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Session 1:

Outline

• Y Scales
Summary Statistics / Parameters

• X & Y Various Configurations / Displays
Measures of relationship Y <--> X
references: M&M Ch 2

• X1, X2 & Y Roles of X1 & X2 :

• Fairer Comparison of levels of X1
BIAS REDUCTION --> X2 is a "Confounder"

• Sharper Comparison of levels of X1
MORE PRECISION --> X2 not necessarily confounder
but produces considerable addnl. variation in Y

• Interest in Both X1, X2 as determinants of Y
X1 and X2 have same SYMMETRICAL status

• X2 "modifies" relationship between X1 and Y
DIFFERENT  Y<->X1 relationship
for DIFFERENT levels (subgroups) of X2

Examples of (Y,  X1 ,  X 2  .. .  )  Data
• Admissions of Males & Females to Berkeley Graduate Schools

- overall and faculty by faculty
• Birthweight - Gestational Age ; Gender
• Fatalities & Speed Limit Change - Time
• Low Birthweight - Alcohol ; Smoking ; Social Class
• Intelligence Quotient (IQ) - Mother's Milk; Other Variables
• Stature(height) of Children on Tetracycline -
• Lung Function of Vanadium Factory Workers

- vs. reference group (matched for smoking and age)
   that was 3.4 cm different in average height

• Blood Pressure and Altitude - age; height; weight; country
• Weight - Age ; Social Class
• longevity - sexual Activity; Size

X 1 ,  X 2  & Y:

If primary interest is in X1  contrast,  and X2  is either
a "Confounder" or produces considerable additional
variation in Y that acts as 'noise'.

Simplest case: X1 is measured on a 2-point scale (binary) so
compare Y in those with X1 = 0 vs. in those with X1 = 1;

     NON-REGRESSION METHODS

Paired / Less Finely Stratified Observations (X2 : pair / stratum)

X2 X1 = 0 X1 = 1 ∆Response *

1 (ave.) response (ave.) response d
2 (ave.) response (ave.) response d
.. . . . . . . . . .
. . (ave.) response (ave.) response d

∑ ∑w•d
∑w  

* using d generically to represent any comparison
  (could be difference, ratio, etc...)

Key: (Weighted) Average of "Within-stratum"
or "other-factors-being-equal" comparisons.

Confounding:

∆ of aggregated responses NOT SAME AS aggregate of ∆ ' s

     References:
counted and measured Y's: Smith & Morrow, §14.6

AAHOVW
Miettinen §11-16

counted Y's:  Walker §8 & 13
KKM § 13
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Collinearity

    Example of the issue   : Suppose that in a study of workers aged
45-65 to quantify the degree to which hearing loss was affected
by their exposure to the noise from heavy machinery, the
number of years of exposure to this noise and the extent of
hearing loss were determined for each person. A multiple
regression is planned to assess the effect and to take the person's
age into account (hearing loss generally becomes worse with
age, even if there is no unusual occupational exposure).

What is the  correlation between age and cumulated exposure
likely to be?

If it is very high, what will it do to the estimate of the regression
slope of loss on exposure?.

If it is low, what will it do?  If you think it will do very little,
would you bother to include age in the regression? [This
question has to do with reduction of noise and making
comparisons sharper].

If you had a choice of  which workers to select from a larger
available group, would you choose on a purely random basis, or
on some other basis? Why?

See some examples on next page. The panel on the extreme left
shows the distribution of age and exposure (both in years), with
a fairly strong positive correlation. An example of a 'stratified
sample' is given next to it (upper panel). Here the    selection is
   constrained to obtain persons equally from all 4 quadrants   . This
makes it easier to separate the effect of age from the effect of
exposure. An example of an 'unstratified sample' is given in the
lower panel. Here the selection is simply a 'miniature' of the
parent distribution and so there will be greater difficulty in
separating the effect of age from the effect of exposure.

Suppose that in fact the mean hearing loss for persons of a
certain age and exposure is as follows:

mean = 0.3•(age–25) + 0.4•exposure

and that the inter-individual variation around this mean is
Gaussian with a SD of 3.  In technical language, we say that
ß[exposure] = 0.4 and that ß[age] = 0.3, and that the SD of the
'residuals' is 3.0.

On the right hand side of the following page the effects of the
collinearity on our estimates of the two ß's are displayed in list
and graphic mode for 10 unconstrained and 10 constrained
(stratified) random samples. The message from these is that the
estimates of the ß associated with exposure are      more variable   
(and so less dependable) when the samples have    collinearity    .
(the same is true for the estimates of the ß for age).
In the extreme, if the collinearity between age and exposure were
close to a correlation of 1, the estimates of the ß for exposure
could oscillate even more, and could go from being quite
negative to quite positive. The only thing that would remain
reasonably stable is the    sum      of the estimate of ß for exposure
and of the ß for age (i.e. the sum of the two estimates would be
close to 0.4 + 0.3 = 0.7, but an equation with the estimate of
ß[exposure] = –1.2 and ß[age] = +1.9  {or for that matter
ß[exposure] = +2.3 and ß[age] = –1.6} would do an equally
good job of predicting the responses (all the individuals would
be spread out along the diagonal in the age vs. exposure
diagram). You can see some of this compensatory behaviour of
the two estimates in the plot in the panel on the right (estimates
from "unstratified" samples), where there is a strong     negative   
correlation between the two estimates.
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Effect Modification

In the previous example, if  females, because of their longer hair
or greater tendency to wear ear-protectors, or because of some
biological factor that might make them less susceptiple to noise-
induced hearing loss, were analyzed separately from males, how
would the regression coefficients for hearing loss on  years of
exposure compare in the two sexes?

Effect Modification = "Different Slopes for Different
Folks"

Can we combine the separate equations for males and females
into one?

    A similar example    of combining two equations into one:  How to
estimate ideal body weight (based on findings of a Harvard
study)

For      Women    : 100 pounds for a height of 5 feet, with five
additional pounds for each added inch of height

For      Men    : 110 pounds for a height of 5 feet, and six additional
pounds for every added inch of height

Since 5 feet = 60 inches, and letting H = height in inches  – 60,
the equations become:

Women: weight = 100 + 5•H
Men: weight = 110 + 6•H

If denote Women by a variable G(ender)=0 and Men by G=1,
we can combine the 2 equations

weight = 100 + 10•G + 5•H + 1•G•H

    Terminology    : Note that the use of the product G•H as an
additional variable in the regression equation is called an
'    interaction    ' term. If the coefficient associated with this variable
were 0, we would have 'no statistical interaction' (i.e. we would
have the 'same slope for different folks'.

Thus the ideas of '   effect modification    ' and 'statistical interaction'
are really the same: epidemiologists tend to use the former and
statisticians the latter.

The trouble with the word interaction is that it refers to a purely
numerical trick to write the equations for 2 or more  non-parallel
lines in a single compact equation. Unfortunately, users of the
equations sometimes try to give the word a biological meaning.
But by suitable transformations, one can sometimes transform
non-parallel curves into parallel lines and vice versa, so any
'interaction' term has to be viewed in the context of the scale
used.



G&S Chapter 3: Regression with 2 or more independent variables
(page 1)

Preamble / Motivation / ... Answers ... Illustrated by examples
- Easy to carry out (just click!) - birthweight as function of gestational age and gender
- Easy to be "glib" about what it accomplishes

- weight in relation to age and height- BUT ... WHY use it ??? HOW to explain to father-in-law?
- breast milk and subsequent IQ in children born preterm

• If interested in separate contributions of each of
several variables... - increase in heating costs after adding a room to a house

- decrease in longevity if greater amount of sexual activity
are there any situations where one can assess
them one at a time?   i.e. Multiple Regression Equation

assess a particular X while ignoring the others ... Y X1   X2 ...   = µ Y  | X1   X2 ...   + ε

µ Y  | X1   X2 ...    =   β0 + β1 X1 + β2 X2 + ...assess a different  X while ignoring the others ... ?

or does one have to assess them simultaneously ? How to describe it ...

in words / symbols

µ Y | X1 X2 .. as a function of X1 X2 ..
(don't forget the ε's with SD σ  about µ's )

geometrically

"plane" or "surface"  of means
(in case of 2 X's) without leaving "2-D"

 as contour map (cf web page)

using links to simpler procedure..

as a sequence of simple linear regressions
(but be careful: see my notes on Ch 2/9 of M&M)

• If interested in ("net") contribution of ONE particular
variable...

are there situations where one can assess it while
ignoring the others ... ?

or does one always have consider the other X's as
well ?
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G&S Chapter 3: Regression with 2 or more independent variables
(page 2)

Meaning of βi

βi =
δ µ Y  | X1   X2 ...    

 δXi

Parameters Estimates of these (by computer!)

1. β0 b0   ± t SE[b0]
[ 0 seldom of interest]

2. β i bi  ± t SE[bi]difference in µ Y for a 1 unit difference

in Xi but no difference in other X ' s ,
i.e. all other  X ' s held "constant"

3. σ Y | X1 X2 ...
Σ (y i - [b0 + b1 x i + b2 x 2 ... ] )2

n - # of b's fitted

    ("Root Mean Squared Error")Main Purposes

• Summarization / Description
4. µ Y | X1 X2 ...   b0 + b1 X1 + b2 X2 + ...

± t SE[ thereof ]
• Adjustment (Bias Reduction)

• Increased Precision of estimates of specific βi 's
    (by removing extraneous variation)

5. Y | X1 X2 ...   b0 + b1 X1 + b2 X2 + ...
± t SE[b0+b1X1+b2X2 + ... +  ]

   (Interval for Y|X wider than for Y|X)

• Prediction

•  Interpolation / Smoothing
"borrowing strength" (e.g. estimates of outcome of prostate
cancer if sparse data in some age-histologic grade "cells")

• Polynomial Regression
(several powers of 1 X -- each power is a term in regression;
can also have other X's in equation) Multiple Correlation Coefficient

Assumptions - a helpful way to look at least squares estimate (scalar)

  R Y and best linear combination of X'ssee G&S page 54 [page 58 in 2nd ed] ;
see also comments in my notes on ch. 3
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Confounding: Reducing it by Regression
(page 1)

Preamble

 - Don’t overlook classical, “non-regression” methods
 - Regression methods are more “synthetic” (i.e. “artificial”)
 - Cf chapter 3 by Anderson et al. (c622; readings from aahovw)

Definitions ... / synonyms

Original (statistical, in design of experiments)

- inability to estimate higher order interactions
  (so typically assume they are zero)

- “mixed up with other effects” or “inextricable”

Epidemiological

 - (osm)

Other terms

-  “Lurking” (i.e. “hidden”) variable

-  “Simpson’s Paradox” is the most extreme form

(see collection of Simpson's paradox examples under Other
Resources on c626 )

Examples...

• Does using a Macintosh lead to sloppier writing? a

• Better Service from Canada Post after “Major Restructuring”a

• Salaries of Master’s and PhD’s a

• Outcomes of Pregnancy during Residency  for women and
wives of their male classmates• Admissions of Males &
Females to Berkeley Graduate Schools  b

• Percentage of White & Black Convicts Receiving Death
Penalty  a

• Intelligence Quotient (IQ) - Mother's Milk; Other Variables  a

• Lung Function of Vanadium Factory Workers Other resources, c697

- vs. reference group (matched for smoking and age) that was 3.4 cm different

in ave. height

• Blood Pressure and Altitude - age; height; weight; country b

• Longevity - Sexual Activity; thorax size c622

• Fatalities & Speed Limit Change - Time a

• NEURODEVELOPMENT OF CHILDREN EXPOSED IN
UTERO TO ANTIDEPRESSANT DRUGS b

• What Does It Take to Heat a New Room? dataset,  c697

a notes on Ch 2, c607 b resources this course (678), session 5
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Interaction(Effect Modification) in Regression
Page 1

Preamble Examples...

 - Should not be in same chapter with confounding... • Equation for Ideal Weight as function of Height

- modification by Gender - a very different topic !! (can have both, but ... see diagram)

Definitions ... • Average Earnings as function of Education / Age

- modification by Gender
     Interaction (statistical)

       - "Non-additivity" of "effects" in regression
• Decline in Bone Density with Age

- Different in 19th and 20th Centuries
       -  need for product term in regression analysis (osm)

 -  scale dependent
• ?Can hit further with aluminum than wood baseball bat?

- Difference depends on where on bat one hits ball

     (Effect) Modification (epidemiological)

       -  Inconstancy of a parameter of a relation

• Changes over time in injury rates

- Different in intervention and reference areas?

          over other subject characteristic (osm)

       -  Different slopes for different folks (jh)

     "Modifier (of a relation)

       -  A characteristic (of individuals) on which a

          parameter of a relation depends (osm)
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Interaction(Effect Modification) in Regression
Page 2

Translating these into regression equations ...

 X

Y

XX X

X continuous, M binary
     - relation between Y and X

     - "modifier" variable M

       E[Y | X, M] = B0 + B1.X + B2.M + B3.(M.X)

     - Special cases..

         X binary, M Binary

   

X

Y

Quantitative levels of Modifier M

X

Y

0 1 X0 1X0 1 X0 1

Modifier  = 1
Modifier    =  0



Interaction(Effect Modification) in Regression
Page 3

Meaning of the coefficients Special issues

     • mathematical symmetry of equationX continuous, M Binary

         E[Y | X1, X2] = B0 + B1.X1 + B2.X2 + B3.(X1.X2)

 X

Y

"0"

B0 
+ 
B2

B1

B0 1 X unit

M = 1

M = 0

B1

B1
B3

                       = B0 + B2.X2 + (B1 + B3.X2).X1

                          X2 modifies the Y<->X1 relation

                       = B0 + B1.X1 + (B2 + B3.X1).X2

                          X1 modifies the Y<->X2 relation

     • to a regression program, X1.X2 product terms are

       just like any other terms.. but

          they tend to be correlated (collinear) with the

          components from which they are made, so...

      *** user should "center" the components before  ***     - helpful ways of rewriting the equation

      *** making (or having computer make) products   ***         E[Y | X, M ] = B0 + B2.M + (B1 + B3.M).X

          (will see example in injury prevention study)



Interaction(Effect Modification) in Regression
Page 4

Translating equations back into lines ...

   • If M is binary...

       start with the M=0 case

             B0 + B1.X + B2.M + B3.(M.X)

           = B0 + B1.X + B2.0 + B3.(0.X)

           = B0 + B1.X

                ===> straight line in X with intercept B0 and slope B1

      "turn on" the M=1 toggle...

             B0 + B1.X + B2.M + B3.(M.X)

           = B0 + B1.X + B2.1 + B3.(1.X)

           = B0 + B1.X + B2   + B3.X

      collect terms that do not involve X & those that do..

             (B0 + B2)   + (B1 + B3).X

         ===> straight line in X with intercept (B0 + B2) and slope (B1 + B3)

   • If M is continuous... as above with several M values


