
6 INTRODUCTION 

factor. The word "treatment" is generally used to describe an agent applied 
specifically to affect the outcome factor under consideration (as was true for 
all the examples in the first paragraph of this chapter). The term "risk factor," 
borrowed from epidemiology, is used when exposure to the agent is accidental 
or uncontrollable, or when the agent is applied for some purpose other than to 
affect the specific outcome factor under consideration. An example would be 
the study of the effect of smoking on the incidence of lung cancer. The use of 
the term "risk factor" does not in itself imply that the agent is "risky" or in fact, 
that risk enters the discussion at  all. We use whichever term ("treatment" or 
"risk factor") appears more natural in context. 

In later chapters we talk about quantities or labels that measure the presence, 
absence, level or amount of a risk factor, treatment, outcome factor, or con- 
founding factor. Such quantities or labels will be termed variables. In studying 
the effect of seat belts on accident mortality (Example 1.1) we may define a risk 
variable taking the value 1 or 0, depending on whether or not the driver was 
wearing a seat belt at  the time of the accident. The logical distinction between 
a factor and a variable which measures that factor is not always made in the 
literature, but it can be useful. 

The term "comparison group" is used interchangeably with the more familiar 
"control group." When the important comparison is between a proposed new 
treatment and the present standard treatment, the standard treatment (rather 
than no treatment) should be given to the comparison group. In dealing with 
risk factors it is natural to speak of "risk groups" or of "exposed" and "nonex- 
posed" groups. We may have several different "exposed" or "treatment" groups, 
corresponding to different levels of the risk factor or treatment. 
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In the discussion of Example 1 .I (effect of wearing seat belts on auto accident 
fatality) we saw that a background factor (speed a t  impact) could seriously 
distort the estimate of the effect of the risk factor on the outcome. The distortion 
will arise whenever two conditions hold: 

1. The risk groups differ on the background factor. 
2. The background factor itself influences the outcome. 

Background factors which satisfy conditions 1 and 2 are called confounding 
factors. If ignored in the design and analysis of a study, they may affect its 
conclusions, for part of the effect of the confounding factor on the outcome may 
appear to be due to the risk factor. Table 1.1 is misleading because the effect 
on accident fatality apparently due to wearing seat belts (the risk factor) is ac- 
tually due to speed at impact (the confounding factor). 

In Section 2.1 we show by another example how the effect of a risk factor can 
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sometimes be disentangled from that  of a confounding factor. A useful measure 
of the likely influence of a confounding factor.on the estimate of treatment effect 
is the bias. Section 2.2 quantifies the  term "bias" and briefly introduces the 
concepts of precision and statistical significance. T h e  qualitative discussion in 
Chapter  1 of the relation among the risk, outcome, and confounding factors is 
extended in Section 2.3. Formulas relating bias, standard error, and mean 
squared error a re  given in Appendix 2A. 

2.1 ADJUSTMENT FOR A CONFOUNDING FACTOR 

In Example 1.1 the risk factor had no actual effect on the outcome. Table 1.2 
shows that its apparent effect was due entirely to  the confounding factor. In most 
studies many factors will each have some effect on the outcome and the inves- 
tigator will want to estimate the magnitude of the treatment effect after allowing 
for the effect of the other factors. An example will show that sometimes this can 
be  done quite easily. 

Example 2.1 Coffee drinking, obesity, and bloodpressure: Supposq that a physician, 
Dr. A, wants to assess the effect on the diastolic blood pressure of his male patients of 
their regularly drinking coffee. We shall consider just two levels of the risk factor, coffee 
drinking, corresponding to patients who drink coffee regularly (the drinkers) and patients 
who do not drink coffee regularly (the nondrinkers). The outcome variable, diastolic blood 
pressure, is a numerical measurement. Dr. A is unwilling to instruct his patients to drink 
coffee or to stop drinking coffee, but he can rely (let us say) on truthful answers to I 
questions on the subject in his medical records. 

Because he knows that blood pressure is also influenced by weight-overweight patients 
tend to have higher blood pressures that those of normal weight-Dr. A classifies all his 
male patients by obesity (overweight or not overweight) as well as by coffee drinking. 
Dr. A calculates the average diastolic blood pressure in millimeters of mercury (mm Hg) 
of patients in the four categories. We shall suppose that the average diastolic blood , 

I 
pressure among the nondrinkers who are not overweight is 70 mm Hg, but that among 
the nondrinkers who are overweight the average is 90 mm Hg. Let us also suppose that 
the effect of drinking coffee regularly is to increase blood pressure by exactly 4 mm Hg, 
and that there are no other complicating factors. Then the average diastolic blood pres- 
sures among the drinkers who are and who are not overwe~ght are 94 and 74 mm Hg, 
respectively. These assumptions are summarized in Table 2.1. Notice that we have not ! 
yet specified the numbers of patients in each category. I 

Suppose that Dr. A were to attempt to estimate the effect of drinking coffee on blood 

Table 2.1 Average Diastolic Blood Pressures (mm Hg) 

Overweight Not Overwe~ght 

Dr~nkers 94 0 74 0 
Nondr~nkers 90 0 70 0 

2.1 ADJUSTMENT FOR A CONFOUNDING FACTOR 9 

Table 2.2 "Even" Distribution for Dr. A 's Patients 

Overweight Not Overweight Total 

Drinkers 100 
Nondrinkers 50 

pressure ignoring the effect of obesity. He would compare the average blood pressure 
of the drinkers with that of the nondrinkers. To calculate these averages Dr. A will need 
to know the numbers of his patients in each category of Table 2.1. We shall suppose that 
he has 600 male patients in all, and will consider two different distributions of their 
numbers, an "even" distribution (Table 2.2) and an "uneven" distribution (Table 
2.3). 

In the "even" distribution the proportion of overweight patients among the drinkers 
(100/400 = 0.25) is the same as that among the nondrinkers (501200 = 0.25). In sta- 
tistical language, Table 2.2 exhibits no association between coffee drinking and obesity. 
The average blood pressure among all the drinkers is the weighted mean of the averages 
on the top line of Table 2.1, weighted by the numbers of patients contributing to each 
average. From Table 2.1 and Table 2.2, this is 

From the second line of the same tables, the average blood pressure among the non- 
drinkers is 

Dr. A's estimate of the average increase in blood pressure due to coffee drinking would 
be 

79.0 - 75.0 = 4.0 mm Hg. 

This is the correct answer because it agrees with the rise of 4.0 mm Hg that we assigned 
to coffee drinking. To summarize, if there is no association between the risk factor, coffee 
drinking, and the background factor, obesity, among Dr. A's patients, a straight com- 
parison of average blood pressures among the drinkers and among the n6ndrinkers will 
be adequate. Here the background factor satisfies condition 2 of the definition of a 
confounding factof given at the beginning of this chapter, but it does not satisfy condition 
1 and so is not a confounding factor. 

If, instead, Dr. A's patients follow the "uneven" distribution of Table 2.3, then both 
parts of the definition will be satisfied, as Table 2.3 does indicate an association between 
coffee drinking and obesity. Obesity will now be a confounding factor. The average blood 

Table 2.3 "Uneven" Distribution for Dr. A's Patients 

Overweight Not Overweight Total 

Drinkers 300 100 400 
Nondrinkers 50 150 200 
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pressure among the drinkers who visit Dr. A will be 

Among the nondrinkers, the average blood pressure will be 

The crude estimate of the average increase in blood pressure due to coffee drinking, 
namely 

89.0 - 75.0 = 14.0 mm Hg, 

would be incorrect. 
Of course, this problem does not arise if Dr. A assesses the effect of coffee drinking 

separately among his overweight patients and among his patients who are not overweight. 
He then uses the values given in Table 2.1 to arrive at the correct estimate of the effect 
of coffee drinking, namely that it increases average blood pressure by 4.0 mm Hg among 
both classes of patient. 

However, Dr. A may prefer to calculate a single summary measure of the effect of 
coffee drinking on blood pressure among all his patients. He can do this by applying the 
average blood pressures in Table 2.1 to a single hypothetical standard population con- 
sisting, for example, of 50% patients of normal weight and 50% patients who are over- 
weight. These calculations would tell him what the average blood pressures would be 
in this standard population ( a )  if they all drank coffee and ( b )  if none of them drank 
coffee. The calculations give 

for the average blood pressureamong the patients in the standard population if they were 
all to drink coffee, and 

if none of them were to drink coffee. The comparison between these two averages gives 
the correct result. 

This adjustment procedure is an example of standardization, to be described further 
j in Chapter 7. 

2.2 BIAS, PRECISION, AND STATISTICAL SIGNIFICANCE 

For many reasons the estimated treatment effect will differ from the  actual 
treatment effect. W e  may distinguish two types of error: random error, and 
systematic error or bias. This book is primarily concerned with the bias intro- 
duced into the  estimate of treatment effect by confounding factors. However, 
t o  illustrate the distinction between random error and  bias, we give a simple 
example not involving a treatment or confounding factor. 

Example 2.2 The Speak-Your- Weight machines: An old Speak-Your-Weight ma- 
chine is rather erratic but not discernibly off-center. A new machine gives perfectly re- 
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producible results but may be off-center because of an incorrect setting at the fac- 
tory. 

A man of weight 170 Ib who weighs himself five times on the old machine may hear 
weights of 167, 172, 169, 173, and 168 lb. The new machine might respond 167, 167, 167, 
167, and 167 lb. The old machine is exhibiting random error, the new machine systematic 
error. Of course, a Speak-Your-Weight machine could easily be both erratic and off- 
center. Such a composite machine, exhibiting the defects described both for the old and 
the new machines, might give readings of 164,169, 166, 170, and 165 lb, which are subject 
to random error and to bias. 

There is clearly no way to distinguish between these types of error by a single mea- 
surement (e.g., of 167 lb). Implicit in the distinction between random error and systematic 
error is the notion of repetition: random error would approximately cancel out if repeated 
measurements were taken and averaged [in this example the average of the five weights 
spoken by the old machine, (167 + 172 + 169 + 173 + 168)/5 = 169.8 lb is quiteclose 
to the true weight, 170 lb], while systematic error is impervious to averaging (the average 
of the weights spoken by the new machine is still 167 Ib). 

Statistical techniques such as  significance testing and  the  calculation of 
standard errors and  confidence intervals are  often helpful in gauging the likely 
effect of random error on the conclusions of a study. These techniques cannot 
in themselves assess the effect of systematic error. 

2.2.1 Bias 

W e  can now attempt a formal definition of the  term "bias." 

Definition: T$e bias of a n  estimator is the difference between the  average 
value of the estimates obtained in many repetitions of the study and the true value 
of what i t  is estimating. 

By thinking of an estimator as  a procedure that  produces estimates, we in- 
7 

troduce the notion of repetition into the definition. Because of random error the 
estimate would change from repetition to  repetition, although the  estimator, 
the  procedure used t o  derive the estimates, would not change. The  definition 
emphasizes tha t  the  bias is a number, positive or negative. This contrasts with 
the common use of the term a s  a n  abstract noun, or even a s  a general insult to  
impugn any study tha t  disagrees with one's own opinions: "This study is bi- 
ased." 

Confounding factors a r e  the major source of bias in nonrandomized studies 
(in both the common and  the technical usage of the term "bias") and it is with 
the bias due to  confounding factors that  this book is primarily concerned. Other 
possible sources of bias will be mentioned in Chapter 5. 

Unfortunately, the definition we have just given rarely enables the bias to be 
calculated, even in terms of the  unknown true treatment effect. since studies 
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are not repeated and we cannot say what would happen if they were. With the 
partial exceptions of matching and standardization, all the techniques described 
herein depend on assumed statistical models, which state what would happen 
in hypothetical repetitions. A simple statistical model for the weight X registered 
by the "old" Speak-Your-Weight machine of Example 2.2 has 

where p is the true weight of the man and E denotes a random error. The true 
weight p would not change from repetition to repetition, but the random error 
E would change, with an average value close to zero after many repetitions. 

By contrast, the "new" Speak-Your-Weight machine has 

where p is the true weight, as before, and b is a systematic error which does not 
change from repetition to repetition. 

Rarely can the validity of an assumed statistical model be checked directly. 
The methodological chapters (Chapters 6 to 12) will discuss the statistical models 
demanded by each technique and such indirect checks of the validity of these 
models as are available. The equations are not usually as simple as those given 
above because they must relate the outcome variable to the treatment and " confounding variables of interest and to the measure chosen to describe the effect 
of the treatment. The distribution of the random error must also be specified. 

2.2.2 Precision and Statistical Significance 

The precision of an unbiased estimator of a treatment effect is usually mea- 
sured by the variance of the estimator or by the square root of this variance, the 
standard error. The smaller the variance or standard error, the more precise is 
the estimator. The standard error of a biased estimator still measures the in- 

; fluence of random error on the estimator, but it gives no clue as to the magnitude 
of systematic error. As systematic error is usually a more serious threat to the 
validity of observational studies than is random error, this book assesses tech- 
niques by their ability to reduce bias and places only a secondary emphasis on 
precision. However, most of the procedures we describe permit the calculation 
of standard errors of estimated treatment effects. 

The mean squared error of an estimator is defined as the mean value, in hy- 
pothetical repetitions, of the square of the difference between the estimate and 
the true value. We show in Appendix 2A that the mean squared error can be 
calculated as the variance plus the square of the bias. It provides a useful criterion 
for the performance of estimators subject to both systematic and random 
error. 

The function of a test of statistical signz'jlcance is to determine whether an 

apparent treatment effect could reasonably be attributed to chance alone. When 
applied to data from well-designed randomized studies, significance tests can 
effectively demonstrate the reality of the observed treatment effect. In non- 
randomized studies, where systematic error will usually provide a more plausible 
explanation of an observed treatment effect than will random variation, sig- 
nificance tests are less crucial. Nevertheless, they can, if carried out after ad- 
justment for confounding factors, be useful indicators of whether the observed 
treatment effect is real. 

The concepts of precision and statistical significance are closely related. 
Whether an estimated treatment effect is statistically significant depends not 
only on the magnitude of the estimated effect but also on the precision of the 
estimator. A useful rule of thumb, based on an assumed normal distribution, 
holds an estim9ted treatment effect a t  least twice its standard error from the 
no-effect value to be on the borderline of statistical significance, and to be highly 
significant if away by at  least three times its standard error. 

The methodological chapters include some discussion of tests of statistical 
significance and of the precision of estimators. 

2.3 SOME QUALITATIVE CONSIDERATIONS 

For the two examples involving confounding factors discussed so far (seat belts 
to reduce accident fatalities, effect of coffee drinking on blood pressure), the 
assumed relations among the factors are summarized in Figures 2.1 and 2.2. 

In these figures an arrow (+) denotes a direct casual link. That is, A + B 
if a change in A would result in a change in B if all other factors listed in the 
figure do not change. A double arrow (-) denotes a possible association between 
factors A and B which may not have a simple causal interpretation. The two 
factors may influence each other and may both be influenced by other factors 
not included in the figure. The relation of primary interest is, a% always, that 

Seat belts H Fatality 
(risk factor) (outcome) I 

Speed at impact 
(confounding . 

factor) Y 
I I 

Figure 2.1 Seat belts and fatalities. 
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lood pressure 1 

Figure 2.2 Coffee drinking and blood pressure. 

between the risk factor and the outcome. The  figures indicate the defining 
properties of a confounding factor: i t  is associated with the risk factor and i t  
influences the outcome. As we have seen, the correct statistical analysis for both 
Examples 1.1 and  1.2 is t o  adjust for the effect of the confounding factor. 

2.3.1 Unnecessary Adjustment 

The  f o l l o ~ i n g  example, from MacMahon and Pugh (1970, p. 256), suggests 
tha t  adjustment is not always called for. 

Example 2.3 Oral contraceptives and thromboembolism: Consider an investigation 
of the effect of oral contraceptives on the risk of thromboembolism in women. A factor 
possibly associated with the risk factor (use of oral contraceptives) is religion. Catholic 
women may be less likely to use oral contraceptives than are other women. The relation 
between the three factors mentioned might be as shown in Figure 2.3. The cynic may 
add a second arrowhead to the arrow connecting "Religion" and "Oral contraceptive." 
As always, the relation between the risk factor (oral contraceptive usel and the outcome 
(thromboembolism) is of primary interest. 

Figure 2.3 Oral contraceptioes and thromboembolisms 

Oral contraceptive 
(risk factor) 

- 
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Thromboembolism 
(outcome) 

Table 2.4 Number of  Thromboembolisms and Number o f  Women by 
Religion and Oral Contraceptive ( OC) Use 

Catholic Non-Catholic Total 

OC users 2000 5000 7000 
(thromboembolisms) (100) (250) (350) 
Nonusers 8000 5000 13,000 
(thromboembolisms) (240) (150) (390) 

I 

To amplify the discussion, let us assume that the true lifetime risks of thromboembolism 
among users and nonusers of the contraceptive pill are 5% and 370, respectively, irre- 
spective of religion. Consider a study population consisting of 10,000 Catholic women 
and 10,000 non-Catholic women and suppose that 20% of the Catholics but 50% of the 
non-Catholics use oral contraceptives. Table 2.4 gives the number of women in each 
category of the study population and the number of these women who would suffer a 
thromboembolism if the rates of 5% and 3% were to apply. 

In this example an analysis ignoring religion will give the correct risks (350/7000 = 
0.05 and 3901 13,000 = 0.03), as should be clear from the construction of Table 2.4. 
However, the background factor of religion is apparently related not only to the risk 
factor-this we assumed at the start-but also to the outcome, as Table 2.5 demonstrates. 
The.risk of thromboembolism is slightly higher among non-Catholics than among 
Catholics. Apparently, religion here satisfies the definition of a confounding factor, since 
it is a background factor associated with both the risk factor and the outcome. 

Closer examination reveals that religion does not satisfy the definition. Although this 
background factor is associated with the outcome, it does not influence the outcome except 
through its effect on the risk factor. The dashed arrow in Figure 2.3 is a consequence of 
the other two arrows in the diagram. 

If, nevertheless, the investigator does choose to correct for religion as a confounding 
factor using one of the techniques described in later chapters, he or she will not introduce 
bias into the study. Depending on the procedure chosen, there will be a slight or substantial 
loss of precision. 

? 

A v 0 
0 

0 

0 
/' 

0 

This last point applies more generally. Unnecessary adjustment-adjustment 
for a background factor that is not in fact confounding-will not introduce bias 
into a study except in some rather special circumstances, involving regression 
effects to  be discussed in Section 5.3 (but note also Example 2.4). However, the 
precision of the  estimated treatment effect may be reduced. 

Religion 
(?) 

Table 2.5 Totals from Table 2.4 

Catholic Non-Catholic 

All women 10,000 10,000 
Thromboembolisms (340) (400) 

0 
0 
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2.3.2 Proxy Variables 

Before leaving Example 2.3, we should consider the possible effects of other 
important background variables. In fact, correction for the effect of religion will 
be useful if religion is associated with a confounding variable not measured in 
the study. Religion would then be called a proxy variable. This could happen, 
for example, in the following cases: 

1.  If risk of thromboembolism is affected by diet and the eating habits of 
Catholic and non-Catholic women differ. Diet would then be confounding, being 
related to both the risk factor (oral contraceptive use), through its relation to 
religion, and to the outcome (thromboembolism). 

2. If risk of thromboembolism is affected by family size, and Catholic women 
had more children than did non-Catholic women. Here family size would be 
confounding for the same reason as diet in ( 1 ) .  

The investigator may choose to adjust for religion as a substitute for the un- 
measured confounding factor. Unfortunately, the association between the proxy 
variable and the unmeasured confounding factor needs to be quite strong before 
the former can substitute effectively for the latter. 

2.3.3 Defining the Factors 

In some situations confusion over the definition of the risk factor can actually 
introduce bias into the study. 

Example 2.4 Maternalage and infant mortality: Suppose that we want to determine 
the effect of maternal age on infant mortality. Birth weight might be considered as a 

' 

confounding factor, as younger mothers have lower-weight babies and lower-weight babies 
have higher mortality. However, adjusting for birth weight in the analysis would be 

Infant mortality 
(risk factor) (ou tcorne) 
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i misleading, because we would be adjusting away the major difference we should be 

I looking for. Birth weight in this example is a kind of intermediate outcome which leads 
to the final outcome of interest. Figure 2.4 summarizes the relationships among the three 

I factors. If the effect of maternal age on infant mortality is entirely attributable to its effect 
i on birth weight, an analysis adjusted for birth weight will indicate no association between 
i maternal age and infant mortality. 

I Of course, it is possible that maternal age affects infant mortality through factors other 
than birth weight. Two infants of identical birth weight but whose mothers were of dif- 
ferent ages would then be subject to different risks. An investigator interested in the effect 
of these other factors should adjust for birth weight. The new, adjusted estimate of the 
effect of the risk factor would differ from the unadjusted estimate, because the investi- 1 gator's definition of the risk factor would be different. 

F 
1 Often the question of whether to adjust for a particular factor is not statistical 

I but arises because the researcher has not defined with sufficient care the risk 
factor he or she wants to study. 

i 
I 
i 

1 APPENDIX 2A BIAS, PRECISION, AND MEAN SQUARED 
ERROR 

i 

I 
Let 8 denote the true value of the treatment effect and 8 the estimator of 8. 

The_ expectation symbol E denotes averaging with respect to the distribution 
of 8 in hyppthetical repetitions. The bias, variance, and mean squared error 
(m.s.e.) of 6 are, respectively, 

1 bias (8) = ~ ( 8 )  - 8 I 
i var (8) = E[8 - ~ ( 8 ) ] ~  = ~ ( 8 ) ~  - [ ~ ( 8 ) ] ~  

1 m.s.e. (8) = E(B - 8)2. 

On expanding the squared term in the last formula, we see that the <r~ss-~roduct 
term vanishes, and we obtain 

rn.s.e. (8) = E[8 - ~ ( 8 )  + ~ ( 8 )  - 812 

= E[B - ~($112 + [E(B) - 812 

= var (8) + [bias (8112. 
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Figure 2.4 Maternal age and infant mortality. 


