups was very different. The conclusion that home care is better than hospi- 
talization had only been firmly established for the randomized group, although 
we might speculate that it would also hold for at  least some other individuals. 

As a final comment, we note that when there are several potential confounding 
variables, it is possible that the two groups are completely separated on these 
variables considered jointly, although the distributions of each variable indi- 
vidually do have substantial overlap. Consider the situation illustrated by Figure 
5.6, where X I  and X2 represent two background variables: X I  = age (decades), 

1 = treatment Age. X, 
0 = comparison 

I! Pigure 5.6 Complete seporalion of join1 dislrrbutions eoen lhough marginal dislribulions 



66 SOME GENERAL CONSIDERATIONS IN CONTROLLING BIAS 

X2 = income. Individuals in group 1 tend to have a higher income and lower age 
than those in group 0, but the distributions of each variable in the two groups 
have substantial overlap. However, the particular age-income combinations 
that occur in one group do not occur in the other. So the groups are separated 
on X I  and X2 jointly, even though they are not separated on X I  and X2 indi- 
vidually. 

This problem can be very hard to recognize and emphasizes the need for a 
multivariate exploration of the potential confounding factors. In this example, 
the discriminant method might suggest that 

can be used to distinguish the treatment and control subjects. Note that all in- 
dividuals with values of D greater than 30 are in the control group, while those 
with D less than 30 are in the treatment group. 

5.7 SUMMARY 

In this chapter we have discussed the general problems that may affect sta- 
tistical adjustment strategies applied to nonrandomized studies. These problems 
may be seen as operating a t  three levels: 

1. Variable selection. 
2. Specifying form of mathematical model. 
3. Small-sample fluctuation. 

Variable selection involves knowledge of the substantive area under investi- 
gation. The aim is to include enough information to ensure that after adjusting 
for the measured variables, there will be no bias in the estimate of treatment (risk 

I factor) effect. There will be no bias if the only systematic difference between 
i two individuals with identical measured values is directly caused by the treatment 

(risk factor). In attempting to verify this assumption, statistical methods may 
be helpful, but only in conjunction with a careful analysis of possible causal 
relationships. Ideally, statisticians and substantive researchers should work 
together to select a variable set that can be defended on both statistical and 
conceptual grounds. 

Two particularly common problems are measurement error and regression 
effects. We have pointed out how these can be viewed as special cases of omitted 
confounding factors. As such, they do not pose different problems or require 
special solutions. If a proposed variable set includes fallible variables, or those 
subject to "regression," it simply means that we must be sure to include enough 
other variables so that the total set is adequate. 
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Having an adequate set of adjustment variables allows us in principle to obtain 
an unbiased estimate of the treatment effect. However, to obtain such an estimate 
we must employ one of the techniques described in the subsequent chapters of 
this book. Each analysis strategy is based on a particular set of assumptions about 
the mathematical form of relationships among variables. To the extent that these 
assumptions do not hold in a given situation, the results may be biased. 

Finally, even with an adequate set of variables and a correctly specified model, 
we are subject to problems arising from finite samples. That is, the estimate 
obtained from a particular analysis may contain a component attributable to 
random fluctuations. For very large sample sizes, we would expect these errors 
to be negligible, but for small samples we can expect the estimate to deviate 
substantially from the true effect. Where possible, confidence bounds should 
be provided in addition to a point estimate. 

In each of Chapters 6 to 1 1  we present the basic concepts and mechanics 
underlying one approach to statistical adjustment. Each of these techniques is 
vulnerable to the general problems described in this chapter, and we will not 
repeat in each chapter the general caveats given here. However, we will explain 
in some detail how these considerations apply to the particular technique, trying 
to indicate what problems are most likely to arise and how to deal with them. 

After reading these chapters, the reader should have a clearer understanding 
of the issues raised in this chapter. In Chapter 14 we will review some of these 
issues and present additional areas related more specifically to the methods de- 
scribed in Chapters 6 to l l .  
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