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In an ideal hypothetical situation we could observe on the same group of indi- 
viduals the outcome resulting both from applying and from not applying the 
treatment, We could then calculate the effect of the treatment by comparing 
the.outcomes under the two conditions. We could define a measure of treatment 
effect for each individual as the difference between his or her outcomes with and 
without the treatment. If all subjects were exactly alike, this measure would be 
the same for each. But more commonly, differences between subjects will cause 
the measure to vary, possibly in relation to background factors. A treatment may, 
for instance, be more beneficial to younger than to older people; so the effect 
would vary with age. We may then wish to define a summary measure of the 
effect of the treatment on the entire group. 

In Section 3.1 we will explore different summary measures of tfeatment effect. 
In Example 2.1, Dr. A's choice was to express the treatment effect as the average 
difference in blood pressure between patients who drink coffee and those who 
do not drink coffee. We will see that this choice was dictated partly by the nature 
of the risk factor and partly by the underlying model that Dr. A had in mind as 
to how coffee consumption affects blood pressure. In Section 3.2 we will leave 
our ideal situation and see how, when we use a comparison group to estimate 
a summary measure of treatment effect, a confounding factor may distort that 

18 

I 
i 3.1 MEASURES OF TREATMENT EFFECT 19 

estimate. Finally,lin Section 3.3 we will focus on situations in which the treatment 
effect is not constant and show that a single summary measure of treatment 

I effect might not be desirable. 

t 
3.1 MEASURES OF TREATMENT EFFECT 

The choice of measure for treatment effect depends upon the form of the risk 
and outcome variables. It is useful to make the distinction between a numerical 
variable and a categorical variable. The levels of a numerical variable are 
numbers, whereas the levels of a categorical variable are labels. Thus age ex- 
pressed in years is a numerical variable, whereas age expressed as young-mid- 
dle-aged/old or religion expressed as Catholic/Protestant/Jewish/other are 
categorical variables. Since the levels of a numerical variable are numbers, they 
can be combined to compute, for instance, a mean (e.g., the mean age of a group 
of individuals). For categorical variables, on the other hand, the levels are looked 
a t  separately (e.g., there are 45 young individuals, 30 middle-aged, and 60 old). 
Categorical variables with only two possible levels (e.g., intensive reading pro- 
gram vs. standard reading program) are called dichotomous variables. 

Furthermore, we will sometimes distinguish between an ordered categorical 
variable, such as age, and an unordered categorical variable, such as religion. 
There exists for the first type an intrinsic ordering of the levels (e.g., young/ 
middle-aged/old), whereas for the second type there is no relationship between 
the levels (e.g., we cannot arrange the various religions in any particular order). 
A numerical variable can be created from an ordered categorical variable by 
assigning numbers or scores to the different levels (e.g., -1 to young, 0 to 
middle-aged, and 1 to old). 

Using numerical and categorical variables, we can distinguish four different 
situations, as shown in Figure 3.1. In this book we are concerned,mainly with 
Cases 1 and 2, where the risk variable is categorical. 

Risk variable / t e g o r i c a ,  

Outcome variable Categorical 
iumericai 

Numerical Categorical Numerical 

Case 1 2 3 4 

Figure 3.1 Different cases for measures of treatment effect 

Case 1: Consider first the effect of a treatment on a dichotomous outcome, 
specifically death or survival. Three measures of treatment effect are commonly 
used (Fleiss, 1973; see also Sheps, 1959, for other proposals). We define the three 
measures and illustrate their use with the data given in Table 3.1. Notice that 
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Table 3.1 Measures o f  Treatment Effect for Dichotomous Treatment and 
Outcome in Three Exam~les 

Example (a) Example (b) Example (c) 
Treatment Control Treatment Control Treatment Control 

Death rate 0.06 0.01 0.55 0.50 0.60 0.10 

Survival rate 0.94 0.99 0.45 0.50 0.40 0.90 

Difference of 0.06 - 0.01 = 0.05 0.55 - 0.50 = 0.05 0.60 - 0.10 = 0.50 
death rates (A) 

Relative risk ( 8 )  0.06/0.01 = 6.00 0.55/0.50 = I. I0 0.60/0.10 = 6.00 

odds ratio ($) 060/010 = 13.50 
0.40 0.90 

in all three examples given in Table 3.1 the treatment is harmful, since the death 
rate is higher in the treatment group than in the control group. The three mea- 
sures of treatment effect are: 

The difference in death rates (A) between the treatment and control 
groups. (In epidemiology this is called the attributable risk.) In example 
(a) in Table 3.1, A = 0.05 means that the risk of dying is 0.05 greater in 
the treatment group. 

The relative risk (8) is defined as the ratio of the death rate in the treatment 
group to the death rate in the control group. In example (c) in Table 3.1, 
8 = 6 implies that the risk of dying in the treatment group (0.60) is 6 times 
higher than the risk of dying in the control group (0.10). 
The odds ratio ($) or cross-product ratio is based on the notion of odds. 
The odds of an event are defined as the ratio of the probability of the event 
to the probability of its complement. For instance, the odds of dying in 
the treatment group of example (c) are equal to the death rate C0.60) di- 
vided by the survival rate (0.40), or 1.50. When the odds of dying are 
greater than 1, the risk or probability of dying is greater than that of 
surviving. Now, the odds ratio in our example is the ratio of the odds of 
dying in the treatment group (1.50) to the odds of dying in the control 
group (0.10/0.90 = 0.1 1), or 13.50. The odds of dying are 13.50 times 
higher in the treatment group. The odds ratio can be conveniently com- 
puted as the ratio of the product of thediagonal cells of the treatment by 
survival table-hence its alternative name, cross-product ratio. In our 
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example, 

(0.60) X (0.90) 
or = (cross-product ratio) 

(0.40) X (0.10) 

The three measures of treatment effect-difference of rates (A), relative 
risk (8), and odds ratio ($)-are linked in the following ways: 

i 1. If the treatment has no effect (i.e., the death rates are equal in the control 
and treatment groups), then A = 0 and 8 = $ = 1 .  

2. If A is negative or 8 or $ smaller than 1, the treatment is beneficial. 
Conversely, if A is positive, 8 or $ greater than 1, the treatment is harmful. 

3. If the death rates in the treatment and control groups are low, the odds 
I 
I 

i ratio and relative risk are approximately equal [see, e.g., Table 3.1, example 
(a); see also Appendix 4A]. 

4. In certain types of studies (see case-control studies in Chapter 4), only the 
odds ratio can be meaningfully computed. In these studies the total number of 
deaths and the total number of survivors are fixed by the investigator, so that 

1 death rates and hence differences of death rates and relative risks cannot be 
interpreted. We shall see in Chapter 4 that the odds ratio does have a sensible 
interpretation in these studies. 

The three examples of Table 3.1 were chosen in such a way t lp t  (a) and (b) 
lead to the same difference of rates and (a) and (c) to the same relative risk. 
These examples show that the value of one of the three measures has no pre- 
dictable relation (other than those mentioned above) to the value of any other 
two: although (a) and (b) have the same A of 0.05, their relative risks (6.00 and 
1.10) are widely different. 

Several factors influence the choice of the measure of treatment effect. The 
choice may depend on how the measure is going to be used. For example, a dif- 
ference in death rates would give a better idea of the impact that the treatment 
would have if it were applied to all diseased people (MacMahon and Pugh, 1970). 
Berkson (1958; also quoted in Fleiss, 1973), in looking at  the effect of smoking 
on survival, makes this point by saying that "of course, from a strictly practical 
viewpoint, it is only the total number of increased deaths that matters." On the 
other hand, the relative risk may highlight a relationship between a risk and an 
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outcome factor. Hill (1965) remarks that although 71 per 10,000 and 5 per 
10,000 are both very low death rates, what "stands out vividly" is that the first 
is 14 times the second. Thus the choice of a measure may be guided by the aim 
of the study. 

Also, the investigator may believe that one model is more appropriate than 
another in expressing how the treatment affects the outcome, and he or she can 
use the data at  hand to test his or her belief. That particular model may suggest 
a measure of treatment effect. This applies for any of the four cases considered 
in this section. We will turn to Case 2 and illustrate there how a measure may 
derive from a model. 

Case 2: When the outcome variable is numerical (e.g., weight, blood pressure, 
test score), the difference of the average of the outcome variable between the 
treatment and comparison groups is a natural measure of treatment effect. For 
instance, Dr. A can calculate the average blood pressure among coffee drinkers 
and among non-coffee drinkers and take the di{- as a measure of treatment 
effect. 

Dr. A. may think of two different ways in which coffee might affect blood 
pressure. Let Y1 and Yo be the blood pressure of a given patient with and without 
coffee drinking. First, coffee drinking might increase blood pressure by a certain 
amount A, which is the same for all patients: 

YI = Yo + A for any patient (ignoring random variation). 

Second, coffee drinking might increase blood pressure proportionally to each 
patient's blood pressure. Let a be this coefficient of proportionality: 

YI = aYo for any patient. 

By taking logarithms on each side of this expression, we have, equivalently, 

log YI = log Yo + log z-. 

Notice that we have transformed a multiplicative effect ( a )  into an additive 
effect (log a )  by changing the scale of the variables through the logarithmic 
function. 

In the first case, A would be the measure of treatment effect suggested by the 
model, which Dr. A. could estimate by the difference of average blood pressure 
in the coffee and no-coffee group. In the second case, he could consider log z- 
as a measure of treatment effect, which he could estimate by the difference of . 
the average logarithm of blood pressure between the two groups. Or he may find 
.rr easier to interpret as a measure of treatment effect and transform back to the 
original units through the exponential function. Clearly, with the data at hand 
(see Table 2. l) ,  the first model (and hence A) is more appropriate. 

Case 3: An example of Case 3, where the riskvariable is numerical and the 

3.2 W H A T  HAPPENS WHEN THERE IS CONFOUNDING 23 

outcome categor,ical, is a study of increasing doses of a drug on the chance of 
surviving for 1 y&r. The odds of dying can be defined for each dose of the drug. 
The effect of the drug can be assessed by looking at the change in the odds of 
dying as the dose increases. A model often used in such cases assumes that for 
any increase of the dose by 1 unit, the logarithm of the odds changes by a constant 
amount. This amount is taken as the measure of treatment effect. 

Case 4: Here both the risk and outcome variables are numerical. Suppose 
that we want to look at  the effect of increasing doses of a drug on blood pressure; 
if a straight line is fitted to the blood pressure-dose points, the slope of the line 
can be taken as a measure of the effect of the drug. I t  represents the change in 
blood pressure per unit increase in dosage. Regression techniques that can be 
used in this case will not be discussed in this book. This topic has been covered 
in many other books (see, e.g., Tufte, 1974; Mosteller and Tukey, 1977; Han- 
ushek and Jackson, 1977; Daniel and Wood, 197 1; Colton, 1974). 

From the discussion of these four cases, it should be clear that a measure of 
treatment effect not only depends on the form of the risk and outcome variables, 
but also on the aim of the study, the scale of the variables, and the models judged 
appropriate by the investigators. 

.. . 

3.2 WHAT HAPPENS WHEN THERE IS CONFOUNDING 

We know from previous chapters that we might be wary of confounding 
factors when we compare a group of treated individuals and a group of com- 
parison individuals to assess the effect of a treatment. The purpose of this section 
is to show how a confounding factor distorts the estimate of the treatment effect, 
and how crude odds ratios or differences of average outcome are rmt good esti- 
mates of treatment effect in the presence of confounding. 

As before, we will consider different cases, depending on how the outcome 
and confounding factors are measured (i.e., whether they are numerical or 
categorical). We will consider here only dichotomous risk variables, one level 
being the treatment and the other the comparison. Figure 3.2 illustrates the four 
possibilities. The numbers (2) and (1) a t  the top of the figure refer to the case 

[Risk variable] lDichotomous1 

Outcome variable 
h) 

iumerica' Categor~cal 

Confounding variable Numerical 
\ / \ 
Categorical Numerical Categorical 

Case A B C D 

Figure 3.2 Different cases for the effect o f a  confounding factor. 
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Proportion 
of individuals 

Age 

Figure 3.3 Age distribution in the smoking and nonsmoking groups. 

numbers in Figure 3.1, and these indicate which measures of treatmcnt effect 
are appropriate for Cases A, B, C, and D. 

An example of Case A is a study of the effect of smoking on blood pressure 
where age expressed in years would be a confounding factor. Suppose that the 
smoking and nonsmoking groups that we compare have the age distributions 

B 
shown in Figure 3.3. Note that there arevery few young smokers and very few 
old nonsmokers. The average age of smokers is greater than the average age of 
nonsmokers. 

In addition, suppose that a plot of blood pressure vs. age in each group 
suggests, as in Figure 3.4, that blood pressure is linearly related to age, with equal 
slopes among smokers and nonsmokers. If we denote blood pressure by Y and 
age by X and use the subscripts S for smokers and N S  for nonsmokers, we have 
(ignoring random variation) 

Ys = as + ~ X S  in the smoking group 

YNS = ~ N S  + OXNS in the nonsmoking group. 

Smokers 

Blood 
pressure 

The same slope (P) appears in the two equations, but the intercepts as and (YNS 

are different. 
Note that age satisfies the definition of a confounding factor given in Chapter 

2: it has a different distribution in the smoking and nonsmoking groups (Figure 
3.3) and it affects blood pressure within each population (Figure 3.4). If we 
assume that age and smoking are the only factors affecting blood pressure, we 
can measure the effect of smoking by the vertical distance between the two lines 
of Figure 3.4 (i.e., as - aNS). 

In the discussion of Case 2 in Section 3.1, we suggested measuring the 
treatment effect by the difference between the average outcomes: in our example 
by ys - ~ N S ,  the difference between the average blood pressure in the smoking 
group and that in the nonsmoking group. Since 

- 
Y, = as + pxs 
- 
YNS = ~ N S  + PXNS 

(where the overbar indicates that we have averaged over the group), it follows 
that 

- 

YS - ~ N S  = ( a s  + P x s )  - ( ~ N S  + PXNS) 

= ( a s  - ~ N S )  + P(XS - XNS) 
= treatment effect + bias. 

Thus if we use the difference of average blood pressure, in our example we 
overestimate the treatment effect by the amount P ( x s  - ~ N S ) ,  which we call 
the bias. We have represented this situation in Figure 3.5, which combines 
Figures 3.3 and 3.4. (In Figure 3.5 the age distributions in each group from Fig. 

Blood 
pressure 

Figure 3.4 Relationship of blood pressure with age in thc smoking and nonsmoking groups. Figure 3.5 Treatment effect and bias. 
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3.3 appear a t  the bottom of the figure and the relationships between blood 
pressure and age from Figure 3.4 appear as solid lines. The vertical axis of Figure 
3.3 is not explicitly shown.) Note that if age were not a confounding factor, either 
the age distribution would be the same in the two groups (so that Xs - XNS = 
0) or age would not be related to blood pressure (so that @ = 0): in both cases 
the bias would be 0. 

As an example of Case B, let us consider sex as a confounding factor. If the 
difference in mean blood pressures for smokers vs. nonsmokers is the same for 
males and females, this difference may be regarded as the treatment effect (again 
assuming that no factors, other than smoking and sex, affect blood pressure). 
But if males have higher blood pressures than females and if males are more 
likely to smoke than females, the overall difference in average blood pressure 
between smokers and nonsmokers is biased as in Case A. Another example of 
Case B is Example 2.1. 

To illustrate Case C, where the outcome is categorical and the confounding 
is numerical, let us suppose that we are interested in the effect of smoking on 
mortality, and once again we will consider age as a confounding factor. Assume 
the same age distributions as in the example for Case A (see Figure 3.3). Now 
consider, for instance, the smoking group: to each level of age corresponds a death 
rate, and a plot of death rate vs. age may suggest a simple relationship between 
them; similarly in the nonsmoking group. For instance, in Figure 3.6, we have 
assumed that the relationship between death rate and age could be described 
by an exponential curve in each group, or equivalently that the relationship 
between the logarithm of the death rate and age could be described by a straight 
line in each group. 

As can be seen in Figure 3.6b, we have also assumed that the distance between 
the straight lines is the same for each age (i.e., the difference in the logarithm 
of the death rates is a constant a$ - ahS). Note that this difference is the log- 
arithm of the relative risk, since the relative risk is the ratio of the death rate in 
the smoking group, rs, to the death rate in the nonsmoking group, r ~ s .  That 
is, 

log rs - log r ~ s  = a& - ahS, 

which implies that 

So we are considering a model with the same relative risk at each age. The . 
brackets in Figure 3.6 indicate the ranges of the risks of death for smokers and 
nonsmokers corresponding to the age ranges of Figure 3.3. A crude relative risk 
obtained by dividing the overall smoker death rate by the overall nonsmoker 
death rate would overestimate the true relative risk, because smokers tend to 
be older than nonsmokers. 

Death 
rate 

(b) 

Figure 3.6 ( a )  Relationship of death rate with age; ( b )  re lat~onsh~p of log (death rate) with 
age. 

Confounding~in Case D operates much the same way as in Case B except that 
the initial assumption is that the relative risk of death for smokers {s. nonsmokers 
is the same for males and females. Example 1.1 is of the Case D type. 

3.3 TREATMENT EFFECT DEPENDENT ON A 
BACKGROUND FACTOR 

In the previous examples we have assumed an identical treatment effect for 
all individuals. In Figure 3.4, for instance, smoking increases blood pressure by 
the same amount for everybody. The assumption of constant treatment effect 
is commonly made for simplicity, but it may be more realistic to assume that 
a treatment acts differentially across individuals. This variability may be modeled 
by assuming that the treatment effect is a function of one or several background 
factors. For instance, the effect of surgery as compared with standard medication 
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dedication 

/Surgery 

I I 1 Age 
X1 X2 

Figure 3.7. First example of interaction. 

in the treatment of cardiovascular diseases depends in particular on a patient's 
age, arterial state, and properties of the heart as measured by several variables. 
It may or may not be desirable to refer then to a summary measure of treatment 
effect, as the following two hypothetical cases will illustrate. 

For simplicity we will assume that the effect of surgery depends only on age 
and that the relationships between age and cardiovascular mortality for 80th 
surgical and medical treatments are as shown in Figures 3.7 and 3.8; in both 
cases, the logarithm of the cardiovascular mortality rate is a linear function of 
age under each treatment. In Figure 3.8, but not in Figure 3.7, the two lines Qoss. 
In both cases, the comparison of surgery and medication depends on age. In 
Figure 3.7, surgery is always associated with a lower mortality rate, its greatest 
benefit being for younger patients (xl). In this case, a summary treatment effect 
such as a difference in the average logarithm of the mortality rates would provide 
useful information on the effect of surgery. Contrast this with Figure 3.8, where 
surgery is beneficial for younger patients (XI), whereas for older patients (xz) 

Log (cardiovascular 
mortality rate) 

I I ; 
X1 X2 

Figure 3.8 Second example of interaction. 

standard medication is preferable. Here a summary measure would give a dis- 
torted picture of the effect of surgery. 

When the treatment effect is related to a background factor in this way, there 
is said to be an interaction between the treatment and background factors. The 
presence or absence of interaction may depend on the measure chosen to express 
the treatment effect. 

Example 3.1 Treatment for breast cancer: Consider the data given in Table 3.2, 
which come from a randomized study (Atkins et al., 1972) comparing two forms of 
surgicd treatment for breast cancer. The outcome variable is the presence or absence 

Table 3.2 Surgical Treatment for Breast Cancera 

Surgical Procedure 

Clinical slage I Extended Tylectomy Radical Mastectomy 
Recurrence 15 4 

No recurrence 

Clinical slage 2 
Recurrence 

No recurrence 

15 4 
Rates difference = - - - = 0.10 

112 108 

Relative risk = z/L 112 108 = 3.62 

15 X 104 
- 4.02 Odds ratio = - - 

4 X 97 

Extended Tylectomy 
30 

40 - 
70 

30 9 
Rates difference = - - - = 0.32 

70 80 

Relative riik = = 3.81 
70 80 

3 0 X  71 
Odds ratio = - - - 5.92 

4 0 x 9 .  

Radical Mastectomy 
:9 

Adapted, by permission, from Atkins et al. (1972), Tables 2 to 4. 
Treatment = surgical procedure; outcome = recurrence; background factor = clinical stage. 
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of local recurrence of malignancy after the surgery. Patients were divided into two groups, 
depending upon the stage of the disease prior to surgery. 

Since both the risk and outcome variables are categorical, three measures of treatment 
effect- difference in recurrence rates, relative risk, and odds ratio-may be computed 
for each stage (see the calculations in Table 3.2). It turns out that the relative risk is nearly 
the same for stage 1 and stage 2 patients (3.62 vs. 3.8 1). whereas the odds ratio and dif- 
ference in rates depend on the stage (4.02 vs. 5.92 and 0.10 vs. 0.32). In other words, there 
is an interaction if the treatment effect is expressed in terms of the latter two measures, 
but no interaction if it is measured by the relative risk. 

Since the logarithm of the relative risk is equal to the difference of the log rates 
(log 19 = log r l  - log r2), this is an example where an analysis in the original units 
(recurrence rates) show an interaction, whereas an analysis in a different scale 
(log - recurrence rates) does not. Often, however, interactions cannot be re- 
moved by changing the scale. If in the previous example, stage 1 patients had 
fewer recurrences with tylectomy than with mastectomy but the opposite had 
been true for stage 2 patients, there would be no way of avoiding interaction. 
Figure 3.8 gives another example of nonremovable interaction. 

Although it is desirable to avoid interaction since a single measure can then 
completely describe the treatment effect, sometimes, as we discussed in Section 
3.1, because one measure of treatment effect is more useful than others, t p  
measure should be used even if it does result in interaction. 
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T 

Estimating a treatment effect requires the construction of a standard of com- 
parison. As we have seen in Chapter 1, this involves a comparison group which 
does not receive the treatment of interest. In this chapter we will explore several 
ways of establishing such a comparison group, emphasizing the difference be- 
tween randomization and other methods. It will be seen that a randomized al- 
location of subjects to a treatment and control group generally ensures that the 
latter is an adequate standard of comparison for the former. 

We will start by defining randomization and discussing the properties that 
make this method particularly attractive. We will then give reasons for doing 
nonrandomized studies, and distinguish the different types of studies involving 
a comparison group. For simplicity of presentation, this chapter will be confined 
mainly to studies with a dichotomous risk factor. 

31 


